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Abstract. We study the k-core of a random (multi)graph on n ver-
tices with a given degree sequence. We let n→∞. Then, under some
regularity conditions on the degree sequences, we give conditions on
the asymptotic shape of the degree sequence that imply that with high
probability the k-core is empty, and other conditions that imply that
with high probability the k-core is non-empty and the sizes of its vertex
and edge sets satisfy a law of large numbers; under suitable assumptions
these are the only two possibilities. In particular, we recover the result
by Pittel, Spencer and Wormald [19] on the existence and size of a k-core
in G(n, p) and G(n, m), see also Molloy [17] and Cooper [3].

Our method is based on the properties of empirical distributions of
independent random variables, and leads to simple proofs.

1. Introduction

Let k ≥ 2 be a fixed integer. The k-core of a graph G is the largest induced
subgraph of G with minimum vertex degree at least k. (Note that the

k-core may be empty.) The question whether a non-empty k-core exists in
a random graph has attracted a lot of attention over the past fifteen years.

There have by now been quite a number of studies for the Bernoulli
random graph G(n, p) with n vertices and edge probability p, and for the

uniformly random graph G(n,m) with n vertices and m edges
(see [3, 15, 17, 19] and references therein). Recently, Fernholz and

Ramachandran [7, 8] have considered the k-core of a random graph with a
specified degree sequence. More generally, Cooper [3] studies cores of
random uniform hypergraphs with a given degree sequence. Yet more
generally, Molloy [17] considers cores in random structures such as the

uniform hypergraph and satisfiability of boolean formulas (see also
references therein).

For a constant µ > 0, let Po(µ) denote a Poisson random variable with
mean µ. Given µ > 0 and j ∈ Z+, let ψj(µ) := P

(
Po(µ) ≥ j

)
. Also, let

λk := minµ>0 µ/ψk−1(µ); and for λ > λk, we use µk(λ) > 0 to denote the
largest solution to µ/ψk−1(µ) = λ.
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In [19], Pittel, Spencer and Wormald discovered that for k ≥ 3, λ = λk is
the threshold for the appearance of a nonempty k-core in the graph
G(n, λ/n) (or, equivalently, m = nλk/2 is the threshold in the graph

G(n,m)). Their strategy was to analyse an edge deletion algorithm that
finds the k-core in a graph, showing that the corresponding random

process is well approximated by the solution to a system of differential
equations. The proof is rather long and complicated, and involves counting

formulae for the number of graphs with a given degree sequence. For an
analysis that uses a slightly modified version of their deletion algorithm

and differs in some other important technical details too, see [14].
Fernholz and Ramachandran [7, 8] use different techniques to study the

existence of a large k-core in a random graph with a given degree sequence.
Their core-finding algorithm is basically identical to ours, but they analyse

it in quite a different way; they also compare their result to a
corresponding result for branching processes.

Cooper [3] has studied the k-core of a uniform multihypergraph with a
given degree sequence. His method involves analysing a constructive

algorithm generating the multihypergraph and its core, and inductively
applying Azuma’s inequality over time periods of length n2/3∆4/3 log n,

where ∆ is the initial maximum degree.
Molloy [17] gave another proof of the sharp threshold for the k-core,

analysing a multi-round vertex and edge deletion algorithm via a
branching process type argument.

Kim [13] considers cores in a “Poisson cloning” model of a random graph,
which is somewhat different from G(n, p). The slides [13] present a sketch

argument, without precise error bounds, showing that the critical threshold
for the emergence of a k-core agrees with the threshold in G(n, p).

Darling and Norris [4] analyse cores in a different, weighted, Poisson model
of a random hypergraph. Their method involves establishing a differential

equation approximation for the Markov chain representing a suitable
deletion algorithm. The threshold for G(n, p) follows as a corollary to their

main result.
Also see Cain and Wormald [2], who use differential equations to analyse

the k-core threshold and the properties of the degree sequence of the giant
k-core in a different model of a random graph. They make corresponding

statements for G(n,m) as a corollary.
In this paper, we present a simple solution to the k-core problem. Unlike
[4] and [19], we do not use differential equations, but rely solely on the
convergence of empirical distributions of independent random variables.

