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Abstract

For any network Q; one may consider the zero-sum search game � (Q) in
which the (minimizing) Searcher picks a unit speed path S (t) in Q; the Hider
picks a pointH inQ; and the payo¤is the meeting time T = min ft : S (t) = Hg :
We show �rst that ifQ is symmetric (edge and vertex transitive), then it is op-
timal for the Hider to pickH uniformly inQ; so that the Searcher must follow
a Utilitarian Postman path (one which minimizes the time to reach a random
point). We then show that if Q is symmetric of odd degree, with n vertices

and m unit length edges, the value V of � (Q) satis�es V � m

2
+
n2 � 2n
8m

;

with equality if and only if Q has a path v1; v2; : : : ; vn�1 of distinct vertices,
such that the edge set Q� [(n�2)=2i=1 (v2i; v2i+1) is connected.



1 Introduction

Search games on networks were introduced by Rufus Isaacs in the �nal chap-
ter of his classic 1965 book, Di¤erential Games. After devoting most of his
book to perfect information games such as pursuit-evasion, he let darkness
descend on the search space Q; so that the players were not aware of each
other�s actions. In the resulting �search games�, or �hide-and-seek games�, the
Hider simply picks a hiding point H in Q; while the Searcher picks a unit
speed path S (t) that he hopes will minimize the time T = min ft : S (t) = Hg
taken to �nd him. Isaacs�earlier problems were modeled by ordinary di¤er-
ential equations, and for this reason it was natural to extend the requirement
of initial conditions to this �nal chapter on search games. He did this by
specifying a searcher starting point S0 = S (0) : So for most of the intervening
40 years, search games on networks have been studied with this condition,
as a zero-sum game we call � (Q;S0) ; with a given point S0 in a �nite net-
work Q: A large literature has developed around this problem, including four
books ([17], [15], [6], [23]) and many articles (e.g. [9], [16], [19], [22], [26]).
A wider class of problems is studied in [24]. Only very recently ([12], [13],
[2], [3]) has the initial condition been removed, and the resulting game � (Q)
(with S (0) chosen by the Searcher) been studied. This is the game we study
in this paper, for symmetric networks Q:
It is very natural that the removal of the initial condition S0 should

lead to the class of networks studied here: the symmetric (edge and vertex
transitive) networks. For once a point S0 is singled out on such a network,
the symmetry vanishes. That, we believe, is why symmetric networks have
thus far not appeared at all in the search game literature.
So how should one search a symmetric network? It turns out that we

must �rst answer the easier question of how one should hide in it - this turns
out to be the uniform distribution, very di¤erent from the case of � (Q)
for a tree Q; where one optimally hides only on the leaves [13]. We call
networks of this type, where the uniform distribution is the Hider�s optimal
mixed strategy, easily hideable. Only one easily hideable network has been
previously identi�ed [3], the �circle with spikes�drawn here in Figure 1. The
�rst main result of the paper (Theorem 11) is that symmetric networks are
easily hideable. Once we know this, the question for the Hider is how to
optimally search for a point hidden uniformly in a network.
We call this problem the Utilitarian Postman Problem. Unlike the Chi-

nese Postman, who wants to �nish delivering his mail to the last customer
as soon as possible, the Utilitarian Postman wants to minimize the mean
time to deliver the mail to all his customers. This is a new network search
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problem, introduced simultaneously in this paper and in [3]. We will call a
path with this property a Utilitarian Postman (UP) path. It turns out that
UP paths may indeed take longer to complete (i.e., not be Chinese Postman
paths) and that UP paths may have to traverse an edge of Q arbitrarily many
times �not just twice.
If a symmetric network Q has even degree (valency), it is Eulerian, and it

is trivial to see that an optimal Searcher mixed strategy is simply to traverse
some Eulerian circuit equiprobably in either direction. So for Eulerian net-
works Q (those with even degree) the value V is simply half the total length
of Q. So suppose the degree of a symmetric network Q is odd, and that it
has n vertices and m unit length edges (symmetry implies equal lengths).
The second main result (Theorem 18) of this paper says that for such net-

works V � m

2
+
n2 � 2n
8m

; and that equality holds if and only if Q has a

property we call Half Hypo Hamiltonian Connected (HHHC). A network Q
is HHHC if it has a path P of distinct vertices v1; v2; : : : ; vn�1 (all but one
of them), such that the network Q0; obtained by removing the even indexed
edges (v2; v3) ; (v4; v5) ; : : : ; (vn�2; vn�1) of P; is connected. While this may
seem a strange condition, we know of no odd degree symmetric network (since
edges here have length 1, we are really dealing with graphs) that does not
have this property. In particular, all complete graphs, complete bipartite
graphs, hypercube graphs, graphs of large valency, are HHHC. And yes, the
Petersen graph is HHHC. If Q is HHHC, the optimal Hider mixed strategy
is a randomized version (over the automorphism group of Q) of a Utilitarian
Postman search path EP consisting of an Eulerian path E in Q0 followed by
a hypo-Hamiltonian (all but one vertex) path P of Q:
This article is organized as follows. Section 2 gives a formal de�nition of

the search game � (Q) : Section 3 shows that a Utilitarian Postman path can
be assumed to be combinatorial, that is, it can be expressed as a sequence
of edges which are traversed, without turning, at maximum speed. Section
4 uses this fact to show that symmetric networks are easily hideable. These
two results, that the Searcher can be assumed to follow combinatorial paths
in the network Q; and that the Hider is uniformly distributed, mean that
we can then simply take Q to be a graph - so from that point we revert
to graph, rather than network, terminology and practice. In Section 5 we
look for Utilitarian Postman paths on graphs of odd degree (not necessarily
symmetric), and derive the HHHC condition. In Section 6 we combine the
work of Sections 4 and 5 to determine V (Q) for symmetric graphs, and
discuss some open problems regarding our HHHC condition.
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2 The Game � (Q)

