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Abstract

This report surveys some key results on the learning of Boolean functions in a
probabilistic model that is a generalization of the well-known ‘PAC’ model.

1 Introduction

This report explores the learnability of Boolean functions. Broadly speaking, the problem
of interest is how to infer information about an unknown Boolean function given only
information about its values on some points, together with the information that it belongs
to a particular class of Boolean functions. This broad description can encompass many
more precise formulations. Here we focus on probabilistic models of learning, in which
the information about the function value on points in its domain is provided through its
values on some randomly drawn sample, and in which the criteria for successful ‘learning’
are defined using probability theory. Other approaches, such as ‘exact query learning’
(see [1, 17, 19], for instance) and ‘specification’, ‘testing’ or ‘learning with a helpful teacher’
(see [11, 4, 15, 20, 25]) are possible, and particularly interesting in the context of Boolean
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functions. We aim to give a fairly thorough account of what can be said in two probabilistic
models.

In the probabilistic models discussed, there are two separate, but linked, issues of concern.
First, there is the question of how much information is needed about the values of a
function on points before a good approximation to the function can be found. Secondly,
there is the question of how, algorithmically, we might find a good approximation to the
function. These two issues are usually termed the sample complexity and computational
complexity of learning. The report breaks fairly naturally into, first, an exploration of
sample complexity and then a discussion of computational complexity.

2 Probabilistic modelling of learning

2.1 A probabilistic model

The primary probabilistic model of ‘supervised’ learning we discuss here is a variant of the
‘probably approximately correct’ (or PAC) model introduced by Valiant [30], and further
developed by many others; see [31, 12, 2], for example. The probabilistic aspects of the
model have their roots in work of Vapnik and Chervonenkis [32, 33], as was pointed out
by [5]. Valiant’s model additionally placed considerable emphasis on the computational
complexity of learning.

In the model, it is assumed that we are using some class H of Boolean functions on
X = {0, 1}n (termed the hypothesis space) to find a good fit to a set of data. We assume
that the (labeled) data points take the form (x, b) for x ∈ {0, 1}n and b ∈ {0, 1} (though
most of what we discuss will apply also to the more general case in which H maps from
Rn to {0, 1} and the data are in Rn × {0, 1}). The learning model is probabilistic: we
assume that we are presented with some randomly generated ‘training’ data points and
that we choose a hypothesis on this basis.

The simplest assumption to make about the relationship between H and the data is that
the data can indeed be exactly matched by some function in H, by which we mean that
each data point takes the form (x, t(x)) for some fixed t ∈ H (the target concept). In
this realizable case, we assume that some number m of (labeled) data points (or labeled
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examples) are generated to form a training sample s = ((x1, t(x1)), . . . , (xm, t(xm)) as
follows: each xi is chosen independently according to some fixed probability distribution
µ on X. The learning problem is then, given only s, and the knowledge that the data are
labeled according to some target concept in H, to produce some h ∈ H which is ‘close’
to t (in a sense to be formalized below).

A more general framework can usefully be developed to model the case in which the data
cannot necessarily be described completely by a function in H, or, indeed, when there is
a stochastic, rather than deterministic, labelling of the data points. In this more general
formulation, it is assumed that the data points (x, b) in the training sample are generated
according to some probability distribution P on the product X×{0, 1}. This formulation
includes the realizable case just described, but also permits a given x to appear with the
two different labels 0 and 1, each with certain probability. The aim of learning in this
case is to find a function from H that is a good predictor of the data labels (something
we will shortly make precise). It is hoped that such a function can be produced given
only the training sample.

2.2 Definitions

We now formalize these outline descriptions of what is meant by learning. We place most
emphasis on the more general framework, the realizable one being a special case of this.

A training sample is some element of Zm, for some m ≥ 1, where Z = X×{0, 1}, We may
therefore regard a learning algorithm as a function L : Z∗ → H where Z∗ =

⋃∞
m=1 Z

m is
the set of all possible training samples. (It is conceivable that we might want to define L
only on part of this domain. But we could easily extend its domain to the whole of Z∗

by assuming some default output in cases outside the domain of interest.) We denote by
L(s) the output hypothesis of the learning algorithm after being presented with training
sample s.

Since there is assumed to be some probability distribution, P , on the set Z = X × {0, 1}
of all examples, we may define the error, erP (h), of a function h (with respect to P )
to be the P -probability that, for a randomly chosen example, the label is not correctly
predicted by h. In other words, erP (h) = P ({(x, b) ∈ Z : h(x) 6= b}).
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The aim is to ensure that the error of L(s) is ‘usually near-optimal’ provided the training
sample is ‘large enough’. Since each of the m examples in the training sample is drawn
randomly and independently according to P , the sample s is drawn randomly from Zm

according to the product probability distribution Pm. Thus, more formally, we want it to
be true that with high Pm-probability the sample s is such that the output function L(s)
has near-optimal error with respect to P . The smallest the error could be is optP (H) =
min{erP (h) : h ∈ H}. (For a class of Boolean functions, since H is finite, the minimum
is defined, but in general we would use the infimum.)

This leads us to the following formal definition of a version of ‘PAC’, (probably approxi-
mately correct) learning.

Definition 2.1 (PAC learning) The learning algorithm L is a PAC-learning algorithm
for the class H of Boolean functions if for any given δ, ε > 0 there is a sample length
m0(δ, ε) such that for all probability distributions P on Z = X × {0, 1},

m > m0(δ, ε) ⇒ Pm ({s ∈ Zm : erP (L(s)) ≥ optP (H) + ε}) < δ.

The smallest suitable value of m0(δ, ε), denoted mL(δ, ε), is called the sample complexity
of L.

The definition is fairly easy to understand in the realizable case. In this case, erP (h) is the
probability that a hypothesis h disagrees with the target concept t on a randomly chosen
example. So, here, informally speaking, a learning algorithm is PAC if, provided a random
sample is long enough (where ‘long enough’ is independent of P ), then it is ‘probably’ the
case that after training on that sample, the output hypothesis is ‘approximately’ correct.
We often refer to ε as the accuracy parameter and δ as the confidence parameter.

Note that the probability distribution P occurs twice in the definition: first in the require-
ment that the Pm-probability of a sample be small and secondly through the fact that
the error of L(s) is measured with reference to P . The crucial feature of the definition is
that we require that the sample length m0(δ, ε) be independent of P .
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2.3 A learnability result for Boolean classes

For h ∈ H and s = (((x1, b1), . . . , (xm, bm)), the sample error of h on s is

êrs(h) =
1

m
|{i : h(xi) 6= bi}| ,

and we say that L is a SEM (sample-error minimization) algorithm if, for any s,

êrs(L(s)) = min{êrs(h) : h ∈ H}.

We now show that L is a PAC learning algorithm provided it has this fairly natural
property.

Theorem 2.2 Any SEM learning algorithm L for a set H of Boolean functions is PAC.
Moreover, the sample complexity is bounded as follows:

mL(δ, ε) ≤ 2

ε2
ln

(
2|H|
δ

)
.

