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Abstract

This report is an exposition of decision lists and threshold decision lists. The
key areas explored are the representation of Boolean functions by decision lists
and threshold decision lists; properties of classes of decision list; and algorithmic
questions associated with decision lists.

1 Introduction

Decision lists provide a useful way of representing Boolean functions. Just as every
Boolean function can be represented by a DNF formula, we shall see that every Boolean
function can also be represented by a decision list. This representation is sometimes more
compact. By placing restrictions on the type of decision list considered, we obtain some
interesting subclasses of Boolean functions. As we shall see, these subclasses have some
interesting properties, and certain algorithmic questions can be settled for them.

∗To appear as a chapter in Boolean Methods and Models (ed. Yves Crama and Peter L. Hammer).
This report replaces LSE-CDAM-2002-11
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2 Decision lists

2.1 Definition

Suppose that K be any set of Boolean functions on {0, 1}n, n fixed. We shall usually
suppose (for the sake of simplicity) that K contains the identically-1 function 1. A
Boolean function f with the same domain as K is said to be a decision list based on K if
it can be evaluated as follows. Given an example y, we first evaluate f1(y) for some fixed
f1 ∈ K. If f1(y) = 1, we assign a fixed value c1 (either 0 or 1) to f(y); if not, we evaluate
f2(y) for a fixed f2 ∈ K, and if f2(y) = 1 we set f(y) = c2, otherwise we evaluate f3(y),
and so on. If y fails to satisfy any fi then f(y) is given the default value 0.

The evaluation of a decision list f can therefore be thought of as a sequence of ‘if then

else’ commands:

if f1(y) = 1 then set f(y) = c1

else if f2(y) = 1 then set f(y) = c2

. . .

. . .
else if fr(y) = 1 then set f(y) = cr

else set f(y) = 0.

We define DL(K), the class of decision lists based on K, to be the set of finite sequences

f = (f1, c1), (f2, c2), . . . , (fr, cr),

such that fi ∈ K and ci ∈ {0, 1} for 1 ≤ i ≤ r. The values of f are defined by f(y) = cj

where j = min{i | fi(y) = 1}, or 0 if there are no j such that fj(y) = 1. We call each fj

a test (or, following Krause [15], a query) and the pair (fj, cj) a term of the decision list.

Decision lists were introduced by Rivest [19], where a key concern was to develop a learning
algorithm for them. (This is discussed later in this report.)

Note that we do not always draw a strong distinction between a decision list as a Boolean
function, and a decision list as a representation of a Boolean function. Strictly speaking,
of course, a decision list is a representation of a Boolean function, just as a DNF formula
is.
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There is no loss of generality in requiring that all tests fi occurring in a decision list are
distinct. This observation enables us to obtain the following bound:

|DL(K)| ≤
|K|∑
i=0

(
|K|
i

)
i!2i ≤ 2|K||K|!

|K|∑
i=0

1

(|K| − i)!
= 2|K||K|!

|K|∑
i=0

1

i!
≤ e2|K||K|!.

(Each decision list of length i is formed by choosing i functions of K, in a particular order,
and assigning a ci ∈ {0, 1} to each.)

Example: Suppose that K = M3,2, the set of monomials (that is, simple conjunctions or
terms) of length at most two in three Boolean variables. Consider the decision list

(x2, 1), (x1x̄3, 0), (x̄1, 1).

Those examples for which x2 is satisfied are assigned the value 1: these are 010, 011, 110, 111.
Next the remaining examples for which x1x̄3 is satisfied are assigned the value 0: the only
such example is 100. Finally, the remaining examples for which x̄1 is satisfied are assigned
the value 1: this accounts for 000 and 001, leaving only the example 101 which is assigned
the value 0. ut

Suppose that K = Mn,k is the set of monomials (or terms) consisting of at most k
literals, so each test is a simple conjunction of degree at most k. Then, following
Rivest [19], DL(K) is usually denoted k-DL and we call such decision lists k-decision
lists. (Krause [15] defines a k-decision list to be one in which each test involves at most
k variables, but such a decision list can be transformed into one in which the tests are in
Mn,k.)

Note that when K = Mn,k, we have |K| ≤ (2n)k and hence

|k-DL| = |DL(Mn,k)| ≤ 2(2n)k

e
(
(2n)k

)
! = 2O(nk log n),

for fixed k.

Later, we will want to consider K being the set of threshold functions, but unless it is
explicitly said so, K will either be Mn,k for some fixed k, or simply Mn, the set of all
monomials on n variables.
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2.2 Special types of decision list

By restricting the types of decision list considered, subclasses of decision list arise. We
have already witnessed this, when we considered the k-decision lists; these arise from
restricting the degree of each test in the decision list to be no more than k. Later in this
report we shall look more closely at the very special case in which k = 1.

Rather than restrict the degree of each individual test, a restriction could be placed
on the total number of terms in the decision list: an r-term decision list is (a function
representable by) a decision list in which the number of terms is no more than r. We can
also combine structural restrictions on decision lists. For example, the r-term k-DLs are
those k-DLs in which the number of terms is at most r. (So, here, there is a restriction
both on the number of terms, and on the degree of each test.)

As observed by Guijarro et al. [10], any function representable by a decision list with few
terms (but possibly high degree) is also representable by one with terms of low degree
(but possibly many terms).