Let Q be a �nite network, with each edge e assigned a length � (e) : We
consider � more generally as a measure on Q; with � (Q) = � denoting
the total length of Q: We call � the uniform distribution on Q: We de�ne a
distance d on Q in terms of �; with d (x; y) denoting the length of the shortest
path between x and y: A pure Search strategy S is a unit speed covering path
of Q; that is, S belongs to the Searcher pure strategy set S given by

S = fS : [0; L] onto Q; some L; and d (S (t) ; S (t0)) � jt� t0j ; 0 � t; t0 � Lg :

For each S 2 S; its length L = LS is the smallest l with S ([0; l]) = Q: A
pure Hider strategy H is simply a point of Q: The payo¤ function T is given
by the meeting time

T (S;H) = min ft : S (t) = Hg :

When one or both of the arguments of T are mixed strategies, we interpret
T as the expected meeting time. We will use lower case letters, s and h;
to indicate mixed strategies. The existence of an optimal mixed Searcher
strategy, an "-optimal Hider mixed strategy, and a Value

V (Q) = min
s
sup
h
T (s; h) = sup

h
min
s
T (s; h) ; (1)

for mixed Searcher and Hider strategies s; h; follows from minimax theorems
of Gal [15], and Alpern and Gal [6, Appendix A], or [5].
The following de�nition was introduced in [2] but not analyzed until [3].

De�nition 1 A network Q is called easily hideable if the uniform dis-
tribution � is an optimal mixed strategy. A Searcher path S 2 S is called a
Utilitarian Postman (UP) path if it minimizes the expected time T (S; �)
to �nd a uniformly distributed point. This minimum time is called the UP
time, and denoted �̂:

It is easy to show [3] that any network Q with an Eulerian path is easily
hideable, that the Eulerian path is a UP path, and in this case �̂ = �; the
total length of Q: We have also shown (same paper) that the �circle-with-
spikes�network drawn below in Figure 1, with all edges of unit length, is easily
hideable. Up to symmetry, there are three UP paths, ABDDC, ABCBD and
ABCCD, with �̂ = (1 + 3 + 5 + 9) =8 = 9=4: To see this note that the mean
times to reach points in the four edges for the �rst time are 1=2; 3=2; 5=2; 9=2;
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and 9=4 is the average. Up to now, these are the only networks which have
been shown to be easily hideable. (This paper extends the known examples
to include all symmetric networks.)

Figure 1: An easily hideable network

Note that both the UP paths for this network are CP paths, as de�ned in
the following.

De�nition 2 A path S 2 S of minimum length L = LS is called a Chinese
Postman (CP) path. It�s length is denoted ~�: If V (Q) = ~�=2; we say
that Q is simply searchable. For such networks, traversing a CP path
equiprobably in either direction is an optimal mixed strategy for the Searcher.

Since the Hider always has the uniform strategy � available, it follows that
V � �̂: Similarly, the Searcher can always randomize equiprobably between a
CP path S (t) and its reverse path S� (t) = S (L� t) to reach any point in Q
in average time no more than L=2 = ~�=2, and hence V � ~�=2: Summarizing,
we have

�̂ (Q) � V (Q) � ~� (Q) =2; for any network Q; (2)

where equality holds on the left i¤Q is easily hideable and on the right i¤Q
is simply searchable.
We can think of a CP path as one which gets the postman (who delivers

mail to all of Q) done as soon as possible, assuming he can begin at time 0
anywhere in Q: A Utilitarian Postman is one who is more concerned with the
public, and instead wishes to deliver the mail as soon as possible, on average
(to a random point onQ): These two aims may have a common solution (as in
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the network drawn in Figure 1), but this is not true for all networks. Consider
the network analyzed in [2] and [3] (with identical explanatory text), drawn
below in Figure 2, where all the edges have unit length.

Figure 2. A network with distinct
UP and CP paths

It is easy to see that, up to isomorphism and reversal, there are two CP paths
and the minimum covering time is 12. Both paths may be assumed to end
at b and start at either a (call this Pa) or c call this Pc: In each time interval
Ji = [i� 1; i] ; i = 1; : : : ; 12; either a new edge is searched (1) or an edge is
retraced (0), as indicated in the following table

Pa 110111001101
Pc 111101001101

If the hider distribution is uniform and he is found in time interval Ji; the
conditional expected capture time is i � 1=2: Hence the expected capture
time is

T =
1

8

X
xi=1

(i� 1=2)

The only di¤erence in these sequences is that the 0 at position 3 in Pa has
moved to position �ve in Pc: So clearly against a uniform hiding strategy Pc
has a smaller expected meeting time:

T (Pa; �)� T (Pc; �) =
1

8
((5� 1=2)� (3� 1=2)) = 1

4
:

So the only CP path which is a UP path is Pc: Now suppose the network is
modi�ed so that the edge directly below c has length 1� " instead of 1: For
" su¢ ciently small, T (Pc; �) will still be less than T (Pa; �), but the only CP
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path will be Pa: (For the modi�ed network, Pa has length 12 � 2"; whereas
Pc has length 12 � ":) Thus none of the CP paths will be a UP path. This
type of analysis will be used more formally later in Section 5 to determine
UP paths in graphs of odd degree.

