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Abstract

This paper concerns classification by Boolean functions. We investigate
the classification accuracy obtained by standard classification techniques on
unseen points (elements of the domain, {0, 1}n, for some n) that are similar,
in particular senses, to the points that have been observed as training obser-
vations. Explicitly, we use a new measure of how similar a point x ∈ {0, 1}n

is to a set of such points to restrict the domain of points on which we offer
a classification. For points sufficiently dissimilar, no classification is given.
We report on experimental results which indicate that the classification ac-
curacies obtained on the resulting restricted domains are better than those
obtained without restriction. These experiments involve a number of standard
data-sets and classification techniques. We also compare the classification ac-
curacies with those obtained by restricting the domain on which classification
is given by using the Hamming distance.
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1 Introduction

In [4], the authors proposed a way of measuring the similarity s(x,A) of a Boolean
vector x to a set A of such vectors. The measure is based on the absence of certain
substrings of x from the set of vectors in A. In the context of machine learning
classification problems, we may think ofA as a training data-set, a set of observations
on which we know the correct classifications. For example, each observation in the
data set might arise from a set of medical tests on a patient and may represent,
suitably encoded, the absence or presence—or degree of presence—of a number of
symptoms the patient may have. In this context, the similarity measure provides a
plausible way of deciding which unseen possible observations it would be credible to
classify with some confidence once a classifier has been found that correctly classifies
all (or most of) the observations in the training data-set.

Elegant and useful theories of classification error and confidence have been devel-
oped, but these usually make probabilistic assumptions about the way in which the
observations have been generated. Specifically, the PAC model of learning and its
variants (see, for instance [19, 21, 5, 2, 10]) assume that each observation in the data
set has been chosen independently of the others, at random, according to a fixed
probability distribution on {0, 1}n, the set of all conceivable observations. Vovk et
al. [23, 24, 20] have studied on-line learning in which one wants not only to predict
classifications, but to give some indication of how ‘credible’ such predictions are, or
not to predict if the predictions are not to be credible; and this is similar to the
type of application we have in mind for the similarity measure. But in these papers,
it is also assumed that the observations are generated independently according to
the same probability distribution. In practice, what can one do without such proba-
bilistic assumptions? It may be hard to prove anything sensible about classification
accuracy in this case. Nonetheless, it might be at least useful not only to determine
a classifier and to classify unseen observations with it, but also to attach to such
predicted classifications the indication s(x,A) of how similar the observation x is to
those in the training data-set. Equally, one may decide not to classify at all those
unseen observations that have a low similarity with the training data-set. This
paper reports on empirical investigations that suggest that a higher classification
accuracy is then achieved on the region of the domain {0, 1}n on which we do decide
to classify.
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2 A Measure of Similarity

2.1 Definitions

Suppose x ∈ {0, 1}n, I ⊆ [n] = {1, 2, . . . , n}, and |I| = k. Then the projection of x
onto I is the k-vector obtained from x by considering only the coordinates in I. For
example, if n = 5, I = {2, 4} and x = 01001 then x|I = 10.

By a positional substring of x ∈ {0, 1}n, we mean a pair (z, I) where z = x|I . The
key point here is that the coordinates in I are specified: we will want, as part of
our later definitions, to indicate that two vectors x and y have the same entries
in exactly the same places, as specified by some I ⊆ [n]. For instance, although
both x = 10101 and y = 01010 have substrings equal to 00, there is no I such that
x|I = y|I = 00.

We now give the definition of similarity from [4].

Definition 2.1 For A ⊆ {0, 1}n and x ∈ {0, 1}n, the similarity of x to A, s(x,A),
is defined to be the largest s such that every positional substring (x, I) of length s

appears also as a positional substring (y, I) of some observation y ∈ A. That is,

s(x,A) = max{s : ∀I ⊆ [n], |I| ≤ s,∃y ∈ A, y|I = x|I}.

Here x|I denotes the projection of x onto the coordinates indicated by I.

Equivalently, if r is the smallest length of a positional substring possessed by x that
does not appear (in the same positions) anywhere in A, then s(x,A) = r − 1.

Notice that s(x,A) is a measure of how similar x is to a set of vectors. It is not a
metric or distance function. It can immediately be seen, indeed, that if A consists
solely of one vector y, not equal to x, then s(x,A) = 0, since there must be some
coordinate on which x and y differ (and hence a positional substring of length 1 of
x that is absent from A).

