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Abstract

The Berge-Fulkerson Conjecture states that every cubic bridgeless
graph has six perfect matchings such that every edge of the graph
is in exactly two of the perfect matchings. If the Berge-Fulkerson
Conjecture is true, then what can we say about the proportion of
edges of a cubic bridgeless graph that can be covered by k of its perfect
matchings? This is the question we address in this paper. We then give
a possible method for proving, independently of the Berge-Fulkerson
Conjecture, the bounds obtained.

1 Introduction

In this paper, we shall be concerned only with finite graphs without loops,
although we permit multiple edges. For a graph G, we denote its vertex set
by V (G) and its edge set by E(G).

A perfect matching of G is a set of edges, M ⊆ E(G), such that every
vertex in G is incident with exactly one edge in M .
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A cubic graph is one in which each vertex is incident with exactly three
edges. An edge in a graph G is called a bridge if its removal increases the
number of components of G. We shall predominantly be concerned with
cubic bridgeless graphs.

A well known conjecture, which is attributed to Berge in [4], but which
first appears published in [2], says that every cubic bridgeless graph has a
collection of six perfect matchings such that each edge in the graph is covered
by exactly two of the perfect matchings.

Conjecture (Berge-Fulkerson) Every cubic bridgeless graph G has a family
of six perfect matchings, M1, ...,M6, such that each edge of G is contained
in precisely two of the perfect matchings.

We will consider the maximum proportion of edges in G that can be
covered by k of its perfect matchings, for k ≤ 6. In order to make this more
precise, we set up some notation.

Given a cubic bridgeless graph G, let M be the set of distinct perfect
matchings in G. Fix a positive integer k. Define

mk(G) = max
M1,...,Mk∈M

|
⋃k

i=1 Mi|
|E(G)|

.

Define
mk = inf

G
mk(G),

where the infimum is taken over all cubic bridgeless graphs. Thus, for every
cubic bridgeless graph G and every positive integer k, G has a set of k
perfect matchings covering at least a proportion mk of its edges. We study
these numbers mk.

Let P denote the Petersen graph. The following facts about P can be
easily verified. We have that P has exactly six distinct perfect matchings,
which we denote MP

1 , . . . ,MP
6 . Each edge of P is contained in exactly two

of its perfect matchings and so the Berge-Fulkerson Conjecture holds for P .
Furthermore, for each 1 ≤ i < j ≤ 6, MP

i ∩MP
j gives a single edge of P , and

the
(
6
2

)
= 15 choices of 1 ≤ i < j ≤ 6 give the 15 edges of P . We also have

that

m2(P ) =
3

5
, m3(P ) =

4

5
, m4(P ) =

14

15
, m5(P ) = 1.

Conjecture 1 We have mk = mk(P ) for 1 ≤ k ≤ 5.
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The case k = 1 of Conjecture 1 is trivially true. The case k = 2 of
Conjecture 1 was proved by Kaiser, Král, and Norine in [3], and they also
proved that m3 ≥ 27

35
= m3(P )− 1

35
. The case k = 5 of Conjecture 1, which

follows trivially from the Berge-Fulkerson Conjecture, is another conjecture
attributed to Berge, and it remains an open problem. Indeed, it is not known
whether mk = mk(P ) = 1 for any k ≥ 5. The best known result in this
direction is the following: given a cubic bridgeless graph G, mk(G) = 1 for
k > log3/2(|E(G)|). This result follows easily from the methods introduced
in Section 3.

We review what is to follow. In Section 2, we prove that the Berge-
Fulkerson Conjecture implies Conjecture 1. In Section 3, we describe the
perfect matching polytope, which is central to the ideas we present in Sec-
tion 4. In Section 4, we state a conjecture that is stronger than Conjecture
1, and we show how this stronger conjecture may aid in proving Conjec-
ture 1. Finally, we show that this stronger conjecture also follows from the
Berge-Fulkerson Conjecture.

2 The First Implication

Theorem 2.1 The Berge-Fulkerson Conjecture implies Conjecture 1.

Proof It is sufficient to show for every cubic bridgeless graph G, and each
1 ≤ k ≤ 5, that mk(G) ≥ mk(P ). Fix 1 ≤ k ≤ 5.

Given G, if the Berge-Fulkerson Conjecture holds, then we can find six
perfect matchings of G, M1, . . . ,M6, such that each edge of G is contained
in precisely two of these perfect matchings.

Let Sk be a set of k elements chosen uniformly at random from {1, . . . , 6}.
Fix e ∈ E(G) and let Ma and Mb be the two perfect matchings from
M1, . . . ,M6 that contain e. Then

Pr(e ∈ ∪i∈Sk
Mi) = Pr(a ∈ Sk or b ∈ Sk)

= 1− Pr(a 6∈ Sk and b 6∈ Sk)

= 1−
(

4
k

)(
6
k

) ,

where
(

a
b

)
is defined to be zero if a < b. It is easy to verify that

1−
(

4
k

)(
6
k

) = mk(P ).
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Now

E(| ∪i∈Sk
Mi|) =

∑
e∈E(G)

Pr(e ∈ ∪i∈Sk
Mi)

= |E(G)|mk(P ).