Theorem 2.1 (Guijarro et al. [10]) Suppose that f : {0, 1}n → {0, 1} is (representable
by) a decision list with r terms. Then f is also (representable by) an r-decision list.

Proof: Suppose the decision list

f = (f1, c1), (f2, c2), . . . , (fr, cr)

is given, where, as we may assume, cr = 1. We construct an r-decision list g representing
the same function. First, for each choice of a literal from each of f1, . . . , fr, we have a
term of g of the form (T, 0), where T is the conjunction of the negations of these literals.
We take all such terms, in any order, as the first set of terms of g. Note that each such
T is of degree no more than r. For example, if f is the decision list

(x2, 1), (x̄1x4, 0), (x1x3, 1),

then take the first four terms of g, in any order, to be

(x̄2x1x̄1, 0), (x̄2x̄4x̄1, 0), (x̄2x1x̄3, 0), (x̄2x̄4x̄3, 0).
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(In fact, in this case the first term is vacuous and can be deleted.) Next, we consider in
turn each of the terms (fi, ci) as i is decreased from r to 2. Corresponding to fi, we form
terms (T, ci) of g by choosing a literal from each preceding term f1, . . . , fi−1 in f , and
forming the conjunction of the negations of these. (Note that these tests have degree no
more than i − 1, which is less than r.) If c1 = 0 we are then done; otherwise, we add
(1, 1) as the last term of g. For example, for the example decision list, a final suitable g
is as follows:

(x̄2x̄4x̄1, 0), (x̄2x1x̄3, 0), (x̄2x̄4x̄3, 0), (x̄2x1, 1), (x̄2x̄4, 1), (x̄2, 0), (1, 1).

(We have deleted the redundant first term created above). ut

Additionally, Bshouty [5] has obtained the following result, which gives a better depen-
dence on r (at the expense of some dependence on n).

Theorem 2.2 (Bshouty [5]) Suppose that f : {0, 1}n → {0, 1} is (representable by)
a decision list with r terms. Then f is also (representable by) a k-decision list, where
k = 4

√
n ln n ln(r + 1).

The proof of Bshouty’s theorem (which is omitted here) relates decision lists to certain
type of decision tree (in which the leaves are k-decision lists).

Another special type of decision list arises when the tests are required to be positive
monomials. Guijarro et al. [10] refer to such decision lists as monotone term decision
lists. Here, we shall instead call them positive-term decision lists. Note that, even though
the tests are positive, the overall function computed by the decision list need not be
positive. Guijarro et al. studied a number of aspects of this class, and, as we shall see
later, discovered that there are efficient algorithms for many problems associated with the
class.
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3 Representation of Boolean functions as decision

lists

3.1 DNF and decision list representations

We first state a relationship between k-decision lists and special classes of Boolean func-
tions. For any 1 ≤ n, k-DNF denotes the Boolean functions which have a DNF formula
in which each term is of degree at most k; dually, k-CNF denotes the set of functions
having a CNF representation in which each clause involves at most k literals.

The following result, noted by Rivest [19], is easily obtained.

Theorem 3.1 Let K be any set of Boolean functions. The disjunction of any set of
functions in K is a decision list based on K. Explicitly, f1 ∨ f2 ∨ · · · ∨ fr is represented
by the decision list

(f1, 1), (f2, 1), . . . , (fr, 1).

It follows immediately from this that any k-DNF function, as the disjunction of terms of
degree at most k, is also a k-decision list. It is easy to see, however, that, for 0 < k < n,
there are k-decision lists that are not k-DNF functions. For example, the function f with
formula x1x2 . . . xn is certainly not a k-DNF. (This is quite apparent: it has just one true
point, whereas any k-DNF has at least 2n−k ≥ 2 true points, since any one of its terms
does.) However, f can be expressed as the following 1-decision list:

(x̄1, 0), (x̄2, 0), . . . , (x̄n, 0), (1, 1).

If K contains the identically-1 function 1, then DL(K) is closed under complementation,
since

(f1, 1− c1), (f2, 1− c2), . . . (fr, 1− cr), (1, 1)

is the complement of
(f1, c1), (f2, c2), . . . , (fr, cr).
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Thus, in contrast to the DNF and CNF representations, the decision list representations
of a function and its negation are of the same size (but, possibly, for a difference of one
additional term).

In particular, since k-CNF functions are the complements of k-DNF functions, and since
k-DL contains k-DNF, we have that k-DL contains k-CNF also. (Here, by identifying
it as a monomial with no literals, we use also the fact that the identically-one function
belongs to K = Mn,k.) In fact, we have the following result, due to Rivest [19]. The fact
that the containment is strict demonstrates that the k-decision list representation is, in
fact, more powerful than k-DNF and k-CNF representations.

Theorem 3.2 (Rivest [19]) For n ≥ 2 and k ≥ 1,

k-DNF ∪ k-CNF ⊆ k-DL,

and the containment is strict for n > 2 and 0 < k < n.

Proof: The containment has been established in the arguments just given. It remains
to show that the containment is strict. We use the fact that if a Boolean function has a
prime implicant of degree s, then it does not belong to k-DNF for any k < s. We deal
first with the case k = 1. Consider the function f represented by the 1-decision list

(x1, 0), (x2, 1), (x3, 1).