Informally, the similarity of x to A is low if x has a short positional substring
absent from A; and the similarity is high if all positional substrings of x of a fairly
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large length can be found in the same positions in some y ∈ A. To use the medical
analogy discussed earlier, if x has a small combination of symptoms (that is, a simple
syndrome) that does not appear in any of the patients in the set A then x has low
similarity to A. Conversely, if x 6∈ A then, certainly, it has some positional substring
absent from A (as this is trivially true for the case I = [n]), but if the smallest such
substring is long, then all simple syndromes indicated in x can be found among
the patients of A. In this sense, x is similar to previously observed patients. One
might expect that the presence or absence of a medical condition in a patient would
be indicated by the patient having certain syndromes, and that short syndromes
might carry more weight in such an explanation. For this reason, if a patient has a
small syndrome not previously seen, one may want to be cautious in diagnosing the
patient; whereas if all short syndromes possessed by the patient appear somewhere
in the previously observed patients, one might have more confidence in a diagnosis
on that patient.

This definition of similarity requires the elements of A to be binary vectors. However,
in many applications, the raw data that we work with in a particular classification
problem might be more naturally encoded as a real-valued vector. In such cases, the
data may be transformed into binary data through a process known as binarization
(see [6] for example). The transformed data set may then be simplified or cleaned in
a variety of ways, by the removal of repeated points, for instance, and the deletion of
coordinates found to be statistically insignificant in determining the classification.

2.2 A Boolean function formulation

Any Boolean function f : {0, 1}n → {0, 1} can be expressed by a disjunctive normal
formula (or DNF), using literals u1, u2, . . . , un, ū1, . . . , ūn, where the ūi are known
as negated literals. A disjunctive normal formula is one of the form

T1 ∨ T2 ∨ · · · ∨ Tk,

where each Tl is a term of the form

Tl =

(

∧

i∈P

ui

)

∧

(

∧

j∈N

ūj

)

,

for some disjoint subsets P,N of {1, 2, . . . , n}. A Boolean function is said to be a
k-DNF if it has a disjunctive normal formula in which, for each term, the number
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of literals (|P ∪ N |) is at most k. Such a function is said to be an l-term k-DNF
if, additionally, it has a k-DNF formula in which the number of terms is at most l.
For two Boolean functions f and g, we write f ≤ g if f(x) ≤ g(x) for all x; that
is, if f(x) = 1 implies g(x) = 1. Similarly, for two Boolean formulae φ, ψ, we shall
write φ ≤ ψ if, when f and g are the functions represented by φ and ψ, then f ≤ g.
A term T of a DNF is said to absorb another term T ′ if T ′ ≤ T . A term T is an
implicant of f if T ≤ f ; in other words, if T true implies f true. The terms in any
DNF representation of a function f are implicants of f . The most important type
of implicants are the prime implicants. These are implicants with the additional
property that there is no other implicant of f absorbing T . Thus, a term is a prime
implicant of f if it is an implicant, and if the deletion of any literal from T results
in a non-implicant T ′ of f (meaning that there is some x such that T ′(x) = 1 but
f(x) = 0). If we form the disjunction of all prime implicants of f , we have a DNF
representation of f .

Given A, we can define n+1 Boolean functions g0, g1, . . . , gn, as follows. The function
g0 is taken to be the identically-0 function and, for 1 ≤ k ≤ n, gk is the ‘largest’
k-DNF function that is 0 on every member of A, in the sense that if f is a k-DNF
function and f(x) = 0 for all x ∈ A then f ≤ gk. It can be seen that gk is the
disjunction of all terms corresponding to positional substrings of length at most k
that are not present in any element of A. For example, if the positional substring
(10, {2, 4}) is not in A (that is, there is no y ∈ A with y{2,4} = 10) then, for k ≥ 2,
gk will have as a term u2ū4.

Note that s(x,A) ≥ r if and only if gr(x) = 0. For a subset B of {0, 1}n we denote
by IB the characteristic function of B, satisfying IB(x) = 1 ⇐⇒ x ∈ B. Then, as
noted in [4], if Ā denotes the complement {0, 1}n \ A of A, we have

0 ≡ g0 ≤ g1 ≤ g2 ≤ · · · ≤ gn−1 ≤ gn = IĀ.

