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Abstract

In the (zero-sum) search game � (G; x) proposed by Isaacs, the Hider picks a
point H in the network G and the Searcher picks a unit speed path S (t) in G
with S (0) = x: The payo¤ to the maximizing Hider is the time T = T (S;H) =
min ft : S (t) = Hg required for the Searcher to �nd the Hider. An extensive
theory of such games has been developed in the literature. This paper considers
the related games � (G) ; where the requirement S (0) = x is dropped, and the
Searcher is allowed to choose his starting point. This game has been solved
by Dagan and Gal for the important case where G is a tree, and by Alpern
for trees with Eulerian networks attached. Here, we extend those results to a
wider class of networks, employing theory initiated by Reijnierse and Potters
and completed by Gal, for the �xed-start games � (G; x) :
Our results may be more easily interpreted as determining the best worst-

case method of searching a network from an arbitrary starting point.

keywords: search game, network, zero-sum, chinese postman, Eulerian



1 Introduction

There are two related search games that can be played on a compact network
G; in which a unit speed Searcher seeks to minimize the time required to ��nd�
a stationary Hider. These are zero sum games where the payo¤ is the time
T = min ft : S (t) = Hg for a Searcher following the path S (t) in G to reach a
Hider who chooses to stay at the point H 2 G: In the �xed-start game � (G; x) ;
the Searcher is constrained to start at the designated point x = S (0) ; in the ar-
bitrary start game � (G) ; he may start anywhere in G: Compactness arguments
([14], [4]) establish that these games always have optimal mixed searcher strate-
gies and (minimax) values which we denote respectively as Vx = V (G; x) and
V = V (G) : Both versions of the game can be attributed to Rufus Isaacs, who
introduced them in the �nal chapter of his classical work on di¤erential games
[19]. While an extensive general theory has been developed for �xed-start search
games (see [14] and [4]), arbitrary-start games have only recently begun to be
studied, by Dagan [8], Dagan and Gal [9] and Alpern [2]. (There is also some
early work when G is the circle for related games where the Hider is also mobile
([26],[1]), but very di¤erent techniques are required for those games.)
This paper develops a theory of arbitrary-start search games. The optimal

search strategies we �nd here for these games can be more easily interpreted as
best worst-case methods for searching a network. As such, they can be applied
to many search problems where there is no active antagonist.
Related work on search games can be found in: Anderson and Aramendia

[6]; Beck and Newman [7]; Demaine, Fekete and Gal [10]; Garnaev [16]; Kikuta
[20]; Pavlovic [22]; Ruckle [24]; and von Stengel and Werchner [25].

2 De�nitions and Results

In this article we will assume the network G is connected and has a �nite number
of nodes and arcs. Each arc a of G has a length, denoted by � (a) ; and more
generally � is taken as Lebesgue measure on G: The distance d (x; y) denotes
the usual network distance between points of G corresponding to the length �:
The number

� (G) = min
x2G

max
y2G

d (x; y) (1)

is called the radius of G and any point x achieving this value is called a center
of G: (If G is a tree, the center is in fact unique, but we shall not need to use this
fact.) Algorithms for �nding the center are given by Hakimi [17], Hassan and
Tamir [18], Dvir and Handler [11], and Megiddo and Tamir [21]. The diameter
of G is de�ned by d (G) = maxx;y2G d (x; y). Note that � (G) � d (G) � 2� (G) :
A path S in G is a continuous function from some �nite time interval [0; � ]

into G: In our games � (G) and � (G; x) the Searcher will only use (as pure
strategies) unit (maximal) speed paths inG; that is, paths belonging respectively
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to the sets

S = fd ((S (t)) ; S (t0)) � jt� t0jg and
Sx = fS 2 S : S (0) = xg :

Such a path S is called closed if S (0) = S (�) ; and called a tour if additionally
its range is G:
Let � = � (G) denote the total length (sum of arc lengths) of G: A Chinese

Postman (CP) tour is a tour of minimum length ��; and a CP path S is a covering
(range G) path of minimum length of ~�: For trees, a CP path (and hence ~�) is
determined by picking two points a; b 2 G (leaves) at maximum distance d (G),
and going from (say) a to b while traversing all arcs on the geodesic L between
a and b once, and all other arcs twice (so ~� = 2� (G)� d (G) = 2�� d (G) ):

a b

c

Figure 1: CP paths on a tree.

