
Connections between Neural Networks and Boolean
Functions∗

Martin Anthony
Department of Mathematics

and Centre for Discrete and Applicable Mathematics
The London School of Economics and Political Science

London WC2A 2AE, UK
m.anthony@lse.ac.uk

CDAM Research Report LSE-CDAM-2005-25

Abstract

This report surveys some connections between Boolean functions and artificial
neural networks. The focus is on cases in which the individual neurons are linear
threshold neurons, sigmoid neurons, polynomial threshold neurons, or spiking neu-
rons. We explore the relationships between types of artificial neural network and
classes of Boolean function. In particular, we investigate the type of Boolean func-
tions a given type of network can compute, and how extensive or expressive the set
of functions so computable is.

∗To appear as a chapter in Boolean Methods and Models (ed. Yves Crama and Peter L. Hammer).
This report replaces LSE-CDAM-2003-01

1

1 Introduction

There has recently been much interest in ‘artificial neural networks’, machines (or mod-
els of computation) based loosely on the ways in which the brain is believed to work.
Neurobiologists are interested in using these machines as a means of modeling biological
brains, but much of the impetus comes from their applications. For example, engineers
wish to create machines that can perform ‘cognitive’ tasks, such as speech recognition,
and economists are interested in financial time series prediction using such machines.

In this report we shall focus on individual ‘artificial neurons’ and feed-forward artificial
neural networks. We shall be particularly interested in cases where the neurons are linear
threshold neurons, sigmoid neurons, polynomial threshold neurons, and spiking neurons.
We will investigate the relationships between types of artificial neural network and classes
of Boolean function. In particular, we shall ask questions about the type of Boolean
functions a given type of network can compute, and about how extensive or expressive
the set of functions so computable is.

2 Artificial neural networks

2.1 Introduction

It appears that one reason why the human brain is so powerful is the sheer complexity
of connections between neurons. In computer science parlance, the brain exhibits huge
parallelism, with each neuron connected to many other neurons. This has been reflected
in the design of artificial neural networks. One advantage of such parallelism is that the
resulting network is robust: in a serial computer, a single fault can make computation
impossible, whereas in a system with a high degree of parallelism and many computation
paths, a small number of faults may be tolerated with little or no upset to the computation.
There are many good general texts on neural networks, such as [7, 16]. Here we shall
briefly describe the aspects of neural networks that we will be interested in from a Boolean
functions point of view.

Generally speaking, we can say that an artificial neural network consists of a directed

2

graph with computation units (or neurons) situated at the vertices. One or more of these
computation units are specified as output units. These are the units with zero out-degree
in the directed graph. We shall consider networks in which there is only one output unit.
Additionally, the network has input units, which receive signals from the outside world.
Each unit produces an output, which is transmitted to other units along the arcs of the
directed graph. The outputs of the input units are simply the input signals that have
been applied to them. The computation units have activation functions determining their
outputs. The degree to which the output of one computation unit influences those of its
neighbors is determined by the weights assigned to the network. This description is quite
abstract at this stage, but we shall concretize it shortly by focusing on particular types
of network.

2.2 Neurons

The building blocks of feed-forward networks are computation units (or neurons). In
isolation, a computation unit has some number, n, of inputs, and is capable of taking
on a number of states, each described by a vector w = (w0, w1, . . . , wp) ∈ Rp of p real
numbers, known as weights or parameters. Here, p, the number of parameters of the unit,
will depend on k. If the unit is a linear threshold unit or sigmoid unit, then p = n + 1
and, in these cases, it is useful to think of the weights w1, w2, . . . , wn as being assigned
to each of the n inputs. For spiking neurons and polynomial threshold units, the number
of parameters will be greater than n + 1. The different types of neurons we consider are
best described by defining how they process their inputs.

Generally, when in the state described by w ∈ Rp, and on receiving input x = (x1, x2, . . . , xn),
the computation unit produces as output an activation g(w, x), where g : Rp × Rn → R
is a fixed function. We may regard the unit as a parameterized function class. That is,
we may write g(w, x) = gw(x), where, for each state w, gw : Rn → R is the function
computed by the unit on the inputs x.

3

Linear threshold units

For a linear threshold unit, the function g takes a particularly simple form:

g(w, x) = sgn (w0 + w1x1 + · · ·+ wnxn) ,

where sgn is the sign function, given by

sgn(z) =

{
1 if z ≥ 0
0 if z < 0,

Thus, when the state of the unit is given by w = (w0, w1, . . . , wn), the output is either 1
or 0, and it is 1 precisely when

w0 + w1x1 + · · ·+ wnxn ≥ 0,

which may be written as
w1x1 + · · ·+ wnxn ≥ θ,

where θ = −w0 is known as the threshold. In other words, the computation unit gives
output 1 (in biological parlance, it fires) if and only if the weighted sum of its inputs is
at least the threshold θ. If the inputs to the threshold unit are restricted to {0, 1}n, then
the set of Boolean functions it computes is precisely the threshold functions.

Sigmoid units

For a (standard) sigmoid unit, we have

g(w, x) = σ (w0 + w1x1 + · · ·+ wnxn) ,

where the ‘activation function’ σ(z) = 1/(1 + e−z) is the standard sigmoid function.
Writing θ = −w0, as we did above for the linear threshold unit, we see that the output
of the sigmoid unit is σ (

∑n
i=1 wixi − θ). If the weighted sum

∑n
i=1 wixi is much larger

than the threshold, then the output is close to 1; if it is much less than the threshold, the
output is close to 0; and if it is very close to the threshold, then the output is close to
1/2. In fact, the sigmoid function can be thought of as a ‘smoothed’ version of the sign
function, sgn, since σ maps from R into the interval (0, 1), is differentiable, and satisfies

lim
z→−∞

σ(z) = 0, lim
z→∞

σ(z) = 1.

Note that, whereas the linear threshold unit has output in {0, 1}, the output of a sigmoid
unit lies in the interval (0, 1) of real numbers.

4

Polynomial threshold units

The linear threshold and sigmoid units both work with w1x1 + · · ·+ wnxn, a linear com-
bination of the inputs to the unit, but we can generalize from this and consider instead
units which use a non-linear combination of the xi. For example, when n = 3, imagine a
unit which computes the quadratic expression

w1x1 + w2x2 + w3x3 + w4x
2
1 + w5x

2
2 + w6x

2
3 + w7x1x2 + w8x1x3 + w9x2x3,

for some constants wi, (1 ≤ i ≤ 9), and then compares this with a threshold value θ. Such
a unit is a polynomial threshold unit of degree 2. We now set up a description of this
generalization of linear threshold units. We shall denote by [n]m the set of all selections,
in which repetition is allowed, of at most m objects from the set [n] = {1, 2, . . . , n}. Thus,
[n]m is a collection of ‘multi-sets’. For example, [3]2 consists of the multi-sets

∅, {1}, {1, 1}, {2}, {2, 2}, {3}, {3, 3}, {1, 2}, {1, 3}, {2, 3}.