Since f has x̄1x2 as a prime implicant, it is not in 1-DNF, and since the complement f̄ has
x̄2x̄3 as an implicant, f̄ is not in 1-DNF, and hence f is not in 1-CNF. Now suppose n > 2,
that 1 < k < n and that k is odd. (The case of even k can be treated similarly.) Let gk

denote the parity function on the first k variables x1, x2, . . . , xk (that is, the exclusive-or
of them), regarded as a function on {0, 1}n. Through its DNF representation, gk can be
represented by a k-decision list, `. Consider the function f : {0, 1}n → {0, 1} represented
by the k-decision list

(x̄1xk+1, 0), (x1xk+1, 1), `.

Then, f has degree-(k + 1) prime implicant x1x̄2x̄3 . . . x̄kx̄k+1, and so is not in k-DNF.
Furthermore, the complement of f is not in k-DNF (and hence f is not in k-CNF) because
the complement has degree-(k + 1) prime implicant x̄1x̄2 . . . x̄kx̄k+1. ut
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As an interesting example of decision list representation, consider the function fn, for
even n, with formula

fn = x1 ∧ (x2 ∨ (x3 ∧ (· · · (xn−1 ∧ xn) · · ·).

For example,
f6 = x1 ∧ (x2 ∨ (x3 ∧ (x4 ∨ (x5 ∧ x6)))).

The function fn is difficult to represent in DNF or CNF form: it is easily seen that
both fn and its complement have prime implicants of degree at least n/2, so fn cannot
be represented by a k-DNF or a k-CNF formula when k < n/2. However, fn is easily
represented by a 1-decision list, for

fn = (x̄1, 0), (x2, 1), (x̄3, 0), . . . , (xn−2, 1), (x̄n−1, 0), (x̄n, 0), (1, 1),

where we regard 1 as being represented by the empty monomial (with no literals). Note
that this example almost demonstrates the strictness part of Theorem 3.2, and is, more-
over, not just in k-DL, but in 1-DL.

The inclusion of k-DNF in k-DL shows that any Boolean function can be represented by a
decision list in which the tests are of sufficiently high degree; that is, n-DL is the set of all
Boolean functions on {0, 1}n. So, in this sense, the decision list representation is universal.
Simple counting will show that most Boolean functions need decision lists of high degree.
(As we see later, using a result on polynomial threshold functions, almost every Boolean
function needs tests of degree at least k ≥ bn/2c in any decision list representation.)

Explicit examples can also be given of functions which have reasonably compact repre-
sentations as decision lists, but which have very long DNF or CNF representations.

Let COMPn denote the function from {0, 1}2n → {0, 1} given by COMPn(x, y) = 1 if and
only if 〈x〉 > 〈y〉, where, for x ∈ {0, 1}n, 〈x〉 is the integer whose binary representation
is x. (Thus, 〈x〉 =

∑n
i=1 2n−ixi.) Then, as noted in [15], for example, COMPn can be

represented by a short decision list, but has no polynomial-sized DNF or CNF formula.
(It is not in the circuit complexity class AC0

2 .) A 2-DL representation of COMPn is

(x̄1y1, 0), (x1ȳ1, 1), (x̄2y2, 0), (x2ȳ2, 1), . . . , (x̄nyn, 0), (xnȳn, 1).
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3.2 Universality of positive-term decision lists

As we have seen, every Boolean function has a decision list representation, obtained
from any DNF representation of the function. If, moreover, the function is positive and
we use a positive DNF representation, then we can obtain a positive-term decision list
representation. But it is fairly easy to see that any Boolean function (positive or not),
can be represented by a positive-term decision list, as the following result of Guijarro et
al. [10] establishes.

Theorem 3.3 (Guijarro et al. [10]) Every Boolean function can be represented as a
positive-term decision list.

Proof: Suppose f is a given Boolean function, and construct a positive-term decision
list as follows. For y ∈ {0, 1}n, let Ty be the (positive) conjunction of all literals xi which
are true on y (meaning that yi = 1). Then, the first-term is (T11...1, f(11 . . . 1)); that is,
(x1x2 . . . xn, f(11 . . . 1)). The next n−1 terms consist (in any order) of all terms (Ty, f(y))
for those y having n−1 ones. We continue in this way, dealing with the y of weight n−2,
and so on, until we reach y = 00 . . . 0, so the final term of the decision list (if it is needed)
is (1, f(00 . . . 0)). Clearly, f is a positive-term decision list, and it computes f .

Note that the construction in this proof will result in a very long decision list (2n terms)
of high degree (n). Some subsequent reduction in size of the list may be possible, but
the question naturally arises as to how long a positive-term decision list representation
of a Boolean function is compared to, say, the standard DNF and CNF representations.
Guijarro et al. observed that there is a sequences of functions (fn) such that the shortest
length of a positive-term decision list representing fn is exponential in the number of terms
in the shortest DNF representation of fn; and that a corresponding result also holds for
CNF representations. On the other hand, Guijarro et al. (invoking results of Ehrenfeucht
and Haussler [6] and Fredman and Khachiyan [9]) also prove the following.

Theorem 3.4 (Guijarro et al. [10]) For a Boolean function f , let |f |dnf and |f |cnf

denote, respectively, the number of terms (clauses) in the shortest DNF (CNF) fomulae
representing f , and let |f | be the larger of these two measures. Then there is a positive-
term decision list representing f and having no more than |f |log2 |f | terms.
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4 Algorithmic aspects of decision lists

4.1 Membership problems

Recall that, for a class C of functions, the (functional) membership problem for C is as
follows.

membership(C)
Instance: A DNF formula φ
Question: Does the function f represented by φ belong to C?