Consider the network drawn in Figure 1, where all arcs have unit length.
The diameter d (G) is four and, up to isomorphism and direction, there are two
CP paths, both end at b and start at either a (call this Pa) or c call this Pc:
They have length �� = 2� (G)� d (G)) = 2 � 8� 4 = 12:
More generally, the Chinese Postman Problem and constructions, have been

analyzed by Edmonds and Johnson [12] and Eiselt et al [13]. These constructions
produce �combinatorial�paths which start at a node and traverse the arcs in
succession, without turning in the interior of an arc.
Our main result (Theorem 2) has a condition involving the di¤erence between

the length of a CP tour and a CP path, denoted by

4 = 4 (G) = �� (G)� ~� (G) � 0:
Note that 4 � d (G) � 2� (G) ; as we can convert any covering path to a
covering tour by extending it by the shortest route from the end of the path to
the beginning, which cannot be longer than d (G).
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A random CP tour is a CP tour which is traversed equiprobably in either
direction. A random CP path is an equiprobably mixture of a CP path ~S (t)
and its reverse path ~S0 (t) = ~S (~�� t). If ~S (t) = x; then ~S0 (~�� t) = x; so a
randomized CP path �nds all x 2 G in average time no more than ~�=2: Hence
for any network G we have

V (G) � ~� (G) =2: (2)

If equality holds in (2) we say that G is simply searchable. In this case any
random CP path is clearly optimal. The main results of this article give su¢ cient
conditions for simple searchability and show that it is not a topological property.

3 Fixed�Start Games

Although we are mainly concerned with arbitrary start search games, we will
need the following important �xed-start result of Gal ([15],[4]) (extending work
of Reijnierse and Potters [23]) characterizing networks G for which V (G; x) =
��=2. The condition is that G is Weakly Eulerian, meaning it contains a �nite
number of disjoint Eulerian (�� (Ei) = � (Ei)) networks Ei which, when each is
shrunk to a point, leaves a tree.

Theorem 1 (Gal) If G is a Weakly Eulerian network, then for any start-
ing point x 2 G; V (G; x) = ��=2; any random CP tour starting at x is an
optimal searcher strategy in � (G; x), and there is an optimal hiding strategy
�hx in � (G; x) which is uniform on each Eulerian subnetwork. Conversely, if
V (G; x) = ��=2 for some x; then G is Weakly Eulerian.

An algorithm for constructing the Hider distribution �hx is described in [15]
and [4].

4 Simply Searchable Networks

In this section we present a result, Theorem 2, which gives a su¢ cient condition
for a network to be simply searchable. The condition involves both the notion
of weakly Eulerian and the following notion of Eulerian deletion: If G = B [E
is a network in which a maximal disjoint �nite family Ei of Eulerian networks
(whose union is E) are each attached to a connected network B at a single point,
we say that B is the Eulerian deletion of G; denoted by B = E0 (G) :
The following result gives an inequality which is su¢ cient for a Weakly

Eulerian network to be simply searchable.
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Theorem 2 If G is a Weakly Eulerian network satisfying

4 (G) � 2 � (E0 (G)) ; (3)

then G is simply searchable. Furthermore, if c is a center of E0 (G) ; then the
strategy �hc of Theorem 1 is optimal for the Hider.

The proof of Theorem 2 will be given in Section 6. Before then, we wish to
discuss several speci�c results which follow from this. To make the list more
complete, we also include some simple cases which follow simply from the de�-
nition of simple searchability.

Corollary 3 A network G is simply searchable if it satis�es any of the follow-
ing:

1. G has an Eulerian path.

2. G is Eulerian.

3. G consists of a tree A to which disjoint Weakly Eulerian networks are each
attached at single points of A; and � (A) = � (G) :

4. G is �Partly Eulerian�(this means E0 (G) is a tree).

5. G is a tree.

The �rst two results follow directly from the de�nition of simply searchable,
the remaining three are true corollaries.
Proof. Note that all the conditions except 1 imply that G is Weakly Eulerian,
and 1 is proved directly.