A polynomial threshold unit of degree m (also termed a sigma-pi unit [37, 44, 48]) has
p =

(
n+m

m

)
parameters wS, one for each multi-set S ∈ [n]m. For S ∈ [n]m and x =

x1x2 . . . xn ∈ Rn, let xS denote the product of the xi for i ∈ S (with repetitions as
required). For example, x{1,2,3} = x1x2x3 and x{1,1,2} = x2

1x2. When S = ∅, the empty
set, we interpret xS as the constant 1. The output of the unit is given by

gw(x) = g(w, x) = sgn

 ∑
S∈[n]m

wSxS

 .

Of course, when m = 1 we obtain a linear threshold unit. But for m > 1, a polynomial
threshold unit can compute functions that a linear threshold unit is incapable of com-
puting. Furthermore (and this will prove useful later), note that if we restrict the inputs
xi to belong to {0, 1} then we do not need terms of the form wSxS where the multi-set
S contains repeated members: this is simply because if xi ∈ {0, 1} then xr

i = xi for all
r > 1.

Consider, for example, the case n = m = 2 and suppose we take

w∅ = −1

2
, w{1} = w{2} = 1, w{1,2} = −2,

5

with the remaining weights w{1,1} and w{2,2} equal to 0. Then

gw(x) = sgn

(
−1

2
+ x1 + x2 − 2x1x2

)
.

It is easy to verify that, as a Boolean function on {0, 1}2, g is the exclusive-or function,
which is not computable by a linear threshold unit.

Spiking neurons

A very interesting class of artificial neurons are the spiking neurons. A number of results
on the capabilities of these neurons and networks of them have been obtained by Maass
and Schmitt [25, 26, 41]. In this report we present some results from [41] concerning
spiking neurons of a simplified type. The type of neuron considered is a ‘Type A’ spiking
neuron with ‘binary encoding’ [26]. The key difference between this type of neuron and
the ones considered so far is the introduction of a time variable. In the three types of
neuron discussed so far, a weighted sum is immediately computed and the output of the
neuron depends directly on that weighted sum. Here, however, delays in the inputs to
the neuron are modeled by assuming not only that to each input there is associated a
weight wi, but also a delay di. It is assumed that the weighted input corresponding to
input unit i is only ‘active’ during the time interval [di, di + 1). If, at any time, the sum
of the currently active weighted inputs is at least the threshold value, then the neuron
fires; otherwise it does not. Formally, with n inputs and in state

w = (w0, w1, w2, . . . , wn, d1, d2, . . . , dn),

the output of the spiking neuron is given by

g(w, x) = sgn

(
w0 + max

t≥0

n∑
i=1

wixiχ[di,di+1)(t)

)
,

where χ[di,di+1), the characteristic function of the time interval [di, di + 1), is given by

χ[di,di+1)(t) =

{
1 if di ≤ t < di + 1
0 otherwise,

Observe that if all delays di are fixed at 0, then the spiking neuron behaves just like the
linear threshold neuron with weights (w0, w1, . . . , wn).

6

2.3 Networks

As mentioned in the general description above, a neural network is formed when we place
units at the vertices of a directed graph, with the arcs of the digraph representing the flows
of signals between units. Some of the units are termed input units: these receive signals
not from other units, but instead they take their signals from the outside environment.
Units that do not transmit signals to other units are termed output units. The network is
said to be a feed-forward network if the underlying directed graph is acyclic (that is, it has
no directed cycles). This feed-forward condition means that the units can be labeled with
integers in such a way that if there is a connection from the computation unit labeled i
to the computation unit labeled j then i < j. Such networks are often termed multi-layer
networks. This is because the units may be grouped into layers, labeled 0, 1, 2, . . . , `, in
such a way that the input units form layer 0, these feed into the computation units, and
if there is a connection from a computation unit in layer r to a computation unit in layer
s, then we must have s > r. Note, in particular, that there are no connections between
any two units in a given layer. We call such a network an `-layer network. (Strictly
speaking, it has ` + 1 layers, but one of these consists entirely of input units, and it is
the number of layers of computation units that is usually important.) Any feed-forward
network can be decomposed into layers (since we could just take the layers to consist of
single computation units), but we shall often be interested in feed-forward networks with
a small number of layers. It is easy to see that the smallest ` for which such a layering is
possible is the depth of the network, defined as the length of the longest directed path in
the underlying directed graph.

We shall primarily be interested in single polynomial threshold units and spiking neu-
rons, and in one-output feed-forward networks in which the computation units are linear
threshold units or sigmoid units. A threshold or sigmoid network with n input units is
capable of computing a number of functions from Rn to R, or (simply restricting the input
signals to be {0, 1}-valued) from {0, 1}n → R. The precise function computed depends on
the state of each computation unit. Recall that for the threshold and sigmoid neurons, if
a unit has n inputs then the state is a vector of n+1 real numbers: one of these numbers
(w0 or its negative, the threshold θ in the description above) can be thought of as being
attached to the unit itself, and the other n can be thought of as describing the weight
attached to each of the k arcs feeding into the unit. Suppose that the network has N
computation units, labeled 1, 2, . . . , N , and that computation unit i has ki inputs. Then

7

the total number of weights in the network is

N∑
i=1

(ki + 1) = N +
N∑

i=1

ki = N + E,

where E denotes the total number of arcs in the digraph. We may therefore say that the
state of the network as a whole is described by a vector w of W = N + E real numbers.
When there are n input units and one output unit, the network computes, for each state
w, a function hw : Rn → R. The set of functions computable by the network when the
weight vector can be chosen from a subset Ω of RW is {hw : w ∈ Ω}. (Often, Ω will simply
be RW , but one may want, for example, to restrict the sizes of the allowable weights, in
which case Ω will be a strict subset of RW .)

Linear threshold networks have long been studied, and were the subject of much work in
‘threshold logic’ in the 1960’s; see the books by Muroga [32] and Hu [17], and the papers
cited there. A single linear threshold unit may be regarded as a linear threshold network,
and this simplest of all neural networks is often called the perceptron, though that term is
also used more generally [30]. Questions concerning the type of function computable by
a polynomial threshold unit have been worked on by a number of researchers, and were
considered in [30, 9, 34]. For more recent results, see the survey article by Saks [38]: this
provides an excellent overview of much of the theoretical work on functions computable
by threshold and polynomial threshold units and related areas (some of which will be
touched on later in this report). See also [47].

In the rest of this report, we concentrate on two main issues. First, how many and
what type of Boolean functions can be computed by neural networks of particular types?
Secondly, what is the expressive power (as measured by the VC-dimension) of neural
network classes? (The latter is a question important for learning theory; see [2].)

3 Computing Boolean functions by neural networks

3.1 Linear threshold units

We have noted that the Boolean functions computed by the single linear threshold unit
are precisely the Boolean threshold functions. Recall that f is a (Boolean) threshold

8

function defined on {0, 1}n if there are w ∈ Rn and θ ∈ R such that

f(x) =

{
1 if 〈w, x〉 ≥ θ
0 if 〈w, x〉 < θ,

where 〈w, x〉 = wT x is the standard inner product of w and x. Given such w and θ, we
say that f is represented by [w, θ] and we write f ← [w, θ]. The vector w is known as the
weight-vector, and θ is known as the threshold. We denote the class of threshold functions
on {0, 1}n by Tn. Note that any f ∈ Tn will satisfy f ← [w, θ] for ranges of w and θ.

