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Abstract

Given a fixed bipartite graph H, we study the asymptotic speed of growth of the
number of bipartite graphs on n vertices which do not contain an induced copy of H.
Whenever H contains either a cycle or the bipartite complement of a cycle, the speed

of growth is 2Ω(n
6
5 ). For every other bipartite graph except the path on seven vertices,

we are able to find both upper and lower bounds of the form ncn+o(n). In many cases
we are able to determine the correct value of c.

1 Introduction

It is well known (see Prömel and Steger [8]) that the number of simple graphs G on n vertices
which do not contain an induced copy of H grows either as nO(n), when H is an induced
subgraph of P4, or as 2Θ(n2), when H is not an induced subgraph of P4. Brightwell, Grable
and Prömel [4] have studied the equivalent problem for partial orders, where the situation
is not so straightforward.

We consider the equivalent problem for bipartite graphs.

Let G = G[X, Y ] be a bipartite graph with bipartition (X, Y ). We say that X is the
lower part, and Y the upper part, of G. We will draw diagrams accordingly. We say that the
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bipartite complement of G is the bipartite graph which has edges between X and Y exactly
where G does not, together with the bipartition (X,Y ). If z is a vertex in G[X,Y ], then as
usual we say that the degree of z, d(z), is the number of vertices (in the part not containing
z) adjacent to z. We say that the co-degree of z is the number of vertices in the part not
containing z which are not adjacent to z.

Let G = G[X, Y ] and H = H[W,Z]. We say that G contains a copy of H if there
exist W ′ ⊂ X, Z ′ ⊂ Y , such that the induced subgraph of G on the vertices W ′ ∪ Z ′, with
bipartition (W ′, Z ′), is isomorphic to H[W,Z].

We consider three closely related problems.

First, let H = H[W,Z]. We wish to estimate the number Forbm,n(H) of graphs with
bipartitions G[X, Y ] which do not contain a copy of H, in terms of the sizes m, n of the
parts X, Y of G. We will restrict our attention to the case n = Θ(m).

Second, let H = H[W,Z]. We wish to estimate the number Forbn(H) of bipartite graphs
G on n vertices such that no bipartition of G contains a copy of H.

Third, let H be a fixed bipartite graph. We wish to estimate the number Forb∗n(H) of
bipartite graphs G on n vertices such that no bipartition of G contains a copy of any H[W,Z],
(W,Z) a bipartition of H.

As an illustration of the differences between these three problems, consider the bipartite
graph on four vertices SI(2, 1), as shown in Figure 1, with the bipartition as shown there.

Figure 1: SI(2, 1) and allowed graphs for the first and second problems

A bipartite graph G[X, Y ] containing no copy of SI(2, 1) with the given bipartition has
the property that for each x ∈ X, either X is adjacent to no vertex in Y , to exactly one
vertex in Y , or to every vertex in Y , for a total of n + 2 possibilities for each of the m
vertices in X. Since every graph with this property contains no copy of SI(2, 1) with the
given bipartition, Forbm,n(SI(2, 1)) = (n + 2)m. The second graph in Figure 1 contains no
copy of SI(2, 1) with the given bipartitions – even though it is simply SI(2, 1) the other way
up.

By contrast, suppose that G is a bipartite graph on n vertices such that no bipartition
of G contains SI(2, 1) with the given bipartition. If G contains a vertex x of degree two or
greater, then G must be connected and every vertex in the part not containing x must be
adjacent to x. Thus G has three possible structures. First, G has only vertices of degree
less than two. Second, G is a complete bipartite graph. Third, G is not a complete bipartite
graph, but there are two adjacent vertices x and y in G such that every vertex in G is adjacent
to either x or y, and every edge of G meets either x or y. The third graph in Figure 1 is an
example of this third structure. It is clear that this condition is more restrictive than the
condition for the first problem.
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Finally, suppose that G is a bipartite graph on n vertices such that no bipartition of G
contains a copy of SI(2, 1) with any bipartition. Then certainly G does not contain SI(2, 1)
with the bipartition shown in Figure 1, so that G must be one of the three structures men-
tioned in the previous paragraph. But G also does not contain SI(2, 1) with the bipartition
having two vertices in each part. If n is at least five, the third structure in the previous para-
graph must contain a copy of SI(2, 1) with this alternative bipartition, so that (for n ≥ 5)
G is either a complete bipartite graph or contains only vertices of degree less than two.

We observe that Forbn(H[U, V ]) and Forb∗n(H) coincide when H is connected.

As is well known (see e.g. Bollobás [2]), when H is any bipartite graph there are 2o(n2)

bipartite graphs on n vertices which do not contain H as a subgraph; a similar easy appli-
cation of the Szemerédi Regularity Lemma shows that there are 2o(n2) bipartite graphs on n
vertices which do not contain H as an induced subgraph. We will be interested in finding
lower bounds and better upper bounds; we will be particularly interested in finding bounds
of the form ncn for constant c.

We will see that the bipartite graphs fall into the following classes: graphs containing
cycles or the bipartite complements of cycles, five infinite families of graphs, and six ex-
ceptional graphs on six and seven vertices. Spinrad [9] observes that there is a similarity
between partial orders of height two and bipartite graphs, so that we could use the results
of Brightwell, Grable and Prömel to show that upper bounds of the form ncn exist for some
of these graphs. He also points out that there are graphs, such as P5, for which we can find
tight bounds on Forbn(P5), but which correspond to partial orders that Brightwell, Grable
and Prömel were unable to classify.

We will find that our three problems are in fact very similar. Although the second and
third problems seem more obvious and interesting, the methods we use to obtain upper
bounds for each of the five infinite families naturally apply to the first problem. We spend
most of the paper dealing with this problem.

We obtain the bounds given in the Tables 1 and 2 for each of the three problems. We ob-
serve that the results for the second and third problems differ only in that forbidding certain
graphs (SI(0, l), DS(k, 0) and DS∗(k, 0)) makes sense in the context of the second problem
where their bipartition is fixed, but in the context of the third problem they are examples of
simpler graphs (the empty graph on l + 1 vertices, SI(k, 1) and SI(k, 2) respectively). Note
that in a few cases we can find better bounds than those given in the tables; in particular
we can show that the upper bound is correct for Forbn(JS(1, 0)) and that the lower bounds
are correct for Forbn(DS(k, 0)).

A special case that might be of interest is that of the bipartite graphs on n vertices which
do not contain the path on k vertices as an induced subgraph. Trivially when k = 1, 2 we have
respectively zero and one bipartite graphs which are Pk-free. The P3-free bipartite graphs are
the sub-matchings (disjoint unions of copies of K1 and K2), of which there are n

n
2
+o(n). The

P4-free bipartite graphs are easily seen to be disjoint unions of complete bipartite graphs,
and there are nn+o(n) such (we note that P4 = JS(1, 0); in this case the general lower bound
in Tables 1 and 2 can be improved). The P5-free bipartite graphs are disjoint unions of
difference graphs (2K2-free bipartite graphs), and the P6-free bipartite graphs are a subclass

3



of the bi-cographs introduced by Giakoumakis and Vanherpe [6]; in both cases there are
nn+o(n) such bipartite graphs. We have neither good bounds on the growth rate of, nor
useful structural information about, the P7-free bipartite graphs. For k ≥ 8, Pk contains the

bipartite complement of C4; and there are 2Ω(n
6
5 ) graphs whose bipartite complements have

girth at least six and so do not contain Pk.

Throughout this paper we will use the names in Table 1 for the various graphs we study.

Following Balogh, Bollobás and Weinreich [1], we say that the speed of Forb(H) is the
rate of growth of Forb(H). Balogh, Bollobás and Weinreich showed that while hereditary
properties of graphs have highly constrained and well-behaved speeds when their speeds are
bounded above by nn+o(n), this is no longer true for hereditary properties whose speeds are
faster than nn+o(n) but slower than 2εn2

for all ε > 0. For example, some such properties
have speeds which oscillate between ncn and 2n2−ε

.