Proof: By Hoeffding’s inequality [13], for any particular h ∈ H,

Pm (|êrs(h)− erP (h)| ≥ ε/2) ≤ 2 exp(−ε2m/2).

So, for any P and ε,

Pm

(
max
h∈H

|êrs(h)− erP (h)| ≥ ε/2

)
= Pm

(⋃
h∈H

{s ∈ Zm : |êrs(h)− erP (h)| ≥ ε/2}

)
≤

∑
h∈H

Pm (|êrs(h)− erP (h)| ≥ ε/2)

≤ |H| 2 exp(−ε2m/2).

as required. Now suppose h∗ ∈ H is such that erP (h∗) = optP (H). Then

Pm

(
max
h∈H

|êrs(h)− erP (h)| ≥ ε/2

)
≤ 2|H| exp

(
−ε2m/2

)
,
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and this is no more than δ if m ≥ (2/ε2) (2|H|/δ) . In this case, with probability at least
1− δ, for every h ∈ H, erP (h)− ε/2 < êrs(h) < erP (h) + ε/2, and so,

erP (L(s)) ≤ êrs(L(s)) + ε/2 = min
h∈H

êrs(h) + ε/2 ≤ êrs(h
∗) + ε/2

< (erP (h∗) + ε/2) + ε/2 = optP (H) + ε.

The result follows. ut

We have stated the result for classes of Boolean functions, but it clearly applies also to
finite classes of {0, 1}-valued functions defined on Rn.

The proof of Theorem 2.2 shows that, for any m > 0, with probability at least 1 − δ, L
returns a function h with

erP (h) < optP (H) +

√
2

m
ln

(
2|H|
δ

)
.

Thus, ε0(δ,m) =

√
2

m
ln

(
2|H|
δ

)
may be thought of as a bound on the estimation er-

ror of the learning algorithm. The definitions and results can easily be stated in terms
of estimation error rather than sample complexity, but here we will mostly use sample
complexity.

We state, without its proof (which is, in any case, simpler than the one just given, and may
be found in [5]), the following result for the realizable case. Note that, in the realizable
case, the optimal error is zero, so a SEM algorithm is what is called a consistent algorithm.
That is, the output hypothesis h is consistent with the sample, meaning that h(xi) = t(xi)
for each i, where t is the target concept.

Theorem 2.3 Suppose that H is a set of Boolean functions. Then, for any m and δ,
and any target concept t ∈ H, the following holds with probability at least 1− δ: if h ∈ H
is any hypothesis consistent with a training sample s of length m, then with probability at
least 1− δ,

erP (h) <
1

m
ln

(
|H|
δ

)
.

In particular, for realizable learning problems, any consistent learning algorithm L is PAC
and has sample complexity bounded as follows: mL(δ, ε) ≤ (1/ε) ln (|H|/δ) .
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2.4 Learning monomials

We give a simple example of a PAC algorithm in the realizable case. A monomial is a
Boolean function which can be represented by a formula that is a simple conjunction of
literals. There is a very simple learning algorithm for monomials, due to Valiant [30]. We
begin with no information, so we assume that every one of the 2n literals u1, ū1, . . . , un, ūn

can occur in the target monomial. On presentation of a positive example (x, 1), the
algorithm deletes literals as necessary to ensure that the current hypothesis monomial is
true on the example. The algorithm takes no action on negative examples: it will always
be the case that the current hypothesis correctly classifies such examples as false points.
The formal description is as follows. Suppose we are given a training sample s containing
the labeled examples (xi, bi) (1 ≤ i ≤ m), where each example xi is an n–tuple of bits
(xi)j. If we let hU denote the monomial formula containing the literals in the set U , the
algorithm can be expressed as follows.

set U := {u1, ū1, . . . , un, ūn};
for i:= 1 to m do

if bi = 1 then

for j:= 1 to n do

if (xi)j = 1 then delete ūj if present in U
else delete uj if present in U;

L(s):= hU

It is easy to check that if s is a training sample corresponding to a monomial, then the
algorithm outputs a monomial consistent with s. So the algorithm is a PAC algorithm
for the realizable case. Furthermore, since the number of monomials is at most 3n + 1
(noting that each literal may appear non-negated, negated, or not at all, and that the
identically-0 function can also be thought of as a monomial), the sample complexity of L
is bounded above by

1

ε
ln

(
3n + 1

δ

)
,

which, ignoring constants, is of order (n+ ln (1/δ)) /ε. The algorithm is also computa-
tionally efficient, something we shall turn our attention to later.
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2.5 Discussion

Theorem 2.2 and Theorem 2.3 show that the sample complexity of learning can be
bounded above using the cardinality of H. But it is natural to ask if one can do better:
that is, can we obtain tighter upper bounds? Furthermore, we have not yet seen any
lower bounds on the sample complexity of learning. To deal with these concerns, we now
look at the VC-dimension, which turns out to give (often better) upper bounds, and also
lower bounds, on sample complexity.

3 The growth function and VC-Dimension

3.1 The growth function of a function class

Suppose thatH is a set of Boolean functions defined onX = {0, 1}n. Let x = (x1, x2, . . . , xm)
be a sample (unlabeled) of length m of points of X. As in [33, 5], we define ΠH(x), the
number of classifications of x by H, to be the number of distinct vectors of the form

(f(x1), f(x2), . . . , f(xm)) ,

as f runs through all functions of H. (This definition works more generally if H is a
set of {0, 1}-valued functions defined on some Rn, for although in this case H may be
infinite, ΠH(x) will be finite.) Note that for any sample x of length m, ΠH(x) ≤ 2m.
An important quantity, and one which turns out to be crucial in PAC learning theory, is
the maximum possible number of classifications by H of a sample of a given length. We
define the growth function ΠH by

ΠH(m) = max {ΠH(x) : x ∈ Xm} .

We have used the notation ΠH for both the number of classifications and the growth
function, but this should cause no confusion.
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3.2 VC-dimension

We noted that the number of possible classifications by H of a sample of length m is at
most 2m, this being the number of binary vectors of length m. We say that a sample x
of length m is shattered by H, or that H shatters x, if this maximum possible value is
attained; that is, if H gives all possible classifications of x. We shall also find it useful to
talk of a set of points, rather than a sample, being shattered. The notion is the same: the
set is shattered if and only if a sample with those entries is shattered. To be shattered,
x must clearly have m distinct examples. Then, x is shattered by H if and only if for
each subset S of {x1, x2 . . . , xm}, there is some function fS in H such that for 1 ≤ i ≤ m,
fS(xi) = 1 ⇐⇒ xi ∈ S.

Consistent with the intuitive notion that a set H of functions has high expressive power
if it can achieve all possible classifications of a large set of examples, following [33, 5], we
use as a measure of this power the Vapnik-Chervonenkis dimension, or VC-dimension, of
H, which is defined to be the maximum length of a sample shattered by H. Using the
notation introduced above, we can say that the VC-dimension of H, denoted VCdim(H),
is given by

VCdim(H) = max {m : ΠH(m) = 2m} ,

We may state this definition formally, and in a slightly different form, as follows.

