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Abstract

The critical group of a graph is an abelian group that arises in several con-
texts, and there are some similarities with the groups that are used in cryp-
tography. We construct a family of graphs whose critical groups are cyclic,
and discuss the associated computational problems using algorithms based
on the theory of ‘chip-firing’.
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The Critical Group from a Cryptographic Perspective

1. Introduction

What do we mean when say that a finite abelian group K is given? In
practice, we must be able to (i) represent the elements of K as bit-strings;
(ii) recognise the bit-strings that do represent elements of K; (iii) calculate
the ‘sum’ c = a∗b of any two elements, and the inverse −a; and (iv) compute
the number |K|.
The ‘goodness’ of an algorithm for solving a specific problem in K is relative
to these basic operations. For example, given any k ∈ K and n ∈ N there is
a well-known algorithm for calculating n.k = k ∗ k ∗ · · · ∗ k ∈ K. This
method requires O(log n) sum operations, and is regarded as ‘good’. On the
other hand, suppose we are given k and h in K and we know that h = n.k
for some n ∈ N; for example, because K is cyclic and k is a generator. The
problem of finding the value of n is known as the The Discrete Logarithm
Problem, and in many cases no ‘good’ algorithm for it is known.

This situation is the basis of a system of public-key cryptography, using
formulae proposed by ElGamal [5]. Briefly, suppose a cyclic group K and
a generator k are given. A typical user (Bob) chooses a private key b′ ∈ N
and calculates a public key b = b′.k ∈ K. If another user (Alice) wishes to
send Bob a message m (coded as an element of K), she chooses a temporary
tag t ∈ N and sends the two-part code h = t.k, c = m ∗ t.b. Bob can
decode (h, c) because c − b′.h = m. But another user (Eve) cannot apply
this formula unless she can find b′, and that is an instance of the Discrete
Logarithm Problem. In the original implementation of the ElGamal system

K was taken to be the multiplicative group of a finite field Fq, which is
cyclic of order q − 1. A great deal of work has been done on the Discrete
Logarithm Problem in this context. Sub-exponential algorithms are known,
and in practice this means that very large numbers must be used in order to
achieve an acceptable level of security.

For that reason, there has been considerable interest in the case when K is
a subgroup of the Jacobian of a hyperelliptic curve y2 = φ(x) over a finite
field Fq, where φ is a polynomial of degree 2g + 1. In the case g = 1 the
curve is an elliptic curve and the Jacobian is essentially the curve itself. The
basic operations can be defined by simple formulae, but the determination
of a suitable subgroup K is an art, rather than a science. However, suitable
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choices have been found, and the method is popular because no one has yet
discovered a ‘good’ algorithm for the Discrete Logarithm Problem in this
context.

In this paper the critical group (also known as the sandpile group) of a fi-
nite graph will be studied from this point of view. Specifically, a family
of graphs with cyclic critical groups will be constructed, and the associated
computational problems will be discussed.

2. The critical group of a graph

Let G be a connected graph with vertex-set V and edge-set E. We impose
an arbitrary orientation h, t : E → V , so that h(e) and t(e) are the head and
tail of e.

Let C0(G; R), C1(G; R) denote the sets of real-valued functions defined on V
and E, endowed with the standard structure as vector spaces with an inner
product. The linear transformation D : C1(G; R) → C0(G; R) defined by

(Df)(v) =
∑

h(e)=v

f(e) −
∑

t(e)=v

f(e),

is represented by the incidence matrix of G. Its kernel Z = KerD is the flow
space, and the orthogonal complement of Z, B = Z⊥ is the cut space. By
definition C1(G; R) = Z ⊕B.

The orthogonal projection P : C1(G; R) → B can be defined explicitly in
terms of the spanning trees of G, an observation that goes back to Kirchhoff
in 1847. A discussion in modern terms is given in [2], where the formula
is written in the form P = κ−1XD. Here κ is the tree number of G and
X : C0(G; R) → C1(G; R) is defined in terms of the set of spanning trees.
This formula enables us to express every real-valued function on the edges of
G as the sum of a (real-valued) flow and a (real-valued) cut.

