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Abstract: Let E, E∗ be separable Hilbert spaces. If S is an open subset of T, then
AS(L (E, E∗)) denotes the space of all functions f : D ∪ S → L (E, E∗) that are holomor-
phic in D, and bounded and continuous on D ∪ S. In this article we prove the following
main results:

1. A theorem concerning the approximation of f ∈ AS(L (E, E∗)) by a function F that
is holomorphic in a neighbourhood of D∪S and such that the error F −f is uniformly
bounded in the disk D.

2. The corona theorem for AS(L (E, E∗)) when dim(E) < ∞: If there exists a δ > 0
such that for all z ∈ D ∪ S, f(z)∗f(z) ≥ δ2I, then there exists a g ∈ AS(L (E∗, E))
such that for all z ∈ D ∪ S, g(z)f(z) = I.

3. The problem of complementing to an isomorphism for AS(L (E, E∗)) when dim(E) <

∞ (Tolokonnikov’s lemma): f ∈ AS(L (E, E∗)) has a left inverse g ∈ AS(L (E∗, E))
iff it is a ‘part’ of an invertible element F in AS(L (E∗)).

4. A corona theorem for A(L (E, E∗)) when dim(E) = ∞, and the corona data function
f is a ‘small’ perturbation of a ‘nice’ function f0.
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1 Notation and introduction

D denotes the open unit disk centered at 0 in the complex plane C, that is, D = {z | |z| <

1}, and T denotes the boundary of D, that is, T = {z | |z| = 1}. We also use the standard
notation

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Let X be a Banach space. If Ω is a domain in C, then by H∞(Ω, X) we mean the space of
all bounded holomorphic functions in Ω, equipped with the supremum norm:

‖f‖∞ = sup
z∈Ω

‖f‖, f ∈ H∞(Ω, X).

If Ω = D, then we denote the space H∞(D, X) simply by H∞(X). For preliminaries on
vector- and operator-valued holomorphic functions, we refer the reader to Dieudonné [3]
(Chapter IX), or Nikolski [7] (§3.11).

Definition. Let X be a Banach space. If S ⊂ T, then AS(X) denotes the set of functions
f : D∪S → X that are holomorphic in D, and continuous and bounded on D∪S. The space
AS(X) is equipped with the supremum norm defined by ‖f‖∞ = sup

z∈D∪S

‖f(z)‖, f ∈ AS(X).

The motivation for using ‘A’ in the notation above is that the symbol A is used to
denote the disk algebra (S = T and X = C). If S = ∅, then we get the other extreme
H∞(X).

Theorem 1.1 Let X be a Banach space and S ⊂ T. Then AS(X) is a Banach space.

Proof The completeness can be shown as follows. Let (fn)n∈N be a Cauchy sequence.
Then for each z ∈ D ∪ S, the sequence (fn(z))n∈N is a Cauchy sequence in X, and so
by the completeness of X, it has a limit, say f(z). These pointwise limits give rise to
a X-valued function f defined on D ∪ S. We claim that f belongs to AS(X). f is the
uniform limit of the fn’s on D∪S. In particular, in each compact subset of D, the sequence
(fn)n∈N of holomorphic functions converges uniformly to f , and so f is holomorphic in D

(see Theorem 9.12.1 on page 229 of Dieudonné [3]). Continuity and boundedness on D∪S

follows from the fact that the convergence is uniform.

Note that if X is a Banach algebra (for instance, if X = L (E), where E is a Hilbert
space), then AS(X), with pointwise multiplication, is also a Banach algebra.

In this article, we mostly consider the case X = L (E, E∗), where E, E∗ are separable
Hilbert spaces. The space L (E, E∗) is equipped with the uniform topology induced by
the operator norm. These function classes AS(L (E, E∗)) arise in control theory as they
are natural choices for the spaces of transfer functions of infinite-dimensional systems that
are not exponentially stable [10].

In this paper we will prove an operator corona theorem and Tolokonnikov’s lemma
for the space AS(L (E, E∗)). In order to do this, we will use the corresponding theorems
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for H∞ and a certain approximation result, which we prove first in §2. Subsequently
we prove the operator corona theorem (§3) and Tolokonnikov’s lemma (§4) for the space
AS(L (E, E∗)), when dim(E) < ∞ and S is an open subset of T. Finally in the last section
§5, we prove an operator corona theorem for the space A(L (E, E∗)) (that is, S = T), when
dim(E) = ∞, under some additional assumptions on the corona data function f .

2 An approximation result

In order to prove the corona theorem and Tolokonnikov’s lemma for our class AS, we will
use the H∞ versions of these theorems together with a key approximation result (Corollary
2.3 below). This result is a consequence of the following lemma, which we prove following
Gamelin [4] (§1 of Chapter II) and Gamelin and Garnett [5].

Lemma 2.1 Let Ω be a bounded domain with a smooth boundary Γ, containing zero, and
such that Ω ⊂ rΩ for all r sufficiently close to 1. Suppose that C is a closed subarc in Γ,
and let I be a neighbourhood of C in Γ.

Let X be a Banach space, and suppose that f : Ω → X is bounded and holomorphic in
Ω, and that f extends continuously to I.

Then given any ε > 0, there exists a neighbourhood O of C in C and a holomorphic
function F : Ω ∪ O → X such that for all z ∈ Ω, ‖F (z) − f(z)‖ < ε.

Proof We extend f across I to the open sector V as shown in Figure 1. f is constant
along rays (joining 0 to a point z0 in I), in the region across I, with the value along the
ray being the one at the corresponding boundary point (z0) on I. The extension is again
denoted by f .

PSfrag replacements

0

I

z0
V

f(z) := f(z0)

Figure 1: Continuous extension of f across I.