Definition 3.1 (VC-dimension) Let H be a set of Boolean functions from a set X to
{0, 1}. The VC-dimension of H is the maximal size of a subset E of X with the property
that for each S ⊆ E, there is fS ∈ H with fS(x) = 1 if x ∈ S and fS(x) = 0 if x ∈ E \ S.

The VC-dimension of a set of Boolean functions can easily be bounded in terms of its
cardinality.

Theorem 3.2 For any set H of Boolean functions, VCdim(H) ≤ log2 |H|.

Proof: If d is the VC-dimension of H and x ∈ Xd is shattered by H, then |H| ≥ |Hx| =
2d. (Here, Hx denotes the restriction of H to domain E = {x1, x2, . . . , xd}.) It follows
that d ≤ log2 |H|. ut
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It should be noted that Theorem 3.2 is sometimes loose, as we shall shortly see. However,
it is reasonably tight: to see this, we need to explore further the relationship between
growth function and VC-dimension.

Note: All of the definitions in this section can be made more generally for (possibly
infinite) sets of functions mapping from X = Rn to {0, 1}. The VC-dimension can then
be infinite. Theorem 3.2 applies to any finite such class.

4 Relating growth function and VC-dimension

The growth function ΠH(m) is a measure of how many different classifications of an
m-sample into true and false points can be achieved by the functions of H, while the
VC-dimension of H is the maximum value of m for which ΠH(m) = 2m. Thus, the VC-
dimension is defined in terms of the growth function. But there is a converse relationship:
the growth function ΠH(m) can be bounded by a polynomial function of m, and the
degree of the polynomial is the VC-dimension d of H. Explicitly, we have the following
theorem [23, 26], usually known as Sauer’s Lemma (or the Sauer-Shelah Lemma).

Theorem 4.1 (Sauer’s Lemma) Let d ≥ 0 and m ≥ 1 be given integers and let H be
a set of {0, 1}-valued functions with VCdim(H) = d ≥ 1. Then

ΠH(m) ≤
d∑

i=0

(
m

i

)
<
(em
d

)d

,

where the second inequality holds for m ≥ d.

Proof: For m ≤ d, the first inequality is trivially true since in that case the sum is
2m. Assume that m > d and fix a set S = {x1, . . . , xm} ⊆ X. We will make use of
the correspondence between {0, 1}-valued functions on a set and subsets of that set by
defining the set system (or family of sets)

F = {{xi ∈ S : f(xi) = 1} : f ∈ H} .

The proof proceeds, as in [28], by first creating a transformed version F∗ of F that is a
down-set with respect to the partial order induced by set-inclusion, and which has the
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same cardinality as F . (To say that F∗ is a down-set means that if A ∈ F∗ and B ⊆ A
then B ∈ F∗.)

For an element x of S, let Tx denote the operator that, acting on a set system, removes
the element x from all sets in the system, unless that would give a set that is already in
the system:

Tx(F) = {A \ {x} : A ∈ F} ∪ {A ∈ F : A \ {x} ∈ F} .
Note that |Tx(F)| = |F|. Consider now F∗ = Tx1(Tx2(· · ·Txm(F) · · ·)). Clearly, |F∗| =
|F|. Furthermore, for all x in S, Tx(F∗) = F∗. Clearly, F∗ is a down-set. For, if it were
not, there would be some C ∈ F∗ and some x ∈ C such that C \ {x} 6∈ F∗. But then
applying Tx would cause x to be removed from C, contradicting Tx(F∗) = F∗.

We can define the notion of shattering for a family of subsets, in the same way as for
a family of {0, 1}-valued functions. For R ⊆ S, we say that F shatters R if F ∩ R =
{A ∩R : A ∈ F} is the set of all subsets of R. We next show that, whenever F∗ shatters
a set, so does F . It suffices to show that, for any x ∈ S, if Tx(F) shatters a set, so does
F . So suppose that x in S, R ⊆ S, and Tx(F) shatters R. If x is not in R, then, trivially,
F shatters R. If x is in R, then for all A ⊆ R with x 6∈ A, since Tx(F) shatters R we have
A ∈ Tx(F)∩R and A∪{x} ∈ Tx(F)∩R. By the definition of Tx, this implies A ∈ F ∩R
and A ∪ {x} ∈ F ∩ R. This argument shows that F shatters R. It follows that F∗ can
only shatter sets of cardinality at most d. Since F∗ is a down-set, this means that the
largest set in F∗ has cardinality no more than d. (For, if there were a set of cardinality
d + 1 in F∗, all its subsets would be in F∗ too, because F∗ is a down-set, and it would

therefore be shattered.) We therefore have |F∗| ≤
d∑

i=0

(
m

i

)
, this expression being the

number of subsets of S containing no more than d elements. The result follows, because
|F| = |F∗|, and because S was chosen arbitrarily. For the second inequality, we have, as
argued in [6],

d∑
i=0

(
m

i

)
≤
(m
d

)d
d∑

i=0

(
m

i

)(
d

m

)i

≤
(m
d

)d
m∑

i=0

(
m

i

)(
d

m

)i

=
(m
d

)d
(

1 +
d

m

)m

.

Now, for all x > 0, (1 + (x/m))m < ex, so this is bounded by (m/d)ded = (em/d)d, giving
the bound. ut

The first inequality of this theorem is tight. If H corresponds to the set system F
consisting of all subsets of {1, 2, . . . , n} of cardinality at most d, then VCdim(H) = d and
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|F| meets the upper bound.

Now, Theorem 4.1 has the following consequence when we use the fact that |H| = ΠH(2n).

Theorem 4.2 For any class H of Boolean functions defined on {0, 1}n,

VCdim(H) ≥ log2 |H|
n+ log2 e

and if VCdim(H) ≥ 3, then VCdim(H) ≥ log2 |H|/n.

Given also the earlier bound, Theorem 3.2, we see that, essentially, for a Boolean class on
{0, 1}n, VCdim(H) and log2 |H| are within a factor n of each other. This gap can be real.
For example, when H = Tn is the class of threshold functions, then VCdim(Tn) = n+ 1,
whereas log2 |Tn| > n2/2. (In fact, as shown by Zuev [34], log2 |Tn| ∼ n2 as n→∞.)

5 VC-dimension and PAC learning

It turns out that the VC-dimension quantifies, in a more precise way than does the
cardinality of the hypothesis space, the sample complexity of PAC learning.

5.1 Upper bounds on sample complexity

The following results bound from above the sample complexity of PAC learning (in the
general and realizable cases, respectively). It is obtained from a result of Vapnik and
Chervonenkis [33]; see [2].