Asummability and linear separability

Geometrically, a Boolean function f is a threshold function if the true and false points
are separable by a hyperplane; that is, f is linearly separable. Such functions can also be
characterized by the asummability property, as follows.

Theorem 3.1 The Boolean function f is a threshold function if and only if it is asummable,
meaning that for any k ∈ N, for any sequence x1, x2, . . . , xk of (not necessarily distinct)
true points of f and any sequence y1, y2, . . . , yk of (not necessarily distinct) false points of
f ,

k∑
i=1

xi 6=
k∑

i=1

yi.

Asummability can be seen to be equivalent to the non-intersection of the convex hulls of
the sets of true points and false points of f . (It can be seen quite directly to be equivalent
to the assertion that there is no point that is simultaneously a rational convex combination
of true points and a rational convex combination of false points. This, in turn, is equivalent
to the non-intersection of the convex hulls.) By the Separating Hyperplanes Theorem,
asummability is therefore equivalent to linear separability.

Number of functions computed

A classical result, which dates back to work by Schläfli in the last century [40] and which
also appears in [9], is that the maximum number of connected regions into which Rd can

9

be partitioned by N hyperplanes passing through the origin is bounded above by

C(N, d) = 2
d−1∑
k=0

(
N − 1

k

)
for N ≥ 1. (Here, we apply the usual convention that

(
a
b

)
= 0 if b > a, and

(
0
b

)
= 0.)

From this, it is possible to obtain the following result [9].

Theorem 3.2 Suppose that S ⊆ Rn is finite. Then the number of different functions
f : S → {0, 1} computable by a linear threshold unit on domain S is at most

2
n∑

k=0

(
|S| − 1

k

)
.

Taking S = {0, 1}n, the set of computable functions is just Tn, the set of Boolean threshold
functions, so we obtain

|Tn| ≤ 2
n∑

k=0

(
2n − 1

k

)
≤ 2n2

.

It is clear that Tn is a vanishingly small fraction of all Boolean functions on {0, 1}n, as
might be expected. Since the 1960’s (see Muroga’s book [32]), a lower bound on |Tn| of the
form 2(n2/2)(1+o(1)) has been known. More recently, Zuev [49] showed that, for sufficiently
large n, log2 |Tn| > n2 (1− 10/ ln n) . So the upper bound is asymptotically of the right
order.

Sizes of weights

A weight-vector and threshold are said to be integral if the threshold and each entry of
the weight-vector are integers. Any Boolean threshold function can be represented by
an integral weight-vector and threshold. To see this, note first that, by the discreteness
of {0, 1}n, any Boolean threshold function can be represented by a rational threshold
and weight-vector. Scaling these by a suitably large integer yields integral threshold and
weight-vector representing the same function. A natural question is how large the integer
weights (including the threshold) have to be. An upper bound is as follows [32].

10

Theorem 3.3 For any Boolean threshold function f on {0, 1}n, there is an integral
weight-vector w and an integral threshold θ such that f ← [w, θ] and such that

max{|θ|, |w1|, . . . , |wn|} ≤ (n + 1)nn/2.

It is easy to show that exponential-sized integer weights are sometimes necessary just by
a simple counting argument. A result of Muroga [32] alluded to above says that there
are at least 2n(n−1)/2 threshold functions on {0, 1}n. For B ∈ N, the number of pairs
(w, θ) of integer weight-vector and threshold which satisfy |wi| ≤ B for i = 1, 2, . . . , n,
and |θ| ≤ B, is at most (2B + 1)n+1. So, for example, the number of threshold functions
representable with integer weights and threshold bounded in magnitude by 2n/6 is no
more than (2n/6+1 + 1)n+1. But this is less than 2n(n−1)/2 for n ≥ 7, so there must be
some threshold functions in which, using integer weights, we would need weights greater
than 2n/6 in magnitude. This simple argument given above establishes the need for large
weights, but it does not provide a concrete example of a threshold function requiring such
large weights. Specific examples of such functions have long been known (see [32, 31]). We
now present an example function which, although it is not the simplest possible, will be
useful later and has been of much interest in analysing the performance of the perceptron
learning algorithm [14, 5].

Consider, for n even, the Boolean function fn on variables u1, u2, . . . , un with formula

fn = un ∧ (un−1 ∨ (un−2 ∧ (un−3 ∨ (. . . (u2 ∧ u1)) . . .).

Thus, for example,
f6 = u6 ∧ (u5 ∨ (u4 ∧ (u3 ∨ (u2 ∧ u1)))).

It can be shown (see [36, 1], for example) that if w is any integral weight-vector in a
threshold representation of fn, then wi ≥ Fi for 1 ≤ i ≤ n, where Fi is the ith Fibonacci
number. Since

Fn ≥
√

5

6

(
1 +
√

5

2

)n

,

for all n this function requires integer weights exponential in n.

The general upper bound on integral weights given in Theorem 3.3 is (n+1)nn/2, whereas
the specific lower bound exhibited by the function fn is (merely) exponential in n. The
question arises as to whether the general upper bound is loose and could potentially be

11

considerably improved. In fact, however, the upper bound is quite tight. Specifically,
H̊astad [15] has proved that there are constants k > 0 and c > 1 such that, for n a
power of 2, there is a threshold function f on {0, 1}n such that any integral weight-vector
representing f has a weight at least kc−nnn/2.

Test sets for linear threshold functions

For f ∈ Tn, we say that a set S ⊆ {0, 1}n is a test set for f if when h ∈ Tn and h classifies
the inputs in S in the same way as f does, then h is necessarily equal to f , among all
threshold functions. In other words, S is a test set for f if the inputs in S serve to specify
uniquely the function f . Denote by σ(f) the cardinality of the smallest test set for t. This
parameter is useful in considering the complexity of ‘teaching’ linear threshold functions;
see [11, 4]. The following result was obtained in [4].

Theorem 3.4 Suppose f ∈ Tn and suppose that k ≥ 1 is such that any weight-vector
realizing f has at least k non-zero weights and that there is a weight-vector realizing f
which has exactly k non-zero weights. Then

2n−k(k + 1) ≤ σ(f) ≤ 2n−k

(
k + 1⌊

k+1
2

⌋),

and equality is possible in both of these inequalities.

Despite the fact that the testing number can be exponential, it can be shown [4] that the
average, or expected, testing number of a function in Tn is at most n2.