The situation regarding integer-valued functions is more complicated. Define
the abelian groups

CI = C1(G; Z), ZI = Z ∩ CI , BI = B ∩ CI .

A typical c ∈ CI can be written as c = (c − Pc) + Pc, which is in ZI ⊕ BI

if and only if Pc is in BI . The formula P = κ−1XD shows that Pc has
non-integral values, in general, and so ZI ⊕ BI is a proper subgroup of CI .
The quotient group is the critical group of G:
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K(G) =
CI

ZI ⊕BI

.

Bacher, de la Harpe and Nagnibeda [1] showed that the critical group arises
in several contexts. It is isomorphic to the Picard group

P(G) =
D(CI)

D(BI)
,

where D(CI) is in fact the same as the group of integer-valued functions f
on V for which

∑
v f(v) = 0, otherwise known as the divisors of degree 0.

In the same vein, the elements of D(BI) are principal divisors. The critical
group is also isomorphic to the Jacobian group

J (G) =
Z]

I

ZI

,

where Z]
I is the dual of ZI considered as a lattice in Z, the vector space of

real-valued functions.

These isomorphisms lead to important theoretical results about K(G). Most
interesting is the fact that the order of K(G) is equal to the tree number κ of
G. This fact also has practical importance, because κ is determined by the
spectrum of G, and can be computed by ‘good’ algorithms.

On the other hand, the isomorphism class of K(G) is not determined by the
spectrum of G. The classification theorem for finite abelian groups asserts
that K(G) can be expressed as a direct sum of cyclic groups

K(G) ≈ Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znr ,

where ni | ni+1 (1 ≤ i ≤ r − 1). The standard method of determining the
integers ni is to reduce a ‘relations matrix’ to its Smith normal form. In the
case of K(G) the Picard definition implies that a relations matrix Lr can be
obtained from the discrete Laplacian matrix DD′ by deleting any one row
and column. It follows that if the Smith normal form of Lr is

diag(n1, n2, . . . nr),

then the ni are the integers that occur in the canonical form of K(G). Equiv-
alently, K(G) is the cokernel of the reduced Laplacian Lr.
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We shall use an alternative to Lr, due to Kotani and Sunada [8]. They define,
for a given spanning tree T of G, a matrix F that represents the intersections
of the fundamental cycles determined by T . It can be shown that

K(G) = coker Lr = coker F.

3. A family of graphs with cyclic critical groups

The wheel graph is obtained from a cycle by adding one new vertex, and new
edges joining it to each vertex of the cycle. We shall refer to the cycle as the
rim, and the new edges as the spokes. It is known [3 ] that the critical group
of a wheel graph with 2n + 1 spokes is the direct sum of two cyclic groups of
order `2n+1, where `2n+1 is the Lucas number defined below.

The Fibonacci numbers fn are defined by the recursion f1 = 1, f2 = 1 and
fn = fn−1+fn−2 (n ≥ 3). The Lucas numbers `n are defined by `1 = 1, `2 = 3
and `n = `n−1 + `n−2 (n ≥ 3). These numbers are related by the identity
`n = fn+1 + fn−1, and they satisfy many other identities, some of which we
shall use in the proofs that follow. A useful summary is given by Honsberger
[7].

We shall show that, given a wheel W with an 2n + 1 spokes, inserting a new
vertex in a single rim edge produces a graph W † whose critical group is cyclic
of order 2`2n+1f2n+2. (In fact, a general result of Chen and Ye [4] asserts
that for any given graph there is a homeomorphic graph with cyclic critical
group.) Our result will be proved by examining the matrices that reduce the
respective cycle intersection matrices to their Smith normal forms.

Let T be the spanning tree in formed by the spokes in W . There are 2n +
1 fundamental cycles with respect to T , each of length 3, and the cycle
intersection matrix is the circulant of size 2n + 1,

W = circ(3,−1, 0, . . . , 0,−1).

Note that we denote the graph and the intersection matrix of its fundamental
cycles by the same letter. In the case of W , the matrix is the same as the
reduced Laplacian, because the graph is planar and self-dual.