Apart from G(n, p) and G(n,m), we are also able to handle the uniformly
random graph with a given degree sequence under some regularity

conditions similar to [3, 7, 8]. In contrast to [4, 19] we do not require
counting formulae for graphs but, like [3] and [7, 8], work directly in the
configuration model used to construct the random graph, exposing the

edges one by one as they are needed.
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We shall now state the result concerning the emergence of the k-core in the
random graphs G(n, p) and G(n,m). Given a graph G, let v(G) and e(G)
denote the sizes of the vertex and edge sets of G respectively. We consider

asymptotics as n→∞, and say that an event holds whp (with high
probability), if it holds with probability tending to 1 as n→∞.

We shall use Op and op in the standard way (see e.g. Janson,  Luczak and
Ruciński [11]); for example, if (Xn) is a sequence of random variables, then
Xn = Op(1) means “Xn is bounded in probability” and Xn = op(1) means

that Xn
p−→ 0.

Theorem 1.1 (Pittel, Spencer and Wormald [19]). Consider the random
graph G(n, λ/n), where λ > 0 is fixed. Let k ≥ 2 be fixed and let Corek =
Corek(n, λ) be the k-core of G(n, λ/n).

(i) If λ < λk and k ≥ 3, then Corek is empty whp.
(ii) If λ > λk, then whp Corek is non-empty, and v(Corek)/n

p−→
ψk(µk(λ)), e(Corek)/n

p−→ µk(λ)ψk−1(µk(λ))/2 = µk(λ)2/(2λ).

The same results hold for the random graph G(n,m), for any sequence m =
m(n) with 2m/n→ λ.

Part (i) does not hold for k = 2. Here λ2 = 1 and for 0 < λ < 1 there is a
positive limiting probability that there are cycles (as shown already by

Erdős and Rényi [6]), and thus a non-empty 2-core. Nevertheless, in this
case e(Corek) = Op(1) and v(Corek) = Op(1), so the core is small; cf.

Theorem 2.3(i) below.

Acknowledgements. This research was mainly done during a visit by MJL
to Uppsala University in April 2005, sponsored by the LSE Nordic Exchange
Scheme.

2. Multigraphs

It will be convenient to work with multigraphs, that is to allow multiple
edges and loops. In particular, we shall use the following type of random

multigraph.
Let n ∈ N and let (di)n

1 = (d(n)
i )n

1 be a sequence of non-negative integers
such that

∑n
i=1 di is even. We define a random multigraph with given

degree sequence (di)n
1 , denoted by G∗(n, (di)n

1 ), by the configuration model
(see e.g. [1]): take a set of di half-edges for each vertex i, and combine the

half-edges into pairs by a uniformly random matching of the set of all
half-edges. Note that G∗(n, (di)n

1 ) does not have exactly the uniform
distribution over all multigraphs with the given degree sequence; there is a
weight with a factor 1/j! for every edge of multiplicity j, and a factor 1/2
for every loop, see [10, §1]. However, conditioned on the multigraph being
a (simple) graph, we obtain a uniformly distributed random graph with

the given degree sequence, which we denote by G(n, (di)n
1 ).
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Remark 2.1. The distribution of G∗(n, (di)n
1 ) is the same as the one ob-

tained by sampling the edges as ordered pairs of vertices uniformly with
replacement, and then conditioning on the vertex degrees being correct.

Let us write 2m :=
∑n

i=1 di, so that m = m(n) is the number of edges in
the multigraph G∗(n, (di)n

1 ). We will let n→∞, and assume that we are
given (di)n

1 satisfying the following regularity conditions, cf. Molloy and
Reed [18].

Condition 2.2. For each n, (di)n
1 = (d(n)

i )n
1 is a sequence of non-negative

integers such that
∑n

i=1 di is even and, for some probability distribution
(pr)∞r=0 independent of n,

(i) #{i : di = r}/n→ pr for every r ≥ 0 as n→∞;
(ii) λ :=

∑
r rpr ∈ (0,∞);

(iii) 2m/n→ λ as n→∞.