1. Note that V (G) � �=2 because the Hider can hide uniformly, while the
Searcher can ensure that V (G) � ~�=2 = �=2 by adopting a random CP
path, so V (G) = ~�=2:

2. We have E0 (G) is a singleton with 0 radius and �� = ~�: (Or use condition
1.)

3. and 4. Write G = A [ F; where A is the tree and F is the union of the attached
networks. Let r denote the radius of A, let x and y denote points of A
at maximum distance d (x; y) = 2r; and let L denote a simple path from
x to y (of length 2r). Fix any CP tour S of G and let �G denote the
Eulerian network obtained by doubling any arc of G doubly traversed by
S: Observe that �

�
�G
�
= �� and that every arc in L is doubly traversed by

S: Let ~G be the network obtained from �G by removing the doubled arcs

of the path L; so that �
�
~G
�
= �� � � (L) = �� � 2r: Note that since �G is

Eulerian it follows that every node of ~G has even degree except for the
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ends x and y of L: Hence there is an Eulerian path (of length �
�
~G
�
) in ~G

from x to y: Such a path is a covering path of G; so ~� � �
�
~G
�
= ��� 2r:

Consequently we have

4 = ��� ~� � 2r = 2 � (A) :

Under assumption 3, A = E0 (G) ; so (3) holds. Under assumption 4,
we have � (A) = � (G) ; and since A � E0 (G) � G this implies that
� (A) = � (E0 (G)) ; and (3) holds.

5. This is a special case of 3 or 4.

Condition 5 is due to Dagan and Gal [9], condition 4 is due to Alpern [2], and
condition 3 is due to Gal and also is implicit in Alpern�s proof of 4: Conditions
1 and 2 are fairly obvious in any case.
Also included in Theorem 2 are networks not previously covered by any of

these conditions, such as the network G drawn in Figure 2, for which E0 (G) is
simply G with the top circle removed, and for which (3) is satis�ed because

�� = 20; ~� = 14; 4 = 6; � (E0 (G)) = 3:

1

1

1

1

1

3

1

3

Figure 2: A simply searchable network
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5 An Optimal Search Problem

In this section we consider a one-sided search problem, which asks how to opti-
mally search a network in which a hider is distributed uniformly on an Eulerian
subnetwork. The main conclusion is that the subnetwork should be searched
without interruption. In order to obtain this result, we will have to consider a
wider family of search strategies S 0 (larger than S); in which the subnetwork
may be searched in a discontinuous manner. Note that except for this section,
all strategies will be assumed to be in S (continuous).
Our main result, which will be essential in the rest of the paper, is the fol-

lowing Theorem which extends a similar result of [2] without explicitly referring
to the underlying �alternating search theory�of [5] which was used in the earlier
proof.

Theorem 4 Let H be a network which is the union of two networks H1 and
H2; which have a single point e in common. Let h be a (Hider) distribution on
H which is uniform on H2: If H2 is Eulerian, there is an optimal continuous
search path S 2 S on H which searches H2 in an Eulerian circuit starting at e;
during some time interval of the search of H: In particular, we can assume that
S (0) 2 H1:
To prove Theorem 4, we introduce a new search problem �0 based on H; in

which the searcher must, as usual, search H1 in a continuous unit speed path,
but whenever he reaches e he can search H2 in a discontinuous path as long as
he searches any set A � H2 in time at least � (A) : Denote the set of such paths
S 0: We can assume these paths in H2 start and end at the point e: Let V 0 be
the expected capture time for an optimal search. Clearly V 0 � V; because the
searcher has a wider class of strategies (S � S 0) in the problem �0:
Consider the network H drawn in Figure 3. It has four arcs of length 2.

To enable us to easily indicate paths on H (especially discontinuous ones), we
have put directions on the arcs. Thus c�1 goes from the left of the �gure to
the intersection point. In this notation, P =

�
bcc�1a�1d

�
2 S 0 is a search path

for the problem �0 (H) : Here H1 is the bottom line and H2 is the circle on top.
The connection point e (not labelled) is the center of the line.

ab

c d
Figure 3: Network H with arcs directed

To establish Theorem 4, we �rst establish a similar result for the problem �0;
which in the example of Figure 3 says that if P is optimal so is the strategy
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P � = ba�1cc�1d which puts the second search of H2 (that is, a�1) immediately
after the �rst search (b), and hence searches H2 in a single go.