As can be seen in the Tables 1 and 2, most of the interesting cases of our problems are
hereditary properties whose speeds are in this penultimate range, but which nevertheless are
reasonably well-behaved.

In Section 2 we show that, since there are many (more than ncn for any c) graphs on n
vertices with large girth, the speed of Forbm,n(H) is large for all H which contain either a
cycle or the bipartite complement of a cycle. This leaves only five infinite families of graphs
and a few exceptional graphs on 6 or 7 vertices; we will also find bounds for the simplest of
these infinite families in this section.

It is obvious that any graph G with maximum degree (or co-degree) less than the maxi-
mum degree (or co-degree) of H cannot contain a copy of H. It is easy to show that there

are n
kn
2 bipartite graphs on n vertices with maximum degree k. One might perhaps guess

that, when H does not contain a cycle or the complement of a cycle, the speed of Forbm,n(H)
should depend principally upon the maximum degree or co-degree of H; and it is not too
hard to show that for each of the infinite families this is true. This would lead us to expect
that the lower bounds on Forbn(H) should be given by families of graphs with small maxi-
mum degree or co-degree. Interestingly, this is not always the case. We find large families
of graphs giving substantially better lower bounds than the obvious ones for four of the five
infinite families: DS(k, l), DS∗(k, l), JS(k, l) and JS∗(k, l). We are able to show that these
large families of graphs actually give the correct speed for the first three infinite families
when k = l; much of the work in this paper is involved in proving the upper and lower
bounds on Forbm,n(H) for the four infinite families, which we do in Section 3. In Section 4
we use the bounds from the previous sections to obtain similarly good bounds on Forbn(H)
and Forb∗n(H) for all H but the exceptional graphs.

In Section 5 we use a structural result of Lozin [7] to obtain good upper bounds on
Forbn(H) for all of the exceptional graphs except the path on seven vertices, P7. This leaves
finding good bounds for Forbn(P7) as the most significant open problem. We observe that
this structural result does not suffice to bound Forbm,n(H[U, V ]) above for three more of the
exceptional graphs (see Table 1).
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H Forbm,n(H)
Lower Upper

k

. . .

0
k ≥ 1 (for sufficiently large m, n)

SI(k, l)

. . .. . .
k

l
mmax(k−1,l−1)m+o(m)

k + l ≥ 1
DS(k, l)

. . .. . .
k l

mmax((k−1)m,lm+n)+o(m) mkm+n+o(m)

k ≥ l ≥ 1 or k ≥ 2, l = 0
JS(k, l) DS∗(k, l)

. . . . . .
lk

’

. . .. . .
k l

mmax(km,lm+n)+o(m) mkm+n+o(m)

k ≥ l ≥ 1 or k ≥ 1, l = 0
JS∗(k, l)

. . . . . .
lk

mmax(km,lm+n)+o(m) mkm+2n+o(m)

k ≥ l ≥ 1 or k ≥ 1, l = 0

’ mm+n+o(m)

’ ’ ’ mm+n+o(m) 2o(m2)

All other bipartite graphs 2Ω(m
6
5 ) 2o(m2)

Table 1: Summary of the bounds obtained for the first problem
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H Forbn(H), Forb∗n(H)
Lower Upper

k

. . .

0
k ≥ 1 (for sufficiently large n)

SI(k, l)

. . .. . .
k

l
nmax(

(k−1)n
2

,
(l−1)n

2
)+o(n)

k + l ≥ 1(∗)

DS(k, l)

. . .. . .
k l

nmax(
(k−1)n

2
,
(l+1)n

2
)+o(n) n

(k+1)n
2

+o(n)

k ≥ l ≥ 1(∗)

JS(k, l) DS∗(k, l)

. . . . . .
lk

’

. . .. . .
k l

nmax( kn
2

,
(l+1)n

2
)+o(n) n

(k+1)n
2

+o(n)

k ≥ l ≥ 1 or k ≥ 1, l = 0(∗),
JS∗(k, l)

. . . . . .
lk

nmax( kn
2

,
(l+1)n

2
)+o(n) n

(k+2)n
2

+o(n)

k ≥ l ≥ 1 or k ≥ 1, l = 0

’ ’ ’ ’ nn+o(n)

nn+o(n) 2o(n2)

All other bipartite graphs 2Ω(n
6
5 ) 2o(n2)

Table 2: Summary of the bounds obtained for the second and third problems
(∗) SI(0, l), DS(k, 0) and DS∗(k, 0) apply only to the second problem.
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2 Preliminaries

In this section we solve the easy cases of the first problem, and characterise the remaining
cases.

First we show that there are many graphs which do not contain short cycles. We make
use of a result of Benson [3] showing that there exists a bipartite graph with large girth and
many edges.

Theorem 1. For q an odd power of 3, there exists a bipartite graph B with q5 + q4 + q3 +
q2 + q + 1 vertices in each part, regular of degree q + 1, which has girth 12.

We can now easily deduce the following corollary.

Corollary 2. There are at least 2Ω(m
6
5 ) bipartite graphs with bipartitions whose parts are of

sizes m, n, which are connected, whose bipartite complements are connected, and which have
girth at least 12.

Proof. Let q be the greatest power of 3 such that q5 + q4 + q3 + q2 + q + 1 is not larger than
either m or n. Then let G[X, Y ] be a graph obtained by adding sufficient vertices to the
graph B given by Theorem 1 to ensure that the parts are of sizes m and n respectively, and
sufficient edges to ensure that G[X,Y ] is connected, while creating no new cycles. This graph

has at least q6 = Ω(m
6
5 ) edges, and girth 12. It is trivial to check that G[X,Y ] must have

connected bipartite complement. Let T be a spanning tree of G[X, Y ]. Then every spanning
subgraph of G[X,Y ] which preserves the edges of T has girth at least 12, is connected, and

has connected bipartite complement. There are at least q6 −m − n + 1 = Ω(m
6
5 ) edges of

G[X, Y ] which are not edges of T , and hence there are 2Ω(m
6
5 ) such graphs.

Although we do not need the connectedness part of the above corollary at this stage, it
will be useful in a later section.

Corollary 2 provides a lower bound on Forbm,n(H) for all H which contain a cycle of
length less than 12, or whose bipartite complement contains such a cycle. The following
corollary allows us to list all the H which do not fall into that category.

Corollary 3. If H = H[U, V ] is a bipartite graph on at least eight vertices, both of whose
parts contain at least three vertices, then

Forbm,n(H) = 2Ω(m
6
5 ) .

Proof. If H contains a cycle, then either the shortest cycle in H is of length at most 8, or
the bipartite complement of H contains a 4-cycle.

But if H is acyclic, then it has at most |H| − 1 edges, so its bipartite complement has at
least 3(|H| − 3) − |H| + 1 = 2|H| − 8 > |H| − 1 edges and must have a smallest subgraph
which is a cycle; since H is acyclic this cycle is of length at most 8.
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Therefore either H or its bipartite complement contains a cycle of length at most 8, and
either the graphs given by Theorem 2 all do not contain a copy of H, or their bipartite
complements all do not contain a copy of H. In either case, we obtain the given bound.

We now have to deal only with those H whose smaller part has zero, one or two vertices,
together with a small number of exceptional cases on six and seven vertices. The various
possibilities are set out in Table 1.

Trivially if one part of H is empty, then for sufficiently large m, n, Forbm,n(H) = 0.

Theorem 4. Forbm,n(SI(k, l)) = mmax(k−1,l−1)m+o(m).

Proof. A graph G with bipartition (X,Y ) which does not contain a copy of SI(k, l) is
precisely one in which every vertex in X is either adjacent to at most k− 1 vertices in Y , or
to all but at most l − 1 vertices in Y . There are
((

n

0

)
+

(
n

1

)
+ . . . +

(
n

k − 1

)
+

(
n

l − 1

)
+

(
n

l − 2

)
+ . . . +

(
n

0

))m

= mmax(k−1,l−1)m+o(m)

such graphs (note that n = Θ(m), so that nm = mm+o(m)).