3 Combinatorial Paths

The reader will have observed that the UP and CP paths described above for
the networks of Figures 1 and 2 have two special properties not prescribed
simply by belonging to the set S : they start at a vertex and never turn
around inside an edge. More formally, they can be described as follows.

De�nition 3 A path in S 2 S is called combinatorial if it starts at a
vertex v0 of Q and traverses each edge ei in minimum time � (ei) ; that is, at
unit speed without turning.

It is well known that to minimize (over S) the expected meeting time
T (S; h); for some distributions h on some networks Q, the optimal search
strategy S will have to turn many, even in�nitely many, times. For example,
this is required if h is the triangular distribution (density t for t � 1=2;
1� t for t � 1=2) on the unit interval, and S (0) is the center [11]. Optimal
paths which turn within edges are also found in the network consisting of
two vertices connected by three unit length edges, with the Searcher starting
at one of the vertices [21].
However the following result shows that combinatorial paths are su¢ cient

to search optimally for a uniformly distributed (strategy �) Hider.

Theorem 4 Every network Q has a UP path which is combinatorial.

Proof. Let S : [0; L] ! Q be a UP path on Q which starts in some edge
a of length � (a) = �; where we normalize � (Q) = 1: Label the ends of a
as A and B (if a is a loop this is covered by previous paper, see Theorem
6 below), and parameterize the points in a as the interval I = [0; �] ; with
0 corresponding to A: We consider several cases. In all of them the search
S begins with a partial search of a for time x; then searches from A some
subnetwork Q1 for time k; then searches all of a (A to B or B to A) in time
�; and �nally searches the remaining network Q2 = S [x+ k + �;L] : Let
r = � (Q1) and s = � (Q2) denote the probabilities the Hider is Q1 and Q2:
The mean time required to �nd a point hidden uniformly in Q1 (using the
search S) is denoted c; for Q2; it is denoted t:
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We �rst show that given any UP path, there is a corresponding one that
starts at a vertex.
Suppose S (0) = x 2 (0; �) ; S (x) = A; S (x+ k) = A; S (x+ k + 1) = B:

That is, S starts at an interior point x of the edge a; goes (without loss of
generality) to the vertex A; then tours Q1 from A; then covers a from A to B;
then searches Q2: For such an S; the expected capture time f (x) = T (S; �)
is given by the sum of four terms, corresponding to the searches of a;Q1;
search of rest of a; Q2: Each term is the product of (right) the probability
that the Hider is found in that search and (left) the corresponding conditional
expected capture time.

f (x) =
x

2
x+ (x+ c) r + (2x+ k + (�� x) =2) (�� x) + (x+ k + �+ t) s

= �x2 + x (r � k + 1 + s) +
�
�

�
1

2
�+ k

�
+ cr + s (�+ k + t)

�
:

Since this is strictly concave in x; there is no interior minimum. So there
cannot be any UP path of this type.
Next suppose that S begins as above, but searches Q1 from A to B; then

edge a from B to A; then Q2 from A: We now have

f (x) =
x

2
x+ (x+ c) r + (x+ k + (�� x) =2) (�� x) + (x+ k + �+ t) s

= x (r � k + s) + constant

This can only have an interior minimum if r � k + s is 0, in which case the
paths starting at A and B are also UP paths. (An interior start is possible,
for example in the Eulerian network consisting of two vertices connected by
four edges.) So we have shown that if there is a UP path starting in the
interior of an edge, it can be modi�ed to one starting at a vertex.
Now we have to show that every edge a is traversed from one end to the

other. Suppose a UP starts at A; goes to x in the edge a; back to A; searches
Q1 from A to B; then searches a from B to A; then Q2 from A: As above
the mean capture time T (S; �) is given by

f (x) =
x

2
x+ 0 + (2x+ c) r

+(2x+ k + (�� x) =2) (�� x) + (2x+ k + �+ t) s

= �x2 + (�� k + 2r + 2s)x+
�
cr + s (�+ k + t) + �

�
1

2
�+ k

��
:

This is also concave, so there cannot be an interior maximum, and no UP
path of this type can exist. (If S starts at some other vertex, the proof is the
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same, but there is an extra constant term in the expected time calculation
which corresponds to the portion Q0 of the network which is explored before
reaching A:)
Finally, we consider a UP path which starts as above, tours Q1 from A;

traverses a from A to B; searches Q2 from B: In this case,

f (x) =
x

2
x+ 0 + (2x+ c) r + 0 + (2x+ k + x+ (�� x) =2) (�� x)

+ (2x+ k + �+ t) s

= �2x2 + (2L� k + 2r + 2s)x+ cr + s (�+ k + t) + �
�
1

2
�+ k

�
:

Again, this is concave, so no UP path can �turn�inside an edge.
The reader will note that there are many expected time calculations in the

above proof that are irrelevant to the �nal result. This suggests an alternative
proof might be possible. Indeed, we present in the Appendix a rather more
elegant, non-computational proof. However, the calculations given here give
some insights that may help the reader in the sequel.
In our proof of Theorem 4, we only used the assumption that the hider

was uniformly distributed on the edge a; and showed that an optimal search
strategy for such a hider distribution could not start or turn in the interior
of a: Thus we have actually proved a somewhat stronger result.