Fixing attention for the moment on the case k = n above, it has been shown [4] that there
is a large family of threshold functions — the nested functions — each having minimum
possible testing number. Let us recursively define a Boolean function to be canonically
nested by: both functions of 1 variable are canonically nested, and tn, a function of n
variables, is canonically nested if tn = un ? tn−1 or tn = ūn ? tn−1 where ? is ∨ (the OR
connective) or ∧ (the AND connective) and tn−1 is a canonically nested function of n− 1
variables. (Here, we mean that tn−1 acts on the first n − 1 entries of its argument.) We
say that a function f is nested if, by permuting (or re-labeling) the variables, we obtain

12

a canonically nested function. One may relate nested functions to particular types of
decision lists. It is straightforward to see that any nested function can be realized as a
1-decision list of length n in which, for each i between 1 and n, precisely one term of
the form (ui, b) or (ūi, b) occurs (for some b ∈ {0, 1}) (and vice versa). It is easily seen
that any nested function is a threshold function. Examples of nested functions include
the functions fn described above. It turns out [4] that all nested functions (regarded as
threshold functions) have the smallest possible testing numbers, since each has testing
number n + 1.

3.2 Polynomial threshold units

We now consider the Boolean functions computable by a polynomial threshold unit. For
n ∈ N and d ≤ n, let [n](d) denote all subsets of [n] = {1, 2, . . . , n} of cardinality at most
d. A Boolean function f defined on {0, 1}n is a polynomial threshold function of degree d
if there are real numbers wS, one for each S ∈ [n](d), such that

f(x) = sgn

 ∑
S∈[n](d)

wSxS

 ,

where the notation is as defined earlier. The set of polynomial threshold functions on
{0, 1}n of degree d will be denoted by P(n, d). The class P(n, 1) is, of course, simply the
set of threshold functions Tn on {0, 1}n. (Note that we have used the earlier observation
that, for Boolean inputs to the polynomial threshold unit, no powers of xi other than 0
or 1 are needed; so S ranges over subsets rather than multi-subsets of [n].)

Asummability and polynomial separability

We have already observed that a function is a linear threshold function if and only if the
true points can be separated from the false points by a hyperplane. For a polynomial
threshold function of degree m, we have the corresponding geometrical characterization
that the true points can be separated from the false points by a surface whose equation
is a polynomial of degree m.

13

It is possible to relate such polynomial separation to linear separation in a higher-dimensional
space [47, 9]. For x ∈ {0, 1}n, we define the m-augment, x(m), of x to be the {0, 1}-vector
of length

∑m
i=1

(
n
i

)
whose entries are xS for ∅ 6= S ∈ [n](m) in some prescribed order. To

be precise, we shall suppose the entries are in order of increasing degree and that terms
of the same order are listed in lexicographic (dictionary) order. Thus, for example, when
n = 5 and m = 2,

x(5) = (x1, x2, x3, x4, x5, x1x2, x1x3, x1x4, x1x5, x2x3, x2x4, x2x5, x3x4, x3x5, x4x5).

We observe that a Boolean function f is a polynomial threshold function of degree m if
and only if there is some linear threshold function hf , defined on {0, 1} vectors of length
r =

∑m
i=1

(
n
i

)
, such that

f(x) = 1⇐⇒ hf (x
(m)) = 1;

that is, if and only if the m-augments of the true points of f and the m-augments of the
false points of f can be separated by a hyperplane in the higher-dimensional space Rr,
where r =

∑m
i=1

(
n
i

)
.

The m-augments can be used to provide an asummability criterion similar to Theorem 3.1.

We say that f is m-asummable if for any k ∈ N, for any sequence x1, x2, . . . , xk of (not
necessarily distinct) true points of f and any sequence y1, y2, . . . , yk of (not necessarily
distinct) false points of f ,

k∑
i=1

x
(m)
i 6=

k∑
i=1

y
(m)
i .

Note that if f is m-asummable then f is m′-asummable for any m′ > m. The following
result holds [47].

Theorem 3.5 The Boolean function f is a threshold function of degree m if and only if
f is m-asummable.

Number of polynomial threshold functions

We can obtain an upper bound on the number of polynomial threshold functions of a
given degree by using Theorem 3.2, together with the fact that a Boolean function is a

14

polynomial threshold function of degree m if and only if the m-augments of true points
and the m-augments of the false points are linearly separable.

Theorem 3.6 The number, |P(n, m)| of polynomial threshold functions of degree m on
{0, 1}n satisfies

|P(n,m)| ≤ 2

∑m
i=1 (n

i)∑
k=0

(
2n − 1

k

)
.

for all m, n with 1 ≤ m ≤ n.

It is fairly easy to deduce from this that log2 |P (n, m)| is at most n
(

n
m

)
+O(nm) as n→∞,

with m = o(n).

Saks [38] observed that |P(n, m)| ≥ |P(n − 1, m)||P(n − 1, m − 1)|, for 2 ≤ m ≤ n − 1.
From this, it follows [38, 1] that:

Theorem 3.7 The number, |P(n,m)|, of polynomial threshold functions of degree m on

{0, 1}n satisfies |P(n, m)| ≥ 2(n
m+1). for all m,n with 1 ≤ m ≤ n− 1.

Note that this lower bound is not at all tight for m > n/2. However, for constant m it
provides a good match for the upper bound of Theorem 3.6. Taken together, the results
imply that, for fixed m, for some positive constants c, k, log2 |P (n,m)| is, between cnm+1

and knm+1.

Threshold order

A Boolean function is said to be a k-DNF function if it has a DNF formula in which each
term is of degree at most k. It is easy to see that any k-DNF f on {0, 1}n is in P(n, k), as
follows. Given a term Tj = ui1ui2 . . . uir ūj1ūj2 . . . ūjs of the DNF, we form the expression

Aj = xi1xi2 . . . xir(1− xj1)(1− xj2) . . . (1− xjs).

15

We do this for each term T1, T2, . . . , Tl and expand the algebraic expression A1 + A2 +
· · ·+ Al according to the normal rules of algebra, until we obtain a linear combination of
the form

∑
S∈[n](k) wSxS. Then, since f(x) = 1 if and only if A1 + A2 + · · · + Al ≥ 1, it

follows that

f(x) = sgn

w∅ − 1 +
∑

∅6=S∈[n](k)

wSxS

 ,

so f ∈ P(n, k). Thus, any k-DNF function is also a polynomial threshold function of
degree at most k. It follows also that every Boolean function belongs to P(n, n) an hence
that the threshold order is at most n.

Generally, given a Boolean function f , the threshold order [47, 30] of f is the least k
such that f ∈ P(n, k). We mention that there are always (exactly) two functions with
threshold order n, namely the parity function PARITYn (defined by PARITYn(x) = 1 if
and only if x has an odd number of entries equal to 1) and its complement; see [47].

A very precise behaviour of the ‘expected’ threshold order has been conjectured by Wang
and Williams [47]. Roughly speaking, the conjecture says that, for large even numbers n,
almost all the Boolean functions on {0, 1}n have threshold order equal to n/2; and that
for large odd n, almost every function has threshold order (n− 1)/2 or (n+1)/2, with an
equal split between these. To make this precise, we introduce some notation. Let σ(n, k)
denote the proportion of Boolean functions of n variables with threshold order k; thus,

σ(n, k) =
|P(n, k)| − |P(n, k − 1)|

22n .

Wang and Williams conjectured that for even values of n, σ(n, n/2) → 1 as n → ∞ and
that for odd values of n, σ(n, (n − 1)/2) → 1/2 and σ(n, (n + 1)/2) → 1/2 as n → ∞.
The following observation [3] provides a partial proof of this.