3 Four infinite families

We now consider bipartite graphs H = H[W,Z] with two vertices in the lower part W .

Observe that if the two vertices in the lower part have more than one common neighbour,
or there are two isolated vertices in the upper part, then either H or its bipartite complement
contains a cycle and so Theorem 2 gives us a lower bound on Forbm,n(H).

Therefore we need to find bounds for the four infinite families of bipartite graphs DS(k, l),
DS∗(k, l), JS(k, l) and JS∗(k, l) (see Table 1). Note that the bipartite complement of
JS(k, l) is DS∗(k, l), so that the bounds which we find for the former give immediately
bounds for the latter.

Observe that if G[X, Y ] does not contain a copy of DS(k, l), l < k, then it certainly
contains no copy of DS(k, k), so that it suffices to bound above Forbm,n(DS(k, k)).

Theorem 5. Forbm,n(DS(k, k)) ≤ mkm+n+o(m).

Proof. We describe a process for recording information sufficient to reconstruct a bipartite
graph G[X,Y ] containing no copy of DS(k, k).

Choose any order x1, x2, . . . , xm on X such that d(xi) ≤ d(xj) for every 1 ≤ i < j ≤ m.

It is obvious that G contains no copy of DS(k, k) if and only if |Γ(xi) − Γ(xj)| ≤ k − 1
for each i ≤ j.

For each 2 ≤ i ≤ m, let Uxi
= Γ(xi−1)−Γ(xi), and let Vxi

= Γ(xi)−Γ(xi−1). Let Ux1 = ∅,
and Vx1 = Γ(x1).
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We call the sets Uxi
and Vxi

the removed set and added set at xi.

It is clear that the following information, the basic recording of G, is sufficient to recon-
struct G:

(X,Y )
[Vx1 , x1, Vx2 , x2, . . . , Vxm , xm]
[Ux1 , Ux2 , . . . , Uxm ]

where we write out the elements of each of the sets in the standard order. We call the first
list [Vx1 , x1, . . .] the list of vertices, and the second list [Ux1 , . . .] the list of removals.

Observe that the list of vertices is of length at most m+n+(k−1)m, since n ≥ |Γ(xm)| =∑
i(|Vxi

| − |Uxi
|) ≥ ∑

i |Vxi
| − (k − 1)m.

This is already sufficient to give Forbm,n(DS(k, k)) ≤ 2m+n(m + n)km+n
(

n
k−1

)m−1
=

m(2k−1)m+n+o(m), despite only using the fact that consecutive members xi, xi+1 of X may not
be the lower part of a copy of DS(k, l).

In fact, no two members of X are the lower part of a copy of DS(k, k). We can use
this to show that, given the list of vertices, there are not m(k−1)m+o(m) choices for the list of
removals, but only mo(m). Suppose that y appears in a removed set at some vertex between
xi+1 and xj, i < j, in the degree sequence order, but not in any added set at those vertices.
Then y is adjacent to xi but not to xj. Since xi and xj are not the lower part of a copy of
DS(k, k), |Γ(xi)− Γ(xj)| ≤ k − 1. So we expect to find that most members of removed sets
must also be members of added sets at nearby vertices in the degree sequence order.

We compress the information given in the removed sets Uxi
. Suppose that y is the jth

member of the removed set at the vertex xi. We define a reference tag Rxi,j as follows.

If there is a p, − log m ≤ p ≤ log m, such that the entry p after xi in the list of vertices
is y, then let Rxi,j = V :p. We say that the reference tag is a good reference tag.

If there is no such p, then let Rxi,j = P :y. We say that this is a bad reference tag.

We now write out the compressed recording of G:

(X,Y )
[Vx1 , x1, Vx2 , x2, . . . , Vxm , xm]
[(Rx1,1, Rx1,2, . . .), (Rx2,1, Rx2,2, . . .), . . .]

It is clear that this recording gives enough information to reconstruct the basic recording,
and hence G.

We will now show that for any G[X, Y ] with no copy of DS(k, k), there are few bad
reference tags.

We divide X into blocks A1, . . . as follows. Let A1 = {x1, x2, . . . , xa} where xa is within
distance log m of x1 in the list of vertices, but xa+1 is not. Let A2 = {xa+1, . . . , xb}, where
xb is within distance log m of xa+1 in the list of vertices, but xb+1 is not, and so on. Since
the list of vertices is of length at most km + n, there are at most dkm+n

log m
e blocks.

Suppose that Rxi,j = P :y is a bad reference tag: so y is in the removed set at xi, but
it does not appear in the list of vertices within log m of xi. If xi ∈ Ar = {xc, . . . , xd}, then
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y does not appear in an added set at any of xc+1, . . . , xd. If xi 6= xc, then y is adjacent to
xc, but not to xd. If there were k bad reference tags among those at vertices xc+1, . . . , xd

then there would be k vertices in Y adjacent to xc and not to xd. This would mean that
|Γ(xc) − Γ(xd)| ≥ k, so {xc, xd} would be the lower part of a copy of DS(k, k). Therefore
there can be at most 2(k− 1) bad reference tags in a block (at most k− 1 at the first vertex
in the block, and at most k− 1 among those at the remaining vertices). Therefore there are

at most 2k(km+n)
log m

bad reference tags.

There are (1 + 2 log m) possible good reference tags, and n possible bad ones. Therefore
we can bound above the number of possible compressed recordings by

2m+n(m + n)km+n2(k−1)m(1 + 2 log m)(k−1)mn
2k(km+n)

log m

so Forbm,n(DS(k, k)) ≤ mkm+n+o(m) as required.

The upper bound in Theorem 5 gives the correct speed.

Theorem 6. Forbm,n(DS(k, k)) = mkm+n+o(m).

Proof. We have the upper bound already; we construct a family of graphs which is of suffi-
cient size.

Let X = {1, . . . , m}, Y = {m + 1, . . . ,m + n}. Let X0 = {1, . . . , b n
log m

c}. Let Y0 =

{m + 1, . . . , m + b m
log m

c}.
Partition X − X0 into sets X1, X2, . . ., each (except possibly the last) of size blog mc.

We can obtain such a partition by taking any order on X −X0, which has size m− b m
log m

c,
and letting X1 be the first blog mc vertices in that order, X2 the next blog mc, and so on.

There are
(
m− b m

log m
c
)
! = mm−o(m) ways to order X −X0. The number of distinct orders

which generate each partition is |X1|!|X2|! . . . ≤ blog mc!b m
log m

c+1 = mo(m). Therefore there
are mm−o(m) such distinct partitions.

Partition Y − Y0 into sets Y1, Y2, . . ., each (except possibly the last) of size blog mc.
Similarly, there are nn−o(n) ways to do this.

Choose, for each vertex xi in X − X0, a set Ni of k − 1 vertices in Y − Y0. There are

n(k−1)((m−b m
log m

c)−o(m) = m(k−1)m+o(m) ways to do this.

Construct a bipartite graph G[X,Y ] as follows. Put an edge from each i ∈ X0 to
each vertex in Y0 ∪ Y1 ∪ . . . ∪ Yi−1. Put an edge from each m + i ∈ Y0 to each vertex in
X0 ∪X1 ∪ . . . ∪Xi−1. Put an edge from each i ∈ X −X0 to each vertex in Ni.

Observe that whatever choices were made, G does not contain a copy of DS(k, k). Fur-
thermore, different choices imply different G. Therefore Forbm,n(DS(k, k)) = mkm+n+o(m) as
required.

Observe that if the recording method described in Theorem 5 were applied to a typical
graph G[X, Y ] constructed as in Theorem 6, then given any ε > 0 we would find the following.
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There are no sets Vx of size greater than εn.