Theorem 5.1 Suppose that H is a set of Boolean functions with VC-dimension d ≥ 1
and let L be any SEM algorithm for H. Then L is a PAC learning algorithm for H with
sample complexity bounded as follows:

mL(δ, ε) ≤ m0(δ, ε) =
64

ε2

(
2d ln

(
12

ε

)
+ ln

(
4

δ

))
.
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In fact, it is possible (using a result of Talagrand [29]; see [2]) to obtain an upper bound
of order (1/ε2) (d+ ln (1/δ)) . (However, the constants involved are quite large.) For the
realizable case, from a result in [5], we have the following bound.

Theorem 5.2 Suppose that H is a set of Boolean functions with VC-dimension d ≥ 1
and let L be any consistent learning algorithm for H. Then L is a PAC learning algorithm
for H in the realizable case, with sample complexity bounded as follows:

mL(δ, ε) ≤ 4

ε

(
d ln

(
12

ε

)
+ ln

(
2

δ

))
.

5.2 Lower bounds on sample complexity

The following lower bounds on sample complexity are also obtainable. (These are from [2],
and similar bounds can be found in [8, 27].)

Theorem 5.3 Suppose that H is a class of {0, 1}-valued functions with VC-dimension d.
For any PAC learning algorithm L for H, the sample complexity mL(δ, ε) of L satisfies

mL(δ, ε) ≥ d

320ε2

for all 0 < ε, δ < 1/64. Furthermore, if H contains at least two functions, we have

mL(δ, ε) ≥ 2

⌊
1− ε2

2ε2
ln

(
1

8δ(1− 2δ)

)⌋
for all 0 < ε < 1 and 0 < δ < 1/4.

The two bounds taken together imply a sample complexity lower bound of order
(1/ε2) (d+ ln (1/δ)) . (This means that there is a constant k > 0, such that for ε and δ
sufficiently small, the sample complexity is at least k times this expression.)

For the realizable case, we have the following [9].
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Theorem 5.4 Suppose that H is a class of {0, 1}-valued functions of VC-dimension d ≥
1. For any PAC learning algorithm L for H in the realizable model, the sample complexity
mL(δ, ε) of L satisfies mL(δ, ε) ≥ (d − 1)/(32ε) for all 0 < ε < 1/8 and 0 < δ < 1/100.
Furthermore, if H contains at least three functions, then mL(δ, ε) > (1/2ε) ln (1/δ) , for
0 < ε < 3/4 and 0 < δ < 1.

Thus, in the realizable case, the sample complexity of a PAC learning algorithm is at least
of the order of

1

ε

(
d+ ln

(
1

δ

))
.

Suppose Hn is a class of Boolean functions on {0, 1}n. Given the connections between
cardinality and VC-dimension for Boolean classes, we see that any SEM algorithm is PAC

and (for fixed δ) has sample complexity at least of order
log2 |Hn|
nε2

and at most of order

log2 |Hn|
ε2

ln

(
1

ε

)
. (In fact, as noted earlier, we can omit the logarithmic factor in the

upper bound at the expense of worse constants.) In the realizable case, we can similarly
see that any consistent algorithm is PAC and has sample complexity of order at least
log2 |Hn|

nε
and at most

log2 |Hn|
ε

ln

(
1

ε

)
.

The cardinality therefore can be used to bound the sample complexity of learning, but the
VC-dimension provides tighter bounds. (Moreoever, the bounds based on VC-dimension
remain valid if we consider not Boolean classes but classes of functions mapping from Rn

to {0, 1}: as long as such classes have finite VC-dimension—even if infinite cardinality—
they are still learnable by SEM algorithms, or consistent algorithms in the realizable
model.)
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6 VC-dimensions of Boolean classes

6.1 Monomials

As an example of VC-dimension, we consider the set M+
n of positive monomials, consisting

of the simple conjunctions on non-negated literals.

Theorem 6.1 The class M+
n of positive monomials on {0, 1}n has VC-dimension n.

Proof: Since there are 2n such functions, we have VCdim(M+
n ) ≤ log2(2

n) = n. To show
that the VC-dimension is in fact exactly n, we show that there is some set S ⊆ {0, 1}n

such that |S| = n and S is shattered by M+
n . Let S consist of all {0, 1}-vectors having

exactly n− 1 entries equal to 1, and denote by xi the element of s having a 0 in position
i. Let R be any subset of S and let hR ∈M+

n be the conjunction of the literals uj for all
j such that xj 6∈ R. Then hR(x) = 1 for x ∈ R and hR(x) = 0 for x ∈ S \ R. This shows
S is shattered. ut

6.2 Threshold functions

It is known [7] that if T = Tn is the set of threshold functions on {0, 1}n, then

ΠT (m) ≤ ψ(n,m) = 2
n∑

i=0

(
m− 1

i

)
.

This result is proved by using the classical fact [7, 24] that N hyperplanes in Rn, each
passing through the origin, divide Rn into at most C(N, n) = 2

∑n−1
i=0

(
N−1

i

)
regions. It

follows directly from this, since ψ(n, n+ 1) = 2n+1 and ψ(n, n+ 2) < 2n+2, that the VC-
dimension of Tn is at most n+ 1. In fact, the VC-dimension is exactly n+ 1, as we now
show. (In the proof, an alternative, more direct, way of seeing that the VC-dimension is
at most n+ 1 is given.)

Theorem 6.2 The class of threshold functions on {0, 1}n has VC-dimension n+ 1.
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Proof: Recall that any threshold function h is described by a weight-vector w =
(w1, w2, . . . , wn) and a threshold θ, so that h(x) = 1 if and only if

∑n
i=1wixi ≥ θ. Let S be

any subset of {0, 1}n with cardinality n+ 2. By Radon’s Theorem, there is a non-empty
subset R of S such that conv(R) ∩ conv(S \ R) 6= ∅, where conv(X) denotes the convex
hull of X. Suppose that there is a threshold function h in Tn such that R is the set of
true points of h in S. We may assume that none of the points lies on the hyperplane
defining h. Let H+ be the open half-space on which h is true and H− the open half-space
on which it is false. Then R ⊆ H+ and S \ R ⊆ H−. But since half-spaces are convex
subsets of Rn, we then have

conv(R) ∩ conv(S \R) ⊆ H+ ∩H− = ∅,

which is a contradiction. It follows that no such t exists and hence S is not shattered. But
since S was an arbitrary subset of cardinality n + 2, it follows that VCdim(Tn) ≤ n + 1.
Now we show that VCdim(Tn) ≥ n+ 1. Let 0 denote the all-0 vector and, for 1 ≤ i ≤ n,
let ei be the point with a 1 in the ith coordinate and all other coordinates 0. We shall
show that Tn shatters the set S = {0, e1, e2, . . . , en} . Suppose that R is any subset of S.
For i = 1, 2, . . . , n, let

wi =

{
1, if ei ∈ R;
−1, if ei 6∈ R;

and let

θ =

{
−1/2, if 0 ∈ R;
1/2, if 0 6∈ R.