Therefore, there exists some k element subset of {1, . . . , 6}, S∗k say, satisfying

| ∪i∈S∗
k
Mi| ≥ |E(G)|mk(P ),

hence mk(G) ≥ mk(P ). �

We can slightly generalise the above as follows. For k ≤ 5, we say
that a cubic bridgeless graph G is k-covered if it has k perfect matchings,
M1, . . . ,Mk, such that

1. | ∪k
i=1 Mi| ≥ mk(P )|E(G)| and

2. no edge of G is in more than two of the Mi’s.

Proposition 2.2 If G is k-covered, then G is l-covered for all l < k.

The proof uses the same idea as the proof of Theorem 2.1, and so is omitted.

3 The Perfect Matching Polytope

In Section 4, we suggest a method for proving Conjecture 1. As remarked
earlier, it has been proven that m2 = m2(P ). Central to its proof, and to our
proposed method for proving Conjecture 1, is Edmonds’ Perfect Matching
Polytope Theorem, [1]. We now set up some notation and define the perfect
matching polytope, following [3].

Let H be any graph. For a set X ⊆ V (H), we set ∂X to be the set of
edges with precisely one end in X. A cut in H is a set of edges, C ⊆ E(H),
such that C = ∂X for some X ⊆ V (H). A k-cut is a cut consisting of k
edges.

Let w be a vector in RE(H). The entry of w corresponding to e ∈ E(H)
is denoted by w(e). For A ⊆ E(H), we define the weight w(A) of A as∑

e∈A w(e). The vector w is said to be a fractional perfect matching if it
satisfies the following:

1. 0 ≤ w(e) for each e ∈ E(H),

2. w(∂{v}) = 1 for each vertex v ∈ V (H), and
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3. w(∂X) ≥ 1 for each X ⊆ V (H) with X of odd cardinality.

The perfect matching polytope of H is the set of all fractional perfect
matchings of H, and is denoted by P (H).

Theorem 3.1 (Edmonds [1]) For any graph H, the set P (H) coincides
with the convex hull of the characteristic vectors of all perfect matchings
of H.

Next we give a lemma, which is due to Kaiser, Král, and Norine [3]. It is
central both to their proof of m2 = m2(P ) and to our proposed method of
proving Conjecture 1, which we present in the next section.

If A ⊆ E(H), then let χA denote the characteristic vector of A.

Lemma 3.2 If w is a fractional perfect matching in a graph H, and c ∈
RE(H), then H has a perfect matching M such that

c · χM ≥ c ·w.

Proof Let M1, . . . ,Mr be the perfect matchings in H. Then w is a weighted
average of χM1 , . . . , χMr , and so c·w is a weighted average of c·χM1 , . . . , c ·χMr .
Hence not all of c · χM1 , . . . , c · χMr can be smaller than c ·w. �

4 A Second Conjecture

In this section, we state a conjecture that is stronger than Conjecture 1, but
that may help in the proof of Conjecture 1, as we shall see.

We remark that if G is a cubic graph and X ⊆ V (H), then |X| is odd if
and only if |∂X| is odd, and so such cuts will be referred to as odd cuts.

Conjecture 2 Let G be a cubic bridgeless graph. For each k ∈ {2, . . . , 5},
G has k perfect matchings, M1, ...,Mk, satisfying:

1. no edge of G is contained in more than two of the Mi’s,

2. | ∪k
i=1 Mi| ≥ mk(P )|E(G)|, and

3. for every odd cut C of G, if |C| = r then
∑k

i=1 |Mi ∩ C| ≤ 2(r − 3) + k.

We shall see later that the Berge-Fulkerson Conjecture implies Conjecture
2, but first we show why Conjecture 2 is useful for proving Conjecture 1.
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Theorem 4.1 If Conjecture 2 holds for a given k ∈ {2, . . . , 4}, then Con-
jecture 1 holds for k + 1. If Conjecture 2 holds for k = 5, then the Berge-
Fulkerson Conjecture holds.

Proof Let G be a cubic bridgeless graph. Suppose that G has two perfect
matchings, M1 and M2, satisfying Conjecture 2 for k = 2. Then set

w(e) =


0 if e is in both perfect matchings;
1
4

if e is in exactly one perfect matching;
1
2

if e is in neither of the perfect matchings.

We now check that this is a fractional perfect matching by verifying each
of the three conditions given in the definition of a fractional perfect matching.
The first condition is trivially true.

For the second condition, pick a vertex v and consider the three edges,
e1, e2, and e3, incident with v. After relabeling of indices, we must have that
either e1 is in M1, e2 is in M2, and e3 is in neither, or e1 is in M1 and M2, e2

is in neither, and e3 is in neither. In either case, w(∂v) =
∑3

i=1 w(ei) = 1,
so the second condition is verified.