The list of vertices is of length at least (k − ε)m + n.

There are at most εm vertices in X with any given degree.

There are at least m1−ε different vertex degrees in X.

It is easy to check, by considering the recording method, that given ε > 0, the speed of
graphs G[X, Y ] which do not contain a copy of DS(k, k) and which fail to satisfy any of the
above conditions is at most mkm+n−ε′m+o(m), slower than the speed of Forbm,n(DS(k, k)). In
the first two cases, this is because there are not enough possibilities for the list of vertices,
and in the last two, because there are mεm distinct orderings of X by increasing degree,
so that each graph can be recorded in mεm different ways. So the graphs constructed in
Theorem 6 are in some sense typical.

Since K1,k = SI(k, 0) is an induced subgraph of DS(k, l), any G[X, Y ] which does not
contain SI(k, 0) does not contain DS(k, l), so we have the lower bound Forbm,n(DS(k, l)) ≥
m(k−1)m+o(m). It is trivial to check that in the case k ≥ 2, l = 0, this lower bound gives the
correct speed.

Note that, if 1 ≤ l ≤ k − 1, since DS(l, l) is an induced subgraph of DS(k, l), the
construction in Theorem 6 gives a lower bound Forbm,n(DS(k, l)) ≥ mmax(lm+n,(k−1)m)+o(m).
When l = k − 1 this bound is certainly better than the above, and it seems reasonable to
conjecture that it is correct.

We now examine JS(k, l). We will obtain an upper bound by modifying the argument
used in Theorem 5; again we will find an upper bound on Forbm,n(JS(k, k)) and observe
that as JS(k, l) is an induced subgraph of JS(k, k) when k ≥ l, this gives an upper bound
for Forbm,n(JS(k, l)).

Theorem 7. Forbm,n(JS(k, k)) ≤ mkm+n+o(m).

Proof. Again we will describe a process for recording bipartite graphs G[X, Y ] which contain
no copy of JS(k, k). Observe that if we have some guarantee that some vertices in X share
a common neighbour in Y , then we can apply the same recording procedure as in Theorem 5
to these vertices.

Observe that G[X, Y ] contains no copy of JS(k, k) if and only if whenever x, x′ ∈ X
share a common neighbour, with d(x) ≤ d(x′), so |Γ(x)− Γ(x′)| ≤ k − 1.

It is convenient to record the graph G in several steps. First we find a way to record the
neighbours of the set Q of vertices in X which have at most log log m neighbours.

We do this as follows. First we construct a set P ⊂ Q by reading through the vertices in Q
in order of decreasing degree, and choosing for P every vertex whose neighbourhood is disjoint
from all those previously chosen. Now any two vertices in P have disjoint neighbourhoods,
and if q ∈ Q−P , then there is a p ∈ P whose neighbourhood intersects that of q and which
has d(p) ≥ d(q).

Let Γ(P ) be the set of vertices in Y which are neighbours of at least one vertex in P . Then
we can record the neighbours of each vertex in P by writing down Γ(P ) and the partition
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of Γ(P ) into the sets Γ(p) for p ∈ P .

Now let q be in Q − P . There is p ∈ P with d(p) ≥ d(q) and such that p and q share
at least one neighbour. Then |Γ(q) − Γ(p)| ≤ k − 1, since {p, q} is not the lower part of a
copy of JS(k, l). So we can record the neighbours of q by writing down the vertex p, the
neighbours of p which are also neighbours of q, and the at most k−1 vertices in Γ(q)−Γ(p).
This does not require us to have the vertices in Q − P in any particular order, so we can
record the set Q− P by simply choosing them from X.

So we can record the neighbours of all the vertices in Q in at most

2nm|Γ(P )|2m
(
m2log log mnk−1

)|Q−P |
= mk|Q|+|Γ(P )|−k|P |+o(m)

ways.

Now we record the neighbours of the remaining vertices X ′ = X −Q, each of which has
degree at least log log m > 2k − 1.

We choose a set of vertices S1 ⊂ X ′ by reading through X ′ in order of increasing degree,
and choosing for S1 every vertex whose neighbours are disjoint from all those previously
chosen. Let X1 = X ′ − S1. Now S1 satisfies three properties. First, no two vertices in
S1 share a common neighbour. Second, every vertex in X1 shares at least one common
neighbour with some vertex in S1. Third, for every x ∈ X1, there is an s ∈ S1 which shares
a common neighbour with x and satisfies d(s) ≤ d(x).

Observe that since G[X,Y ] contains no copy of JS(k, k) and all vertices in X ′ have degree
at least log log m > 2k − 1, these three properties imply that for every x ∈ X1, every s ∈ S1

which shares a common neighbour with x satisfies d(s) ≤ d(x). For if not, then let s ∈ S1 be a
vertex sharing a common neighbour with x and with d(x) < d(s). Since x shares a neighbour
with, and has degree not smaller than, some s′ ∈ S1, we must have |Γ(s′)− Γ(x)| ≤ k− 1 or
{x, s′} would be the bottom part of a copy of JS(k, k). Then x has at least k neighbours in
common with s′, none of which are neighbours of s. So |Γ(x) − Γ(s)| ≥ k, but then {x, s}
are the bottom part of a copy of JS(k, k).

We assign to the vertices in X ′ removed sets and added sets Ux, and Vx by following the
process below.

For each s ∈ S1, let Us = ∅ and let Vs = Γ(s).

Let x1 be a vertex in X1 with minimum degree. We distinguish two possibilities.

If x1 shares a common neighbour with only one s1 ∈ S1, then d(x1) ≥ d(s1) and we
can write Γ(x1) = (Γ(s1) − Ux1) ∪ Vx1 , where as before |Vx1| ≥ |Ux1| ≤ k − 1. We let
S2 = (S1−{s1})∪ {x1}, and X2 = X1−{x1}. We say that x1 is part of the degree sequence
process starting at s1.

If x1 shares a common neighbour with more than one member of S, then let these
members be s1, . . . , sa. Let Ux1 = (Γ(s1) ∪ Γ(s2) ∪ . . . ∪ Γ(sa)) − Γ(x1), and let Vx1 =
Γ(x1)−(Γ(s1)∪ . . .∪Γ(sa)). Observe that |Ux1| ≤ a(k−1), since none of the sets Γ(si)−Γ(x)
have more than k−1 members. We let S2 = (S1−{s1, . . . , sa})∪{x1}, and X2 = X1−{x1}.
We say that the vertex x1 joins the neighbourhoods of the vertices s1, . . . , sa.

12
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Figure 2: x follows a in a degree sequence process; y joins the neighbourhoods of b, c and d.

By construction, no two vertices in S2 share a common neighbour. If x ∈ X2 shares a
common neighbour with s ∈ S2, then either s ∈ S1, in which case d(x) ≥ d(s), or s = x1, in
which case d(x) ≥ d(s) by choice of x1. If x ∈ X2, then x shares a common neighbour with
s ∈ S1. Either s ∈ S2, or s shares a common neighbour with x1. In the latter case, both x
and x1 have degree at least d(s) > log log m > 2k− 1, so that x and x1 are each adjacent to
all but at most k− 1 neighbours of s, and so must share a common neighbour. Therefore S2

and X2 satisfy the same conditions as S1 and X1, so we can continue this process with x2,
a vertex in X2 with minimum degree, and the set S2, and so on.

If we know that x follows a in a degree sequence process, then we can recover the neigh-
bours of x given Γ(a), Ux and Vx.

If we know that y joins the neighbourhoods of b, . . . , d, then we can recover the neighbours
of y given Γ(b), . . . , Γ(d), Uy and Vy.

Then we can write down a recording of G[X,Y ] as in the following example.

(X,Y )
Recording of the low degree vertices and their neighbours
[Vs1 , s1, Vx1 , x1, . . .]
[Us1 , Ux1 , . . .]
. . .
[Vs|S1|

, s|S1|, . . .]
[Us|S1|

, . . .]