We shall consider thinnings of the vertex degrees in G∗(n, (di)n
1 ). Let W be

a random variable with the distribution P(W = r) = pr. (This is the
asymptotic distribution of the vertex degrees in G∗(n, (di)n

1 ).) For
0 ≤ p ≤ 1 we let Wp be the thinning of W obtained by taking W points and
then randomly and independently keeping each of them with probability p.

For integers l ≥ 0 and 0 ≤ r ≤ l let πlr denote the binomial probabilities

πlr(p) := P
(
Bi(l, p) = r

)
=

(
l

r

)
pr(1− p)l−r.

(The understanding here is that π00(p) = 1 for all p.) Thus we have

P(Wp = r) =
∞∑
l=r

plπlr(p).

We further define, for given (pr)∞r=0, functions

h(p) := E
(
Wp1[Wp ≥ k]

)
=

∞∑
r=k

∞∑
l=r

rplπlr(p),

h1(p) := P(Wp ≥ k) =
∞∑

r=k

∞∑
l=r

plπlr(p).

Note that both h and h1 are increasing in p, with h(0) = h1(0) = 0. Note
further that h(1) =

∑∞
r=k rpr ≤ λ and h1(1) =

∑∞
r=k pr ≤ 1, with strict

inequalities unless pr = 0 for all r = 1, . . . , k − 1 or r = 0, 1, . . . , k − 1,
respectively.

The following theorems are our central results, and are key to proving
Theorem 1.1. See Fernholz and Ramachandran [7, 8] and in particular

Cooper [3] for similar results.

Theorem 2.3. Consider the random multigraph G∗(n, (di)n
1 ) for a sequence

(di)n
1 satisfying Condition 2.2. Let k ≥ 2 be fixed, and let Core∗k be the k-core

of G∗(n, (di)n
1 ). Let p̂ be the largest p ≤ 1 such that λp2 = h(p).
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(i) If p̂ = 0, i.e. if λp2 > h(p) for all p ∈ (0, 1], then Core∗k has
op(n) vertices and op(n) edges whp. Furthermore, if also k ≥ 3
and

∑n
i=1 e

αdi = O(n) for some α > 0, then Core∗k is empty whp.
(ii) If p̂ > 0, and further λp2 < h(p) for p in some interval (p̂ −

ε, p̂), then whp Core∗k is non-empty, and v(Core∗k)/n
p−→ h1(p̂),

e(Core∗k)/n
p−→ h(p̂)/2 = λp̂2/2.

Theorem 2.4. Suppose Condition 2.2(i) holds, and further
∑

i d
2
i = O(n).

Then all the conclusions of Theorem 2.3 hold also for the random graph
G(n, (di)n

1 ).

Naturally, the extra condition
∑n

i=1 e
αdi = O(n) in Theorem 2.3(i) implies

the extra condition in Theorem 2.4.

3. Finding the core

It is well-known (see for instance [19]) that the k-core of an arbitrary finite
graph or multigraph can be found by removing vertices of degree <k, in

arbitrary order, until no such vertices exist. It is easily seen that we obtain
the same result by removing edges where one endpoint has degree <k,
until no such edges remain, and finally removing all isolated vertices.

Again, the order of removal does not matter, and we will use a randomized
choice as follows.

Regard each edge as consisting of two half-edges, each half-edge having one
endpoint. Say that a vertex is light if its degree is <k, and heavy if its
degree is ≥k. Similarly, say that a half-edge is light or heavy when its

endpoint is. As long as there is any light half-edge, choose one such
half-edge uniformly at random and remove the edge it belongs to. (Note
that this may change the other endpoint from heavy to light, and thus
create new light half-edges.) When there are no light half-edges left, we

stop. Then all light vertices are isolated; the heavy vertices and the
remaining edges form the k-core of the original graph.

We apply this algorithm to a random multigraph with given degree
sequence (di)n

1 . Let us observe only the vertex degrees in the resulting
multigraph process, but not the individual edges. In other words, we

observe the half-edges, but not how they are connected into edges. At each
step, we thus select a light half-edge at random. We then reveal its

partner, which is random and uniformly distributed over the set of all
other half-edges. We then remove these two half-edges and repeat as long
as there is any light half-edge. It is clear, by considering configurations,

that this gives a Markov process (the state at any time t ≥ 0 is the current
degree sequence); and that at each step, conditioned on the vertex degrees
observed so far, the remaining multigraph is a random multigraph with the

given vertex degrees and the distribution specified in Section 2.
We shall analyse this process of half-edges further in Section 5.
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4. Some death processes

This section contains some preliminary lemmas that will be used in our
proofs. We begin with a classical result, see e.g. Proposition 4.24 in [12].