Theorem 5 Let h be a distribution (Hider mixed strategy) on a network Q
such that on some edge a; h is uniform (with some density). Then there is
a pure Searcher strategy S which is optimal against h (minimizes T (S; h))
such that S traverses the edge a at unit speed from one end to the other.

This result is very similar to an earlier result of the authors, Theorem 5
of [3] (or Lemma 4 of [2]), in which an analogous result is obtained for an
Eulerian circuit a which intersects Q�a at a single point. (This would apply
to our edge a if it were a loop.)

Theorem 6 Let H be a network which is the union of two networks H1 and
H2; which have a single point v in common. Let h be a (Hider) distribution on
H which is uniform on H2: If H2 is Eulerian, there is an optimal continuous
search path S 2 S on H which searches H2 in an Eulerian circuit starting at
v; during some time interval of the search of H:

In the corresponding Chinese Postman Problem, the optimal (CP) path
is not only combinatorial, but it also has the property that it traverses each
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edge either once or twice. We now give an example which shows that a
Utilitarian Postman path does not necessarily have this property.

Figure 3: Network R Figure 4: Network R (")

In Figure 3 we have drawn a network R which has a central vertex v to which
two lines A and A0 of length a; and three �lollipops�B;C;D, are attached.
The lollipops have unit length lines to which circles of lengths b > c > d
are attached. If the length a of the two lines is su¢ ciently large, a UP path
must traverse each only once, so it must start and end at the ends of A and
A0 (either way). It is then easy to see that the lollipops must be searched
in order of decreasing density of search, where the density is the measure
(total length) divided by the search time. (This is a general property of least
expected time search, a more general property is described in [7].) Since the
function (1 + x) = (2 + x) is increasing in x; we have

1 + b

2 + b
>
1 + c

2 + c
>
1 + d

2 + d
;

so the the UP path must be, up to symmetry of A and A0; the path S� =
ABCDA0 (here B stands for a full tour of B from v): Any other combinatorial
path S on R must have T (S; �)� T (S�; �) > �; for some �xed � > 0: Next
consider the related network R (") drawn in Figure 4, which has an additional
edge E of small length ": The path S� (") = ABECEDEA0 reaches no point
in R (") more than time 3" later than the corresponding point of R is reached
by S�; so for " su¢ ciently small satis�es T (S� (") ; �) � T (S�; �) < � and
so T (S� (") ; �) < T (S�; �) : It follows that S� (") must be a UP path on
R (") ; because any better path could be used on R to �nd a path at least
as good as S�; which is not possible. Thus for small "; any UP path on the
network R (") must traverse the edge E three times. By adding additional
lollipops of decreasing density on alternating sides of E; we can similarly
force a Utilitarian Postman to cross the bridge E as many times as we like!
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4 Symmetric Networks are Easily Hideable

Let A = A (G) denote the group of isomorphisms (distance-preserving home-
omorphisms) of a network G: Excluding the circle (so that there are vertices
of degree 6= 2), this is a �nite group. If for any vertices v1 and v2 there is an
� 2 A with � (v1) = v2; we say that G is vertex-transitive. If for all pairs of
edges (v1; v2) and (w1; w2) there exist isomorphisms �; � 2 A with

� (v1) = w1 and � (v2) = w2;

� (v1) = w2 and � (v2) = w1;

we say that G is arc-transitive; if only one of these isomorphisms need exist,
it is edge-transitive. (Either condition implies that all edges of G have the
same length, which we take to be 1.) Finally, we say that G is symmetric if
it is edge-transitive and vertex-transitive. We will show that such networks
are easily hideable.
For any hider strategy h; let [h] denote the equiprobable mixture of �h for

� 2 A: This process of symmetrizing a strategy does not change its optimal-
ity, as shown in [4, Theorem 3] (it applies equally to Searcher strategies, but
we don�t use that part). The idea behind that proof is simple: Consider any
pair of zero-sum games (�1;�2) and the game � in which �1 is played unless
either plays requests a change to �2: It is clear that V (�) = V (�2) ; since if
not, one of the Players would have preferred to play �2: Now let � be deter-
mined by the pair (� (Q) ;�sym (Q)) as above, where in �sym (Q) both players
must symmetrize their strategies (that is, after picking a pure strategy by
some means, the player must replace it by a randomly chosen isomorphism of
it). Now observe that if either player chooses to symmetrize his strategy, it
is as if both players have chosen to do this, because T ([S] ; H) = T (S; [H]) :
So, as above, either player can switch the game being played to �sym (Q) :
This idea is also exploited in [1]. The full proof of the following is in [4],
Theorem 3.

Lemma 7 If h is an ("�) optimal Hider mixed strategy, then so is [h] :

We can use this result to obtain "� optimal hider strategies on a sym-
metric graph G which have the following property.