Let ϕ ∈ D(R2) be a test function such that 0 ≤ ϕ ≤ 1, ϕ = 1 on a neighbourhood U

of C (in C) and 0 off a slightly larger neighbourhood W ; see Figure 2.
Define h : Ω ∪ V → X by

h(ζ) =
1

π

∫∫

Ω∪V

∂ϕ

∂z

f(z) − f(ζ)

z − ζ
dxdy

=
1

π

∫∫

Ω∪V

1

z − ζ

∂ϕ

∂z
f(z)dxdy −

1

π

∫∫

Ω∪V

∂ϕ

∂z

1

z − ζ
dxdyf(ζ), ζ ∈ Ω ∪ V.
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Figure 2: Support of the cut-off function ϕ is contained in W .

Claim: h is well-defined and continuous.

Observe that the convolution of the locally integrable function
1

z
with a bounded func-

tion with compact support is well-defined and continuous. As the functions z 7→
∂ϕ

∂z
f(z)

and z 7→
∂ϕ

∂z
are both bounded and have compact support, it follows that

ζ 7→
1

π

∫∫

Ω∪V

1

z − ζ

∂ϕ

∂z
f(z)dxdy and

1

π

∫∫

Ω∪V

∂ϕ

∂z

1

z − ζ
dxdy

are continuous on Ω ∪ V . Finally as ζ 7→ f(ζ) is also continuous, it follows that h is
continuous.

Claim: h is holomorphic in Ω.
For all ζ, ζ + t in Ω with t 6= 0, we have

h(ζ + t) − h(ζ)

t

=
1

πt

∫∫
∂ϕ

∂z

[
f(z) − f(ζ + t)

z − (ζ + t)
−

f(z) − f(ζ)

z − ζ

]
dxdy

=
1

π

∫∫
∂ϕ

∂z

f(z) − f(ζ)

(z − ζ)(z − (ζ + t))
dxdy −

1

π

∫∫
∂ϕ

∂z

1

z − ζ − t
dxdy

f(ζ + t) − f(ζ)

t
.

As f is holomorphic in Ω, it follows that lim
t→0

f(ζ + t) − f(ζ)

t
exists. Since the convolution

integrals vary continuously with t, we deduce that h is holomorphic in Ω, as explained
below:

1. Indeed first of all the map ζ 7→

∫∫
∂ϕ

∂z

1

z − ζ
dxdy is continuous in Ω ∪ V .

2. Let ζ ∈ Ω. Then the function z 7→
f(z) − f(ζ)

z − ζ
is bounded on Ω ∪ V , which can be

4



seen as follows: for z in Ω close to ζ, we know lim
z→ζ

f(z) − f(ζ)

z − ζ
exists, and if z is away

from ζ, then as f and
1

· − ζ
are both bounded, we are done. The map

t 7→

∫∫
1

z − ζ − t

∂ϕ

∂z

f(z) − f(ζ)

z − ζ
dxdy

is the convolution of the locally integrable map z 7→ −
1

ζ + z
and the compactly

supported bounded function z 7→
∂ϕ

∂z

f(z) − f(ζ)

z − ζ
, and so it is continuous (and in

particular at 0).

Claim: h is holomorphic in U (or on a neighbourhood of C in C where ϕ = 1).
We recall Green’s formula, which says that if D is a domain with a smooth boundary

γ and g is a continuously differentiable on D ∪ γ, then

g(ζ) =
1

2πi

∫

γ

g(z)

z − ζ
dz −

1

π

∫∫

D

1

z − ζ

∂g

∂z
dxdy, ζ ∈ D.

We will apply this Green’s formula below to simplify the second integral in (1) below, with
the g above replaced by ϕ. Let γ be a smooth curve in Ω ∪ V that contains W (or the
support of ϕ) in its interior. We have

h(ζ) =
1

π

∫∫
∂ϕ

∂z

f(z) − f(ζ)

z − ζ
dxdy

=
1

π

∫∫
∂ϕ

∂z

f(z)

z − ζ
dxdy −

1

π

∫∫
∂ϕ

∂z

1

z − ζ
dxdyf(ζ) (1)

=
1

π

∫∫
∂ϕ

∂z

f(z)

z − ζ
dxdy + ϕ(ζ)f(ζ), (2)

since ϕ = 0 on γ. As ϕ = 1 on U , if ζ ∈ U , we have

(h − f)(ζ) =
1

π

∫∫
∂ϕ

∂z

f(z)

z − ζ
dxdy,

and so differentiating under the integral sign (note that as ζ ∈ U , it follows that for all z

close enough to U ,
∂ϕ

∂z
= 0 since ϕ = 1 in U), we obtain that

∂(h − f)

∂ζ
= 0. Consequently

h − f is holomorphic in U .

Finally we are ready to construct F with the properties stated in the lemma. If 0 <

r < 1, then

hr(z) := h(rz), z ∈
1

r
Ω =: Ωr
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is holomorphic on Ωr. Choose r0 close enough to 1 such that

‖hr0
|Ω − h‖∞ < ε. (3)

That this is possible can be seen as follows: First of all note that (2) is valid for all
ζ ∈ Ω ∪ V . Then

1. Observe that the map h1 given by

ζ 7→
1

π

∫∫

Ω∪V

∂ϕ

∂z

f(z)

z − ζ
dxdy =

1

π

∫∫

R2

∂ϕ

∂z

f(z)

z − ζ
dxdy

is continuous on C (since it is the convolution of a function with compact support

and the locally integrable function
1

z
). In particular, it is continuous on the compact

set Ω, and hence uniformly continuous there. Hence we can choose a r1 ∈ (0, 1) close
enough to 1 such that

sup
z∈Ω

‖h1(z) − h1(r1z)‖ <
ε

2
.

2. Note that the map h2 given by ζ 7→ ϕ(ζ)f(ζ) can be extended continuously to C

since ϕ has compact support contained in Ω∪V where f is continuous. Thus we can
choose a r2 ∈ (0, 1) close enough to 1 such that

sup
z∈Ω

‖h2(z) − h2(r2z)‖ <
ε

2
.