Theorem 3.8 For k = k(n) ≤ bn/2c − 1, σ(n, k(n)) → 0 as n → ∞. Furthermore, for
all odd n, σ

(
n,
⌊

n
2

⌋)
≤ 1/2.

This result shows, among other things, that the representational power of P(n, k) is
limited unless k is of the same order as n. In particular, it might be said that the ‘typical’
Boolean function has threshold order at least bn/2c.

16

Some progress has been made on the remaining parts of the conjecture. As reported
in [38], Alon, using a result of Gotsman [12] on the harmonic analysis of Boolean functions,
showed that almost all Boolean functions of n variables have threshold order less than
0.89n; that is, σ(n, 0.89n) → 0 as n → ∞. This has recently been improved upon
by Samorodnitsky [39] and, independently, by who has shown (again, using harmonic

analysis) that almost all Boolean functions have threshold order at most
n

2
+ O(

√
n log n).

3.3 Linear threshold networks

We now move on to consider the representation of Boolean functions by feed-forward
linear threshold networks (which we will refer to as threshold networks for the sake of
brevity). Single linear threshold units have very limited computational abilities, but we
can easily see that any Boolean function can be represented by a threshold network with
one hidden layer. It is natural to ask how small a threshold network can be used for
particular functions or types of functions. Questions like this bring us into the realm
of circuit complexity, (in which threshold networks are usually referred to as threshold
circuits) a large area which we will only very briefly touch on here.

The existence of a DNF formula for every Boolean function can be used to show that any
Boolean function can be computed by a two-layer feed-forward threshold network.

Theorem 3.9 There is a 2-layer threshold network capable of computing any Boolean
function.

Proof: Suppose that f : {0, 1}n → {0, 1}, and let φ be the DNF formula obtained as the
disjunction of the prime implicants of f . Suppose φ = T1 ∨ T2 ∨ · · · ∨ Tk, where each Tj

is a term of the form Tj =
(∧

i∈Pj
ui

)∧(∧
l∈Nj

ūl

)
, for some disjoint subsets Pj, Nj of

{1, 2, . . . , n}. Suppose that the network has 2n hidden units, and let us set the weights to
and from all but the first k of these to equal 0, and the corresponding thresholds equal to
1 (so the effect is as if these units were absent). Then for each of the first k units, let the

weight-vector α(j) from the inputs to unit j correspond directly to Tj, in that α
(j)
i = 1 if

i ∈ Pj, α
(j)
i = −1 if i ∈ Nj, and α

(j)
i = 0 otherwise. We take the threshold on unit j to

be |Pj|, the weight on the connection between the unit and the output unit to be 1, and

17

the threshold on the output unit to be 1/2. It is clear that unit j outputs 1 on input x
precisely when x satisfies Tj, and that the output unit computes the ‘or’ of all the outputs
of the hidden units. Thus, the output of the network is the disjunction of the terms Tj,
and hence equals f .

A universal network for Boolean functions on {0, 1}n is a threshold network which is
capable of computing every Boolean function of n variables. Theorem 3.9 shows that the
two-layer threshold network with n inputs, 2n units in the hidden layer, and one output
unit, is universal. The question arises as to whether there is a universal network with
fewer threshold units. By an easy counting argument, one can obtain a lower bound on the
size of any universal network, regardless of its structure. In particular (see [43, 33]), any
universal network (regardless of how many layers it has) must have at least Ω

(
2n/2/

√
n
)

threshold units. Moreover, any two-layer universal network for Boolean functions must
have at least Ω(2n/n2) threshold units.

Much work in circuit complexity has gone into consideration of the sizes of threshold
network needed to compute particular Boolean functions. Of particular interest has been
the parity function parityn. Many sophisticated techniques have been used to produce
lower bounds on the sizes of networks (with particular numbers of layers, for example)
capable of computing parity; see [43]. One such result is that any two-layer threshold
network capable of computing parityn, must have Ω(

√
n) units.

3.4 Spiking neurons

We have observed that if all delays on a spiking neuron are set to zero, then the neuron
behaves exactly like a linear threshold unit. So the spiking neuron is at least as powerful
as the linear threshold unit and the set Sn of Boolean functions it computes is at least as
large as Tn. However, Sn is not significantly larger than Tn, for as shown by Maass and
Schmitt [28], log2 |Sn| ≤ n2 + O(log n), whereas, as noted above, log2 |Tn| is n2(1 + o(1)).

By the way the neuron acts, the weighted signal from input i is ‘active’ (if at all) on the
time interval [di, di + 1) and the output of the neuron is 1 if and only if the sum of active
weighted inputs exceeds the threshold, at some time. By partitioning the time axis into
intervals on which the same weighted inputs are active, it can be seen [28] that there are
at most 2n − 1 intervals on which the sum of active weighted inputs is constant. (For,

18

there are at most 2n times at which the set of active weighted inputs can change.) Hence,
the neuron fires if one of these 2n − 1 sums exceeds the threshold. Thus, we obtain the
result from [28] that any function in Sn can be expressed as a disjunction of at most 2n−1
threshold functions. Schmitt [41] improved this to n− 1. Hammer et al. [13] defined the
threshold number of a Boolean function to be the smallest number of threshold functions
of which it is a disjunction (a number that is well-defined and at most 2n−1 by a result
of Jeroslow [18]). Thus, this result may be re-phrased as saying that any function in
Sn has threshold number at most n − 1. That there are functions in Sn quite different
from threshold functions has been indicated by Schmitt [41], who showed that there is
a function in Sn with threshold number at least bn/2c (whereas, of course, any function
in Tn has threshold number 1). (He also shows, however, that there is some function of
threshold number 2 that is not in Sn.)

Further differences between the spiking neuron and the threshold (and polynomial thresh-
old) unit emerge when the threshold order of computable functions is considered [41].
Whereas the threshold order of any function in Tn is 1, there are functions in Sn with
threshold order n1/3/41/3. This shows, additionally, that the functions in Sn cannot be
computed by a polynomial threshold unit of any fixed degree. (Schmitt also shows that
some Boolean function of threshold order 2 is not in Sn.)

A Boolean function is a µ-DNF function if it has a DNF formula in which each variable
appears, either negated or not, at most once. Maass and Schmitt [28] showed that any
µ-DNF function can be computed by a spiking neuron, and that, by contrast, there are
µ-DNF functions that cannot be computed by a linear threshold unit.

4 Expressive power of neural networks

4.1 Growth function and VC-dimension

Definitions

The sample complexity of learning can be quantified fairly precisely by the VC-dimension
of the class of functions being used as hypotheses [2]. In this sense, the VC-dimension is

19

a useful way of measuring the expressive power of a set of functions. In this section, we
examine the growth functions and VC-dimensions of the sets of functions computable by
certain types of neural networks.