Then it is straightforward to verify that if h is the threshold function with weight-vector
w and threshold θ, then the set of true points of h in S is precisely R. Therefore S is
shattered by Tn and, consequently, VCdim(Tn) ≥ n+ 1. The result now follows. ut

6.3 k-DNF

The class of k-DNF functions on {0, 1}n consists of all those functions representable by
a DNF in which the terms are of degree at most k. Let Dn,k denote the set of k-DNF
functions of n variables. Then, for fixed k, the VC-dimension of Dn,k is Θ(nk), as shown
in [9].

Theorem 6.3 Let k ∈ N be fixed and let Dn,k be the set of k-DNF functions on {0, 1}n.
Then VCdim(Dn,k) = Θ(nk).
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Proof: The number of monomials or terms which are non-empty, not identically false,
and of degree at most k is

∑k
i=1

(
n
i

)
2i which is, for fixed k, O(nk). Since any k-DNF

formula is created by taking the disjunction of a set of such terms, the number of k-DNF
formulas (and hence |Dn,k|) is 2O(nk). Therefore VCdim(Dn,k) ≤ log2 |Dn,k| = O(nk).

On the other hand, we can show that the VC-dimension is Ω(nk) by proving that a
sufficiently large subset is shattered. Consider the set S of examples in {0, 1}n which
have precisely k entries equal to 1. Then S can be shattered by Dn,k. Indeed, suppose R
is any subset of S. For each y = (y1, y2, . . . , yn) ∈ R, form the term that is the conjunction
of those literals ui such that yi = 1. Since y ∈ S, this term has k literals; further, y is the
only true point in S of this term. The disjunction of these terms, one for each member of
R, is therefore a function in Dn,k whose true points in S are precisely the members of R.
Hence S is shattered by Dn,k. Now, |S| =

(
n
k

)
which, for a fixed k, is Ω(nk). ut

7 Efficient PAC learning

7.1 Introduction

Up to now, a learning algorithm has been mainly described as a function which maps
training samples into output functions (or hypotheses). We will now be more specific
about the computational effectiveness of learning algorithms. If the process of PAC learn-
ing by an algorithm L is to be of practical value, it should be possible to implement the
algorithm ‘quickly’. We discuss what should be meant by an efficient PAC learning algo-
rithm, and we highlight an important connection between the existence of efficient PAC
learning algorithms and the existence of efficient procedures for producing hypotheses
with small sample error. As mentioned earlier, computational efficiency was a key aspect
of Valiant’s learning model [30], and has been much further explored for the models of
this report. The papers [5, 22] provided some of the important initial results, and these
are further explored in the books [17, 19, 3]. The treatment here follows [2].

Consider the monomial learning algorithm (for the realizable case) described earlier. This
is an efficient algorithm: its running time on a training sample of m data points in {0, 1}n

is O(mn), which is linear in the size of the training sample. Furthermore, noting either
that VCdim(Mn) = O(n) or that log2 |Mn| = O(n), we can see that, for given ε and δ, we
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can produce a hypothesis that, with probability at least 1− δ, has accuracy ε, in time of
order n2p(1/ε, ln(1/δ)) = q(n, 1/ε, ln(1/δ), where p and q are (small degree) polynomials.
This is an example of what we mean by an efficient learning algorithm: as n scales, the
time taken to produce a PAC output hypothesis scales polynomially with n; additionally,
the running time is polynomial in 1/ε and ln(1/δ).

7.2 Graded classes

In order to enable a more general discussion of efficient learning, we introduce the idea
of a graded function class. Suppose Hn is a set of Boolean functions defined on {0, 1}n.
Then we say that H =

⋃∞
n=1 is a graded hypothesis space. The reason for introducing

this idea is that we want to analyse the running time (with respect to n) of what might
be termed a ‘general’ learning algorithm for a graded class of Boolean functions. This is
an algorithm that works in essentially the same manner on each of the classes Hn. For
example, the monomial learning algorithm works on Mn for any n in essentially the same
way: there is no fundamental difference between its actions on, say, the monomials with
5 variables and those with 50 variables.

Denoting {0, 1}n×{0, 1} by Zn, a learning algorithm L for the graded space H =
⋃∞

n=1Hn

is a mapping from
⋃∞

n=1 Z
∗
n to H with the property that if s ∈ Z∗n then L(s) ∈ Hn. The

only difference between this definition and the basic notion of a learning algorithm for
an ungraded class is that we have now encapsulated some sense of the ‘generality’ of the
algorithm in its action over all the Hn. With this, we now state formally what is meant
by a PAC learning algorithm for a graded class.

Definition 7.1 If L is a learning algorithm for H =
⋃
Hn, then we say that L is PAC if

for all n ∈ N and δ, ε ∈ (0, 1), there is m0(n, δ, ε) such that if m ≥ m0(n, δ, ε) then, for any
probability distribution P on Zn, if s ∈ Zm

n is drawn randomly according to the product
probability distribution Pm on Zm

n , then with probability at least 1− δ, the hypothesis L(s)
output by L satisfies erP (L(s)) < optP (Hn) + ε.

18



7.3 Definition of efficient learning

We now assume that learning algorithms are algorithms in the proper sense (that is, that
they are computable functions). Suppose that L is a learning algorithm for a graded
function class H =

⋃
Hn. An input to L is a training sample, which consists of m

labeled binary vectors of length n. It would be possible to use m(n + 1) as the measure
of input size, but we will find it useful to consider dependence on m and n separately.
We use the notation RL(m,n) to denote the worst-case running time of L on a training
sample of m points of Zn. Clearly, n is not the only parameter with which the running
time of the learning procedure as a whole should be allowed to vary, since decreasing
either the confidence parameter δ or the accuracy parameter ε makes the learning task
more difficult, requiring a larger size of sample. We shall ask that the running time of
a learning algorithm L be polynomial in m, and that the sample complexity mL(n, δ, ε)
depend polynomially on 1/ε, ln (1/δ) and n. If these conditions hold, then the running
time required to produce a ‘good’ output hypothesis will be polynomial in n, ln(1/δ) and
1/ε.

We now formally define what we mean by an efficient learning algorithm for a graded
function class.

Definition 7.2 Let H =
⋃
Hn be a graded class of Boolean functions and suppose that

L is a learning algorithm for H. We say that L is efficient if:

• the worst-case running time RL(m,n) of L on samples s ∈ Zm
n is polynomial in m

and n, and

• the sample complexity mL(n, δ, ε) of L on Hn is polynomial in n, 1/ε and ln(1/δ).

We have described the outputs of learning algorithms as hypotheses. But, more precisely,
they are representations of hypotheses. When discussing the complexity of learning, it
is always assumed that the output lies in a representation class for the hypothesis class.
All this often amounts to is that the output must be a formula of a particular type. For
example, the monomial learning algorithm outputs a monomial formula (and not some
other representation). This is not something we shall explore much further, but it is
sometimes important.