Lemma 4.1 (The Glivenko–Cantelli theorem). Let T1, . . . , Tn be i.i.d. ran-
dom variables with distribution function F (t) := P(Ti ≤ t), and let Xn(t) be
their empirical distribution function #{i ≤ n : Ti ≤ t}/n. Then supt |Xn(t)−
F (t)| p−→ 0 as n→∞. �

Consider next a pure death process with rate 1; this process starts with
some number of balls whose lifetimes are i.i.d. rate 1 exponentials Exp(1).

Lemma 4.2. Let N (n)(t) be the number of balls alive at time t in a rate 1
death process with N (n)(0) = n. Then

sup
t≥0

∣∣N (n)(t)/n− e−t
∣∣ p−→ 0 as n→∞.

Proof. 1−N (n)(t)/n is the empirical distribution function of the n lifetimes,
which are i.i.d. random variables with the distribution function 1−e−t, t ≥ 0.
Hence the result is an instance of Lemma 4.1. �

The death process in Lemma 4.2 is a Markov process such that, whenever
in state j, the process jumps to j − 1 with intensity j, that is after a

random time with distribution Exp(1/j). We extend this by allowing the
process to take non-integer values as follows.

Lemma 4.3. Let γ > 0 and d > 0 be fixed. Let N (x)(t) be a Markov
process such that N (x)(0) = x a.s. and transitions are made according to
the following rule: whenever in state y > 0, the process jumps to y − d
with intensity γy; in other words, the waiting time until the next event is
Exp(1/γy) and each jump is of size d downwards. Then

sup
t≥0

∣∣N (x)(t)/x− e−γdt
∣∣ p−→ 0 as x→∞.

Proof. Dividing N (x)(t) by d and t by γd we can rescale the process, and so
we may just as well assume that d = γ = 1. The process is then the same as
the one in Lemma 4.2 if x = n is an integer. In general, consider N (dxe)(t), a
rate 1 death process satisfying N (dxe)(0) = dxe. We can couple N (x)(t) and
N (dxe)(t) such that both jump whenever the smaller does, and it is easily
seen that under the coupling |N (x)(t) − N (dxe)(t)| < 1 for all t. The result
thus follows from Lemma 4.2, which yields supt≥0

∣∣N (dxe)(t)/dxe−e−γdt
∣∣ p−→

0. �

Now consider n bins with independent rate 1 death processes. Let N (n)
j (t)

denote the number of balls in bin j at time t, where j = 1, . . . , n and t ≥ 0.
Let further U (n)

r (t) := #{j : N (n)
j (t) = r}, the number of bins with exactly

r balls, for r = 0, 1, . . . . In what follows we suppress the superscripts to
lighten the notation.
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Lemma 4.4. Consider n independent pure death processes Ni(t) with rate
1 such that Ni(0) = di, where (di)n

1 satisfies Condition 2.2. Then, with the
above notation, as n→∞,

sup
t≥0

∞∑
r=0

r

∣∣∣∣∣Ur(t)/n−
∞∑
l=r

plπlr(e−t)

∣∣∣∣∣ p−→ 0.

In particular,

sup
t≥0

∣∣∣∣ ∞∑
r=k

rUr(t)/n− h(e−t)
∣∣∣∣ p−→ 0, (4.1)

sup
t≥0

∣∣∣∣ ∞∑
r=k

Ur(t)/n− h1(e−t)
∣∣∣∣ p−→ 0. (4.2)

Proof. Let Ulr(t) be the number of bins that have l balls at time 0 and r
balls at time t. We shall actually prove the stronger result

sup
t≥0

∞∑
l=0

l∑
r=0

r
∣∣Ulr(t)/n− plπlr(e−t)

∣∣ p−→ 0. (4.3)

First fix integers l and j, with 1 ≤ j ≤ l. Consider the ul := Ul(0) bins that
start with l balls. For i = 1, . . . , ul let Ti be the time the j-th ball is removed
from the i-th such bin. Then #{i : Ti ≤ t} =

∑l−j
s=0 Uls(t). Moreover, the

number of balls remaining in one of these bins at time t has the distribution
Bi(l, e−t), and thus P(Ti ≤ t) =

∑l−j
s=0 πls(e−t). Multiplying by ul/n and

using Lemma 4.1, we obtain that

sup
t≥0

∣∣∣∣∣ 1
n

l−j∑
s=0

Uls(t)−
ul

n

l−j∑
s=0

πls(e−t)

∣∣∣∣∣ p−→ 0.