By letting r0 = max{r1, r2}, we obtain (3).
Define F = f −h+hr0

on (Ω∪V )∩Ωr0
. Then ‖F − f‖∞ = ‖hr0

−h‖∞ < ε. Moreover,
F is holomorphic in (Ω ∪ U) ∩ Ωr0

= Ω ∪ (U ∩ Ωr0
). Indeed this is because f, h, hr0

are all
holomorphic in Ω, f − h is holomorphic in U , and hr0

is holomorphic in Ωr0
.

Using the result above, we now prove our main result of this section, concerning uniform
holomorphic approximation of functions in AS.

Theorem 2.2 Let X be a Banach space, S an open subset of T, and f ∈ AS(X). Then
given any ε > 0, there exists a neighbourhood O of S in C and a holomorphic function
F : D ∪ O → X such that for all z ∈ D, ‖F (z) − f(z)‖ < ε.

Proof Let In, n ∈ N, be pairwise disjoint open intervals such that

S =

∞⋃

n=1

In.

Each In can be written as a union of closed intervals as follows:

In =

(
∞⋃

m=1

Qnm

)
⋃
(

∞⋃

m=1

Q̃nm

)
,
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PSfrag replacements

In

Qn2

Qn1

Qn3

Q̃n1

Q̃n2

Figure 3: The interlaced closed intervals.

where Qn1, Qn2, Qn3, . . . are pairwise disjoint closed intervals, Q̃n1, Q̃n2, Q̃n3, . . . are
pairwise disjoint closed intervals, each Q̃nk joins the endpoints of two of the Qnl’s, and
each Qnk joins the endpoints of two of the Q̃nl’s; see Figure 3.

We can renumber these sets so that

S =

(
∞⋃

n=1

Qn

)
⋃
(

∞⋃

n=1

Q̃n

)
,

where Q1, Q2, Q3, . . . are pairwise disjoint closed intervals, Q̃1, Q̃2, Q̃3, . . . are pairwise
disjoint closed intervals, each Q̃n joins the endpoints of two of the Qk’s, and each Qn joins
the endpoints of two of the Q̃k’s.

Step 1. We construct open sets On (in C) and functions ϕn with the following properties:

1. On is an open bounded neighbourhood of Qn, On∩Om = ∅ if n 6= m, Ωn := Ωn−1∪On

has a smooth boundary, and for r sufficiently close to 1, Ωn ⊂ rΩn.

2. ϕn : Ωn → X is holomorphic and bounded in Ωn, ϕn extends continuously to S and

the boundary of On, and ‖ϕn|Ωn−1
− ϕn−1‖∞ <

ε

2n+1
.

We do this construction inductively as follows. Let O0 := ∅, Ω0 = O0 ∪ D, and let ϕ0 :
Ω0 → X be f . Assuming that we have already constructed O0, . . . , Ok−1 and ϕ0, . . . ϕk−1,
the existence of Ok and ϕk follows from Lemma 2.1 above, applied to ϕk−1 and the closed
subarc C = Qk (by suitably shrinking O from the Lemma 2.1).

We observe that
∞∑

k=1

(ϕk − ϕk−1) + f

converges uniformly on compact subsets of D to a function Φ which is bounded and holo-
morphic in D. Also for each n,

Φ =
∞∑

k=1

(ϕk − ϕk−1) + f =
∞∑

k=n+1

(ϕk − ϕk−1) + ϕn,
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and so ϕ extends analytically to each Ωn. Finally, we also observe that

‖Φ|D − f‖∞ <
ε

2
.

Step 2. Let

Ω = D

⋃
(

∞⋃

n=1

On

)
,

and consider Φ : Ω → X. We can shrink the On’s so that Φ is bounded on Ω and Ω
has a smooth boundary Γ, and so that Φ has a continuous extension to a neighbourhood

of
∞⋃

n=1

Q̃n. Repeating the argument in Step 1 above with Φ instead of f , we can find a

neighbourhood Ω1 of Ω ∪
∞⋃

n=1

Q̃n and a Ψ : Ω1 → X which is holomorphic in Ω1 and such

that
for all z ∈ Ω, ‖Ψ(z) − Φ(z)‖ <

ε

2
.

Finally, we obtain that for all x ∈ D, ‖Ψ(z) − f(z)‖ < ε, which completes the proof.

The scalar version (case when X = C) of the main result of this section (Theorem 2.2)
was obtained first by Stray [11].

In order to prove the operator corona theorem and Tolokonnikov’s lemma for AS, we
will use the following corollary of the Theorem 2.2.

Corollary 2.3 Let E, E∗ be Hilbert spaces, S an open subset of T, and f ∈ AS(L (E, E∗)).
Then given any ε > 0, there exists a neighbourhood O of S in C and a holomorphic
F : D ∪ O → L (E, E∗) such that for all z ∈ D, ‖F (z) − f(z)‖ < ε.

One can apply Theorem 2.2 to various subspaces of L (E, E∗) to get different versions
of the approximation result. In particular, we will use the version with the Hilbert-Schmidt
class in section 5 in order to prove the corona theorem for A(L (E, E∗)).

3 An operator corona theorem

Throughout this section, we assume that E, E∗ are separable Hilbert spaces and that
dim(E) < ∞.

The operator corona theorem for H∞(L (E, E∗)) says that the existence of a left inverse
for a function f ∈ H∞(L (E, E∗)) is equivalent to the condition that

∀z ∈ D, f(z)∗f(z) ≥ δ2I.

This was proved by Vasyunin, and the proof can be found in Tolokonnikov [13]. If E is
not finite-dimensional, then this equivalence is not true, and this was shown in Treil [14].
We refer the reader to §9.2 of the book by Nikolski [7] for an account of these results.
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In this section we will prove a similar equivalence for functions in AS(L (E, E∗)). In
order to prove this (Theorem 3.2 below), we will use the approximation result from the
previous section (Corollary 2.3) and the following corona theorem in the H∞ case.