JOIN :b, . . . , d
[Vy, y, . . .]
[Uy, . . .]
JOIN : . . .
. . .

Each of the pairs of lines [Vs1 , s1, Vx1 , x1, . . .], [Us1 , Ux1 , . . .] et cetera represents a degree
sequence process as in Theorem 5; so the neighbourhood of s1 is Vs1 , the neighbourhood of x1

is Γ(s1)∪Vx1 −Ux1 , and so on. The ordering of the degree sequence processes is immaterial.

Each triple of lines JOIN :b, . . . , d, [Vy, y, . . .], [Uy, . . .] et cetera represents a new degree
sequence process; in the example, the first vertex in this degree sequence process is y, whose
neighbourhood is (Γ(b) ∪ . . . ∪ Γ(d)) − Uy) ∪ Vy. Again the ordering of these triples is

13



immaterial.

As in Theorem 5 we call the lists [Vs1 , s1, Vx1 , x1, . . .] et cetera the lists of vertices and
the lists [Us1 , Ux1 , . . .] et cetera the lists of removals.

It is clear that we can reconstruct G from such a recording; we call this the basic recording
of G.

Observe that |S1| ≤ n
log log m

, since every member of S1 has at least log log m neighbours. If

Si+1 is obtained from Si by joining the neighbourhoods of j vertices, then |Si+1| = |Si|+1−j.
Since |S1| ≤ n

log log m
, the total number of neighbourhoods joined is at most 2n

log log m
.

Let Γ(X ′) be the set of vertices in Y which are adjacent to at least one vertex in X ′.
The neighbourhoods of the vertices in Si are disjoint for each i; so the sum of their sizes is
at most |Γ(X ′)| ≤ n. Observe that whether Si+1 is obtained from Si by letting xi continue
a degree sequence process or by letting it join some neighbourhoods,

∑
s∈Si+1

|Γ(s)| = |Vxi
| − |Uxi

|+
∑
s∈Si

|Γ(s)| .

Now |Uxi
| ≤ k− 1 if xi continues a degree sequence process; if xi joins some r neighbour-

hoods then |Uxi
| ≤ r(k − 1). Since at most 2n

log log m
neighbourhoods are joined in total,

∑

x∈X′
|Vx| ≤ |Γ(X ′)|+ (k − 1)|X ′|+ 2kn

log log m
.

Therefore the total length of the lists of vertices is at most |Γ(X ′)|+ k|X ′|+ 2kn
log log m

, and

the total length of the lists of removals is at most (k − 1)|X ′| + 2kn
log log n

. The total number

of vertices whose neighbourhoods are joined (and which are therefore listed on some JOIN :
line in the recording) is at most 2n

log log m
.

This is already sufficient to give

Forbm,n(JS(k, l)) ≤ 2m+nmk|Q|+|Γ(P )|−k|P |+o(m)(m+n)|Γ(X′)|+k|X′|+ 2kn
log log m n(k−1)|X′|+ 2kn

log log n m
2n

log log m
+o(m)

= mk|Q|+|Γ(P )|−k|P |+|Γ(X′)|+(2k−1)|X′|+o(m) ≤ m(2k−1)m+2n+o(m) .

As in Theorem 5, we expect to find that vertices appearing in Uxi
are likely to appear in

Vxj
for some xj close to xi in the same degree sequence process. We can make this precise

by applying a virtually identical compression argument. We define the reference tag Rxi,j in
the same way as in that theorem, with reference to the list of vertices which contains xi.

We can again divide X ′ into blocks, with each block containing vertices in just one degree
sequence process. If a block starts at a vertex x which joins the neighbourhoods of r vertices,
then it may contain at most k−1+r(k−1) bad reference tags; otherwise a block may contain
at most 2(k − 1) bad reference tags.

The total length of the lists of vertices is less than 2(km + n), so that there are at most
2(km+n)

log m
+ 2n

log log m
blocks, the extra 2n

log log m
coming from possible ‘short’ blocks at the ends of

degree sequence processes. Therefore there are at most 3n
log log m

bad reference tags in total.
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As in Theorem 5, we can now write the compressed recording of G, where instead of
writing the lists of removals [Ux, . . .] et cetera, we write lists of reference tags [(Rx,1, . . .), . . .]
et cetera.

This allows us to improve our bound for Forbm,n(JS(k, l)); instead of bounding above
the choices for the lists of removals by m(k−1)|X′|+o(m), we can now bound above the choices
for the lists of removals by mo(m). We find that

Forbm,n(JS(k, l)) ≤ mk|Q|+|Γ(P )|−k|P |+|Γ(X′)|+k|X′|+o(m) ≤ mkm+2n+o(m) .

Finally, we wish to obtain the claimed bound. We use our knowledge of the neighbours
of vertices in P to produce an extra-compression of the lists of vertices.

For each p ∈ P , either we can find an xp ∈ X ′ which is the first vertex in the lists of
vertices to share a common neighbour with p, or Γ(p) ∩ Γ(X ′) = ∅. Let P1 be the set of
vertices p ∈ P for which xp exists, and P2 = P − P1 be the vertices whose neighbourhoods
are disjoint from Γ(X ′).

For each p ∈ P1, let Ip,xp = Γ(p) ∩ Γ(xp). Since d(xp) > log log m ≥ d(p), |Ip,xp| ≥
|Γ(p)| − (k − 1).

For each x ∈ X ′, if x 6= xp for every p ∈ P1, let V ′
x = Vx. If x = xp for at least one p, let

V ′
x = Vx −

⋃
p:x=xp

Ip,xp .

We write down the extra-compressed recording of G as in the following example.

{X, Y }
Recording of the low degree vertices and their neighbours
[Ip1,xp1

, xp1 , Ip2,xp2
, xp2 , . . .]

[V ′
s1

, s1, V
′
x1

, x1, . . .]
[(Rs1,1, . . .), . . .]
. . .
[V ′

s|S1|
, s|S1|, . . .]

[(Rs|S1|,1
, . . .), . . .]

JOIN :b, . . . , d
[V ′

y , y, . . .]
[(Ry,1, . . .), . . .]
JOIN : . . .
. . .

where P1 = {p1, p2, . . .} with p1 < p2 < . . . in the standard order. We can clearly recover
the compressed recording of G from this; we have only to insert each of the sets Ipi,xpi

into
the identified V ′

xpi
. Therefore Forbm,n(JS(k, l)) is bounded above by the number of possible

extra-compressed recordings.

We now wish to find the total length of the lists of vertices in the extra-compressed
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recording of G[X, Y ]. Recall that

∑

x∈X′
|Vx| ≤ |Γ(X ′)|+ (k − 1)|X ′|+ 2kn

log log m
.

Observe that∑

x∈X′
|V ′

x| =
∑

x∈X′
|Vx| −

∑
p∈P1

|Ip| ≤
∑

x∈X′
|Vx|+ (k − 1)|P1| −

∑
p∈P1

|Γ(p)| ,

and
|Γ(X ′)| ≤ n−

∑
p∈P2

|Γ(p)| .

Then the total length of the lists of vertices in the extra-compressed recording is at most
|X ′|+ n + (k − 1)|P | −∑

p∈P |Γ(p)|+ (k − 1)|X ′|+ 2kn
log log m

.

The list of insertions [Ip1,xp1
, xp1 , . . .] can be chosen in at most

(
2
(
log log n

k−1

)
m

)|P |
= m|P |+o(m)

ways.

Finally, we can obtain the claimed bound:

Forbm,n(JS(k, l)) ≤ 2m+nmk|Q|+|Γ(P )|−k|P |+o(m)m|P |+o(m)mk|X′|+n+(k−1)|P |−|Γ(P )|+o(m)

≤ mkm+n+o(m) .