Lemma 5 Let H and h be as in Theorem 4. There exists an optimal search
path S0 of H in �0 which searches H2 exhaustively during a single time interval
of length � (H2) at some point of the search.

Once we have obtained this Lemma, it is an easy matter to replace the
discontinuous path (say P � in the example) by one which searches H2 in a
(continuous) Eulerian path (P �� = abcc�1d).

Proof of Theorem 4. Let S0 be the path given by Lemma 5, with T (S0; h) =
V 0 � V: De�ne S00 to be the same as S0 except that in the intervals where S0 is
searching H2; S00 follows an Eulerian circuit of H2 starting at e: This is possible
because an Eulerian circuit of H2 has length � (H2) by de�nition. Since h
is uniform on H2; the order in which it is searched (assuming no overlap) is
irrelevant to the search time, so we have T (S00; h) = T (S0; h) = V 0 � V: But
S00 2 S (is a continuous path) so V 0 = V and S00 satis�es the requirements of
the Theorem.
We now complete this section with a proof of Lemma 5.

Proof of Lemma 5. Let P be an optimal strategy forH in the problem �0 with
disjoint equal length time-intervals I1 = [t1; t1 + L] (earlier) and I2 = [t2; t2 + L]
(later) in which H2 is searched, such that some points of H1 � e are searched
in between. Let d = t2 � (t1 + L) denote the distance between I1 and I2: Let
I�; I� ; I
 denote the time intervals before, between, and after I1 and I2: Thus
we may write P as a concatenation P = P�P1P�P2P
 ; where Pi denotes the
restriction of P to the interval Ii: De�ne H�;H1; etc. to be those points of H
found by P in the corresponding time intervals. De�ne P+ = P�P1P2P�P
 and
P� = P�P�P1P2P
 : Observe that all points of H�[H
 are reached in the same
time by strategies P; P+; and P�: Compared with P; points in H� are reached
in time L earlier under P� and time L later by P+; points in H1 [H2 are met
on average at time d=2 later under P� (those in H1 are met d later), and on
average at time d=2 earlier under P+: Hence the expected capture time for the
equiprobable mixture of P+ and P� is the same as that for P: Hence if P is
optimal, all three paths P; P� and P+ must have the same (optimal) expected
capture time, as neither P+ nor P� can have a smaller time.
Next suppose that the time intervals I1 and I2 (with lengths Li) are maximal

(path enters H1 immediately before and after them) and do not have necessarily
have the same length, say I1 is longer. Let I 01 denote the right hand part of I1 of
the same length L2 as I2: Then applying the above construction to the intervals
I 01 and I2 we see that the optimal strategy P

+ has (compared with P ) an extra
maximal interval of length L1 + L2 and one less maximal interval of length L2:
Now assume that the Lemma is false, and let k < � (H2) denote the supre-

mum of the length of individual time intervals spent entirely in H2 among all
optimal paths in S 0: Starting with any optimal path P 2 S 0 we may successively
combine (as above) maximal intervals of search in H2 until, after a �nite number
of iterations, we obtain an optimal path in S 0 which searches in H2 on some
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time interval of length greater than k: Since this contradicts the de�nition of k;
we are done.

6 Proof of Theorem 2

We are now in a position to prove Theorem 2, which gives a simple condition
for the simple searchability of a network.
The following result is implicit in the Dagan-Gal proof that a tree is simply

searchable.

Lemma 6 Let G be any network. If h is an optimal hider mixed strategy in
� (G; y) and S is a pure search strategy with S (0) = x; then T (S; h) � Vy �
d (x; y) : Consequently for all x; y 2 G we have jVx � Vyj � d (x; y) :

Proof. Let S0 denote the pure search strategy with S0 (0) = y; which begins by
going directly to x and then follows S: Since S0 reaches any point of G at most
time d (x; y) later than S does, we have

Vy � T (S0; h) � d (x; y) + T (S; h) ; or
T (S; h) � Vy � d (x; y) :

Since this is true for all S with S (0) = x; we have

Vx � Vy � d (x; y) ; and so by symmetry jVx � Vyj � d (x; y) :