Proposition 3.1 (Vasyunin-Fuhrmann) Let E, E∗ be separable Hilbert spaces and dim(E) <

∞. Suppose that Ω is a simply connected domain not equal to the plane C, and f ∈
H∞(Ω, L (E, E∗)). If there exists a δ > 0 such that for all z ∈ Ω, I ≥ f(z)∗f(z) ≥ δ2I,
then there exists a g ∈ H∞(Ω, L (E∗, E)) such that

∀z ∈ Ω, g(z)f(z) = I and ‖g‖∞ <
√

dim(E)C(δdim(E)). (4)

Proof For Ω = D, this is precisely the statement of the Vasyunin-Fuhrmann theorem (see
§11 in Appendix on page 293 of Nikolski [6]). The general case can be seen as follows. By
the Riemann mapping theorem, there exists a one-to-one holomorphic map ϕ from Ω onto
D. Thus ϕ−1 : D → Ω is also holomorphic. Hence f0 := f ◦ ϕ−1 ∈ H∞(L (E∗, E)), and
I ≥ f0(z)∗f0(z) ≥ δ2I for all z ∈ D. From the Vasyunin-Fuhrmann theorem in the case of
D, it follows that there exists a g0 ∈ H∞(L (E∗, E)) such that

∀z ∈ D, g0(z)f0(z) = I, and sup
z∈D

‖g0(z)‖ ≤
√

dim(E)C(δdim(E)). (5)

Defining g := g0 ◦ϕ, we see that g ∈ H∞(Ω, L (E∗, E)), and (4) then follows from (5).

We are now ready to prove our new operator corona theorem for AS(L (E, E∗)).

Theorem 3.2 Let E, E∗ be separable Hilbert spaces and dim(E) < ∞. Suppose that S is
an open subset of T, and that f ∈ AS(L (E, E∗)). Then the following are equivalent:

1. There exists a δ > 0 such that for all z ∈ D ∪ S, f(z)∗f(z) ≥ δ2I.

2. There exists a g ∈ AS(L (E∗, E)) such that for all z ∈ D ∪ S, g(z)f(z) = I.

Proof 2 ⇒ 1. For x ∈ E and z ∈ D ∪ S,

‖x‖ = ‖Ix‖ = ‖g(z)f(z)x‖ ≤ ‖g(z)‖‖f(z)x‖ ≤ ‖g‖∞‖f(z)x‖,

and so with δ :=
1

‖g‖∞
, we have

〈f(z)∗f(z)x, x〉 = 〈f(z)x, f(z)x〉 = ‖f(z)x‖2 ≥ δ2‖x‖2 = 〈δ2Ix, x〉,

that is, f(z)∗f(z) ≥ δ2I.

1 ⇒ 2. Given f ∈ AS(L (E, E∗)) and ε1 > 0, by Corollary 2.3 there exists a neighbourhood
O of S and a L (E, E∗)-valued holomorphic function fe defined on Ω := D ∪ O such that
‖fe|D − f‖∞ < ε1.
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As fe is continuous in O, given any ε2 > 0, we can shrink O suitably so as to ensure
that for the new Ω = D∪O, we have that for all z ∈ Ω \D, there exists a z∗ ∈ S such that
‖fe(z) − fe(z∗)‖ < ε2.

For all z ∈ D ∪ S and x ∈ E,

‖fe(z)x‖ = ‖f(z)x + (fe(z) − f(z))x‖ ≥ ‖f(z)x‖ − ‖(fe(z) − f(z))x‖

≥ ‖f(z)x‖ − ‖fe(z) − f(z)‖‖x‖ ≥ ‖f(z)x‖ − ‖fe|D − f‖∞‖x‖

> δ‖x‖ −
δ

2
‖x‖ (ensured by choosing ε1 <

δ

2
)

=
δ

2
‖x‖ (6)

>
δ

4
‖x‖.

For all z ∈ Ω \ D and x ∈ E,

‖fe(z)x‖ = ‖fe(z∗)x + (fe(z) − fe(z∗))x‖ ≥ ‖fe(z∗)x‖ − ‖(fe(z∗) − fe(z))x‖

≥
δ

2
‖x‖ − ‖fe(z∗) − fe(z)‖‖x‖ (using (6))

≥
δ

2
‖x‖ −

δ

4
‖x‖ (ensured by choosing ε2 <

δ

4
)

=
δ

4
‖x‖.

Consequently for all z ∈ Ω, and all x ∈ E, ‖fe(z)x‖ ≥
δ

4
‖x‖.

For all z ∈ D∪S, ‖fe(z)‖ ≤ ‖fe(z)−f(z)‖+‖f(z)‖ < ε1 +‖f‖∞, and for all z ∈ Ω\D,
‖fe(z)‖ ≤ ‖fe(z) − fe(z∗)‖ + ‖fe(z∗)‖ < ε2 + ε1 + ‖f‖∞. With

M(δ, ‖f‖∞) :=
1

δ
2

+ δ
4

+ ‖f‖∞
<

1

ε1 + ε2 + ‖f‖∞
,

we note that for all z ∈ Ω, 1 ≥ ‖M(δ, ‖f‖∞)fe(z)‖, and for all x ∈ E,

‖M(δ, ‖f‖∞)fe(z)x‖ ≥ M(δ, ‖f‖∞)
δ

4
‖x‖.

Hence by Proposition 3.1, it follows that there exists a ge ∈ H∞(Ω, L (E∗, E)) such that
for all z ∈ Ω, ge(z)fe(z) = I, and

sup
z∈Ω

‖ge‖ ≤ M(δ, ‖f‖∞)
√

dim(E)C

((
M(δ, ‖f‖∞)

δ

4

)dim(E)
)

=: Θ(δ).