De�nition 8 A measure ( mixed hider strategy) h on a network Q is called
interval-symmetric if it has the same distribution on each edge and this
distribution is symmetric about the center of the edge.
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Lemma 9 Let S be any combinatorial path in a network G; and let h1 and
h2 be interval-symmetric distributions (mixed Hider strategies) on G without
atoms at vertices. Then

T (S; h1) = T (S; h2) :

If h is any interval-symmetric distribution on G with atoms at the vertices
(all vertices would have same positive measure) then

T (S; h) � T (S; h1) ;

with equality only if G is the interval graph K2 = [0; 1] :

Proof. Since h1 (a) = h2 (a) (= 1=m) for any edge a of G; it is su¢ cient to
show that Z

a

T (S; x) dh1 (x) =

Z
a

T (S; x) dh2 (x) : (3)

Since S is a combinatorial path, it will cover the edge a for the �rst time in
some time interval [i; i+ 1] so it is su¢ cient to show that

i+

Z 1

0

x dh1 (x) = i+

Z 1

0

x dh2 (x) : (4)

We establish this by showing that
R 1
0
x dh (x) = 1=2m for any interval-

symmetric distribution (on [0; 1] now). First assume that h has no atom at
1=2 (middle of a):Z 1

0

x dh (x) =

Z 1=2

0

x dh (x) +

Z 1

1=2

x dh (x)

=

Z 1=2

0

x dh (x) +

Z 1=2

0

(1� x) dh (1� x)

=

Z 1=2

0

x dh (x) +

Z 1=2

0

(1� x) dh (x)

=

Z 1=2

0

1 dh (x) = h (a) =2 = 1=2m:

The result clearly holds as well if h is concentrated on 1=2; and the mixed
case follows by decomposition.
To establish the inequality in the �nal sentence, write h = �hV+(1� �)hE;

where hV is supported on the vertex set and hE has no atoms at the vertices.
Since T (S; h) = � T (S; hV ) + (1� �) T (S; hE) ; it is enough to show that
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T (S; hV ) � T (S; hE) with equality only when S is an Hamiltonian path.
Consider any edge (A;B) which is �rst traversed by S in the time inter-
val [k; k + 1] : Let Ax and Bx be symmetric points in this edge at distance
x � 1=2 from A and B: Then, since S may have reached one or more of the
A;B before time k;

S (k) = A
S (k + x) = Ax

S (k + 1� x) = Bx
S (k + 1) = B

so

T (S;A) � k
T (S;Ax) = k + x

T (S;Bx) = k + 1� x
T (S;B) � k + 1

;

and so the mean time for S to �nd A;B is less than or equal to that (k + 1=2)
to �nd Ax; Bx; with strict inequality if either A or B has been reached before
time k: This means that whenever S reaches a vertex v; there is at most one
unsearched edge incident to v: So, aside from the �rst and last vertex, all
vertices must have degree 2. Deleting such vertices, we are left with a single
edge, as claimed.
To understand the signi�cance of the following result, consider �rst the

star network consisting of a central vertex v0 with m > 2 unit length edges
(v0; vi) attached. Clearly this is edge-transitive, because for any i; j > 0
there is an isomorphism taking (v0; vi) into (v0; vj). However the only optimal
hiding strategy is to hide with equal probability at the non-central ends of
the edges (leaves). This distribution is not interval-symmetric. Note that
this network is not vertex transitive, as the central vertex is special.

Lemma 10 Let G be a symmetric network of odd degree. Then for any " > 0
there is a an interval-symmetric "�optimal hiding strategy h:

Proof. Let h be any "�optimal hiding strategy. The existence of such a
strategy follows from the justi�cation given earlier for the Value (1). Tutte
[25] has proved that a symmetric network of odd degree is arc-transitive.
Consequently [h] has the same distribution on every ordered edge (v; v0) and
in particular the distribution on an edge (v1; v2) is the same as that on the
reversed edge (v2; v1) :
We have now accumulated all the tools we need to prove the main result

of this section, that the uniform hiding strategy � is optimal (easily hideable).
Note that on the interval graph K2 = [0; 1] one (of the many) optimal hiding
strategies is to simply hide equiprobably at either end. This is the strategy
one would obtain from the analysis of K2; viewed as a tree [13]. The second
part of the result below demonstrates that, aside from this case, the hider
should de�nitely avoid the vertices of Q:
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Theorem 11 A symmetric network is Q easily hideable.
Furthermore, if there is an optimal hider mixed strategy hV which gives

positive probability to any vertex of Q; then Q must be the interval graph
K2 = [0; 1] :

Proof. Let G be a symmetric network. If it has even degree (valency), it
is Eulerian and hence easily hideable [3]. So assume that G has odd degree.
Then for any " > 0 there is by Lemma 10 an interval-symmetric "�optimal
hiding strategy h": By Theorem 4 there exists a combinatorial Utilitarian
Postman path S on G: Since S is combinatorial, and since both h" and the
uniform distribution � are interval-symmetric, with the � having no atoms
at the vertices, Lemma 9 gives

T (S; h") � T (S; �) : (5)

Since h" is "�optimal, we have

V � " < T (S; h") : (6)

Since S is a UP path (�combinatorial�not needed here), we have T (S; �) = �̂:
So combining (6) with (5) gives

V � " < �̂:

Including the left inequality of (2) we have

V � " < �̂ � V:

But since this holds for all positive "; we have

�̂ = V;

which is the de�nition of easily hideable (equivalent to � being an optimal
mixed strategy).
To establish the second part of the Theorem, let h" = [hV ] ; which is

an interval-symmetric strategy with positive measure on every vertex, and
T (S; h") = T (S; �) ; by optimality. Hence the claim follows from the last
part of Lemma 9.