A useful general result due to Hegedus and Megiddo [13] shows that membership(C)
is NP-complete for all classes C satisfying certain properties. The following definition
describes these properties.

Definition 4.1 Suppose that C = {Cn} is a class of Boolean functions. (Here, Cn maps
from {0, 1}n.) We say that a class C has the projection property if
(i) C is closed under restrictions (so, all restrictions of a function in C also belong to C);
(ii) For every n ∈ N, the identically-1 function 1 belongs to Cn;
(iii) There exists k ∈ N such that some Boolean function on {0, 1}k does not belong to
Ck.

Then, we have the following result.

Theorem 4.2 (Hegedus and Megiddo [13]) Suppose that C is a class of Boolean func-
tions having the projection property. Then membership(C) is NP-hard.

For any k < n, the class k-DL is easily seen to have the projection property, and hence the
membership problem MEMBERSHIP(k-DL) is NP-hard. (In fact, it is co-NP-complete;
see [8].) (The same is true of positive-term decision lists.)

However, in the case of 1-decision lists, Eiter et al. [8] have established that the member-
ship problem can be solved if the DNF is positive.
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Theorem 4.3 Deciding whether a positive DNF formula φ represents a function in 1-DL
can be solved in polynomial time.

4.2 Extending and learning decision lists

It is often important to determine, given a set T of points labelled ‘true’ and a set F
of points labelled ‘false’, whether there is a Boolean function in a certain class C that
is an extension of the partially defined Boolean function pdBf (T, F ). In other words,
the problem is to determine whether there is f ∈ C such that f(y) = 0 for y ∈ F and
f(y) = 1 for y ∈ T . In many applications, it is also important to produce such an
extension, efficiently. Rivest [19] developed the following learning algorithm. This takes
as input a sequence (or sample) s = ((y1, b1), . . . , (ym, bm)) of labelled points of {0, 1}n
(where yi ∈ {0, 1}n and bi ∈ {0, 1}), and finds, if one exists, a decision list in DL(K) that
is an extension of the sample (or, if you like, of the pdBf corresponding to the sample).
(We use an ordered sample of labelled points rather than simply two subsets T, F because
this is more natural in many learning contexts. However, it should be noted that the
decision list output by the following algorithm does not depend on the ordering of the
labelled points in the sample.)

The extension (or learning) algorithm may be described as follows. At each step in the
construction of the required decision list some of the examples have been deleted, while
others remain. The procedure is to run through K seeking a function g ∈ K and a bit c
such that, for all remaining points yi, whenever g(yi) = 1 then bi is the constant Boolean
value c. The pair (g, c) is then selected as the next term of the sequence defining the
decision list, and all the examples satisfying g are deleted. The procedure is repeated
until all the examples in s have been deleted.

Let {g1, g2, . . . , gp} be an enumeration of K. The algorithm is as follows.
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set I = {1, 2, . . . ,m}; j:= 1;

repeat

if for all i ∈ I, gj(yi) = 1 implies bi = c
then begin select (gj, c) ;

delete from I all i for which gj(yi) = 1;
j:= 1 end

else j:= j+1;

until I = ∅

Note, of course, that the way in which K is enumerated has an effect on the decision
list output by the algorithm: different orderings of the functions in K potentially lead to
different decision lists, as the following example demonstrates.

Example: Suppose we want to find a 2-decision list on five variables that is an extension
of the pdBf described by the following labelled sample:

s = ((y1, b1), (y2, b2), (y3, b3), (y4, b4), (y5, b5), (y6, b6))

= ((10000, 0), (01110, 0), (11000, 0), (10101, 1), (01100, 1), (10111, 1)) .

Suppose we list the functions of K = M5,2 in lexicographic (or dictionary) order, based
on the ordering x1, x2, x3, x4, x5, x̄1, x̄2, x̄3, x̄4, x̄5 of the literals. The first few entries in
the list are: the identically-1 monomial 1, x1, x1x2, x1x3. Then the algorithm operates
as follows. To begin, we select the first item from the list which satisfies the required
conditions. Clearly 1 will not do, because all the examples satisfy it but some have label
0 and some have label 1. Also x1 will not do, because (for example) y1 and y4 both satisfy
it but b1 6= b4. However, x1x2 is satisfied only by y3, and b3 = 0, so we select (x1x2, 0) as
the first term in the decision list, and delete y3. The subsequent steps are as follows:

• select (x1x3, 1), delete y4 and y6;

• select (x1, 0), delete y1;

• select (x2x4, 0), delete y2;

• select (1, 1), delete y5.

In this case the output decision list is therefore

(x1x2, 0), (x1x3, 1), (x1, 0), (x̄1x4, 0), (1, 1).
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Suppose instead that the functions in K = M5,2 were enumerated instead in such a
way that the smaller monomials came first; that is, we started with 1, then listed (in
lexicographic order) all monomials of length 1, then all of length 2:

1, x1, x2, x3, x4, x5, x̄1, x̄2, x̄3, x̄4, x̄5, x1x2, x1x3, x1x4, . . . .

In this case, the decision list output by the algorithm is the 1-decision list

(x5, 1), (x1, 0), (x4, 0), (x2, 1).