We start by recalling what is meant by the growth function and VC-dimension. Suppose
that H is a set of functions from a set X to {0, 1}. (So, when H is the set of functions
computable by an n-input neural network, X will be Rn or — the case of most interest
to us — {0, 1}n.) For a finite subset S of X, ΠH(S) denotes the cardinality of the set
of functions H|S, obtained by restricting H to domain S. For m ∈ N, ΠH(m) is defined
to be the maximum of ΠH(S) over all subsets of cardinality m. For all m, ΠH(m) ≤ 2m.
The Vapnik-Chervonenkis dimension [46, 8] of H is defined as the maximum m (possibly
infinite, in the case where the domain is Rn) such that ΠH(m) = 2m. We say that S ⊆ X
is shattered by H, or that H shatters S, if ΠH(S) = 2|S|; that is, if H gives all possible
classifications of the points of S. Thus, S is shattered by H if for each subset R of S,
there is some function fR in H such that for 1 ≤ i ≤ m, fR(xi) = 1 ⇐⇒ xi ∈ R. The
VC-dimension is therefore max{|S| : S is shattered by H}.

The neural networks considered in this report compute a class of {0, 1}-valued functions.
So we can define the VC-dimension of a neural network to be the VC-dimension of the
set of functions computable by the network. For a network N with n inputs, we denote
by VCdim(N , Rn) the VC-dimension of the class of functions from Rn to {0, 1} computed
by N and VCdim(N , {0, 1}n) will denote the VC-dimension of the corresponding class of
Boolean functions. In this report, we shall be primarily interested in the VC-dimension
of the set of Boolean functions computable by the network.

VC-dimension and linear dimension

There is a useful connection between linear (vector-space) dimension and the VC-dimension [10].
Suppose V is a set of real functions defined on some set X. For f, g ∈ V and λ ∈ R, we
can form the function f + g : X → R by pointwise addition and the function λf : X → R
by pointwise scalar multiplication, as follows:

(f + g)(x) = f(x) + g(x), (λf)(x) = λf(x), (x ∈ X).

If V is closed under these operations, then it is a vector space of functions. Then, in V ,
we say that the set {f1, f2, . . . , fk} of functions is linearly dependent if there are constants

20

λi (1 ≤ i ≤ k), not all zero, such that, for all x ∈ X,

λ1f1(x) + λ2f2(x) + · · ·+ λkfk(x) = 0;

that is, some non-trivial linear combination of the functions is the zero function on X.
The vector space V is finite-dimensional, of linear dimension d, if the maximum cardinality
of a linearly independent set of functions in V is d. We have the following result, due to
Dudley [10].

Theorem 4.1 Let V be a real vector space of real-valued functions defined on a set X.
Suppose that V has linear dimension d. For any f ∈ V, define the {0, 1}-valued function
f+ on X by

f+(x) =

{
1 if f(x) ≥ 0
0 if f(x) < 0,

and let sgn(V) = {f+ : f ∈ V}. Then the VC-dimension of sgn(V) is d.

4.2 Linear threshold units

The VC-dimension of the single linear threshold unit can be bounded fairly directly using
Theorem 4.1. For, the class of functions in question is precisely sgn(V) where V is the set
of affine functions, of the form x 7→ w0 + w1x1 + w2x2 + · · · + wnxn, for some constants
w0, w1, . . . , wn. The set V is easily seen to be a vector space of linear dimension n + 1,
and hence sgn(V) has VC-dimension n+1. In fact, this is so even if we restrict the inputs
to {0, 1}n:

Theorem 4.2 The VC-dimension of Tn, the set of (Boolean) threshold functions, is n+1.

Proof: We have already indicated why the VC-dimension of the set of functions com-
putable by the threshold unit on Rn is n+1. Certainly, we must therefore have VCdim(Tn)
no more than n + 1, since Tn is a restriction to the Boolean domain, {0, 1}n, of this class.
So the result will follow if we show that VCdim(Tn) ≥ n + 1. We do this by proving that
a particular subset of {0, 1}n of cardinality n + 1 is shattered by the Tn. Let 0 denote
the all-0 vector and, for 1 ≤ i ≤ n, let ei be the point with a 1 in the ith coordinate and

21

all other coordinates 0. We shall show that Tn shatters the set S = {0, e1, e2, . . . , en} .
Suppose that R is any subset of S and, for i = 1, 2, . . . , n, let

wi =

{
1, if ei ∈ R;
−1, if ei 6∈ R;

and let

θ =

{
−1/2, if 0 ∈ R;
1/2, if 0 6∈ R.

Then it is straightforward to verify that if hR is the function computed by the threshold
unit when the weight-vector is w = (w1, w2, . . . , wn) and the threshold is θ, then the
set of positive examples of hR in S is precisely R. Therefore S is shattered by Tn and,
consequently, VCdim(Tn) ≥ n + 1. ut

Theorem 3.2 shows that

ΠH(m) ≤ 2
n∑

k=0

(
m− 1

k

)
.

This upper bound is easily seen to equal 2m for m ≤ n + 1 and to be less than 2m for
m > n + 1, from which it follows also that VCdim(Tn) ≤ n + 1.

4.3 Polynomial threshold units

We now bound the VC-dimension of the class P(n,m) of (Boolean) polynomial threshold
functions of degree m. Recall that such a function takes the form

f(x) = sgn

 ∑
S∈[n]m

wSxS

 ,

for some wS ∈ R, where [n](m) is the set of subsets of at most m elements from {1, 2, . . . , n}
and xS denotes the product of the xi for i ∈ S. For m ≤ n, let C(n,m) =

{
xS : S ∈ [n](m)

}
,

regarded as a set of real functions on domain {0, 1}n.

Theorem 4.3 For all n,m with m ≤ n, C(n,m) is a linearly independent set of real
functions defined on {0, 1}n.

22

Proof: Let n ≥ 1 and suppose that for some constants cS and for all x ∈ {0, 1}n,

A(x) =
∑

S∈[n](m)

cSxS = 0.

Set x to be the all-0 vector to deduce that c∅ = 0. Let 1 ≤ k ≤ m and assume, inductively,
that cS = 0 for all S ⊆ [n] with |S| < k. Let S ⊆ [n] with |S| = k. Setting xi = 1 if
i ∈ S and xj = 0 if j 6∈ S, we deduce that A(x) = cS = 0. Thus for all S of cardinality k,
cS = 0. Hence cS = 0 for all S, and the functions are linearly independent. ut

Let V be the space spanned by the functions C(n,m). Then what we’ve just established
is that V has basis C(n, m). Since P(n, m) = sgn(V), it is therefore immediate, from
Theorem 4.1, that for all n, m with m ≤ n,

VCdim(P(n, m)) =
m∑

i=0

(
n

i

)
.

A similar analysis will determine the VC-dimension of the set of functions from Rn to
{0, 1} computable by the polynomial threshold unit. In this case, the set of functions of
degree m is sgn(V), where V is the vector space with basis xS for all

(
n+m

m

)
multi-sets of

at most m elements from [n]. So the VC-dimension in this case is
(

n+m
m

)
. To sum up, we

have the following results.

Theorem 4.4 Let N be a single n-input polynomial threshold unit of degree m. Then,
for all m, n ∈ N,

VCdim(N , Rn) =

(
n + m

m

)
,

and for all n, m with m ≤ n,

VCdim(N , {0, 1}n) =
m∑

i=0

(
n

i

)
.