Consequently for all z ∈ D∪S, ge(z)fe(z) = I, and so ge(z)f(z) = I−ge(z)[fe(z)−f(z)]. By

ensuring that the chosen ε1 is smaller that
1

2Θ(δ)
, we see that I−ge[fe−f ] is invertible as an
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element of the Banach algebra AS(L (E)). Defining g(z) = (I−ge(z)[fe(z)−f(z)])−1ge(z),
z ∈ D ∪ S, we have that g ∈ AS(L (E∗, E)) and g(z)f(z) = I for all z ∈ D ∪ S.

Remark 1. Bound on the left inverse. Note that in Theorem 3.2 we have also proved that
it is possible to choose the left inverse g of f such that it satisfies the following estimate:

‖g‖∞ ≤ 2Θ(δ) = 2M(δ, ‖f‖∞)
√

dim(E)C

((
M(δ, ‖f‖∞)

δ

4

)dim(E)
)

,

where C is as in Proposition 3.1.

Remark 2. Scalar case. The result in Theorem 3.2 in the case when E = E∗ = C (the
scalar case) was shown in Theorem 2 of Détraz [2] using algebraic tools. Arne Stray gave
another proof in the scalar case, and the proof of Theorem 3.2 follows his approach and
the proof by Rosay [9] which can be found in [10].

Remark 3. Application to control theory. Coprimeness plays an important role in the
factorization approach to solving stabilization problems in control theory (see Vidyasagar
[16]). Using the corona theorem 3.2, we can give a necessary and sufficient condition for a
matrix pair to be right coprime in AS. We recall the definition of coprimeness below:

Definition. Let U , Y be Hilbert spaces, and let S be a subset of T. Suppose that
N ∈ AS(L (U, Y )) and D ∈ AS(L (U)). The pair (N, D) is called right coprime (with
respect to AS) if there exists a P ∈ AS(L (U, Y )) and a Q ∈ AS(L (U)) such that the
following Bézout identity holds: PN + QD = I. A left coprime pair of matrices is defined
analogously.

We have the following consequence of Theorem 3.2.

Corollary 3.3 Let U , Y be separable Hilbert spaces with dim(U) < ∞. Suppose that S is
an open subset of T, and that N ∈ AS(L (U, Y )), D ∈ AS(L (U)). Then the following are
equivalent:

1. The pair (N, D) is right coprime.

2. There exists a δ > 0 such that for all z ∈ D ∪ S, N(z)∗N(z) + D(z)∗D(z) ≥ δI.

4 Complementing to an isomorphism

In this section, we will prove the equivalence of the operator corona problem with the
problem of completing an embedding to an isomorphism. We note that items 1 or 2 of
Theorem 3.2 imply that f(z) is one-to-one for each z, and so dim(E) ≤ dim(E∗). Without
loss of generality, we may assume that E ⊂ E∗. The problem of complementing to an
isomorphism is now that of describing those functions f ∈ AS(L (E, E∗)) for which there
exists an invertible F ∈ AS(L (E∗)) such that F |E = f . In the case of H∞, this was
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shown by Tolokonnikov, and we will use this (Proposition 4.1 below), together with the
approximation result (Corollary 2.3) in order to prove the corresponding version for AS

(Theorem 4.2).

Proposition 4.1 (Tolokonnikov’s lemma) Let E ⊂ E∗ be separable Hilbert spaces and
dim(E) < ∞. Suppose that Ω is a simply connected domain not equal to C, and that
f ∈ H∞(Ω, L (E, E∗)). Then the following statements are equivalent:

1. There exists a g ∈ H∞(Ω, L (E∗, E)) such that for all z ∈ Ω, g(z)f(z) = I.

2. There exists an invertible F ∈ H∞(Ω, L (E∗)) such that F (z)|E = f(z) for all z ∈ Ω.

Furthermore, the F can be so chosen that it satisfies ‖F−1‖∞ ≤ ‖g‖∞(1 + ‖f‖∞) + 1.

Proof For Ω = D, this is precisely the statement of Tolokonnikov’s lemma (see §10 in
Appendix on page 293 of Nikolski [6], and also the remarks following the statement of the
theorem in the same section). The general case is a trivial consequence using the Riemann
mapping theorem by proceeding in the same manner as with the proof of Proposition 3.1.

We now give the main result in this section on complementing to an isomorphism.

Theorem 4.2 Let E ⊂ E∗ be separable Hilbert spaces and dim(E) < ∞. Suppose that S

is an open subset of T, and that f ∈ AS(L (E, E∗)). Then the following are equivalent:

1. There exists g ∈ AS(L (E∗, E)) such that for all z ∈ D ∪ S, g(z)f(z) = I.

2. There exists an invertible F ∈ AS(L (E∗)) such that for all z ∈ D∪S, F (z)|E = f(z).

Proof Given f ∈ AS(L (E, E∗)) and ε1 > 0, by Corollary 2.3 there exists a neighbourhood
O of S and a L (E, E∗)-valued holomorphic function fe defined on Ω := D ∪ O such that
‖fe|D − f‖∞ < ε1.

As fe is continuous in O, given any ε2 > 0, we can shrink O suitably so as to ensure
that for the new Ω = D∪O, we have that for all z ∈ Ω \D, there exists a z∗ ∈ S such that
‖fe(z) − fe(z∗)‖ < ε2.

Proceeding as in the proof of Theorem 3.2, we obtain

∀z ∈ Ω, and ∀x ∈ E, ‖fe(z)x‖ ≥
δ

4
‖x‖, and ‖fe(z)‖ ≤ ε1 + ε2 + ‖f‖∞.