This is simpler, in the sense that it is a 1-decision list rather than a 2-decision list.

It is easily verified that both decision lists are indeed extensions of the pdBf given by the
sample. ut

Correctness of the algorithm in general is easily established [19, 2].

Theorem 4.4 Suppose that K is a set of Boolean functions containing the identically-1
function, 1. Suppose that s is a sample of labelled elements of {0, 1}n. If there is an
extension in DL(K) of the partially defined Boolean function described by s, then the
above algorithm will produce such an extension.

The extension algorithm is also efficient: when K = Mn,k, so that the class DL(K) is
k-DL, then the algorithm is easily seen to have running time O(mnk+1) for fixed k. There
is no guarantee, however, that the algorithm will necessarily produce a decision list that
is nearly as short as it could be, as Hancock et al. [12] have shown.

Eiter et al. [8] considered 1-decision lists in some detail and were able to find an improved
(that is, faster) extension algorithm. In fact, rather than a running-time of O(mn2),
their algorithm has linear running time O(mn). They also develop a polynomial delay
algorithm for generating all 1-decision list extensions of a pdBf (when such extensions
exist). Such an algorithm outputs, one-by-one, and without repetition, all extensions of
the pdBf in such a way that the running time between outputs is polynomial in nm.
(This is a reasonable requirement: to ask for the total time to generate all extensions to
be polynomial in mn would be inappropriate since the number of extensions may well be
exponential in mn.)

13



4.3 Algorithmic issues for positive-term decision lists

For positive-term decision lists, Guijarro et al. [10] have shown that a number of problems
which are intractable for general decision lists become efficiently solvable.

The following result is useful. It shows that the question of whether two positive-term
decision lists are equivalent (that is, represent the same function) can be resolved quite
simply.

Theorem 4.5 (Guijarro et al. [10]) There is an algorithm with running time O(n(p+
q)pq) which, given two positive-term decision lists on n variables, involving p and q tests,
decides whether or not the decision lists represent the same function.

Proof: Suppose the decision lists are L1, L2. For any test T from L1 and any test
S from L2, let y(T, S) ∈ {0, 1}n have ones in precisely those positions i for which xi

appears in T or S. Let f1, f2 be the functions computed by L1 and L2. Suppose f1 6= f2

and let z be such that f1(z) 6= f2(z). Let (T, c) be the first term of L1 ‘activated’ by z
(meaning that T is the first test in L1 passed by z), The first term of L2 activated by z
is then necessarily of the form (S, 1 − c). Then, as can easily be seen, f1(y(T, S)) = c
and f2(y(T, S)) = 1− c. Thus there exists tests T and S of L1, L2, respectively, such that
f1(y(T, S)) 6= f2(y(T, S)). Conversely, of course, if such T, S exist then f1 6= f2. So it
suffices to check, for each of the pq pairs (T, S), whether f1(y(T, S)) = f2(y(T, S)) and,
for each pair, this can be done in O(n(p + q)) time. ut

As Guijarro et al. observe, the existence of efficient algorithms for other problems follows
from this result. For example, to check whether a term is redundant (unecessary), simply
remove it and check the equivalence of the new decision list with the original. Furthermore,
to check whether a positive-term decision list represents a positive function, one can
remove from the list all redundant terms (using the redundancy-checking method just
described) and check whether the remaining terms all have label 1; they do so if and only
if the function is positive.
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5 Properties of 1-decision lists

5.1 Threshold functions and 1-decision lists

Recall that a Boolean function t defined on {0, 1}n is a threshold function if there are
w ∈ Rn and θ ∈ R such that

t(x) =

{
1 if 〈w, x〉 ≥ θ
0 if 〈w, x〉 < θ,

where 〈w, x〉 = wT x is the standard inner product of w and x. Given such w and θ, we
say that t is represented by [w, θ] and we write t← [w, θ]. The vector w is known as the
weight-vector, and θ is known as the threshold. We denote the class of threshold functions
on {0, 1}n by Tn. Note that any t ∈ Tn will satisfy t← [w, θ] for ranges of w and θ.

We have the following connection between 1-decision lists and threshold functions [7] (see
also [3]).

Theorem 5.1 Any 1-decision list is a threshold function.

Proof: We prove this by induction on the number of terms in the decision list. Note
that the identically-one function 1 is regarded as a monomial of length 0. Suppose, for
the base case of the induction, that a decision list has just one term, and is of the form
(xi, 1), or (x̄i, 1), or (1, 1), where 1 is the identically-1 function. (Note that if it were of
the form (xi, 0), (x̄i, 0), or (1, 0) then, since a decision list outputs 0 by default, the term
is redundant, and the decision list computes the identically-0 function, which is certainly
a threshold function.) In the first case, the function may be represented as a threshold
function by taking the weight-vector to be (0, . . . , 0, 2, 0, . . . , 0), where the non-zero entry
is in position i, and by taking the threshold to be 1. In the second case, we may take
weight-vector (0, . . . , 0,−2, 0, . . . , 0) and threshold −1. In the third case, the function is
the identically-1 function, and we may take as weight-vector the all-0 vector, and threshold
0. Assume, as the inductive hypothesis, that any decision list of length r is a threshold
function, and suppose we have a decision list of length r + 1,

f = (`1, c1), (`2, c2), . . . , (`r+1, cr+1),
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where each `i is a literal, possibly negated. We shall assume, without any loss of generality
(for one can simply rename the variables or, equivalently, permute the entries of the weight
vector), that `1 = x1 or x̄1. By the induction hypothesis, the decision list

(`2, c2), . . . , (`r+1, cr+1)

is a threshold function. Suppose it is represented by weight-vector w = (w1, . . . , wn) and
threshold θ, and let ‖w‖1 =

∑n
i=1 |wn| be the 1-norm of w. There are four possibilities

for (`1, c1), as follows:
(x1, 1), (x1, 0), (x̄1, 1), (x̄1, 0).