Lemma 7 If G is Weakly Eulerian, then

V (G) � ��=2� � (B) ; (4)

where B = E0 (G) is the Eulerian deletion of G:

Proof. Let c be a center of B and let �hc be the Hider strategy of Theorem
1, which is uniform on each Eulerian component Ei of G: Since G is Weakly
Eulerian, Theorem 1 implies that

Vc (G) = ��=2:

By the last sentence of Theorem 4, there is a pure search strategy S starting
at some point x = S (0) 2 B which is an optimal reply to �hc: Since �hc is also a
valid hiding strategy for the arbitrary start game � (G) ; we have by Lemma 6
with y = c; that

V (G) � T
�
S; �hc

�
� Vc (G)� d (x; c) � ��=2� � (B) ; (5)

since x 2 B and c is a center of B:
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Lemma 8 For any Weakly Eulerian network G; we have

�� (G)� 2 � (E0 (G)) � 2 V (G) � ~� (G) : (6)

Proof. The left hand inequality is the same as (5), while the right hand in-
equality is simply (2).
The rest is now easy.

Proof of Theorem 2. If � = �� (G)� ~� (G) � 2 � (E0 (G)) then

�� (G)� 2 � (E0 (G)) � ~� (G)

so the left and right (and hence the middle) terms in (6) are equal. So V (G) =
~� (G) =2 and hence G is simply searchable (by de�nition), as claimed. Also, by
(5), we have for some (and hence every) optimal reply S to �hc; that

T
�
S; �hc

�
� �� (G) =2� � (E0 (G)) � ~� (G) =2 = V (G) ;

and so �hc is an optimal Hider strategy.

7 Easily Hidable Networks

In the previous sections, we discussed networks G which were simple to search,
that is, where an optimal search strategy in � (G) consisted of a random CP
path. In this section, we consider networks G which are easy to hide in, because
an optimal hiding strategy is simply the uniform distribution �:
A Chinese Postman path is one in which the Postman �nishes his work as

soon as possible. It is good for him, but not necessarily for the customers to
whom he delivers. A Utilitarian Postman wants to deliver to his customers as
early as possible, on average. That is, a Utilitarian Postman (UP) path Ŝ is one
in which the average delivery time is minimized, and this minimum is denoted
by �̂;

�̂ = T
�
Ŝ; �

�
=

Z
G

T
�
Ŝ; y

�
d� (y) = min

S

Z
G

T (S; y) d� (y) :

In other words, a UP path is any path which is optimal against �: Since search
paths have unit speed, clearly �̂ � �=2:
To illustrate the distinction between UP and CP paths, consider again the

network drawn in Figure 1. In each time interval Ji = [i� 1; i] ; i = 1; : : : ; 12;
the paths Pa and Pc either search a new arc (1) or retrace an arc which has
already been searched (0), as indicated in the following table

Pa 110111001101
Pc 111101001101

(7)

If the hider distribution is uniform and he is found in time interval Ji; the
expected capture time is i� 1=2: Hence the expected capture time is

T =
1

8

X
xi=1

(i� 1=2) : (8)
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The only di¤erence in the sequences is that the 0 at position 3 in Pa has moved
to position �ve in Pc: So clearly against a uniform hiding strategy Pc has a
smaller expected meeting time:

T (Pa; �)� T (Pc; �) =
1

8
((5� 1=2)� (3� 1=2)) = 1

4
:

So the only CP path which can be (it is) a UP path is Pc (the reverse path of Pc
has a larger T ): Now suppose the network is modi�ed so that the arc directly
below c has length 1 � " instead of 1: For " su¢ ciently small, T (Pc; �) will
still be less than T (Pa; �), but the only CP path will be Pa: (For the modi�ed
network, Pa has length 12�2"; whereas Pc has length 12� ":) Thus none of the
CP paths will be a UP path.
Any mixture ŝ of UP paths is called a Random Utilitarian Postman (RUP)

strategy, and clearly for such Searcher strategies we also have

�̂ = T (ŝ; �) : (9)

Since the uniform hiding strategy h = � is always available, we clearly have for
all networks G that

V (G) � �̂ (G) : (10)

If equality holds in (10) we say that G is easily hideable. This is equivalent to
saying that the uniform strategy � is optimal for the hider. It is clear that if G
has an Eulerian path it is easily hideable, as V (G) = �=2 = �̂:
An immediate consequence of the de�nition of easily hideable is the following.