5 UP value �̂ for graphs of odd degree

In this section we �nd combinatorial UP paths for a network of odd degree
(all vertices have odd degree, though not necessarily the same). We obtain
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a lower bound � on the Utilitarian Postman time �̂ and a necessary and
su¢ cient condition for �̂ = � : Since symmetric networks have equal length
edges, we take this length to be 1: Since we are looking for UP paths in
this section, we can forget the network structure and simply consider the
network as a combinatorial graph. Finally, as we are considering a uniformly
distributed Hider, we assume the meeting time for a Hider in an edge (vi; vj)
is the midpoint of the (integer) times taken by the path to reach vi and vj:
So for the remainder of this section take the search space to be a graph G
with n vertices of odd degrees and m unit length edges. Clearly n has to be
even if all degrees are odd.
We now formalize the analysis we used to determine the UP time �̂ for the

tree drawn if Figure 1, and the reader is invited to review that analysis before
reading this extension. To each covering path S = (e1; e2; : : : ; eL) of G; we
associate its exploration set 
 = 
S and exploration sequence � = � (S) as
follows:


S = fj : ei 6= ej; i < jg ; and (7)

� = � (S) = (�1; : : : ; �L) ; with �j = 1 for j 2 
S and 0 otherwise.

Intuitively, the 1�s correspond to edges traversed for the �rst time; the 0�s
to repeated edges. The sequence � always ends in a 1; has m 1�s and some
number r = L �m of 0�s. A particularly important exploration sequence is
�� = ��m;n, with the number r

� = (n� 2) =2 of repeated edges as small as
possible (this will be shown later), which starts with m� r� 1�s and then has
r� repeated pairs 0; 1: For example

��6;6 = (1; 1; 1; 1; 0; 1; 0; 1) : (8)

If a random point is in edge et; t 2 
S; it will be found on average in time
t� 1=2; so given that a random point is equally likely to be in any edge, we
have

T (S; �) =
1

m

X
i2
S

(i� 1=2) = 1

m

X
i:�i(S)=1

(i� 1=2) : (9)

More generally, we de�ne for any 0� 1 sequence � with m 1�s, its expected
capture time

T (�) =
1

m

X
i:�i=1

(i� 1=2) : (10)
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In particular, we de�ne the time � = �m;n by the formula

� = �m;n = T
�
��m;n

�
(11)

=
1

m

0@m�(n�2)=2X
t=1

(t� 1=2) +
(n�2)=2X
i=1

[(m� (n� 2) =2 + 2i)� 1=2]

1A(12)
=

m

2
+
n2 � 2n
8m

(13)

The next result shows that � is a lower bound for the Utilitarian Postman
time �̂ for an odd degree graph.

Lemma 12 For any covering path S of a graph with odd degrees, we have
T (S; �) � T (� (S)) � T (��) � � ; with equality if and only if � (S) = ��:
Consequently �̂ � � and any S with � (S) = �� is a UP path.

Proof. Let � = � (S) be the exploration sequence of covering path S: Let
k denote the number of �runs of zeros� in �; that is of strings consecutive
0�s. (For example (1; 1; 0; 0; 0; 1; 0; 0; 1; 1; 0; 1) has three runs of zeros.) If S
is not a circuit, every vertex of G except for the starting and ending vertices
of S must have an odd number of its incident edges repeated in the path
S: So at least one of these must correspond to the initial or �nal zero in
one of the k runs. Hence we must have k � (n� 2) =2 � r�; the number
of runs of (single) zeros in ��: If S is a circuit, then every vertex has this
property, and k � n=2 > r�: So in both cases k � r�: Let �0 be the sequence
obtained from � by replacing each run of zero�s by a single zero. (In the
above example, we get the sequence (1; 1; 0; 1; 0; 1; 1; 0; 1) :) Note that �0 has
k zeros. Since this either leaves a 1 in the same position or brings it forward,
it is clear from (10) that we have T (�0) � T (�) : Next, let �00 denote the
sequence obtained from �0 by moving each 0; starting with the rightmost one
and moving left, as far as possible to the right, subject to being to the left
of the �nal 1 and not being adjacent to any other 0: (In the example, this
gives (1; 1; 1; 0; 1; 0; 1; 0; 1) = ��6;8:) Note that �

00 still has k 0�s. Since the 0�s
are moved to the right, 1�s either stay still or are moved to the left. Hence
T (�00) � T (�0) ; and hence T (�00) � T (�) : Observe that �00 = ��m;n00 ; where
n00 = 2k+2: (In the example, k = 3 and n00 = 8:) Since n = 2r+2 and k � r;
we have n00 � n (note that n00 does not represent the number of vertices in
any graph we have described). It follows from (13) that �m;n = T

�
��m;n

�
is

increasing in n; we have that

T (S) = T (�) � T (�0) � T (�00) � T
�
��m;n

�
= �m;n = � : (14)
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Next, we consider when equality holds in (14). Note that T (�0) = T (�) if
and only if all the runs of 0�s in � have length 1 (single 0); T (�0) = T (�00)
holds if and only if all the 0�s in � are as far to the right as possible (in
positions L�1; L�3; : : : , where L is the length of �);T (�00) = T

�
��m;n00

�
=

T
�
��m;n

�
(that is, the last equality) hold if and only if n00 = n (or k = r�):

So the equality T (S) = � holds if and only if � (S) = ��:

It turns out that there is a combinatorial characterization of graphs G
for which there exists an S with � (S) = ��: Recall that the even number of
vertices is denoted by n:

De�nition 13 A hypo Hamiltonian (HH) path is a path v1; v2; : : : ; vn�1
of distinct vertices.