Let T † be the spanning tree of W † formed by the spokes and one of the
edges incident with the new vertex x. The other edge incident with x defines
a cycle of length 4 with respect to T †, and the cycle intersection matrix is
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obtained from W by adding 1 to the appropriate diagonal entry, which we
shall take as the last one. We shall denote this matrix by W †.

Let U, V be the matrices in GL(2n+1, Z) that reduce W to its Smith normal
form:

UWV = S = diag(1, 1, 1, . . . , 1, `2n+1, `2n+1).

We study the matrices Y = U−1 and Z = V −1, which are such that

Y SZ = W = circ(3,−1, 0, . . . , 0, 0,−1).

Suppose that the rows and columns of Y and Z are partitioned into blocks
of size 2n− 1 and 2, and the resulting partitioned matrices are

Y =
(

A B
C M

)
, Z =

(
P Q
N R

)
.

For example, A is a square matrix of size 2n − 1, and R is a square ma-
trix of size 2. In Theorem 1 we give explicit definitions of the submatrices
A, B, C,M,P,Q, N,R, valid for all n ≥ 5. (The cases n = 1, 2, 3, 4 are sim-
ilar, but irregular.) In Theorem 2 we shall prove that the corresponding
submatrices for the modified wheel can be obtained by changing only the
matrix R and six parameters, specifically those denoted by α, β, γ, δ, λ, µ in
the following definitions.

Theorem 1 Define matrices A, B, C,M,P,Q,N,R as follows.

A =



3 −1 0 0 . . 0 0 0
−1 3 −1 −f4 . . −f4n−10 −f4n−8 −f4n−6

0 −1 3 f6 . . f4n−8 f4n−6 f4n−4

0 0 −1 0 . . 0 0 0
. . . . . . . . .
. . . . . . . . .
0 0 0 0 . . −1 0 0
0 0 0 0 . . 0 −1 0


; B =



0 0
α β
γ δ
0 0
. .
. .
0 0
0 0


;

C =
(

0 0 0 0 . . 0 0 −1
−1 0 0 0 . . 0 0 0

)
; M = O;
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P =



1 0 0 0 0 . . 0 0
0 1 0 0 0 . . 0 0
0 0 1 −3 1 . . 0 0
0 0 0 1 −3 . . 0 0
. . . . . . . . .
. . . . . . . −3 1
0 0 0 0 0 . . 1 −3
0 0 0 0 0 . . 0 1


; Q =



1 λ
3 µ
0 0
0 0
. .
0 0
1 0
−3 1


;

N = O; R =
(

1 0
4 −1

)
.

Then, for all n ≥ 5, values of the parameters can be found so that the
resulting matrices Y and Z belong to GL(2n + 1, Z) and satisfy Y SZ = W .
In fact we can take λ = −3, µ = −8 and

α = `2n−8, β = −f2n−7, γ = −`2n−6, δ = f2n−5.

Proof Putting λ = −3 and µ = −8, direct calculation of AP and CQ
establishes that

W = circ(3,−1, 0, . . . , 0,−1) =
(

AP C ′

C CQ

)
.

Putting ` = `2n+1 we have

S = diag(1, 1, 1, . . . , `, `) =
(

I O
O `I

)
.

Given that M and N are zero matrices, the condition Y SZ = W is therefore
equivalent to (

AP AQ + B`R
CP CQ

)
=

(
AP C ′

C CQ

)
.

Thus we have to check that CP = C and AQ + B`R = C ′, and the only
nontrivial equations arise from the second and third rows of AQ + B`R.
Inserting the given values of λ and µ, and using the identity fm+2 = 3fm −
fm−2 these equations are(

α β
γ δ

)
`R =

(−f4n−4 − 8 f4n−6 + 21
f4n−2 + 3 −f4n−4 − 8

)
.
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The matrix on the right-hand side can be simplified by observing that f4 = 3,
f6 = 8, f8 = 21, and applying the identity fa+k + fa−k = `afk (k odd). The
result is (

α β
γ δ

)
`R = `2n+1

(−f2n−5 f2n−7

f2n−3 −f2n−5

)
.