We have only considered single polynomial threshold units here, but clearly networks
could be formed from such units. The VC-dimensions of the resulting networks (and of
further generalizations of these types of network) have been bounded by Schmitt [42].

23

4.4 Linear threshold networks

We now provide a bound on the VC-dimension of feed-forward linear threshold networks.
This is a slightly weaker version (with an easier proof, from [24]) of a bound due to Baum
and Haussler [6].

Theorem 4.5 Suppose that N is a feed-forward linear threshold network having a total
of W variable weights and thresholds, and n inputs. Then

VCdim (N , {0, 1}n) ≤ VCdim (N , Rn) < 6W log2 W.

Proof: Let X = Rn and suppose that S ⊆ X is of cardinality m. Let H be the set of
functions computable by N . We bound the growth function of H by bounding ΠH(S)
independently of S. Denote by N the number of computation units (that is, the number
of linear threshold neurons) in the network. Since the network is a feed-forward network,
the computation units may be labeled with the integers 1, 2, . . . , N so that if the output
of threshold unit i feeds into unit j then i < j. Consider any particular threshold unit,
i. Denote the in-degree of i by di. By Theorem 3.2, the number of different ways in
which a set of m points can be classified by unit i is at most 2

∑di

k=0

(
m−1

k

)
, which is

certainly at most mdi+2 for m ≥ di + 1. It follows that, (if m > maxi di + 1) the number
of classifications ΠH(S) of S by the network is bounded by

md1+2md2+2 . . . mdN+2,

which, since W = d1 + d2 + . . . + dN + N , the total number of weights and thresholds,
is at most mW+N . Since W ≥ N (there being a threshold for each threshold unit), this
is at most m2W . Now, m2W < 2m if m = 6W log2 W , from which it follows that the
VC-dimension of the network is less than 6W log2 W . ut

With more careful bounding [6], the VC-dimension can be bounded above by 2W log2(eN).
This upper bound is of order W ln N where W is the total number of weights and thresh-
olds; that is, the total number of variable parameters determining the state of the network.
We have already seen that the linear threshold unit on n inputs has VC-dimension n + 1,
which is exactly the number of variable parameters in this case. We have also seen that
for polynomial threshold functions, the VC-dimension is precisely the number of variable
parameters. The question therefore arises as to whether the O(W ln N) bound is of the

24

best possible order or whether in this case, too, the VC-dimension is of order W . In fact,
the ln N factor cannot, in general, be removed, as the following result of Maass [23] shows.

Theorem 4.6 Let W be any positive integer greater than 32. Then there is a three-layer
feed-forward linear threshold network NW with at most W weights and thresholds, for
which VCdim(NW , {0, 1}n) > (1/132)W log2 (N/16), where N is the number of computa-
tion units.

4.5 Sigmoid networks

Bounding the VC-dimension of sigmoid networks is rather more complicated than for
threshold networks. Finiteness of the VC-dimension of sigmoid networks was established
by Macintyre and Sontag [29], using deep results from logic. This in itself was a signif-
icant result, since it had previously been shown by Sontag [45] that for small networks
with activation function other than the standard sigmoid, σ, the VC-dimension could be
infinite. (Indeed, there are activation functions very similar to the standard sigmoid, for
which the VC-dimension of a very small corresponding network is infinite; see [2].) The
following result of Karpinski and Macintyre [19, 20] provides concrete, polynomial, upper
bounds on the VC-dimension of sigmoid networks. The proof, which is quite involved,
brings together techniques from logic and algebraic geometry. (See also [2].)

Theorem 4.7 Let N be a feed-forward sigmoid network. Suppose that the total number
of adjustable weights and thresholds is W , that the number of inputs is n, and that there
are N computation units. Then

VCdim(N , Rn) ≤ (WN)2 + 11WN log2(18WN2).

Note that this bound, which is O(W 4), is polynomial in the number of weights and
thresholds. It has been shown by Koiran and Sontag [21, 22] that the VC-dimension
of (unbounded depth) sigmoid nets can be as large as W 2. There is thus, generally, a
strict separation between the VC-dimension of threshold networks (with VC-dimension
O(W ln W)) and sigmoid networks.

25

4.6 Spiking neurons

Recall that Sn denotes the set of Boolean functions computable by the n-input spiking
neuron. Maass and Schmitt [28] obtained the following result on the VC-dimension of a
single spiking neuron.

Theorem 4.8 The VC-dimension of Sn, the set of functions computable by a spiking
neuron on {0, 1}n, is O(n log n) and Ω(n log n). Moreover, this lower bound is also true
for a subclass of Sn in which the weights and threshold are kept fixed and only the delay
parameters are varied.

Thus, although, as noted earlier, there are not significantly many more Boolean functions
computable by the spiking neuron than by the threshold unit, the spiking neuron is
considerably more expressive. For, the VC-dimension of the linear threshold unit is n+1,
whereas the VC-dimension of the spiking neuron is Θ(n log n).

The VC-dimension of feed-forward networks of spiking neurons has also been investigated.
Maass and Schmitt [28] proved that for each n, there is a network of this type with O(n)
edges, for which, varying only the delays (and leaving weights and threshold fixed), the
resulting class of functions defined on {0, 1}n has VC-dimension Ω(n2). Note that, here,
only the delays are variable and there are O(n) of these. Thus the VC-dimension is at least
quadratic in the number of variable delays. Recall that any linear threshold network has
VC-dimension O(W log W) where W is the number of weights and thresholds. Thus, the
VC-dimension of a network of spiking neurons with a given number of adjustable delays
(and weights and threshold fixed) can be larger than the VC-dimension of a threshold
network with the same number of adjustable weights and thresholds. Maass and Schmitt
also showed that any such network has a VC-dimension (over inputs from Rn) which is
at most O(E2) where E is the number of edges in the underlying digraph (that is, the
number of network connections). So the VC-dimension is at most quadratic in the number
of variable weights, thresholds, and delays, and their lower bound is asymptotically tight.

26

Acknowledgements

I am grateful to a referee for several useful comments. This work is supported in part
by the IST Programme of the European Community, under the PASCAL Network of
Excellence, IST-2002-506778.

References

[1] M. Anthony. Discrete Mathematics of Neural Networks: Selected Topics. SIAM
Monographs on Discrete Mathematics and Applications DT08, SIAM: Philadelphia,
2001.

[2] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 1999.

[3] M. Anthony. Classification by polynomial surfaces, Discrete Applied Mathematics,
61, 1996: 91–103.

[4] M. Anthony, G. Brightwell and J. Shawe-Taylor. On specifying Boolean functions
by labelled examples. Discrete Applied Mathematics, 61, 1995: 1–25.

[5] M. Anthony and J. Shawe-Taylor”, Using the perceptron algorithm to find consistent
hypotheses. Combinatorics, Probability and Computing, 4(2), 1993: 385–387.

[6] E. Baum and D. Haussler. What Size Net Gives Valid Generalization?. Neural Com-
putation, 1(1), 1989: 151–160.