Further, this convergence trivially holds when l = 0 or j = 0. But ul/n→ pl

by Condition 2.2(i), and so in fact, for all j, l ≥ 0,

sup
t≥0

∣∣∣∣∣ 1
n

l−j∑
s=0

Uls(t)− pl

l−j∑
s=0

πls(e−t)

∣∣∣∣∣ p−→ 0.

Take j = l − r and j = l − r + 1 and subtract the corresponding quantities
under the absolute value sign to deduce that each term in (4.3) tends to 0
in probability. Hence the same holds for any finite partial sum.
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Finally, let ε > 0 and let L be such that
∑∞

L lpl < ε. By Condition 2.2(iii),∑
l lul/n → λ =

∑
l lpl. Hence also

∑
l≥L lul/n →

∑
l≥L lpl < ε. Conse-

quently, if n is large enough,
∑

l≥L lul/n < ε, and

sup
t≥0

∞∑
l=L

l∑
r=0

r
∣∣Ulr(t)/n− plπlr(e−t)

∣∣ ≤ sup
t≥0

∞∑
l=L

l∑
r=0

r
(
Ulr(t)/n+ plπlr(e−t)

)
≤

∞∑
l=L

l
(
ul/n+ pl

)
< 2ε.

We conclude that (4.3) holds. �

5. Proof of Theorem 2.3

We continue to analyse the process of vertex degrees in the core-finding
algorithm of Section 3 applied to a random multigraph with given degree
sequence (di)n

1 . We regard vertices as bins and half-edges as balls. The
description in Section 3 thus says that at each step we remove first one

random ball from the set of balls in light bins (i.e. bins with <k balls) and
then a random ball without restriction. We stop when there are no

non-empty light bins, and the k-core consists precisely of the heavy bins at
the time we stop.

We thus alternately remove a random light ball and a random ball. We
may just as well say that we first remove a random light ball. We then

remove balls in pairs, first a random ball and then a random light ball, and
stop with the random ball leaving no light ball to remove.

We change the description a little by introducing colours. Initially all balls
are white, and we begin again by removing one random light ball.

Subsequently, in each deletion step we first remove a random white ball
and then recolour a random light white ball red; this is repeated until no
more white light balls remain. If we consider only the white balls, this is

evidently the same process as before.
We now run this deletion process in continuous time such that, if there are
j white balls remaining, then we wait an exponential time with mean 1/j
until the next pair of deletions. In other words, we make deletions at rate
j. This means that each white ball is deleted with rate 1 and that, when
we delete a white ball, we also colour a random light white ball red. Let
L(t) and H(t) denote the numbers of light and heavy white balls at time t

respectively; further, let H1(t) be the number of heavy bins.
Since red balls are ignored, we may make a final change of rules, and say

that all balls are removed at rate 1 and that, when a white ball is removed,
a random white light ball is coloured red; we stop when we should recolour

a white light ball but there is no such ball. Note that all heavy balls are
white, and that white balls yield our core-finding process.

Let τ be the stopping time of this process. First consider the white balls
only. There are no white light balls left at τ , so L(τ) has reached zero.
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However, let us consider the last deletion & recolouring step as completed
by redefining L(τ) := −1; we then see that τ is characterized by L(τ) = −1
and L(t) ≥ 0 for 0 ≤ t < τ . Moreover, the heavy balls left at τ (which are
all white) are exactly the half-edges in the k-core. Hence the number of

edges in the k-core is 1
2H(τ), while the number of vertices is H1(τ).