19



7.4 Sufficient conditions for efficient learning

We define a SEM algorithm for a graded Boolean class H to be an algorithm that given
any sample s ∈ Zm

n , returns a function h ∈ Hn with minimal sample error êrs(h) on s. The
following result, which may be found in [5], follows directly from earlier results and shows
that the rate of growth with n of the VC-dimension determines the sample complexity of
learning algorithms.

Theorem 7.3 Let H =
⋃
Hn be a graded Boolean function class.

• If VCdim(Hn) is polynomial in n, then any SEM algorithm for H is a PAC learning
algorithm with sample complexity mL(n, δ, ε) polynomial in n, 1/ε and ln(1/δ).

• If there is an efficient PAC learning algorithm for H, then VCdim(Hn) is polynomial
in n.

Note that, by Theorem 4.2, the same statement is true with VCdim(Hn) replaced by
ln |Hn|.

We now turn our attention to the running time of SEM algorithms. Having seen that, in
many circumstances, such algorithms yield PAC learning algorithms, we now investigate
the efficiency of these derived learning algorithms. We say that a SEM algorithm for the
graded Boolean function class H =

⋃
Hn is efficient if, given as input s ∈ Zm

n , it returns
its output in time polynomial in m and n. The following result is immediate.

Theorem 7.4 Suppose that H =
⋃
Hn is a graded Boolean function class and that

VCdim(Hn) is polynomial in n. Then, any efficient SEM algorithm for H is an effi-
cient PAC learning algorithm for H.

8 Randomized PAC and SEM algorithms

There may be some advantage in allowing learning algorithms to be randomized. Fur-
thermore, as we shall see, there are some fairly succinct characterizations of learnability
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provided we permit algorithms to be randomized.

For our purposes, a randomized algorithm A has available to it a random number genera-
tor that produces a sequence of independent, uniformly distributed bits. The randomized
algorithm A uses these random bits as part of its input, but it is useful to think of this
input as somehow ‘internal’ to the algorithm, and to think of the algorithm as defining
a mapping from an ‘external’ input to a probability distribution over outputs. The com-
putation carried out by the algorithm is, of course, determined by its input, so that, in
particular, it depends on the particular sequence produced by the random number gen-
erator, as well as on the ‘external’ input. We may speak of the ‘probability’ that A has
a given outcome on an (external) input x, by which we mean the probability that the
stream of random numbers gives rise to that outcome when the external input to the
algorithm is x. It is useful to extend our concept of a PAC learning algorithm to allow
randomization. The definition of a randomized PAC learning for a graded class is as in
Definition 7.1, with the additional feature that the algorithm is randomized. (So, L can
no longer be regarded as a deterministic function.)

We shall also be interested in randomized SEM algorithms.

Definition 8.1 A randomized algorithm A is an efficient randomized SEM algorithm
for the graded Boolean function class H =

⋃
Hn if given any s ∈ Zm

n , A halts in time
polynomial in n and m and outputs h ∈ Hn which, with probability at least 1/2, satisfies
êrs(h) = ming∈Hn êrs(g).

Suppose we run a randomized SEM algorithm k times on a fixed sample (s), keeping the
output hypothesis f (k) with minimal sample error among all the k hypotheses returned.
In other words, we take the best of k iterations of the algorithm. Then the probability
that f (k) has sample error that is not minimal is at most (1/2)k. This is the basis of the
following result, which shows that, as far as its applications to learning are concerned, an
efficient randomized SEM algorithm is as useful as its deterministic counterpart. (The
key idea in establishing this result is to take the best of k iterations of A for a suitable k,
absorbing the randomness in the action of A into the ‘δ’ of learning.)

Theorem 8.2 Suppose that H =
⋃
Hn is a graded Boolean function class and that

VCdim(Hn) is polynomial in n. If there is an efficient randomized SEM algorithm A
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for H, then there is an efficient randomized PAC learning algorithm for H that uses A
as a subroutine.

9 Learning and existence of SEM algorithms

We have seen that efficient SEM algorithms (both deterministic and randomized) can
in many cases be used to construct efficient PAC learning algorithms. The next result
proves, as a converse, that if there is an efficient PAC learning algorithm for a graded
class then necessarily there is an efficient randomized SEM algorithm. (For the realizable
case, this may be found in [22, 5, 21].)

Theorem 9.1 If there is an efficient PAC learning algorithm for the graded Boolean
class H =

⋃
Hn, then there is an efficient randomized SEM algorithm.

Proof: Suppose L is an efficient PAC learning algorithm for the graded class H =
⋃
Hn.

We construct a randomized algorithm A, which will turn out to be an efficient randomized
SEM algorithm. Suppose the sample s ∈ Zm

n is given as input to A. Let P be the
probability distribution that is uniform on the labeled examples in s and zero elsewhere
on Zn. (This probability is defined with multiplicity; that is, for instance, if there are
two labeled examples in s each equal to z, we assign the labeled example z probability
2/m rather than 1/m.) We use the randomization allowed in A to form a sample of
length m∗ = mL(n, 1/2, 1/m), in which each labeled example is drawn according to P .
Let s∗ denote the resulting sample. Feeding s∗ into the learning algorithm, we receive
as output h∗ = L(s∗) and we take this to be the output of the algorithm A; that is,
A(s) = h∗ = L(s∗). By the fact that L is a PAC learning algorithm, and given that
m∗ = mL(n, 1/2, 1/m), with probability at least 1/2, we have erP (h∗) < optP (H) + 1/m.
But because P is discrete, with no probability mass less than 1/m, this means erP (h∗) =
optP (H). For any h, by the definition of P , erP (h) = êrs(h). So with probability at least
1/2,

êrs(h
∗) = erP (h∗) = optP (H) = min

g∈Hn

erP (g) = min
g∈Hn

êrs(g).

This means that A is a randomized SEM algorithm. Because L is efficient, m∗ =
mL(n, 1/2, 1/m) is polynomial in n and m. Since the sample s∗ has length m∗, and
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since L is efficient, the time taken by L to produce h∗ is polynomial in m∗ and n. Hence
A has running time polynomial in n and m, as required. ut

We arrive at the following succinct characterization of PAC learnability (allowing ran-
domized algorithms).

Theorem 9.2 Suppose that H =
⋃
Hn is a graded Boolean function class. Then there

is an efficient randomized PAC learning algorithm for H if and only if VCdim(Hn) is
polynomial in n and there is an efficient randomized SEM algorithm for H.

Given the connection of Theorem 4.2 between cardinality and VC-dimension, the same
statement with ln |Hn| replacing VCdim(Hn) holds. (It should be noted, however, that
Theorem 9.2 holds, more generally, in the case where Hn maps from Rn to {0, 1}.)

10 Establishing hardness of learning

There are two quite natural decision problems associated with a graded Boolean function
class H =

⋃
Hn:

H-fit
Instance: s ∈ Zm

n = ({0, 1}n × {0, 1})m and an integer k between 1 and m.
Question: Is there h ∈ Hn such that êrs(h) ≤ k/m?