Denoting by e1 the vector (1, 0, . . . , 0), and letting M = ‖w‖1 + |θ|+ 1, we claim that the
decision list f is a threshold function represented by the weight-vector w′ and threshold
θ′, where, respectively,

w′ = w + Me1, θ′ = θ,

w′ = w −Me1, θ′ = θ,

w′ = w −Me1, θ′ = θ −M,

w′ = w + Me1, θ′ = θ + M.

This claim is easy to verify in each case. Consider, for example, the third case. For
x ∈ {0, 1}n,

〈w′, x〉 = 〈w −Me1, x〉 = 〈w, x〉 −Mx1,

and therefore 〈w′, x〉 ≥ θ′ = θ −M if and only if

〈w, x〉 −Mx1 ≥ θ −M.

If x1 = 0 (in which case the decision list outputs 1), this inequality becomes 〈w, x〉 ≥ θ−M .
Now, for any x ∈ {0, 1}n, −‖w‖1 ≤ 〈w, x〉 ≤ ‖w‖1, and

θ −M = θ − (‖w‖1 + |θ|+ 1) = −‖w‖1 − 1 + (θ − |θ|) ≤ −‖w‖1 − 1 < −‖w‖1,

so in this case the inequality is certainly satisfied, and the output of the threshold function
is 1, equal to the output of the decision list. Now suppose that x1 = 1. Then the inequality

〈w, x〉 −Mx1 ≥ θ −M

becomes 〈w, x〉−M ≥ θ−M , which is 〈w, x〉 ≥ θ. But, by the inductive assumption, the
decision list

f ′ = (`2, c2), . . . , (`r+1, cr+1)
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is a threshold function represented by the weight-vector w and threshold θ. So in this
case, the output of the threshold function is 1 if and only if the output of decision list
f ′ is 1, which is exactly how f calculates its output in this case. So we see that this
representation is indeed correct. The other cases can be verified similarly.

5.2 Characterizations of 1-decision lists

Eiter et al. [8] obtain some results relating the class of 1-decision lists closely to other
classes of Boolean function. To describe their results, we need to recall a few more
definitions concerning Boolean functions.

For i between 1 and n, let ei ∈ {0, 1}n have ith entry 1 and all other entries 0. Then,
recall that a Boolean function is said to be 2-monotonic if for each pair i and j between
1 and n, either

for all x with xi = 0 and xj = 1, f(x) ≤ f(x + ei − ej),

or
for all x with xi = 0 and xj = 1, f(x) ≥ f(x + ei − ej).

It is easily seen that threshold functions are 2-monotonic. (However, there are 2-monotonic
functions that are not threshold functions.)

A Boolean function is read-once if there is a Boolean formula representing f in which each
variable appears at most once. (So, for each j, the formula contains either xj at most
once, or x̄j at most once, but not both.)

A DNF formula is Horn if each term contains at most one negated literal and a function
is said to be Horn if it has a representation as a Horn DNF. Given a class H of Boolean
functions, the renaming closure of H is the set of all Boolean functions obtained from H
by replacing every occurrence of some literals by their complements. (For example, we
might replace every x1 by x̄1 and every x̄1 by x1.)

Eiter et al. [8] obtained the following characterisations (among others):

Theorem 5.2 The class 1-DL coincides with the following classes:
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• the class of all 2-monotonic read-once functions;

• the class of all read-once threshold functions;

• the renaming closure of the class of functions f such that f and f̄ are Horn.

In particular, while Theorem 5.1 establishes that 1-decision lists are threshold functions,
the theorem just given states that the 1-decision lists are precisely those threshold func-
tions that are also read-once.

Eiter et al. show that these characterisations do not extend to k-DL for k > 1. They do,
however, have one characterisation of k-DL. Given a class H of Boolean functions, the
class of nested differences of H is defined as the set of all Boolean functions of the form

h1 \ (h2 \ (. . . (hl−1 \ hl)))

for h1, h2, . . . , hl ∈ H. Eiter et al. prove that k-DL coincides with the nested differences of
clauses with at most k-literals. (They show too that k-DL is the set of nested differences
of k-CNF.)

For k > 1, k-decision lists are not necessarily threshold functions, but they can be de-
scribed in terms of polynomial threshold functions, a convenient generalization of threshold
functions. Theorem 5.1 shows that 1-decision lists are threshold functions. An analogous
argument establishes the following.

Theorem 5.3 Any k-decision list is a polynomial threshold function of degree k.

It was noted in [1] that almost every Boolean function has threshold order at least bn/2c.
This, together with Theorem 5.3, means that almost every Boolean function will need
k ≥ bn/2c in order to be in k-DL.
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6 Threshold decision lists

6.1 Definition and geometrical interpretation

We now consider the class of decision lists in which the individual tests are themselves
threshold functions. We shall call such decision lists threshold decision lists, but they have
also been called neural decision lists [16] and linear decision lists [21].