Moreover, if we consider only the total number L(t) +H(t) of white balls
in the bins, ignoring the positions, the process (up to time τ) is as follows:
each ball dies at rate 1 and upon its death another ball is also sacrificed.
The process L(t) +H(t) thus is the death process studied in Lemma 4.3,

with γ = 1 and d = 2. We start with an odd number 2m− 1 of white balls,
since we began by removing one light ball. Consequently, Lemma 4.3 yields

sup
t≤τ

∣∣L(t) +H(t)− 2me−2t
∣∣ = op

(
2m

)
= op(n). (5.1)

Next let us ignore the colours. Our final version of the process then
becomes exactly the process studied in Lemma 4.4, apart from the initial
removal of a light ball which does not affect the conclusions because, for

each t, at most two Ur(t) (in the notation of Section 4) are changed by ±1.
Since all heavy balls are white, we have H(t) =

∑∞
r=k rUr(t) and

H1(t) =
∑∞

r=k Ur(t). Hence, by (4.1) and (4.2),

sup
t≤τ

|H(t)/n− h(e−t)| p−→ 0, (5.2)

sup
t≤τ

|H1(t)/n− h1(e−t)| p−→ 0. (5.3)

In particular,

H(τ)/n− h(e−τ )
p−→ 0, and H1(τ)/n− h1(e−τ )

p−→ 0. (5.4)

We deduce from (5.1), (5.2) and 2m/n→ λ that

sup
t≤τ

∣∣L(t)/n+ h(e−t)− λe−2t
∣∣ p−→ 0. (5.5)

Assume now that t1 is a constant independent of n with t1 < − ln p̂. Then
p̂ < 1 and thus h(1) < λ. Hence, by continuity, h(p)− λp2 < 0 on (p̂, 1],

and thus h(e−t)− λe−2t < 0 for t ≤ t1. By compactness,
h(e−t)− λe−2t ≤ −c for t ≤ t1 and some c > 0. But L(τ) = −1, so if τ ≤ t1

then L(τ)/n+ h(e−τ )− λe−2τ < −c and from (5.5)

P(τ ≤ t1) → 0. (5.6)

In case (i) we may take any finite t1 here, and hence find τ
p−→∞. As

h(0) = h1(0) = 0, (5.4) yields that

H(τ)/n
p−→ 0, H1(τ)

p−→ 0.

The first claim now follows, since v(Corek) = H1(τ) and
e(Corek) = H(τ)/2. The second claim will follow from Lemma 5.1 below.
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In case (ii) we similarly let t2 ∈ (− ln p̂,− ln(p̂− ε)). Then by the
hypothesis h(e−t2)− λe−2t2 = c > 0. If τ > t2 then L(t2) ≥ 0, and thus

L(t2)/n+ h(e−t2)− λe−2t2 ≥ c. Consequently (5.5) implies that

P(τ ≥ t2) → 0.

Since we can choose t1 and t2 arbitrarily close to − ln p̂, together with (5.6)
this shows that

τ
p−→ − ln p̂.

Combined with (5.4), this yields H(τ)/n
p−→ h(p̂) and H1(τ)/n

p−→ h1(p̂),
which proves (ii). �
It remains to prove the following lemma extending a result by  Luczak [15].

Lemma 5.1. If k ≥ 3 and
∑

i e
αdi = O(n), then there exists δ > 0 such

that whp G∗(n, (di)n
1 ) has no non-empty k-core with fewer than δn vertices.

Remark 5.2. The proof below shows the stronger statement that whp
G∗(n, (di)n

1 ) has no non-empty subgraph with fewer than δn vertices and
average degree at least k.

We begin the proof of Lemma 5.1 with a sublemma.

Lemma 5.3. Consider a set X of 2m points and a subset Y ⊆ X with y
elements. Let M be a random perfect matching of X and let Z be the number
of pairs in M where both members belong to Y . Then for every real u ≥ 0

P(Z ≥ u) ≤
( y2

mu

)u
. (5.7)

Proof. Denote the right hand side of (5.7) by f(u). Then either f(u) ≥ 1
or f(u) ≥ f(due). Hence it suffices to prove (5.7) when u is an integer. In
that case

P(Z ≥ u) ≤ E
(
Z

u

)
=

(
y

2u

)
(2u)!
2uu!