As DS(k, k) is an induced subgraph of JS(k, k), the family of graphs given in Theorem 6
provides a lower bound for JS(k, k) which matches the upper bound, so Forbm,n(JS(k, k)) =
mkm+n+o(m).

Corollary 8. Forbm,n(DS∗(k, l)) ≤ mkm+n+o(m).

Proof. The bipartite complement of DS∗(k, l) is JS(k, l), so Forbn,m(DS∗(k, l)) ≤ mkm+n+o(m).

Again we observe that Forbm,n(DS∗(k, k)) = mkm+n+o(m).

Corollary 9. Forbm,n(JS∗(k, l)) ≤ mkm+2n+o(m).

Proof. Let G = G[X,Y ] be a bipartite graph not containing JS∗(k, l).

Let Y ′ be Y if |Y | is odd, and Y − {y}, some y ∈ Y , if |Y | is even.

Let X ′ be the vertices in X with less than |Y ′|
2

neighbours in Y ′, and X ′′ those with more

than |Y ′|
2

neighbours in Y ′. Let m′ = |X ′|, and m′′ = |X ′′|.
Observe that the neighbourhoods of any two vertices in X ′ cover at most |Y ′|−1 vertices.

Therefore the subgraph of G[X,Y ] induced by X ′∪Y ′ contains no copy of JS(k, l). Similarly,
the subgraph of G[X, Y ] induced by X ′′ ∪ Y ′ contains no copy of DS∗(k, l).

Therefore Forbm,n(H) ≤ 2m(m′)km′+n+o(m′)(m′′)km′′+n+o(m′′) ≤ mkm+2n+o(m).
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4 Second and third problems

We have now established good bounds on Forbm,n(H[U, V ]) for every bipartite graph H[U, V ]
except for the six exceptional graphs. It is convenient to use these bounds to find good bounds
on Forbn(H[U, V ]) and Forb∗n(H) at this point.

Note that if G is a bipartite graph which has a bipartition (X, Y ), then the statement
that no bipartition of G contains a copy of H[U, V ] is certainly at least as strong as the
statement that both G[X, Y ] contains no copy of H[U, V ] and G[Y,X] contains no copy of
H[U, V ]. Then it is trivial that

Forb∗n(H) ≤ Forbn(H[U, V ]) ≤ 2n max
r<n

min(Forbr,n−r(H[U, V ]),Forbn−r,r(H[U, V ])) , (1)

so that we can obtain an upper bound for Forbn(H[U, V ]) by finding the worst case of
min(Forbr,n−r(H[U, V ]),Forbn−r,r(H[U, V ])), and an upper bound for Forb∗n(H) by finding
the worst case of Forbn(H[U, V ]). We will see that these worst cases are, respectively, the
case r = n

2
and H as drawn in Table 1.

Observe that the condition ‘G with any bipartition does not contain a copy of H with
any bipartition’ is in general significantly stronger than ‘G[X, Y ] does not contain a copy of
H[U, V ]’, so we might expect the upper bounds obtained from the above inequality to be
poor. This is not the case.

Theorem 10. If H contains a cycle, or all of its bipartite complements contain a cycle,

then Forb∗n(H) = 2Ω(n
6
5 ). If H[U, V ] or its bipartite complement contains a cycle then

Forbn(H[U, V ]) = 2Ω(n
6
5 ).

Proof. If H contains a cycle or all of its bipartite complements contain a cycle, then either
it has girth at most eight, or all of its bipartite complements have girth at most eight.

By Corollary 2 there are 2Ω(n
6
5 ) bipartite graphs on n vertices which are connected, have

connected bipartite complement and girth at least 12. In the first case, all of these graphs
contain no copy of H; in the second case, the unique connected bipartite complement of each
of these graphs contains no copy of H.

We now have only to establish appropriate lower bounds on Forb∗n(H) for the five infinite
families SI(k, l), DS(k, l), DS∗(k, l), JS(k, l) and JS∗(k, l) to match those we have for
Forbm,n(H[U, V ]). Again, we observe that both SI(k, 0) and DS(l, l) are induced subgraphs
of each of DS(k, l), DS∗(k, l), JS(k, l) and JS∗(k, l) for l ≤ k; so it suffices to find lower
bounds on Forb∗n(H) for SI(k, l) and DS(k, k).

Theorem 11. For any fixed r, there are at least n
rn
2

+o(n) bipartite graphs whose maximum
degree is r and in which no two vertices have three or more common neighbours.

Proof. Let G be a bipartite graph on n vertices obtained by choosing uniformly at random
r matchings from {1, . . . , bn

2
c} to {bn

2
c + 1, 2bn

2
c} and putting an edge in G whenever that

edge is present in any of the r matchings.
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We call x, y a problem pair if x and y have at least three common neighbours.

The probability that a given pair of vertices x, y ≤ n
2

is a problem pair is at most

r∑
i=3

(
r

i

)(
2r

n

)i

,

so the expected number of problem pairs in G is at most 2
(bn

2
c

2

)
times that. For sufficiently

large n, this quantity is smaller than 1
2
, so there are at least

bn
2
c!r
2

= n
rn
2

+o(n)

choices of r matchings which give rise to graphs G with no problem pairs. Now given such
a graph G, each of the at most rn

2
edges is present in some subset of the r matchings, so

there are at most (2r)rn = no(n) distinct sets of r matchings giving rise to G. Thus we have
at least n

rn
2

+o(n) distinct graphs G with maximum degree r and no two vertices having three
or more common neighbours, as required.

Corollary 12.

Forb∗n(SI(k, l)) = nmax(
(k−1)n

2
,
(l−1)n

2
)+o(n) ,

and
Forbn(SI(k, l)) = nmax(

(k−1)n
2

,
(l−1)n

2
)+o(n) .

Proof. The upper bound follows from Theorem 4 and the inequality (1), since

Forbn
2

, n
2
(SI(k, l)) = nmax(

(k−1)n
2

,
(l−1)n

2
)+o(n)

is the worst case.

For the lower bound, if k ≥ l, by Theorem 11 we can find n
(k−1)n

2
+o(n) bipartite graphs

which have maximum degree k − 1 and which therefore do not contain a copy of SI(k, l)
with any bipartition. If on the other hand k < l, then again by Theorem 11 we can find

n
(l−1)n

2
+o(n) bipartite graphs which have maximum degree l− 1 and in which no two vertices

have three or more common neighbours. Now observe that although SI(k, l) has several
bipartitions, and hence several bipartite complements, all of the bipartite complements of
SI(k, l) have either a vertex of degree l or two vertices sharing three common neighbours.

So there are n
(l−1)n

2
+o(n) bipartite graphs which do not contain a copy of any of the bipartite

complements of SI(k, l), and there must be n
(l−1)n

2
+o(n) bipartite graphs which do not contain

a copy of SI(k, l). This gives us the required inequality

nmax(
(k−1)n

2
,
(l−1)n

2
)+o(n) ≤ Forb∗n(SI(k, l)) ≤ Forbn(SI(k, l)) ≤ nmax(

(k−1)n
2

,
(l−1)n

2
)+o(n) .

We now have only to bound Forb∗n(DS(k, k)). We use a similar construction to that in
Theorem 6.
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Theorem 13. Forb∗n(DS(k, k)) = n
(k+1)n

2
+o(n).

Proof. The upper bound follows from the inequality (1) and Theorem 5.

For the lower bound, let X = {1, . . . , bn
2
c}, Y = {bn

2
c+1, . . . , n}. Let X0 = {1, . . . , b n

2 log n
c}.

Let Y0 = {bn
2
c+ 1, . . . , bn

2
c+ b n

2 log n
c}.

Partition X −X0 into sets X1, X2, . . ., each (except possibly the last) of size blog nc. As
in Theorem 6, there are n

n
2
−o(n) such distinct partitions.

Partition Y − Y0 into sets Y1, Y2, . . ., each (except possibly the last) of size blog nc. Sim-
ilarly, there are n

n
2
−o(n) ways to do this.