Suppose we are given the points in {0, 1}n, each one labelled by the value of a Boolean
function f . Of course, since there are very few threshold functions, it is unlikely that the
true and false points of f can be separated by a hyperplane. One possible alternative is to
try a separator of higher degree, representing f as a polynomial threshold function. Here
we consider a different approach, in which we successively ‘chop off’ like points (that is,
points all possessing the same label). We first use a hyperplane to separate off a set of
points all having the same classification (either all are true points or all are false points).
These points are then removed from consideration and the procedure is iterated until no
points remain. For simplicity, we assume that at each stage, no data point lies on the
hyperplane. This procedure is similar in nature to one of Jeroslow [14], but at each stage
in his procedure, only positive examples may be ‘chopped off’ (not positive or negative).
We give one example for illustration.

Example: Suppose the function f is the parity function, so that the true points are
precisely those with an odd number of ones. We first find a hyperplane such that all
points on one side of the plane are either positive or negative. It is clear that all we can
do at this first stage is chop off one of the points since the nearest neighbours of any given
point have the opposite classification. Let us suppose that we decide to chop off the origin.
We may take as the first hyperplane the plane with equation y1 + y2 + · · · + yn = 1/2.
(Of course, there are infinitely many other choices of hyperplane which would achieve the
same effect with respect to the data points.) We then ignore the origin and consider the
remaining points. We can next chop off all neighbours of the origin, all the points which
have precisely one entry equal to 1. All of these are positive points and the hyperplane
y1 + y2 + · · ·+ yn = 3/2 will separate them from the other points. These points are then
deleted from consideration. We may continue in this manner. The procedure iterates n
times, and at stage i in the procedure we ‘chop off’ all data points having precisely (i−1)
ones, by using the hyperplane y1+y2+ · · ·+yn = i−1/2, for example. (These hyperplanes
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are in fact all parallel, but this is not necessary.) ut

Note that, by contrast, Jeroslow’s method [14] (described above) requires 2n−1 iterations
in this example, since at each stage it can only ‘chop off’ one positive point.

We may regard the chopping procedure as deriving a representation of the function by
a threshold decision list. If, at stage i of the procedure, the hyperplane with equation∑n

i=1 wiyi = θ chops off true (false) points, and these lie on side of the hyperplane with
equation

∑n
i=1 wiyi > θ, then we take as the ith term of the threshold decision list the

pair (fi, 1) (respectively, (fi, 0)), where fi ← [w, θ]; otherwise we take the ith term to be
(gi, 1) (respectively, (gi, 0)), where gi ← [−w,−θ].

If one applies this construction to the series of hyperplanes resulting from the Jeroslow
method, a restricted form of decision list results—one in which all terms are of the form
(fi, 1). But, as we saw earlier, such a decision list is quite simply the disjunction f1∨f2∨. . ..
The problem of decomposing a function into the disjunction of threshold functions has
been considered also by Hammer et al. [11] and Zuev and Lipkin [22]. Hammer et al.
defined the threshold number of a Boolean function to be the minimum s such that f is
a disjunction of s threshold functions, and they showed that there is a positive function
with threshold number

(
n

n/2

)
/n. Zuev and Lipkin [22] showed that almost all positive

functions have threshold number of this order, and that almost all Boolean functions
have a threshold number that is Ω(2n/n) and O(2n ln n/n).

The decision lists arising from the chopping procedure are more general than disjunctions
of threshold functions, just as k-decision lists are more general than k-DNF. Such threshold
decision lists may provide a more compact representation of the function. (That is, since
fewer hyperplanes might be used, the decision list could be smaller.)

6.2 Algorithmics and heuristics of the chopping procedure

The chopping procedure described above was in some ways merely a device to help us see
that threshold decision lists have a fairly natural geometric interpretation. Furthermore,
since all points of {0, 1}n are labelled, it is clear that the method, if implemented, would
generally be inefficient. However, if only some of the points are labelled, so that we have
a partially-defined Boolean function, then the chopping procedure might constitute a
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heuristic for building a threshold decision list extension of the pdBf. This was considered
by Marchand and Golea [16]. (See also [17].) Marchand et al. derive a greedy heuristic for
constructing a sequence of ‘chops’. This relies on an incremental heuristic for the NP-hard
problem of finding at each stage a hyperplane that chops off as many remaining points as
possible. Reports on the experimental performance of their method can be found in the
papers cited.

7 Threshold network representations

We now show how we can make use of the chopping procedure to find a threshold network
(the simplest type of artificial neural network) representing a given Boolean function.
We use linear threshold networks having just one hidden layer. Such a network will
consist of k ‘hidden nodes’, each of which computes a threshold function of the n inputs.
The (binary-valued) outputs of these hidden nodes are then used as the inputs to the
output node, which calculates a threshold function of these. Thus, the neural network
computes a threshold function of the outputs of the k threshold functions computed by
the hidden nodes. If the threshold function computed by the output node is described by
weight-vector β ∈ Rk and threshold φ, and the threshold function computed by hidden
node i is fi ← [w(i), θ(i)], then the threshold network as a whole computes the function
f : Rn → {0, 1} given by

f(y) = 1⇐⇒
k∑

i=1

βifi(y) > φ;

that is,

f(y1y2 . . . yn) = sgn

(
k∑

i=1

βk sgn

(
n∑

j=1

w
(i)
j yj − θ(i)

)
− φ

)
,

where sgn(x) = 1 if x > 0 and sgn(x) = 0 if x < 0.