Lemma 9 If there is a mixed search strategy s on G such that

max
y2G

T (s; y) = �̂; (11)

then G is easily hideable.

Proof. The condition (11) implies that V � �̂; so the result follows from (10).

A useful method for showing that a network is easily hideable is the following
easy result.

Lemma 10 Let G = G1 [G2 be a network with � (G1 \G2) = 0: (In applica-
tions, G1and G2 will intersect only at nodes of G:) Let s1 and s2 denote RUP
Searcher strategies on G such that for some constants ti;j ; i; j = 1; 2; we have
T (si; y) = ti;j for all y 2 Gj : If

ti;i � �̂ for i = 1; 2 (12)

then G is easily hideable.
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Proof. Let �i = � (Gi) =� (G) ; i = 1; 2: Since both si are RUP strategies, we
have

T (si; �) = �1ti;1 + �2ti;2 = �̂; i = 1; 2:

It follows that the three points (t1;1; t1;2) ; (t2;1; t 2;2) and (�̂; �̂) are all on the
line �1x+�2y = �̂; and by (12) that (�̂; �̂) is between the other two, and hence
can be written as

(�̂; �̂) = p (t1;1; t1;2) + (1� p) (t2;1; t 2;2) : (13)

Consequently the RUP strategy s = ps1 + (1� p) s2 satis�es

T (s; y) = pt1;j + (1� p) t2;j = �̂; for y 2 Gj ; j = 1; 2: (14)

Since G1 [G2 = G; the result follows from the previous Lemma.

A

BC

D

Figure 4: An easily hidable network

Example 11 Consider the network G drawn in Figure 4, consisting of four
arcs (A;B;C;D) each of length 2. Note that if we draw it in the plane with
the origin at the center of the circle BC; it has both horizontal and vertical
symmetry. For any pure strategy S; let [S] denote the mixed strategy given by an
equiprobable average of the four symmetrical versions of S (optimality properties
of symmetric strategies of this type are discussed in Alpern and Asic [3]). Let
G1 = A [ D and G2 = C [ B: We have �̂ = 9=2; given by two UP paths,
both starting at the top, as S1 = A;B;D;D;C and S2 = A;B;C;C;D: The
path S1 reaches the midpoints of A;B;D;C at times 1,3,5,9 and S2 reaches the
midpoints of A;B;C;D at these times. So both achieve the minimum average
time of (1 + 3 + 5 + 9) =4 = 9=2: Taking si = [Si], the times ti;j in the above
Lemma are given by the matrix

fti;jg =

0B@ 1 + 5

2

3 + 9

2
1 + 9

2

3 + 5

2

1CA =

�
3 6
5 4

�
:
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Since both t1;1 = 3 and t2;2 = 4 are less than 9=2 = 4:5, condition (12) is
satis�ed, and the network G is easily hideable, with V (G) = �̂ = 9=2:

We have already observed that if G has a Eulerian path it is both simply
searchable and easily hideable. The converse is also true, and will in fact be
useful in the following section.

Lemma 12 If a network G is both simply searchable and easily hideable it has
a Eulerian path. Consequently any simply searchable network with more than
two nodes of odd degree is not easily hideable. In particular, any partly Eulerian
network with more than two nodes of odd degree, or any tree with more than two
terminal nodes, is not easily hideable.

Proof. Suppose G is simply searchable and has no Eulerian path. To prove the
�rst sentence, we have to show that the uniform hider strategy � is not optimal.
Let S be a CP path. Its length is ~� > � by assumption. Hence some arc A
of G is traversed twice, during distinct time intervals. For any point y in the
interior of A; we have S (t1) = y = S (t2) ; t1 < t2: Hence T (S; y) � t1 and
T (S0; y) � ~� � t2; where S0 is the reverse path to S: If s denotes the random
CP strategy consisting equiprobably of S and S0; then we have for y 2 A;

T (s; y) � 1

2
(t1) +

1

2
(~�� t2) <

~�

2
= V (G) : On the other hand, T (s; x) � ~�

2
for all x 2 G; so it follows that

T (s; �) <
~�

2
= V (G) :

Hence � is not optimal, and G is not easily hideable.
The second sentence follows from the fact that a network with an Eulerian

path has 0 or 2 nodes of odd degree, and the third from Corollary 3 and the
observation that terminal nodes of trees have degree 1 together with the Dagan-
Gal result [9] that trees are simply searchable.