De�nition 14 A graph G is called Half-Hypo-Hamiltonian Connected
(HHHC) if it has a (HH) path H = v1; v2; : : : ; vn�1 of distinct vertices such
that the removal of the even indexed edges of H leaves a connected set of
edges, that is, if

G� [(n�2)=2i=1 (v2i; v2i+1) is connected. (15)

Lemma 15 Let G be any odd degree graph satisfying �̂ = � : Then G is
HHHC.

Proof. According to Lemma 12, every UP path S inG has an the exploration
sequence ��: Let e1; : : : ; e2r be the last 2r edges of S; so e1; e3; : : : ; e2r�1 are
the r = r� = (n� 2) =2 repeated edges in S; those corresponding to the 0�s.
Consider the graph G0 in which these r edges are doubled. Clearly S is an
Eulerian path, from vertex v1 to vertex vn (by relabeling) in G0: So only v1
and vn have odd degree in G0: Since S has the minimum possible number of
repeated edges, these r repeated edges cannot have any incident vertices in
common. So their 2r = n� 2 incident vertices (which will have even degree
in G0) include all but the �rst and last vertices of S: So by relabeling, we may
call the (distinct) last n�1 vertices of S: v2; v3; : : : ; vn; where the �rst vertex
of S is v1: De�ne S� to be the path S from v1 to v2; de�ne S+ = e1; e3; : : : ; e2r
be the remaining path from v2 to vn:
Consider the graph G00 = G � fe2; e4; : : : ; e2rg :: Since S covers all the

edges of G; the path S� must cover all the edges of G which are not covered
by S+ and also cover all edges of G which are covered twice by S (that is,
fe1; e3; e2r�1g): Consequently the image of S is exactly G00: Since S+ is a
hypo Hamiltonian path, we are done.
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Lemma 16 Let G be an odd degree graph which is HHHC. Then there is
a covering path S of G with � (S) = ��: Hence S is UP, and V (G) =
�̂ = � : Furthermore, if P1 = v1; v2; : : : ; vn�1 is the HH in G with G0 =
G � [(n�2)=2i=1 (v2i; v2i+1) connected, then we may take S to be any Eulerian
path in G0 from the remaining vertex vn to the initial vertex v1; followed by
P1:

Proof. Let a = vn denote the unique vertex of G not contained in P1; and let
b = v1 be the starting vertex of P1: The graph G0 has even degree except at
vertices a and b; as all other vertices are incident to exactly one of the edges
(v2i; v2i+1) ; and their degree has been reduced by one, to some even number.
Hence there is an Eulerian path P2 in G0 which starts at a and ends at b: The
concatenated path S = P2P1 (that is, P2 followed by P1) covers all the edges
of G once, except for the r� = (n� 2) =2 edges (v2i�1; v2i) ; which are covered
twice (once in P1 and once in P2): The path P2P1 has length L = m + r�;
and may be described as a sequence of edges e1; e2; : : : ; eL. The edges covered
twice are covered for the second time as edges eL�1; eL�3; : : : ; eL�(n�2): Hence
� (S) = ��; as required.
The proof is illustrated below for complete graph K4 on n = 4 vertices.

The left picture shows the HH path P1 of length n � 2 = 2. The middle
picture shows that if the second edge of P2 is removed, what remains is
connected. In this graph, only vertices a and b have odd degree (3), so there
is an Eulerian path in this graph (length 5) which starts at a and ends at b:
The concatenated path P2P1 on the original graph (with edges 1 and 2 of P1
now numbered 1+5=6 and 2+5=7) is shown on the right. One can see that
the only repeated edge (numbered e5 and e6) is covered for the second time
at the next to last position, 6. Hence the path on the right is a UP path.

Figure 5. HH path P1; Eulerian path P2 in Q�Heven; UP path P2P1

A more interesting example is the Petersen graph, shown below in Figure 6.
A hypo Hamiltonian path is drawn on the left in red. When its even edges
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are removed, what remains is the red graph on the right, which is clearly
connected. So the UP path starts with an path P2 in the red graph on the
right, followed by the hypo

Figure 6: HH path P1 Eulerian path P2

Combining the three previous results gives our main result on UP paths on
odd degree networks.

Theorem 17 Let G be a graph with n vertices, all of odd degree, and m

unit length edges. Then �̂ � m

2
+
n2 � 2n
8m

; with equality if and only if G is

HHHC.

6 UP Paths on Symmetric Graphs

We can now combine our results on the optimality of uniform hiding in a
symmetric network (Theorem 11) with our complementary results (Theorems
16,17) on optimal (UP) pure strategy search for a uniformly distributed Hider
on a network of odd degree. All we need to do is generalize the latter work to
mixed strategies to obtain our main result. We revert to our original use of
�network�, as this is the context in which our general game � (Q) was de�ned.

Theorem 18 Consider the search game � (Q) on a symmetric network Q
with n vertices and m unit length edges. Then

1. Q is easily hideable: V (Q) = �̂; and the uniform distribution � is an
optimal mixed Hider strategy.
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2. If Q has even degree, V (Q) = m=2: Any Eulerian circuit, traversed
equiprobably in either direction, is an optimal mixed Searcher strategy.