Since ` = `2n+1, R = R−1, and `m = fm+1 + fm−1, the solution is α = `2n−8,
β = −f2n−7, γ = −`2n−6, δ = f2n−5, as claimed.

Finally, it can be proved by elementary means that det W = det S = `2
2n+1,

and so det Y det Z = 1. Since the elements of Y and Z are integers, this
implies that Y and Z belong to GL(2n + 1, Z). ut

The modifications required to deal with W † are mainly concerned with find-
ing a suitable replacement for R. The following lemma contains the crucial
result.

Lemma 1 If n ≥ 5 is an odd number, then x2n+1 = f2n−2/3 is an integer
such that

x2n+1(f2n−2 + f2n+2) = f 2
2n−1 − 1.

Proof If n = 2m + 1, then 2n − 2 = 4m, and f4m is divisible by f4 = 3.
Since f2n−2 + f2n+2 = 3f2n and f2n−2f2n = f 2

2n−1 − 1, it follows that

x2n+1(f2n−2 + f2n+2) = (f2n−2/3)(3f2n) = f 2
2n−1 − 1.

ut
Corollary For all n ≥ 5 the following matrix R†

n has determinant 1:

if n is odd R†
n =

(
`2n+1 f2n−1

−(x2n+1 + f2n−1) −x2n+1

)
,

if n is even R†
n =

(
`2n+1 f2n−1

x2n−1 + f2n−3 + `2n−1 x2n−1 + f2n−3

)
.

Proof When n is odd,

det R†
n = −`2n+1x2n+1 + f2n−1(x2n+1 + f2n−1)

= (−f2n+2 − f2n + f2n−1)x2n+1 + f 2
2n−1

= −x2n+1(f2n+2 + f2n−2) + f 2
2n−1

= 1.
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There is a similar calculation when n is even. ut

Theorem 2 Let A, B, C,M,P,Q,N be as in Theorem 1, and let R†
n be as

in the Corollary above. Then the parameters α, β, γ, δ, λ, µ can be chosen so
that, for all n ≥ 5 the matrices

Y =
(

A B
C M

)
, Z† =

(
P Q
N R†

n

)
,

belong to GL(2n + 1, Z) and satisfy

Y S†Z† = W †,

where S† = diag(1, 1, 1, . . . , 1, 1, 2`2n+1f2n+2). In fact, we can take λ = −4,
µ = −11, and, for each odd n ≥ 5,

α = `2n+1(x2n+1`4n−6 + f2n−1f2n−7) + 8(x2n+1 + f2n−1), β = f2n−7,

γ = −`2n+1(x2n+1`2n−4 + f2n−1f2n−5)− 3(x2n+1 + f2n−1), δ = −f2n−5.

Proof Putting λ = −4 and µ = −11, direct computation of AP and CQ
establishes that

W † =
(

AP C ′

C CQ

)
.

Putting ν = 2`2n+1f2n+2 we have

S† =
(

I O
O D

)
where D =

(
1 0
0 ν

)
.

Given that M and N are zero matrices, the condition Y S†Z† = W † is there-
fore equivalent to (

AP AQ + BDR†
n

CP CQ

)
=

(
AP C ′

C CQ

)
.

Thus it remains only to check that AQ+BDR†
n = C ′. As in Theorem 1, the

only parts that require explanation are the equations given by the second and
third rows. Inserting the given values of λ and µ, and applying the identities
used in the proof of Theorem 1, these equations are
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(
α β
γ δ

)
DR†

n =
(−f4n−4 − 8 f4n−6 + 29

f4n−2 + 3 −f4n−4 − 11

)
=

(−`2n+1f2n−5 `2n+1f2n−7 + 8
`2n+1f2n−3 −`2n+1f2n−5 − 3

)
.

First, consider the case when n is odd. Since det R†
n = 1 we have

(DR†
n)−1 =

( −x2n+1 −f2n−1/ν
x2n+1 + f2n−1 `2n+1/ν

)
.