[7] C. M. Bishop. Neural Networks for Pattern Recognition, Oxford University Press,
Oxford, 1995.

[8] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth: Learnability and the
Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4), 1989: 929–965.

[9] T. M. Cover. Geometrical and Statistical Properties of Systems of Linear Inequalities
with Applications in Pattern Recognition. IEEE Trans. on Electronic Computers,
EC-14, 1965: 326–334.

27

[10] R.M. Dudley, Central limit theorems for empirical measures, Ann. Probability 6,
1978: 899–929.

[11] S. A. Goldman and M. J. Kearns. On the complexity of teaching. Journal of Com-
puter and System Sciences, 50(1), 1995: 20–31.

[12] C. Gotsman, On Boolean functions, polynomials and algebraic threshold functions.
Technical report TR-89-18, Department of Computer Science, Hebrew University,
1989.

[13] P. L Hammer, T. Ibaraki and U. N. Peled. Threshold numbers and threshold com-
pletions. Annals of Discrete Mathematics 11, 1981: 125–145.

[14] S.E. Hampson and D.J. Volper, Linear function neurons: structure and training.
Biological Cybernetics 53, 1986: 203–217.

[15] J. H̊astad. On the size of weights for threshold gates, SIAM Journal on Discrete
Mathematics, 7(3), 1994: 484–492.

[16] J. Hertz, A. Krogh and R. G. Palmer. Introduction to the Theory of Neural Com-
putation, Addison-Wesley, Redwood City, California, 1991.

[17] S-T. Hu, Threshold Logic, University of California Press, Berkeley, 1965.

[18] R.G. Jeroslow. On defining sets of vertices of the hypercube by linear inequalities.
Discrete Mathematics, 11, 1975: 119–124.

[19] M. Karpinski and A. J. Macintyre. Polynomial bounds for VC dimension of sig-
moidal neural networks, in Proceedings of the 27th Annual ACM Symposium on
Theory of Computing, ACM Press, New York, NY, 1995: 200-208.

[20] M. Karpinski and A. J. Macintyre. Polynomial Bounds for VC Dimension of Sig-
moidal and General Pfaffian Neural Networks, Journal of Computer and System
Sciences, 54, 1997: 169–176.

[21] P. Koiran and E. D. Sontag. Neural Networks with Quadratic VC Dimension, Jour-
nal of Computer and System Sciences, 54(1), 1997: 190–198.

[22] P. Koiran and E. D. Sontag. Neural Networks with Quadratic VC Dimension. In
Advances in Neural Information Processing Systems 8, D. S. Touretzky, M. C. Mozer
and M. E. Hasselmo (eds). MIT Press, 1996: 197–203.

28

[23] W. Maass. Bounds for the computational power and learning complexity of analog
neural nets, In Proceedings of the 25th Annual ACM Symposium on the Theory of
Computing, ACM Press, New York, NY, 1993: 335–344.

[24] W. Maass. On the complexity of learning in feedforward neural nets. Manuscript,
Institute for Theoretical Computer Science, Technische Universitaet Graz, 1993.

[25] W. Maass. On the relevance of time in neural computation and learning. In Proceed-
ings of the 8th International Workshop on Algorithmic Learning Theory, ALT’97
(M. Li and A. Maruoka, eds). Springer, Berlin, 1997.

[26] W. Maass. Networks of spiking neurons: the third generation of neural network
models. Neural Networks (10), 1997: 1659–1671.

[27] W. Maass. Lower bounds for the computational power of networks of spiking neu-
rons. Neural Computation 8, 1996: 1–40.

[28] W. Maass and M. Schmitt. On the complexity of learning for spiking neurons with
temporal coding. Information and Computation 153, 26-46, 1999.

[29] A. Macintyre and E. D. Sontag. Finiteness results for sigmoidal “neural” networks.
In Proceedings 25th Annual ACM Symposium on the Theory of Computing. ACM
Press, New York, NY, 1993: 325–334.

[30] M. Minsky and S. Papert, Perceptrons. MIT Press, Cambridge, MA., 1969. (Ex-
panded edition 1988.)

[31] S. Muroga. Lower bounds of the number of threshold functions and a maximum
weight, IEEE Transactions on Electronic Computers, 14, 1965: 136–148.

[32] S. Muroga, Threshold Logic and its Applications, Wiley, New York, 1971.

[33] E. I Nechiporuk. The synthesis of networks from threshold elements, Problemy
Kibernetiki, 11, 1964: 49–62.

[34] N.J. Nilsson, Learning Machines, McGraw-Hill, New York, 1965.

[35] R. O’Donnell and R. Servedio. Extremal Properties of Polynomial Threshold Func-
tions. To appear in Journal of Computer and System Sciences (special issue for CCC
2003). Preliminary version appeared in Eighteenth Annual Conference on Compu-
tational Complexity (CCC), 2003, pp. 3-12.

29

[36] I. Parberry. Circuit Complexity and Neural Networks, Foundations of Computing
Series, MIT Press, 1994.

[37] D.E. Rumelhart, G. E. Hinton and J. L. McClelland. A general framework for
parallel distributed processing. In Rumelhart, D.E. and McClelland, J.L. (eds),
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
Volume 1. MIT Press, Cambridge, MA.

[38] M. Saks, Slicing the hypercube, in Surveys in Combinatorics, 1993, (ed. K. Walker),
Cambridge University Press, 1993.

[39] A. Samorodnitsky. Unpublished (personal communication).

[40] L. Schläfli. Gesammelte Mathematische Abhandlungen I, Birkhäuser, Basel, 1950.

[41] M. Schmitt. On computing Boolean functions by a spiking neuron. Annals of Math-
ematics and Artificial Intelligence 24, 1998: 181–191.

[42] M. Schmitt. On the complexity of computing and learning with multiplicative neural
networks. Neural Computation 14(2), 2002: 241–301.

[43] K-Y. Siu, V. Roychowdhury and T. Kailath. Discrete Neural Computation: A The-
oretical Foundation, Prentice Hall Information and System Sciences Series. Prentice
Hall, Englewood Cliffs, New Jersey, 1995.

[44] W. Softky and C. Koch. Single-cell models. In The Handbook of Brain Theory and
Neural Networks, ed. M. A. Arbib. MIT Press, Cambridge, MA, 1995: 879–884.

[45] E. D. Sontag. Feedforward nets for interpolation and classification. Journal of Com-
puter and System Sciences, 45, 1992: 20–48.

[46] V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its Applications,
16(2), 1971: 264–280.

[47] C. Wang and A.C. Williams, The threshold order of a Boolean function, Discrete
Applied Mathematics, 31, 1991: 51–69.

[48] R. J. Williams. The logic of activation functions. In Rumelhart, D.E. and McClel-
land, J.L. (eds), Parallel Distributed Processing: Explorations in the Microstructure
of Cognition Volume 1. MIT Press, Cambridge, MA.

30

[49] Y. A. Zuev. Asymptotics of the logarithm of the number of threshold functions of
the algebra of logic. Soviet Mathematics Doklady, 39, 1989: 512–513.

31