It is well-known that any Boolean function can be represented by a linear threshold
network with one hidden layer (albeit with potentially a large number of nodes in the
hidden layer). The standard way of doing so is based on the function’s disjunctive normal
form.

The threshold decision list representation of a function gives rise to a different method of
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representing Boolean functions by threshold networks.

We have seen that a 1-decision list is a threshold function and that a k-decision list is
a polynomial threshold function of degree k. In an easy analogue of this, we see that
any threshold decision list is a threshold function of threshold functions. But a threshold
function of threshold functions is nothing more than a two-layer threshold network of
the type considered here. So, by representing a function by a threshold decision list
and then representing this as a threshold function over the threshold functions in the
decision list, we obtain another method for finding a threshold network representation
of a Boolean function. It is clear that the resulting representation is in general different
from the standard DNF-based one. For example, the standard representation of the
parity function on {0, 1}n will require a neural network with 2n−1 hidden units, whereas
the representation derived from the procedure described here will require only n hidden
units.

Marchand et al. [16] drew attention to (essentially) this link between threshold decision
lists and threshold networks. (Their networks were, however, slightly different, in that
they had connections between nodes in the hidden layer.)

8 Representational power of threshold decision lists

8.1 A function with long threshold decision list representation

Turan and Vatan gave a specific example of a function with a necessarily long threshold
decision list representation. The inner-product modulo 2 function IP2 : {0, 1}2n → {0, 1}
is given by IP2(x, y) =

⊕n
i=1 xiyi, for x, y ∈ {0, 1}n, where

⊕
denotes addition modulo 2.

Turan and Vatan proved the following.

Theorem 8.1 In any threshold decision list representation of IP2, the number s of terms
satisfies s ≥ 2n/2 − 1.
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8.2 Multi-level threshold functions

We saw in the earlier example that the parity function can be represented by a threshold
decision list with n terms. We also noted that the hyperplanes in that example were
parallel. By demanding that the hyperplanes are parallel, we obtain a special subclass
of threshold decision lists, known as the multi-level threshold functions. These have been
considered in a number of papers, such as [4, 18, 20], for instance.

We define the class of s-level threshold functions to be the set of Boolean functions repre-
sentable by a threshold decision list of length at most s and having the test hyperplanes
parallel to each other.

Geometrically, a Boolean function is an s-level threshold function if there are s paral-
lel hyperplanes with the property that the s + 1 regions defined by these hyperplanes
each contains only true points or only false points. Equivalently (following Bohossian and
Bruck [4]), f is an s-level threshold function if there is a weight-vector w = (w1, w2, . . . , wn)
such that

f(x) = F

(
n∑

i=1

wixi

)
,

where the function F : R→ {0, 1} is piecewise constant with at most s + 1 pieces.

Bohossian and Bruck observed that any Boolean function is a 2n-level threshold function,
an appropriate weight-vector being w = (2n−1, 2n−2, . . . , 2, 1). For that reason, they paid
particular attention to the question of whether a function can be computed by a multi-
level threshold function where the number of levels is polynomial. A related question
considered by Bohossian and Bruck is whether a function can be computed by such a
function, with polynomial weights (in addition to the restriction that the number of levels
be polynomial).

It was explained earlier that, through the chopping procedure, a threshold decision list
and, subsequently, a threshold network, could be produced representing a given Boolean
function. The translation from threshold decision list to threshold network is established
by an analogue of Theorem 5.1. From the proof of that theorem, it emerges that the
weights in the resulting threshold network are, necessarily, exponential in size. It is often
useful to focus on networks of the same structure, which is to say, having one ‘hidden’
layer, but which are restricted to have integer weights polynomial in n. (Any such network
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can, insofar as it is regarded as computing a Boolean function, be assumed to have integer
weights: we can simply scale up rational weights appropriately; and there is never a need
for irrational weights since the domain is discrete.) The class of functions that can be
computed by threshold networks with one hidden layer (that is, of depth 2) is denoted
LT2, and the subset of those in which the (integer) weights can be polynomial in the
number of inputs (or variables), n, is denoted L̂T2. Let LTM denote the set of Boolean
functions f (or, more precisely, the set of sequences of Boolean functions (fn) where
f maps from {0, 1}n) that can be computed by a multi-level threshold function with a
polynomial number of levels. Then the following inclusion is valid.

Theorem 8.2 (Bohossian and Bruck [4]) Let LTM denote the set of Boolean func-
tions realisable by multi-level threshold functions with a polynomial number of levels. Then
LTM ⊆ L̂T2.

Bohossian and Bruck also obtain ‘separation’ results, which show that there are func-
tions in L̂T2 but not in LTM; and that there are functions in LTM, but which are not
representable with polynomial-sized weights.

9 Conclusions

In this report, we have looked at decision lists, a powerful and versatile way of representing
Boolean functions. Decision lists have a number of interesting properties. There are,
moreover, efficient algorithms for certain problems associated with classes of decision
list. Allowing decision lists to be based on threshold functions allows greater generality,
and draws connections with threshold networks. There are still many open problems
concerning decision lists, particularly, threshold decision lists.
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