By Proposition 3.1 (applied to M(δ, ‖f‖∞)fe, where M(δ, ‖f‖∞) :=
1

δ
2

+ δ
4

+ ‖f‖∞
), it

follows that there exists a ge ∈ H∞(Ω, L (E∗, E)) such that for all z ∈ Ω, ge(z)fe(z) = I,
and

‖ge‖∞ ≤ M(δ, ‖f‖∞)
√

dim(E)C

((
M(δ, ‖f‖∞)

δ

4

)dim(E)
)

=: Θ1(δ, ‖f‖∞),

12



where C is as in Proposition 3.1.
By Proposition 4.1, there exists an invertible Fe ∈ H∞(Ω, L (E∗)) such that for all

z ∈ Ω, Fe(z)|E = fe(z), and

‖F−1
e ‖∞ ≤ ‖ge‖∞(1 + ‖fe‖∞) + 1

≤ Θ1(δ, ‖f‖∞)(1 + ε1 + ε2 + ‖f‖∞) + 1

≤ ‖f‖∞

(
1 +

δ

2
+

δ

4
+ ‖f‖∞

)
+ 1 =: Θ2(δ, ‖f‖∞).

Let P ∈ L (E∗, E) denote the projection onto E. Consider the function H : D ∪ S →
L (E∗) defined by

H(z) = Fe(z)−1(f(z) − fe(z))P ∈ L (E∗), z ∈ D ∪ S.

It is clear that H ∈ AS(L (E∗)). Furthermore, we have that for all z ∈ D ∪ S,

‖H(z)‖ ≤ ‖Fe(z)−1‖‖f(z) − fe(z)‖‖P‖ ≤ Θ2(δ, ‖f‖∞) · ε1 · 1 <
1

2

provided that we choose ε1 <
1

Θ2(δ, ‖f‖∞)
at the outset. So I + H is invertible in

AS(L (E∗)). Define F : D ∪ S → L (E∗) by

F (z) = Fe(z)(I + H(z)), z ∈ D ∪ S.

Then we have that F ∈ AS(L (E∗) is invertible, and if x ∈ E, then

F (z)x = Fe(z)(I + H(z))x = Fe(z)x + Fe(z)H(z)x = fe(z)x + (f(z) − fe(z))Px

= fe(z)x + (f(z) − fe(z))x = f(z)x,

and so F |E = f . This completes the proof.

Combining Theorems 3.2 and 4.2, we have the following.

Corollary 4.3 Let E ⊂ E∗ be separable Hilbert spaces and dim(E) < ∞. Suppose that S

is an open subset of T, and that f ∈ AS(L (E, E∗)). Then the following are equivalent:

1. There exists a δ > 0 such that for all z ∈ D ∪ S, f(z)∗f(z) ≥ δ2I.

2. There exists g ∈ AS(L (E∗, E)) such that for all z ∈ D ∪ S, g(z)f(z) = I.

3. There exists an invertible F ∈ AS(L (E∗)) such that for all z ∈ D∪S, F (z)|E = f(z).

13



5 Corona theorem for A(L (E, E∗)), when dim(E) = ∞

The counterexample by Treil [14] shows that the operator corona theorem does not hold if E

is an infinite dimensional Hilbert space. Nevertheless, it can hold under further assumptions
on the corona data function f . Recently, Treil [15] proved an operator corona theorem for
f ∈ H∞(L (E, E∗)) under some extra assumptions on f : if f is a ‘small’ perturbation of a
‘nice’ function f0, then the operator corona theorem holds for such functions. In this last
section, we use Treil’s positive result when dim(E) = ∞ in order to prove a similar result
for A(L (E, E∗)) (which is the analogue of the disk algebra case).

We first recall Treil’s result from [15]. In the following, S2(E, E∗) denotes the space
of Hilbert-Schmidt operators, equipped with the Hilbert-Schmidt norm ‖ · ‖S2

, and this
forms a Banach space. If T ∈ S2(E, E∗), then ‖T‖ ≤ ‖T‖S2

(see for instance Pietsch [8]).

Proposition 5.1 (Treil) Let E, E∗ be separable Hilbert spaces. Suppose that Ω is a simply
connected domain not equal to C. Let f ∈ H∞(Ω, L (E, E∗)) be such that it satisfies one

of the following assumptions:

A1. There exists a C ∈ L (E, E∗) and there exists an f1 ∈ H∞(Ω, S2(E, E∗)) such that
f(z) = C + f1(z) for all z ∈ Ω.

A2. There exists a left invertible f0 ∈ H∞(Ω, L (E, E∗)) and an f1 ∈ H∞(Ω, S2(E, E∗))
such that f(z) = f0(z) + f1(z) for all z ∈ Ω.

Then the following are equivalent:

1. There exists a δ > 0 such that for all z ∈ Ω, f(z)∗f(z) ≥ δ2I.

2. There exists a g ∈ H∞(Ω, L (E∗, E)) such that for all z ∈ Ω, g(z)f(z) = I.

In order to prove our version of the above result for A(L (E, E∗)) (Theorem 5.3 below),
we will also need the following theorem by Arveson–Sz.-Nagy–Foias (Arveson [1] and Sz.-
Nagy–Foias [12]). We use H2(E) to denote the vector-valued Hardy class H2 with values in
E. Recall that the Toeplitz operator Th ∈ L (H2(E), H2(E∗)) corresponding to a function
h ∈ L∞(L (E, E∗)) is defined by

Thϕ = P+(hϕ), ϕ ∈ H2(E),

where P+ : L2(E∗) → H2(E∗) denotes the orthogonal projection operator onto H2(E∗).

Theorem 5.2 Let E, E∗ be separable Hilbert spaces and let f ∈ H∞(L (E, E∗)). Then the
following are equivalent:

1. There exists a g ∈ H∞(L (E∗, E)) such that for all z ∈ D, g(z)f(z) = I, and
‖g‖∞ ≤ δ−1.
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2. If f denotes the function defined by f(z) = f(z), z ∈ T, then

inf
ϕ∈H2(E),
‖ϕ‖=1

‖Tfϕ‖ ≥ δ > 0,

where Tf denotes the the Toeplitz operator corresponding to f ∈ L∞(E, E∗).