H-consistency
Instance: s ∈ Zm

n = ({0, 1}n × {0, 1})m.
Question: Is there h ∈ Hn such that êrs(h) = 0?

Clearly H-consistency is a sub-problem of H-fit, obtained by setting k = 0. Thus, any
algorithm for H-fit can be used also to solve H-consistency. Note that H-consistency
is the decision problem associated with finding an extension in H of the partially defined
Boolean function described by the sample s.

We say that a randomized algorithm A solves a decision problem Π if the algorithm
always halts and produces an output—either ‘yes’ or ‘no’—such that if the answer to
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Π on the given instance is ‘no’, the output of A is ‘no’, and if the answer to Π on
the given instance is ‘yes’ then, with probability at least 1/2, the output of A is ‘yes’. A
randomized algorithm is polynomial-time if its worst-case running time (over all instances)
is polynomial in the size of its input. The class of decision problems Π that can be solved
by a polynomial-time randomized algorithm is denoted by RP. One approach to proving
that PAC learning is computationally intractable for particular classes (in the general or
realizable cases) is through showing that these decision problems are hard. The reason is
given in the following results. First, we have the following [18, 14].

Theorem 10.1 Let H =
⋃
Hn be a graded Boolean function class. If there is an efficient

learning algorithm for H then there is a polynomial-time randomized algorithm for H-fit;
in other words, H-fit is in RP.

Proof: If H is efficiently learnable then, by Theorem 9.1, there exists an efficient ran-
domized SEM algorithm A for H. Using A, we construct a polynomial-time randomized
algorithm B for H-fit as follows. Suppose that s ∈ Zm

n and k together constitute an in-
stance of H-fit, and hence an input to B. The first step of the algorithm B is to compute
h = A(s), the output of A on s. This function belongs to Hn and, with probability at
least 1/2, êrs(h) is minimal among all functions in Hn. The next step in B is to check
whether êrs(h) ≤ k/m. If so, then the output of B is ‘yes’ and, if not, the output is ‘no’.
It is clear that B is a randomized algorithm for H-fit. Furthermore, since A runs in time
polynomial in m and n, and since the time taken for B to calculate êrs(h) is linear in the
size of s, B is a polynomial-time algorithm. ut

The following result [22] applies to the realizable case.

Theorem 10.2 Suppose that H =
⋃
Hn is a graded Boolean function class. If H is

efficiently learnable in the realizable model, then there is a polynomial-time randomized
algorithm for H-consistency; that is, H-consistency is in RP.

In particular, therefore, we have the following.

Theorem 10.3 Suppose RP 6= NP. If H-fit is NP-hard, then there is no efficient PAC
learning algorithm for H. Furthermore, if H-consistency is NP-hard then there is no
efficient PAC learning algorithm for H in the realizable case.
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11 Hardness results

We now use the theory just developed to show that PAC learnability of threshold functions
is computationally intractable (although it is tractable in the realizable case). We also
show the intractability of PAC learning a particular class of Boolean functions in the
realizable case.

11.1 Threshold functions

First, we note that it is well-known that if Tn is the set of threshold Boolean functions on
{0, 1}n, then the graded class T =

⋃
Tn is efficiently PAC learnable in the realizable case.

Indeed, the VC-dimension of Tn is n+ 1, which is linear, and there exist SEM algorithms
based on linear programming. (See [5, 2], for instance.) However, T is not efficiently PAC
learnable in the general case, if RP 6= NP. This arises from the following result [10, 16, 14].

Theorem 11.1 Let T =
⋃
Tn be the graded class of threshold functions. Then T -fit is

NP-hard.

We prove this by establishing that the problem it is at least as hard as the well-known
NP-hard vertex cover problem in graph theory.

We denote a typical graph by G = (V,E), where V is the set of vertices and E the edges.
We shall assume that the vertices are labeled with the numbers 1, 2, . . . , n. Then, a typical
edge {i, j} will, for convenience, be denoted by ij. A vertex cover of the graph is a set U
of vertices such that for each edge ij of the graph, at least one of the vertices i, j belongs
to U . The following decision problem is known to be NP-hard [10].

vertex cover
Instance: A graph G = (V,E) and an integer k ≤ |V |.
Question: Is there a vertex cover U ⊆ V such that |U | ≤ k?

A typical instance of vertex cover is a graph G = (V,E) together with an integer
k ≤ |V |. We assume, for simplicity, that V = {1, 2, . . . , n} and we denote the number of
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edges, |E|, by r. Notice that the size of an instance of vertex cover is Ω(r + n). We
construct s = s(G) ∈ ({0, 1}2n × {0, 1})2r+n as follows. For any two distinct integers i, j
between 1 and 2n, let ei,j denote the binary vector of length 2n with ones in positions i
and j and zeroes elsewhere. The sample s(G) consists of the labeled examples (ei,n+i, 1)
for i = 1, 2, . . . , n and, for each edge ij ∈ E, the labeled examples (ei,j, 0) and (en+i,n+j, 0).
Note that the ‘size’ of s (that is, its size as measured by the number of bits needed to
describe it) is (2r+ n)(2n+ 1), which is polynomial in the size of the original instance of
vertex cover, and that s(G) can be computed in polynomial time.

For example, if a graph G has vertex set V = {1, 2, 3, 4} and edge set E = {12, 23, 14, 13},
then the sample s(G) consists of the following 12 labeled examples:

(10001000, 1), (01000100, 1), (00100010, 1), (00010001, 1),

(11000000, 0), (00001100, 0), (01100000, 0), (00000110, 0),

(10100000, 0), (00001010, 0), (10010000, 0), (00001001, 0).

Lemma 11.2 Given any graph G = (V,E) with n vertices, and any integer k ≤ n, let
s = s(G) be as defined above. Then, there is h ∈ T2n such that êrs(h) ≤ k/(2r+ n) if and
only if there is a vertex cover of G of cardinality at most k.

Proof: Recall that any threshold function is represented by some weight vector w and
threshold θ. Suppose first that there is such an h and that this is represented by the
weight-vector w = (w1, w2, . . . , w2n) and threshold θ. We construct a subset U of V as
follows. If h(ei,n+i) = 0, then we include i in U ; if, for i 6= j, h(ei,j) = 1 or h(en+i,n+j) = 1
then we include either one of i, j in U . Because h is ‘wrong’ on at most k of the examples
in s, the set U consists of at most k vertices. We claim that U is a vertex cover. To show
this, we need to verify that given any edge ij ∈ E, at least one of i, j belongs to U . It is
clear from the manner in which U is constructed that this is true if either h(ei,n+i) = 0
or h(ej,n+j) = 0, so suppose that neither of these holds; in other words, suppose that
h(ei,n+i) = 1 = h(ej,n+j). Then we may deduce that

wi + wn+i ≥ θ, wj + wn+j ≥ θ,

and so
wi + wj + wn+i + wn+j ≥ 2θ;
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that is,
(wi + wj) + (wn+i + wn+j) ≥ 2θ.