1
(2m− 1) · · · (2m− 2u+ 1)

=
(
y

2u

) (
m
u

)(
2m
2u

) ≤ ( y

2m

)2u
(
m

u

)
≤

( y

2m

)2u(em
u

)u
=

( ey2

4mu

)u
.

�

Proof of Lemma 5.1. Let C be such that
∑

i e
αdi ≤ Cn.

Consider a set A of s vertices i1, . . . , is, and let DA :=
∑s

j=1 dij . If A is the
vertex set of the k-core, it must contain at least ks/2 edges. By Lemma 5.3,
using the inequality x ≤ ex, the probability of this event is at most(2D2

A

mks

)ks/2
=

( 2ks
mα2

)ks/2(αDA

ks

)ks
≤

( 2ks
mα2

)ks/2
eksαDA/(ks).



A SIMPLE SOLUTION TO THE k-CORE PROBLEM 11

Summing over all sets A with s vertices, we obtain

P(v(Core∗k) = s) ≤
( 2ks
mα2

)ks/2 ∑
|A|=s

∏
i∈A

eαdi

=
( 2ks
mα2

)ks/2(n
s

)s ∑
|A|=s

∏
i∈A

s

n
eαdi

≤
( 2ks
mα2

)ks/2(n
s

)s
n∏

i=1

(
1 +

s

n
eαdi

)
≤

( 2ks
mα2

)ks/2(n
s

)s
exp

( n∑
i=1

s

n
eαdi

)
≤

( 2ks
mα2

)ks/2(n
s

)s
exp(Cs)

Since 2m/n→ λ, m > λn/3 for large n, so that

P(v(Core∗k) = s) ≤
(( 6k

λα2

)k/2( s
n

)k/2−1
eC

)s
. (5.8)

Choosing δ such that ( 6k
λα2

)k/2
δk/2−1eC =

1
2
,

and considering the cases s < lnn and s ≥ lnn separately, it is easily seen
that the sum of the right hand side of (5.8) over s ∈ [1, δn] is o(1). �

6. Proofs of Theorems 2.4 and 1.1

Proof of Theorem 2.4. By the results in [9], under our assumptions
lim inf P(G∗(n, (di)n

1 ) is simple) > 0. Indeed, by considering subsequences
we may assume that

∑
di(di − 1)/2m → µ < ∞, and then the number of

loops and multiple edges converges, e.g. by the method of moments, to a
Po(µ/2 + µ2/4) distribution. Hence the result follows from Theorem 2.3 by
conditioning on G∗(n, (di)n

1 ) being simple. �

Proof of Theorem 1.1. The degree sequence (di)n
1 is now random, but Con-

dition 2.2 holds for convergence in probability with pr = P(Po(λ) = r), see
for example [1, Chapter III]. Choosing a suitable coupling of the random
graphs G(n, λ/n) for different n, we may thus assume that Condition 2.2
holds a.s.
Further, the vertex degrees di all have the same distribution, binomial
Bi(n− 1, λ/n) for G(n, λ/n) and hypergeometric for G(n,m), and it follows
easily that E

∑
i e

di = nE ed1 = O(n). This implies that
∑

i e
di = Op(n);

by suitable conditioning we may thus assume
∑

i e
di = O(n). Then The-

orem 2.4 applies a.s. to G(n, λ/n) or G(n,m) conditioned on the degree
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sequence, with (pr)r = Po(λ). In the notation of Section 2, W ∼ Po(λ) and
so Wp ∼ Po(λp); hence h1(p) = ψk(λp) and

h(p) =
∞∑

j=k

j
(λp)j

j!
e−λp = λpψk−1(λp).

Consequently,

λp2 > h(p) ⇐⇒ p > ψk−1(λp) ⇐⇒ λp

ψk−1(λp)
> λ.

It then follows that p̂ = 0 ⇐⇒ λ < µ/ψk−1(µ) for all µ ≤ λ. Since this
inequality holds trivially for µ > λ, we deduce that p̂ = 0 ⇐⇒ λ < λk =
minµ>0 µ/ψk−1(µ), and so part (i) follows.
Similarly, if λ > λk, λp̂ = µk(λ), and (ii) follows, provided we show that
µ/ψk−1(µ) < λ for µ slightly less than µk(λ). This is done in Section 7
below. �

7. A fixed point equation

To complete the proof of Theorem 1.1 we show the following lemma.
Recall that λk := minµ>0 µ/ψk−1(µ).