By Theorem 11 there are n
(k−1)n

2
+o(n) bipartite graphs with bipartition {X −X0, Y −Y0}

whose maximum degree is k − 1.

Construct a bipartite graph G as follows. Put an edge from each i ∈ X0 to each vertex in
Y0∪Y1∪ . . .∪Yi−1. Put an edge from each m+ i ∈ Y0 to each vertex in X0∪X1∪ . . .∪Xi−1.
Put edges between X − X0 and Y − Y0 in any way such that the maximum degree of the
subgraph induced by (X −X0) ∪ (Y − Y0) is at most k − 1.

Observe that, whatever choices were made, G does not contain a copy of DS(k, k) with
any bipartition. Furthermore, different choices imply different G. Therefore Forb∗n(DS(k, k)) =

n
(k+1)n

2
+o(n) as required.

5 Exceptional graphs

The only bipartite graphs which we have not yet covered are those with three vertices in
the smaller part which are acyclic and whose bipartite complements are acyclic. These are
graphs on either six or seven vertices, shown in Table 3.

, , , , ,
P6 P6 Star1,2,2 Star1,2,2 P7 Star1,2,3

Table 3: Exceptional bipartite graphs

Note that the first pair of these are bipartite complements of each other, as are the second
pair; the last two are both self-complementary.

Each of these exceptional bipartite graphs contains the graph P4, so that we have trivial
lower bounds for each exceptional H.

For the first problem, we have Forbm,n(H) ≥ Forbm,n(P4) = mm+n+o(m). We will show
that these lower bounds are correct for the graphs P6 and P6.

For the second and third problems, again we have Forbn(H) ≥ Forbn(P4) = nn+o(n) and
similarly Forb∗n(H) ≥ nn+o(n), and we will show that these lower bounds are correct for each
of the exceptional graphs except P7.
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Thus far, we have examined ways to record a bipartite graph one vertex at a time.
An alternative method is to consider breaking a graph down into smaller pieces by specified
operations. Results along these lines are called decomposition results, and there exist several
relating to bipartite graphs.

Giakoumakis and Vanherpe [6] considered the two operations of bipartite complement
and disjoint union. They defined the class of bi-cographs to be the class of bipartite graphs
which can be fully decomposed using only these two operations: a single vertex in either
part is a bi-cograph, the bipartite complement of a bi-cograph is a bi-cograph, and the
disjoint union of two bi-cographs is a bi-cograph. They were able to prove that the class of
bi-cographs is exactly the class of bipartite graphs which contain no induced P7, Star1,2,3 or
Sun4, where the graph Sun4 is the bipartite graph on eight vertices given by taking a copy
of C4 and adding a matching from the vertices of the C4 to the other four vertices.

Fouquet, Giakoumakis and Vanherpe [5] then introduced a further decomposition oper-
ation. Suppose that the bipartite graph G[X, Y ] is such that there exist non-trivial induced
subgraphs G1[X1, Y1] and G2[X2, Y2], with X = X1 tX2 and Y = Y1 t Y2, and the subgraph
of G[X,Y ] induced by (X1, Y2) is a complete bipartite graph, while that induced by (X2, Y1)
is an empty graph. Then we say that G1[X1, Y1], G2[X2, Y2] is a K +S-decomposition of
G[X, Y ]. They called decomposition by using the three operations of taking bipartite com-
plement, disjoint union and K+S-decomposition the canonical decomposition of a bipartite
graph, and defined the class of weak-bisplit graphs to be those graphs which can be fully
decomposed using the canonical decomposition. They proved that the weak-bisplit graphs
are exactly those bipartite graphs containing no induced P7 or Star1,2,3.

A prime bipartite graph is one in which Γ(x) = Γ(y) if and only if x = y.

Lozin [7] was able to prove that the class of prime bipartite graphs which can be decom-
posed to K1,3-free graphs using the canonical decomposition is exactly the class of Star1,2,3-
free prime bipartite graphs. We will use this result to obtain our remaining upper bounds,
so we state it explicitly and give a short proof, based on that of Lozin.

Theorem 14. Any prime bipartite graph G[X,Y ] that does not contain an induced copy of
Star1,2,3 can be decomposed, using the three canonical decomposition operations, to the class
of K1,3-free graphs (equivalently, to the class of paths and cycles).

Proof. We observe that if G[X,Y ] is a bipartite graph, then G[X,Y ] has a K+S-decomposition
if and only if the bipartite complement of G[X,Y ] has one.

Suppose the theorem is false. Then there is a prime bipartite graph G[X, Y ] of minimal
order which does not contain an induced Star1,2,3 and which does not satisfy the conditions
of the theorem.

Since, by the result of Fouquet, Giakoumakis and Vanherpe, every bipartite graph that
is both Star1,2,3-free and P7-free can be fully decomposed by the canonical decomposition,
G[X, Y ] cannot be P7-free. In particular, we may assume w.l.o.g. that the vertices U =
(1, 2, 3, 4, 5, 6, 7) induce a P7, in that order, with 1, 3, 5, 7 ∈ Y and 2, 4, 6 ∈ X. We show,
following the method of Lozin, that since G[X,Y ] is prime and Star1,2,3-free, the possibilities
for edges from a vertex z to any induced P7 are very limited.
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Let V be any ordered set of seven vertices of G[X,Y ] inducing a P7 in that order. Let
T be a subset of 1, 2, 3, 4, 5, 6, 7. Then let SV (T ) be the set of vertices z ∈ V (G[X, Y ])− V
which are adjacent to the vertices in V at positions T , and not adjacent to those in V at
any other position. We will write S(T ) for SU(T ).

Now we can easily check that S(3) = S(4) = S(5) = S(1, 5) = S(3, 7) = S(2, 6) =
S(1, 3, 5) = S(3, 5, 7) = ∅, for if there were a vertex z in any of these sets we would find an
induced Star1,2,3 within {1, 2, 3, 4, 5, 6, 7, z}.

Suppose x ∈ S(3, 5). Since G[X, Y ] is prime, x and 4 may not have the same neighbour-
hoods, and we can assume w.l.o.g. that there is y, not in U , which is adjacent to 4 but not
to x. Since S(4) is empty y is adjacent also to at least one of {2, 6}, and we can quickly
check that in any case {1, 2, 3, 4, 5, 6, 7, x, y} contains an induced Star1,2,3. Then S(3, 5) = ∅,
and by similar methods we can check that S(1, 3) = S(5, 7) = ∅.

Now if x is adjacent to 3 or 5 or both, it must be adjacent also to both 1 and 7.

Suppose y ∈ S(2). Since G[X, Y ] is prime, w.l.o.g. we can find x adjacent to 1 but not
to y. Observe that (y, 2, 3, 4, 5, 6, 7) also induces a P7, and so x may not be adjacent to 3 or
5 by the previous results applied to this new P7. But then {1, 2, 3, 4, 5, x, y} induces a copy
of Star1,2,3. So S(2) = ∅, and similarly S(4) = S(2, 4) = S(4, 6) = ∅.

This leaves only S(∅), S(2, 4, 6), S(1), S(1, 7), S(7), S(1, 3, 7), S(1, 5, 7), S(1, 3, 5, 7) as pos-
sible non-empty sets. These adjacency results hold for every induced P7 in G[X, Y ].

Observe that if x ∈ S(1)∪S(1, 7) then V = (x, 1, 2, 3, 4, 5, 6) induces a P7, so S(1, 3, 7) =
SV (2, 4) = ∅ = SV (2, 6) = S(1, 5, 7); similarly if x ∈ S(7) then S(1, 3, 7) = S(1, 5, 7) = ∅.

We consider two cases.