From this, we see that either wi + wj ≥ θ or wn+i + wn+j ≥ θ (or both); thus, h(ei,j) = 1
or h(en+i,n+j) = 1, or both. Because of the way in which U is constructed, it follows that
at least one of the vertices i, j belongs to U . Since ij was an arbitrary edge of the graph,
this shows that U is indeed a vertex cover.

We now show, conversely, that if there is a vertex cover of G consisting of at most k
vertices, then there is a function in T2n with sample error at most k/(2r + n) on s(G).
Suppose U is a vertex cover and |U | ≤ k. Define a weight-vector w = (w1, w2, . . . , w2n)
and threshold θ as follows: let θ = 1 and, for i = 1, 2, . . . , n,

wi = wn+i =

{
−1 if i ∈ U
1 if i 6∈ U .

We claim that if h is the threshold function represented by w and θ, then êrs(h) ≤
k/(2r + n). Observe that if ij ∈ E, then, since U is a vertex cover, at least one of i, j
belongs to U and hence the inner products wT ei,j and wT en+i,n+j are both either 0 or
−2, less than θ, so h(ei,j) = h(en+i,n+j) = 0. The function h is therefore correct on all
the examples in s(G) arising from the edges of G. We now consider the other types of
labeled example in s(G): those of the form (ei,n+i, 1). Now, wT ei,n+i is −2 if i ∈ U and
is 2 otherwise, so h(ei,n+i) = 0 if i ∈ U and h(ei,n+i) = 1 otherwise. It follows that h is
‘wrong’ only on the examples ei,n+i for i ∈ U and hence

êrs(h) =
|U |

2r + n
≤ k

2r + n
,

as claimed. ut

This result shows that the answer to T -fit on the instance (s(G), k) is the same as the
answer to vertex cover on instance (G, k). Given that s(G) can be computed from G
in time polynomial in the size of G, we have therefore established that T -FIT is NP-hard.

11.2 k-clause CNF

Pitt and Valiant [22] were the first to give an example of a Boolean class H for which
the consistency problem H-consistency is NP-hard. Let Ck

n, the set of k-clause CNF
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functions, be the set of Boolean functions on {0, 1}n that can be represented as the
conjunction of at most k clauses.

We show that, for fixed k ≥ 3, the consistency problem for Ck =
⋃
Ck

n is NP-hard. Thus,
if NP6= RP, then can be no efficient PAC learning algorithm for Ck in the realizable case.

The reduction in this case is from graph k-colorability. Suppose we are given a
graph G = (V,E), with V = {1, 2, . . . , n}. We construct a training sample s(G), as
follows. For each vertex i ∈ V we take as a negative example the vector vi which has 1 in
the ith coordinate position and 0’s elsewhere. For each edge ij ∈ E we take as a positive
example the vector vi + vj.

Lemma 11.3 There is a function in Ck
n which is consistent with the training sample s(G)

if and only if the graph G is k-colorable.

Proof: Suppose that h ∈ Ck
n is consistent with the training sample. By definition, h is

a conjunction
h = h1 ∧ h2 ∧ . . . ∧ hk

of clauses. For each vertex i of G, h(vi) = 0, and so there must be at least one clause
hf (1 ≤ f ≤ k) for which hf (vi) = 0. Thus we may define a function χ from V to
{1, 2, . . . , k} as follows:

χ(i) = min{f : hf (vi) = 0}.
We claim that χ is a coloring of G. Suppose that χ(i) = χ(j) = f , so that hf (vi) =
hf (vj) = 0. Since hf is a clause, every literal occurring in it must be 0 on vi and on vj.
Now vi has a 1 only in the ith position, and so hf (vi) = 0 implies that the only negated
literal which can occur in hf is x̄i. Since the same is true for x̄j, we conclude that hf

contains only some literals xl, with l 6= i, j. Thus hf (vi + vj) = 0 and h(vi + vj) = 0. Now
if ij were an edge of G, then we should have h(vi + vj) = 1, because we assumed that h
is consistent with s(G). Thus ij is not an edge of G, and χ is a coloring, as claimed.

Conversely, suppose we are given a coloring χ : V → {1, 2, . . . , k}. For 1 ≤ f ≤ k, define
hf to be the clause

∨
χ(i) 6=f xi, and define h = h1 ∧ h2 ∧ . . . ∧ hk. We claim that h is

consistent with s(G).

First, given a vertex i suppose that χ(i) = g. The clause hg is defined to contain only
those (non-negated) literals corresponding to vertices not colored g, and so xi does not
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occur in hg. It follows that hg(vi) = 0 and h(vi) = 0. Secondly, let ij be any edge of G.
For each color f , there is at least one of i, j which is not colored f ; denote an appropriate
choice by i(f). Then hf contains the literal xi(f), which is 1 on vi + vj. Thus every clause
hf is 1 on vi + vj, and h(vi + vj) = 1, as required. ut

Note that when k = 1, we have C1
n = Cn, and there is a polynomial time learning algorithm

for Cn dual to the monomial learning algorithm. The consistency problem (and hence
intractability of learning) remains, however, when k = 2: to show this, the consistency
problem can be related to the NP-complete set-splitting problem; see [22].

This hardness result is ‘representation-dependent’: part of the difficulty arises from the
need to output a formula in k-clause-CNF form. Now, any k-clause-CNF formula can
simply be rewritten as an equivalent k-DNF formula. So any function in Ck

n is also a
k-DNF function; that is, using the notation from earler, it belongs to Dn,k. But there
is a simple efficient PAC learning algorithm for Dn,k; see [30, 3]. So Ck

n is learnable if
the output hypotheses are permitted to be drawn from the larger class Dn,k (or, more
precisely, if the output formula is a k-DNF).
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[25] R. Servedio. On the Limits of Efficient Teachability. Information Processing Letters,
79(6), 2001: 267–272.

[26] S. Shelah. A combinatorial problem: Stability and order for models and theories in
infinitary languages. Pacific Journal of Mathematics, 41, 1972: 247–261.

[27] H. U. Simon. General bounds on the number of examples needed for learning prob-
abilistic concepts. Journal of Computer and System Sciences, 52(2), 1996: 239–254.

[28] J. M. Steele. Existence of submatrices with all possible columns. Journal of Com-
binatorial Theory, Series A, 24, 1978: 84–88.

[29] M. Talagrand. Sharper bounds for Gaussian and empirical processes. Annals of
Probability, 22, 1994: 28–76.

31



[30] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11), 1984:
1134–1142.

[31] V. N. Vapnik: Statistical Learning Theory, Wiley, 1998.

[32] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag,
New York, 1982.

[33] V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its Applications,
16(2), 1971: 264–280.

[34] Y. A. Zuev. Asymptotics of the logarithm of the number of threshold functions of
the algebra of logic. Soviet Mathematics Doklady, 39, 1989: 512–513.

32