Lemma 7.1. (i) Assume k ≥ 3. If λ > λk, then the equation µ/ψk−1(µ) =
λ has exactly two positive solutions, µ−(λ) and µ+(λ), with 0 < µ−(λ) <
µ+(λ); thus µk(λ) = µ+(λ). Moreover, µ/ψk−1(µ) < λ for µ−(λ) < µ <
µ+(λ) = µk(λ).
(ii) Assume k = 2. If λ > λk, then the equation µ/ψk−1(µ) = λ has exactly
one positive solution, µk(λ), and µ/ψk−1(µ) < λ for 0 < µ < µk(λ).

Proof. Define ϕ(µ) := ψk−1(µ)/µ.
For k = 2, ψk−1(µ) = 1− e−µ so ϕ(µ) =

(
1− e−µ

)
/µ. Hence ϕ is (strictly)

decreasing on (0,∞) and µ/ψk−1(µ) is increasing from λ2 = 1 to ∞ for
µ ∈ (0,∞); the result follows.
For k ≥ 3, the result follows immediately from the lemma below; note that

λk := inf
µ>0

1
ϕ(µ)

=
1

supµ>0 ϕ(µ)
.

�

Lemma 7.2. If k ≥ 3, then ϕ(x) := ψk−1(x)/x is unimodal: there is a
unique maximum point x0 > 0, ϕ′(x) > 0 for 0 < x < x0 and ϕ′(x) < 0 for
x > x0. Further, ϕ(x) → 0 as x→ 0 or x→∞.

Proof. Note first that ϕ is continuously differentiable on (0,∞) with ϕ(x) >
0, and that ϕ(x) = O

(
xk−2

)
as x→ 0, and ϕ(x) ≤ 1/x; hence ϕ(x) → 0 as

x→ 0 or x→∞. It follows that ϕ(x) attains its maximum at some x0 > 0.
Also ψ′k−1(x) = xk−2e−x/(k − 2)!, and thus ψk−1(x)/

(
xψ′k−1(x)

)
is increas-

ing. Hence

x
d

dx
lnϕ(x) = x

ψ′k−1(x)
ψk−1(x)

− 1 (7.1)
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is decreasing. Since lnϕ attains its maximum at x0, d
dx lnϕ(x0) = 0, and

it follows from (7.1) that d
dx lnϕ(x) > 0 for x < x0 and d

dx lnϕ(x) < 0 for
x > x0. �

Remarks 7.3. The proof shows that y 7→ lnϕ(ey) is strictly concave.
In the language of discrete dynamical systems, see for instance [5], for k ≥ 3,
µ±(λ) are the fixed points of fλ(x) := λψk−1(x), and fλ undergoes a saddle-
node bifurcation at λ = λk.

8. Further results

We have studied the k-core of a random multigraph with a given degree
sequence. We have determined sufficient conditions on the asymptotic

behaviour of the degree sequence for the k-core to be empty, or at least
very small, with high probability. We have also given sufficient conditions
for the multigraph to have a giant k-core such that the sizes of its vertex

and edge sets obey a law of large numbers.
We have further given a new proof that the random graph G(n, λ/n) (and
hence also the random graph G(n,m)) exhibits threshold behaviour. That
is, for each integer k ≥ 3, there is a value λk such that, if λ < λk then the
k-core is empty whp; and if λ > λk then the number of vertices and

number of edges in the k-core are almost deterministic, and are very large.
We have not discussed the next level of detail. It is possible to obtain

quantitative versions of our results, such as large deviation estimates and a
central limit theorem for the size of the k-core. Also, one can use our

method to study the transition window: how far above the threshold the
edge probability λ/n must be to ensure that G(n, λ/n) has a non-empty
k-core whp. (Some such results were already given by Pittel et al. [19].)

These and other issues will be considered in a forthcoming paper.
Furthermore, it seems possible to adapt the methods of this paper to

random hypergraphs, but we leave this to the reader.
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