We are now ready to prove the following theorem.

Theorem 5.3 Let E, E∗ be separable Hilbert spaces. Suppose that f ∈ A(L (E, E∗)) is
such that it satisfies one of the following assumptions:

S1. There exists a C ∈ L (E, E∗) and f1 ∈ A(S2(E, E∗)) such that f(z) = C + f1(z) for
all z ∈ D.

S2. There exists a left invertible f0 ∈ A(L (E, E∗)) and a f1 ∈ A(S2(E, E∗)) such that
for all z ∈ D, f(z) = f0(z) + f1(z).

Then the following are equivalent:

1. There exists a δ > 0 such that for all z ∈ D, f(z)∗f(z) ≥ δ2I.

2. There exists a g ∈ A(L (E∗, E)) such that for all z ∈ D, g(z)f(z) = I.

Proof The proof is divided into two main steps.

Step 1. We consider the two cases:

1◦ Suppose S1 holds.

By the approximation result in Theorem 2.2, given any ε1 > 0, there exists a
neighbourhood O of T in C and a function f e

1 : D ∪ O → S2(E, E∗) such that
‖f e

1 (z) − f1(z)‖S2
< ε1 for all z ∈ D.

Given ε2 > 0, we can then choose a r ∈ (0, 1) such that 1
r
D =: Dr is contained in

Ω := D ∪ O and such that for all z ∈ Dr \ D, ‖f e
1 ( z

r
) − f e

1 (z)‖S2
< ε2.

As sup
z∈Dr

‖f e
1 (z)‖S2

≤ sup
z∈D

‖f1(z)‖S2
+ ε1 + ε2, A1 in Proposition 5.1 holds.

Define f e by f e(z) = C + f e
1 (z), z ∈ Ω. Clearly f e ∈ H∞(Dr, L (E, E∗)). Moreover,

for all z ∈ D and x ∈ E, we have

‖f e(z)x‖ ≥ ‖f(z)x‖ − ‖(f e(z) − f(z))x‖ ≥ δ‖x‖ − ‖(f e
1 (z) − f1(z))x‖

≥ δ‖x‖ − ‖f e
1 (z) − f1(z)‖‖x‖ ≥ δ‖x‖ − ‖f e

1 (z) − f1(z)‖S2
‖x‖

> δ‖x‖ −
δ

2
‖x‖ (ensured by choosing ε1 <

δ

2
)

=
δ

2
‖x‖

>
δ

4
‖x‖.
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Furthermore, for all z ∈ Dr \ D and x ∈ E,

‖f e(z)x‖ ≥ ‖f e(z∗)x‖ − ‖(f e(z∗) − f(z))x‖ (where z∗ :=
z

|z|
∈ T)

≥
δ

2
‖x‖ − ‖f e

1 (z∗) − f e
1 (z)‖S2

‖x‖

>
δ

4
‖x‖ (ensured by choosing ε2 <

δ

4
).

Consequently, for all z ∈ Dr and all x ∈ E, ‖f e(z)x‖ ≥
δ

4
‖x‖.

2◦ Suppose that S2 holds.

By Corollary 2.3, given ε1 > 0, there exists a neighbourhood O of T in C and a
function f e

1 : D ∪ O → L (E, E∗) such that for all z ∈ D, ‖f e
0 (z) − f0(z)‖ < ε1.

Given any ε2, we can choose a r ∈ (0, 1) such that 1
r
D =: Dr is contained in D ∪ O

and such that for all z ∈ Dr \ D, ‖f e
0 ( z

r
) − f e

0 (z)‖ < ε2.

Let g0 ∈ A(L (E∗, E)) be a left inverse of f0. Then for all z ∈ D, g0(z)f0(z) = I. By
the Arveson–Sz.-Nagy–Foias Theorem 5.2, it follows that

inf
ϕ∈H2(E),
‖ϕ‖=1

‖Tf0
ϕ‖ ≥

1

‖g0‖∞
> 0.

If f e
0,r is defined by f e

0,r(z) = f e
0

(
z
r

)
, z ∈ D, then we have that f e

0,r ∈ H∞(L (E, E∗)).

For ϕ ∈ H2(E) and ‖ϕ‖ = 1, we have

‖Tfe

0,r

ϕ‖ = ‖Tf0+fe

0,r
−f0

ϕ‖ = ‖Tf0
ϕ + Tfe

0,r
−f0

ϕ‖ ≥ ‖Tf0
ϕ‖ − ‖Tfe

0,r
−f0

ϕ‖

≥ ‖Tf0
ϕ‖ − ‖Tfe

0,r
−f0

‖‖ϕ‖ = ‖Tf0
ϕ‖ − ‖Tfe

0,r
−f0

‖

≥ ‖Tf0
ϕ‖ − ‖f e

0,r − f0‖∞ = ‖Tf0
ϕ‖ − sup

z∈T

‖f e
0,r(z) − f0(z)‖

= ‖Tf0
ϕ‖ − sup

z∈T

∥∥∥∥f
e
0

(
z

r

)
− f0(z)

∥∥∥∥

≥ ‖Tf0
ϕ‖ − sup

z∈T

∥∥∥∥f
e
0

(
z

r

)
− f e

0 (z)

∥∥∥∥− sup
z∈T

‖f e
0 (z) − f0(z)‖

> ‖Tf0
ϕ‖ − ε2 − ε1.