Thus we have explicit formulae for α, β, γ, δ. The formulae can be simplified
in various ways, but for our purposes it is enough to show that the values are
integers, which is obvious for α and γ. For β, we use the identity fk+4fk−4−
fk+2fk−2 = 8 (k odd) with k = 2n − 3. Thus f2n−5f2n−1 + 8 = f2n+1f2n−7,
and we can argue as follows:

β = (2f2n+2)
−1(f2n−5f2n−1 + `2n+1f2n−7 + 8)

= (2f2n+2)
−1(f2n−7f2n+1 + `2n+1f2n−7)

= (2f2n+2)
−1f2n−7(f2n+1 + `2n+1)

= f2n−7.

A similar calculation shows that δ = −f2n−5. In the case when n is even, the
alternative form of R†

n given the Corollary to Lemma 1 gives a similar result.
In both cases it follows that Y and Z† are in GL(2n + 1, Z), as in Theorem
1. ut

Corollary The critical group of the modified wheel with 2n + 1 spokes is
a cyclic group of order 2`2n+1f2n+2. ut

4. Computation in K(W †)

In this section we review briefly how the critical group K(G) meets the com-
putational criteria discussed in the introduction. The most significant point
is that there is a canonical representation of the elements of the group, and a
simple algorithm for finding the sum of two elements in this representation.
These facts follows from the theory [3] of a ‘chip-firing’ process on G, which
will now be described briefly.

Let G be a connected graph with a distinguished vertex q. A configuration
on G is a function s : V → Z such that
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s(v) ≥ 0 (v 6= q), s(q) = −
∑
v 6=q

s(v).

This situation can be described by a scenario in which s(v) is a number of
dollars held by v. The vertex q is the government, whose debt −s(q) is equal
to the total number of dollars in circulation. Dollars can be transferred only
by ‘firing’ a vertex, that is, by sending one dollar along each edge incident
with that vertex. The rules are: (i) a vertex v 6= q can only be fired when
s(v) is at least equal to the degree of v; (ii) the vertex q can only be fired
(and must be fired) when no other vertex can be fired. A configuration in
which q must be fired is said to be stable, and a stable configuration s is
said to be critical if there is a legal sequence of firings that starts with s and
eventually produces s again. The main theorem of the subject asserts that,
given any initial configuration s, there is a unique critical configuration γ(s)
that can be achieved by any legal sequence of firings.

The function γ induces an bijection between the Picard group P(G) and the
set of critical configurations on G. The latter is therefore a group, with the
operation defined by c1 ∗ c2 = γ(c1 + c2), where + is the ordinary addition of
integer-valued functions. In other words, to obtain c1∗c2 we add the configu-
rations and apply any legal sequence of firings until a critical configuration is
reached. This algorithm can be regarded as the reduction of a configuration
to standard form, using the relations provided by the reduced Laplacian. A
theorem of van den Heuvel [6] shows that the number of firings needed to
find γ(s) is O(n2(|s| + m)) for graphs with n vertices, m edges, and fixed
edge-connectivity, where |s| = −s(q).

Let us now consider the special case when G = W †, taking the distinguished
vertex q to be the ‘hub’ of the wheel. A critical configuration c is represented
by the 2n + 2 non-negative integers c(v), v 6= q. Since c must be stable, the
possible values of c(v) are 0, 1, 2, except for the single vertex of degree 2, for
which the possible values are 0, 1. Hence there is an efficient representation of
the group elements. There is no immediate rule for recognizing which stable
configurations are, in fact, critical. But a standard result asserts that if a
stable configuration recurs, then it does so after firing each vertex exactly
once.

For the modified wheel with 2n + 1 spokes, the numbers of vertices, edges,
and the maximum value of |s| for a stable configuration are all linear in
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n. Hence the theorem of van den Heuvel implies that the calculation of
c1 ∗ c2 = γ(c1 + c2) requires O(n3) firings. Finally, we have an explicit
formula for the order of the group K(W †).

It is possible that the Discrete Logarithm Problem in K(W †) is nontrivial.
One curious phenomenon arising from the analysis in Section 3 is worth
mentioning. Although almost all the entries in the reducing matrices Y and
Z† are well-behaved, there are two, α and γ, that grow far more rapidly
than the others. For example, when n = 7, we have β = f7 = 13 and
δ = −f9 = −34, whereas α = 7210988 and γ = −18859507.
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