8 Simple Searchability is not a topological prop-
erty

Gal�s result (Theorem 1) gives a topological (that is, combinatorial) character-
ization of networks with starting points for which a random Chinese postman
tour is an optimal search strategy, namely that the network is Weakly Eulerian.
The de�nition of Weakly Eulerian depends only on the graph theoretic structure
of the network, not on its arc-lengths, so is a topological invariant. We give a
simple example which shows that no such topological characterization is pos-
sible for simple searchability. Consider the following family of networks Ĝ (r) ;
r � 0; consisting of four edges A,B,C,D of �xed length 2; and (for r > 0) two
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additional edges of varying length r: Observe that these are all Weakly Eulerian.

r r

2

22

2
e

Figure 5: The family of networks Ĝr

For r > 0, the networks Ĝr are topologically the same. However we
shall show that for r su¢ ciently large these are simply searchable, while for r
su¢ ciently small they are not.
First consider the network Ĝ0: This is the network of Figure 4, which was

shown to be easily hideable. This network has four nodes of odd degree, and
consequently it has no Eulerian path. By Lemma 12, this implies it is not simply

searchable, that V
�
Ĝ0

�
< ~�=2 � " = 5� "; for some " > 0: (In fact, we showed

that V
�
Ĝ0

�
= 9=2; but we will not need this exact value for our argument.)

Now it is easy to see that for any r > 0;

V
�
Ĝr

�
� V

�
Ĝ0

�
+ 4r: (15)

Simply take any optimal mixed searcher strategy in Ĝ0 and modify it by taking
time 4r to search the additional rays the �rst time the node e is reached. Then no
point of Ĝr will be reached more than time 4r later than its corresponding point
in Ĝ0 is reached under the optimal strategy for Ĝ0 (points in Ĝ0 correspond to
themselves; those in the new rays correspond to e): Thus (15) holds, and for r
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su¢ ciently small (r < "=4) we have V
�
Ĝr

�
< 5: However ~�

�
Ĝr

�
> ~�

�
Ĝ0

�
=

10; so for su¢ ciently small r we have

V
�
Ĝr

�
< ~�

�
Ĝr

�
=2

and hence the network Ĝr is not simply searchable.
For larger r write Gr as a network of the type in Corollary 3, condition 3,

taking A to be the bottom line of length 2r: We have � (A) = r; and since for
any x 2 Gr we have d (e; x) � max [3; r] it follows that

r = � (A) � � (Gr) � max [3; r] : (16)

So for r � 3 we have � (A) = � (Gr) ; which by condition 3 of Corollary 3 ensures
that Gr is simply searchable. Taking together the results for r small and r large,
we have proved the following.

Theorem 13 The simple searchability of a network is not a topological prop-
erty.

9 Conclusions

If an object is known to be hidden in a known network, how should one look
for it, if constrained to follow a path in the network. This problem has been
extensively studied for the case when the search path must start at a given
location. The present paper considers how the Searcher can improve the search
if the initial location constraint is removed. This line of research was initiated
by Dagan [8] and Dagan and Gal [9], who solved the problem for trees. Here,
we extended their work (and that of Alpern [2]) to more general networks. An
important concept introduced for this purpose is that of the Eulerian deletion
of a network, as well as the comparison of the time taken to search a network
and return to the starting point versus the time taken to search the network.
These concepts, when combined, gave a su¢ cient condition (Theorem 2) for the
optimal search strategy to be simply an equiprobable mixture of a minimum
time (Chinese Postman) covering path of the network, and its reverse path.
We also gave a su¢ cient conditions (Lemmas 9 and 10) for the uniform hiding
strategy to be optimal for the Hider, that is, to be the worst case scenario for
the search problem.
It is interesting to note that while the �xed-start and arbitrary-start search

problems are very di¤erent in character, the results presented here for the later
version use in a crucial way the important theorem of Gal (our Theorem 1) for
the former version.
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