Thus

inf
ϕ∈H2(E),
‖ϕ‖=1

‖Tfe

0,r

ϕ‖ >
1

2‖g0‖∞
> 0,

if we choose ε1, ε2 <
1

4‖g0‖∞
at the outset. By the Arveson–Sz.-Nagy–Foias Theorem

5.2, it follows that there exists a ge
0,r ∈ H∞(L (E∗, E)) such that ge

0,r(z)f e
0,r(z) =
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I for all z ∈ D. Defining ge
0 by ge

0(z) = ge
0,r(rz), z ∈ Dr, we see that ge

0 ∈
H∞(Dr, L (E∗, E)) and ge

0(z)f e
0 (z) = I for all z ∈ Dr, that is,

f e
0 ∈ H∞(Dr, L (E, E∗)) has a left inverse ge

0 ∈ H∞(Dr, L (E∗, E)). (7)

By the approximation result in Theorem 2.2, given ε1 > 0, we can refine the above
neighbourhood O of T in C and a find a function f e

1 : D ∪ O → S2(E, E∗) such that
for all z ∈ D, ‖f e

1 (z) − f1(z)‖S2
< ε1.

We can then make the above choice of r ∈ (0, 1) small enough such that 1
r
D =: Dr is

contained in Ω := D ∪ O and such that for all z ∈ Dr \ D, ‖f e
1 ( z

r
) − f e

1 (z)‖S2
< ε2.

We have
sup
z∈Dr

‖f e
1 (z)‖S2

≤ sup
z∈D

‖f1(z)‖S2
+ ε1 + ε2. (8)

Defining f e by f e(z) = f e
0 (z) + f e

1 (z), z ∈ Dr, we see from (7) and (8) that A2 from
Proposition 5.1 holds.

Moreover, for all z ∈ D and x ∈ E, we have

‖f e(z)x‖ ≥ ‖f(z)x‖ − ‖(f e(z) − f(z))x‖

≥ δ‖x‖ − ‖(f e
0 (z) − f0(z))x‖ − ‖(f e

1 (z) − f1(z))x‖

≥ δ‖x‖ − ‖f e
0 (z) − f0(z)‖‖x‖ − ‖f e

1 (z) − f1(z)‖‖x‖

≥ δ‖x‖ − ‖f e
0 (z) − f0(z)‖‖x‖ − ‖f e

1 (z) − f1(z)‖S2
‖x‖

> δ‖x‖ −
δ

2
‖x‖ (ensured by choosing ε1 <

δ

4
)

=
δ

2
‖x‖

>
δ

4
‖x‖.

Furthermore, for all z ∈ Dr \ D and x ∈ E,

‖f e(z)x‖ ≥ ‖f e(z∗)x‖ − ‖(f e(z∗) − f(z))x‖ (where z∗ :=
z

|z|
∈ T)

≥
δ

2
‖x‖ − ‖f e

0 (z∗) − f e
0 (z)‖‖x‖ − ‖f e

1 (z∗) − f e
1 (z)‖S2

‖x‖

>
δ

4
‖x‖ (ensured by choosing ε2 <

δ

8
).

Consequently, for all z ∈ Dr and all x ∈ E, ‖f e(z)x‖ ≥
δ

4
‖x‖.

Step 2. By Treil’s result (Proposition 5.1), there exists a ge ∈ H∞(Dr, L (E∗, E)) such
that for all z ∈ Dr, ge(z)f e(z) = I. If ge

r, f
e
r are defined by

ge
r(z) = ge

(z

r

)
and f e

r (z) = f e
(z

r

)
, z ∈ D,
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then we have for all z ∈ D, ge
r(z)f e

r (z) = I. By the Arveson–Sz.-Nagy–Foias Theorem 5.2,
ge

r can be chosen so as to satisfy

‖ge
r‖∞ ≤

1

ζ
, where ζ := inf

ϕ∈H2(E),
‖ϕ‖=1

‖Tfe
r

ϕ‖.

If ϕ ∈ H2(E) and ‖ϕ‖ = 1, then

‖Tfe
r

ϕ‖ = ‖Tf+fe
r
−fϕ‖ = ‖Tfϕ + Tfe

r
−fϕ‖ ≥ ‖Tfϕ‖ − ‖Tfe

r
−fϕ‖

≥ ‖Tfϕ‖ − ‖Tfe
r
−f‖‖ϕ‖ = ‖Tfϕ‖ − ‖Tfe

r
−f‖

≥ ‖Tfϕ‖ − ‖f e
r − f‖∞ = ‖Tfϕ‖ − sup

z∈T

‖f e
r (z) − f(z)‖

= ‖Tfϕ‖ − sup
z∈T

∥∥∥∥f
e

(
z

r

)
− f(z)

∥∥∥∥

≥ ‖Tfϕ‖ − sup
z∈T

∥∥∥∥f
e

(
z

r

)
− f e(z)

∥∥∥∥− sup
z∈T

‖f e(z) − f(z)‖

> ‖Tfϕ‖ − 2ε2 − 2ε1.

If ε1, ε2 <
τ(f)

8
, where

τ(f) := inf
ϕ∈H2(E),
‖ϕ‖=1

‖Tfϕ‖,

then ζ >
τ(f)

2
, and ‖ge‖∞ = ‖ge

r‖∞ ≤ 1
ζ
≤ 2

τ(f)
. So

∀z ∈ D, ‖ge(z)[f e(z) − f(z)]‖ ≤
2

τ(f)
ε1 <

1

4
.

Consequently I − ge[f e − f ] is invertible in A(L (E)). Thus, if we define

g = (I − ge[f e − f ])−1ge,

then g ∈ A(L (E∗, E)) and moreover, for all z ∈ D, g(z)f(z) = I.

One would like to know whether Theorem 5.3 holds for AS(L (E, E∗)) in the general
case when S is an arbitrary open subset of T. The proof given above does not generalize
to arbitrary S, since Theorem 5.2 (used in Steps 1 and 2) does not apply.
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Séries A et B, 269:A833-A835, 1969.

[3] J. Dieudonné. Foundations of Modern Analysis. Academic Press, 1960.

[4] T.W. Gamelin. Uniform Algebras. Prentice-Hall, 1969.

[5] T.W. Gamelin and J. Garnett. Uniform approximation to bounded analytic functions.
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