Case 1: S(1, 3, 7) = S(1, 5, 7) = ∅.
We define a set A ⊂ V (G[X,Y ]) recursively as follows. First, U ⊂ A. Second, if V ⊂ A

induces a P7, and z ∈ SV (1) ∪ SV (1, 7) ∪ SV (7), then z ∈ A. We can think of the set A as
being the vertices of G[X,Y ] which are covered by starting with the P7 induced by U and
moving it along one vertex at a time.

If z ∈ A has two or more neighbours in A, by construction there is an induced P7 with
vertices in A which includes z and two of its neighbours. Then z has exactly two neighbours
in A, or the adjacency results would be violated with respect to this P7. Thus A induces a
subgraph of G[X, Y ] which is either a path or a cycle on at least seven vertices.

Now if x ∈ X −A is adjacent to some a ∈ A, then there is a set V ⊂ A which contains a
and induces a P7. Since x /∈ A, x /∈ SV (1) ∪ SV (1, 7) ∪ SV (7). Therefore x ∈ SV (1, 3, 5, 7) ∪
SV (2, 4, 6). By applying the adjacency results to each P7 contained in A, we see that x is
adjacent to every vertex in A ∩ Y .

Similarly, if y ∈ Y − A, then y is adjacent either to every vertex, or to no vertex, in
A ∩X. We let the set of vertices in V (G[X,Y ])− A which are not adjacent to any vertices
in A be E, and let K = S(1, 3, 5, 7) ∪ S(2, 4, 6). Then V (G[X, Y ]) = A ∪ E ∪K.

Since G[X, Y ] is not K1,3-free, there must be a vertex of G[X, Y ] not in A.
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Since G[X, Y ] is not disconnected, if there is a vertex in E there must also be a vertex
in K.

Since G[X,Y ] does not have disconnected bipartite complement, if there is a vertex in
K there must also be a vertex in E. Thus there is at least one vertex in both E and K.

Recall that G[X, Y ] is a counterexample of minimal order. Then the subgraph G′ of
G[X, Y ] induced by removing the vertex 1 is not a counterexample. Since vertices of G[X, Y ]
not in A which are adjacent to 1 are also adjacent to 3, G′ must be prime, and G′ is certainly
Star1,2,3-free.

Observe that G′ is not K1,3-free, for there is a vertex of degree at least three in K. Its
bipartite complement is not K1,3-free, for there is a vertex in E of co-degree at least three.
It is connected, since there is a vertex in K, and its bipartite complement is connected, since
there is a vertex in E. Thus G′ must have a K+S-decomposition G′

1, G
′
2. But it is not hard

to check that the bipartite graph P6 does not have a K+S-decomposition, and the vertices
2, 3, 4, 5, 6, 7 in G′ induce a P6. So either G′

1 contains all of these vertices, or G′
2 does; in either

case, we can find G1, G2 containing G′
1, G′

2 respectively which are a K+S-decomposition of
G[X, Y ]. This is a contradiction.

Case 2: there is a vertex x in S(1, 3, 7) ∪ S(1, 5, 7).

Consider the bipartite complement J [X,Y ] of G[X,Y ]. This contains an induced P7

on the vertices (3, 6, 1, 4, 7, 2, 5) in that order, and the vertex x in S(1, 3, 7) ∪ S(1, 5, 7) is
adjacent to either 5 or to 3, and to no other vertex in U . Thus J [X, Y ] is a counterexample
of minimal order which fulfills the conditions of case 1, so it does not exist.

This now allows us to count the number of Star1,2,3-free bipartite graphs on n vertices.

Corollary 15. Forbn(Star1,2,3) = nn+o(n).

Proof. Since JS(1, 1) = P5 is an induced subgraph of Star1,2,3, we have the claimed lower
bound.

Now suppose we have a bipartite graph G on n vertices which does not contain a copy
of Star1,2,3.

We can find a bipartite Star1,2,3-free graph G′ which is prime by identifying sets of vertices
with identical neighbourhoods in G.

By Theorem 14, either G′ is disconnected, or has a K+S-decomposition, or is a path (on
at least two vertices) or cycle, or one of these is true of its bipartite complement.

We can record G in the following way. First,we record a bipartition X, Y of G. Then we
find sets of vertices with identical neighbourhoods and replace each set with single vertices
with that neighbourhood, labelled d1, . . .. This gives a bipartite graph G′ which is prime. If
G′ is disconnected, we write UNION(, followed by the recordings of each of the components
of G′, then the closed bracket. If G′ has a K+S-decomposition, we write K + S(, followed
by the recordings of the decomposition graphs G1 and G2 (where G1 is the subgraph of G′

induced by X1 ∪ Y1 and G2 that induced by X2 ∪ Y2, X1 ∪ Y2 induces a bipartite clique and
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X2 ∪ Y1 an independent set), followed by the closed bracket. We write the recording of G1

before that of G2. If G′ is a path, we write PATH(, followed by the vertices of the path, in the
path order, then the closed bracket. If G′ is a cycle, we write CYCLE(, followed by the vertices
of the cycle, in an order of the cycle, then the closed bracket. If we cannot do any of the
previous we write COMPLEMENT(, then the recording of the bipartite complement of G′, then
the closed bracket. Finally, we replace the vertices di in the recording of G′ by IDENTIFY(,
followed by the set of vertices with identical neighbourhoods which were identified to give
di, then the closed bracket.

Now the total number of appearances in the recording of UNION(, K + S(, PATH(, CYCLE(
and IDENTIFY( is at most n−1, and the total number of appearances of COMPLEMENT( is also
at most this number. Thus the whole recording consists of the bipartition, a linear order on
the n vertices of G[X,Y ], and at most 4n insertions of seven different strings (including the
closed bracket). Thus there are at most 2nnn85n = nn+o(n) possible recordings of bipartite
graphs with n vertices not containing Star1,2,3, and Forbn(Star1,2,3) = nn+o(n).

Since each of the exceptional graphs except for P7 is an induced subgraph of Star1,2,3, we
see that Forbn(H) = nn+o(n) and Forb∗n(H) = nn+o(n) for each of P6, P6, Star1,2,2, Star1,2,2

and Star1,2,3.

Observe that if G[X, Y ] does not contain a copy of P6[U, V ], then certainly G[X,Y ] does
not contain an induced Star1,2,3 with any bipartition, so by Corollary 15 Forbm,n(P6) =
mm+n+o(m). Similarly Forbm,n(P6) = mm+n+o(m). But we cannot use Corollary 15 to bound
Forbm,n(H[U, V ]) for H any of Star1,2,2, Star1,2,2 or Star1,2,3: there are graphs G[X,Y ] which
do not contain a copy of H[U, V ] but which do have an induced Star1,2,3. For example,
Star1,2,3[V, U ] does not contain a copy of Star1,2,3[U, V ].

6 Remaining problems

There are still some unresolved problems. Most importantly, we do not have good bounds
on Forb∗n(P7) = Forbn(P7). A possible approach to finding such bounds would be to find
a decomposition result for P7-free bipartite graphs, perhaps in a manner similar to Lozin’s
result for Star1,2,3-free graphs.

For completeness, it would be nice to find more accurate bounds for Forbm,n(H[U, V ]) for
each of the four infinite families DS(k, l), DS∗(k, l), JS(k, l) and JS∗(k, l). We know that
the upper bound for JS(1, 0) = P4 is correct, but we conjecture that in every other case the
lower bound is accurate (and so also for Forbn(H[U, V ]) and Forb∗n(H)).

It would be of some interest to find good bounds on Forbm,n(H[U, V ]) for the three
exceptional graphs Star1,2,2, Star1,2,2 and Star1,2,3. It seems likely that the lower bounds
should be correct.

Finally, we recall that Brightwell, Grable and Prömel left unclassified the speed of partial
orders without certain induced sub-orders: those corresponding to the four infinite families
DS(k, l), DS∗(k, l), JS(k, l) and JS∗(k, l), and the six exceptional graphs. They conjectured
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that in each case the correct speed should be nO(n). Our results certainly support this
conjecture.
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