3. If Q has odd degree, then V (Q) � m

2
+
n2 � 2n
8m

; with equality if and

only if Q is HHHC.

4. Suppose Q is HHHC and has odd degree. Let P1 = v1; v2; : : : ; vn�1 be
any (HH) path, with Q0 = Q � [(n�2)=2i=1 (v2i; v2i+1) connected. Then
an optimal Searcher mixed strategy is given by [P2P1], where P2 is any
Eulerian path in Q0; from the remaining vertex vn to v1; and [ ] de-
notes averaging with respect to the isomorphism group of Q:

Proof. Part (1) is a restatement of Theorem 11. Part (2), mentioned earlier,
is trivial. Part (3) is follows immediately from Theorems 11 and 16. Next
consider part (4). Theorem 16 shows that P2P1 is a UP path onQ: However it
is not in general true that for a UP path P on an easily hideable network, [P ]
is an optimal mixed strategy. For example, the network in Figure 1 has V =
9=2 and UP path ABDDC. But against the randomized Searcher strategy
[ABDDC] ; the Hider can obtain T ([ABDDC] ; x) = 3 = (3=2 + 9=2) =2 by
taking x to be the middle of B: However Q is symmetric, so for any H 2 Q;
[H] = �: It follows that for any Hider pure strategy H; T ([P2P1] ; H) =
T (P2P1; [H]) = T (P2P1; �) = �̂; since P2P1 is a UP path. Hence [P2P1] is
an optimal strategy for the Searcher.
The full strength of our main result (Theorem 18) requires that the odd

degree symmetric graph Q has the HHHC property. This may seem an
unlikely property. However, in fact we know of no odd degree symmetric
graph that is not HHHC. So we make the following.

Conjecture 19 Every odd degree symmetric graph is HHHC.

It is useful to note that if the HH path P in the de�nition of HHHC
was required to be Hamiltonian (rather than hypo-Hamiltonian), then the
conjecture would certainly be false. (In this case P would include n vertices
and have an odd number n�1 of edges, and the condition would be that the
removal of the odd edges of P leaves G connected - for hypo-Hamiltonian
paths, which have even length n� 2; the odd edges in one direction are the
even edges in the other.) Brian Alspach [8] has observed that the Petersen
graph G of Figure 6 would be a counterexample. The Petersen graph does
have a Hamiltonian path (put the edge (a; b) before the path P1 of Figure
4) but is known to have no Hamiltonian circuit. Suppose that G has has a
Hamiltonian P such that the graph G0; obtained by removing the odd edges
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of P; is connected. Then since every vertex of G0 has even degree 2, G0 has
an Eulerian circuit C: But since G0 has degree 2, this means that C enters
each vertex once and leaves once - it is a Hamiltonian circuit. But no such
circuit exists on the Petersen graph, so this is impossible.
In the positive direction of the Conjecture, we have already shown (Fig-

ures 5 and 6) that the Petersen graph and K4 are HHHC. Much work has
already gone into establishing that many classes of symmetric graphs must
have two (or more) edge-disjoint Hamiltonian paths or circuits, at least for n
su¢ ciently large. Either of these is of course a much stronger property than
HHHC. Some of the following are proved by �lling in the remaining cases for
small n; others by a direct argument.

Theorem 20 All odd degree symmetric graphs of the following types are
HHHC:

1. The complete graphs Kn; n � 2 (odd degree for n even)

2. The complete bipartite graphs Kn;n; n � 1 (odd degree for n odd)

3. The d�dimensional hypercube graphs [0; 1]d ; d � 1 (odd degree for d
odd)

4. Graphs G with degree � n=2; for n � 79:

Proof. In the following, let Peven denote the even edges of the path P:

1. Number the vertices 1; 2; : : : ; n; and take P = [1; 2; : : : ; n� 1] : Q� P
is connected, as all edges (vi; vn) are not in P:

2. Label the vertices vi; wi; i = 1; : : : ; n; with the edges (vi; wj) : Let P =
v1; w2; v3; w4; : : : ; wn�1; vn; w1; v2; w3; v4; : : : ; wn�2; vn�1: The Hamiltonian
path v1; w1; v2; w2; : : : ; wn�1; vn; wn is disjoint from Peven:

3. It is known that [0; 1]d contains d=2 edge disjoint Hamiltonian paths
[10]. So for d � 5; there are two edge disjoint Hamiltonian paths, a
stronger condition than HHHC. For d = 3 (the edge graph of a cube),
the HH path P drawn below leaves a connected graph when its three
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even numbered edges are removed.

Figure 7. HH path P on cube, cube with Peven deleted.

4. Nash�Williams [20] proved that such a G has b5(n� bn=2c+ 5)=112c
edge-disjoint Hamiltonian circuits, so two of them for n � 79:

We have checked other small symmetric graphs and found them to be
HHHC. But this is not a graph theory paper so we have merely given a
list of families of symmetric graphs where the HHHC property holds and

whose value is therefore given by
m

2
+
n2 � 2n
8m

: Even if there are odd degree

symmetric graphs for which this condition fails, we have still found an optimal
Hider mixed strategy and reduced the Searcher problem to the construction
of a UP path. We believe this Utilitarian Postman Problem may prove a
fruitful area of future research in operations research and graph theory.
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