For the third condition, pick an odd cut C and let |C| = r. We know that
|M1∩C|+ |M2∩C| ≤ 2r− 4. Let a0, a1, and a2 be respectively the numbers
of edges of C covered by none, exactly one, and both of M1 and M2. Then
(i) a0 + a1 + a2 = r, and (ii) a1 + 2a2 ≤ 2r − 4. Taking 1

2
(i)− 1

4
(ii) yields

w(C) =
1

2
a0 +

1

4
a1 ≥ 1,

so the third condition is verified and w is a fractional perfect matching.
By Lemma 3.2, there exists a perfect matching, M3, such that

χM3 · χ(M1∪M2)c ≥ w · χ(M1∪M2)c

=
1

2
|(M1 ∪M2)

c|.
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Now we have that

|M1 ∪M2 ∪M3| = |M1 ∪M2|+ |M3 ∩ (M1 ∪M2)
c|

= |M1 ∪M2|+ χM3 · χ(M1∪M2)c

≥ |M1 ∪M2|+
1

2
|(M1 ∪M2)

c|

=
1

2
|M1 ∪M2|+

1

2
(|M1 ∪M2|+ |(M1 ∪M2)

c|)

≥ 1

2
(
3

5
|E(G)|) +

1

2
|E(G)|

=
4

5
|E(G)| = m3(P )|E(G)|,

thus G satisfies the case k = 3 of Conjecture 1. The proofs of the remaining
cases below follow a similar pattern.

Suppose that G has three perfect matchings, M1, M2, and M3, satisfying
Conjecture 2 for k = 3. Set

w(e) =


0 if e is in exactly two of these perfect matchings;
1
3

if e is in exactly one of these perfect matching;
2
3

if e is in none of these perfect matchings.

It is easy to check that this is a fractional perfect matching. By Lemma 3.2,
there exists a fractional perfect matching, M4, such that

χM4 · χ(∪3
i=1Mi)c ≥ w · χ(∪3

i=1Mi)c

=
2

3
|(∪3

i=1Mi)
c|.

Now we have that

|(∪4
i=1Mi)| = | ∪3

i=1 Mi|+ |M4 ∩ (∪3
i=1Mi)

c|
= | ∪3

i=1 Mi|+ χM4 · χ(∪3
i=1Mi)c

≥ | ∪3
i=1 Mi|+

2

3
|(∪3

i=1Mi)
c|

=
1

3
|(∪3

i=1Mi)
c|+ 2

3
(| ∪3

i=1 Mi|+ |(∪3
i=1Mi)

c|)

≥ 1

3
(
4

5
|E(G)|) +

2

3
|E(G)|

=
14

15
|E(G)| = m4(P )|E(G)|,

thus G satisfies the case k = 4 of Conjecture 1.
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Suppose that G has four perfect matchings, M1, . . . ,M4, satisfying Con-
jecture 2 for k = 4. Set

w(e) =


0 if e is in exactly two of these perfect matchings;
1
2

if e is in exactly one of these perfect matching;

1 if e is in none of these perfect matchings.

It is easy to check that this is a fractional perfect matching. By Lemma 3.2,
there exists a fractional perfect matching, M5, such that M5 covers all the
edges of G not covered by M1, . . . ,M4, thus G satisfies the case k = 5 of
Conjecture 1.

Finally the case k = 5 of Conjecture 2 implies the Berge-Fulkerson Con-
jecture, indeed, the edges of G that are covered only once by the five perfect
matchings form the sixth. �

Finally we show that the Berge-Fulkerson Conjecture implies Conjec-
ture 2, adding weight to the case for attempting to prove part or all of
Conjecture 2 and hence Conjecture 1.

Theorem 4.2 The Berge-Fulkerson Conjecture implies Conjecture 2.

Proof Let G be a cubic bridgeless graph and suppose the Berge-Fulkerson
Conjecture holds, so that G has perfect matchings, M1, . . . ,M6, with each
edge of G in exactly two of the perfect matchings. For each k ∈ {2, . . . , 5},
{M1, . . . ,M6} has a subset of k perfect matchings satisfying condition 1 of
Conjecture 2 (by the proof of Theorem 2.1), and clearly also satisfying condi-
tion 2. It is therefore sufficient to show that every set of k perfect matchings
from M1, . . . ,M6 satisfies condition 3 of Conjecture 2.

Observe that if C is an odd cut of G and M is a perfect matching of G,
then |M ∩C| ≥ 1. Let |C| = r. Since |Mi ∩C| ≥ 1 for all i ∈ {1, . . . , 6}, and∑6

i=1 |Mi ∩ C| = 2r, then for S ⊆ {1, . . . , 6} with |S| = k, we have∑
i∈S

|Mi ∩ C| = 2r −
∑
i∈Sc

|Mi ∩ C|

≤ 2r − |Sc|
= 2r − (6− k)

= 2(r − 3) + k,

as required. �
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