2.3 Computing similarity

One approach to computing the similarity is to compute the functions gk and use
the fact that, for a given x, s(x,A) ≥ k precisely if gk(x) = 0. For fixed k, a k-
DNF formula for gk can be computed in time O(|A|nk) by using what is essentially
Valiant’s k-DNF learning algorithm [19, 3]. This proceeds as follows. Start with all
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terms of degree at most k and run through each observation in A in turn, deleting
from the current set of terms those that are true on the current observation. Then,
the disjunction of the remaining terms is gk. Given any x, one can now determine
whether s(x,A) ≥ k by establishing whether gk(x) = 0. Of course, this algorithm is
only efficient for (small) fixed k, not depending on n.

The problem of determining similarity can also be posed as a set covering problem.
Note first that if we can determine the shortest positional substring possessed by
x and absent from A, then s(x,A) is one less than the length of this string. Now,
fix x ∈ {0, 1}n, and suppose x 6∈ A (it being easy to check quickly whether x ∈ A).
For i = 1, 2, . . . , n, let Si = {y ∈ A : yi 6= xi}. Then the smallest I such that for
all y ∈ A, y|I 6= x|I is exactly the smallest number of sets Si needed to cover A.
The standard greedy set-covering heuristic will therefore provide an efficient way
of determining a number s′(x,A) such that s′(x,A) ≤ s(x,A) ln |A|, enabling us at
least to lower-bound the similarity.

2.4 Example

Example Suppose the set A consists of the following 10 points of {0, 1}5.

1 0 1 1 1
0 0 0 1 1
1 1 1 1 1
1 1 1 0 1
1 1 1 0 0
1 0 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 1 0 1
1 0 1 0 0

Note, first, that no x can have s(x,A) = 0, since this could only happen if, on one of
the five coordinates, all elements of A had a fixed value, either 0 or 1. Consider any
x of the form x = 01x3x4x5. Since there is no y ∈ A with y|{1,2} = x|{1,2} = 01, we
have s(x,A) = 1. Consider, however, x = 10101. For this x, we have s(x,A) = 3,
because all (positional) substrings of x of length 3 belong to A, but there is no y ∈ A
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such that y|{1,2,4,5} = x|{1,2,4,5} = 1001. Suppose now that x = 00001. Then, since
all (positional) substrings of x of length 2 appear in A, s(x,A) ≥ 2. However, there
are substrings of length 3 missing from A: for example, there is no y ∈ A with
y|{1,3,4} = x|{1,3,4} = 000. So s(x,A) = 2.

3 Hierarchies based on similarity and relationship

with Hamming distance

The similarity measure provides a way of filtering, or grading, {0, 1}n according to
similarity to a given set A. For 0 ≤ k ≤ n, let

Ak = {x ∈ {0, 1}n : s(x,A) ≥ k}

be the set of Boolean vectors which have similarity at least k to A. Then we have
the following hierarchy:

{0, 1}n = A0 ⊇ A1 ⊇ · · · ⊇ An−1 ⊇ An = A.

So, for large k, Ak is the set of vectors highly similar to A. Suppose that, in a
machine learning problem, A is a training data-set. We might then decide to form
a classifier of a particular type, using a particular learning algorithm, on the basis
of A, but not to use it to predict classifications outside Ak for a particular choice of
k. The rationale for this would be that vectors in {0, 1}n \ Ak are judged to be too
dissimilar to those in A. In this paper we explore empirically whether this is a good
strategy.

For a particular A, the hierarchy will typically look as follows:

{0, 1}n = A0 = · · · = Ap ⊃ Ap+1 ⊇ · · · ⊇ Ae ⊃ Ae+1 = · · · = An−1 = An = A,

where ‘⊃’ denotes strict containment. (This is modified in the obvious way if p = e.
Here, p = p(A) is the ‘pervasiveness’ of A and e = e(A) is the ‘extent’ of A, as defined
in [4].) In terms of the Boolean functions gk, we can see that Ak has characteristic
function ḡk, the complement of gk. The set Ak can also be thought of geometrically:
if Bk is the union of all (n− k)-dimensional cubes that are contained entirely in the
complement of A, then Ak = B̄k is the complement of Bk. That is, Ak is obtained
by deleting from {0, 1}n all cubes of co-dimension k that lie entirely outside A.
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Another very natural way to measure how ‘similar’ a given x ∈ {0, 1}n is to A ⊆
{0, 1}n is to consider its Hamming distance. Recall that the Hamming distance
d(x, y) between x, y in {0, 1}n is the number of entries on which they differ; and that,
for A ⊆ {0, 1}n, the Hamming distance of x to the set A is defined by d(x,A) =
min{d(x, y) : y ∈ A}. This leads, in a similar way, to a hierarchy of subsets of
{0, 1}n: if for 0 ≤ k ≤ n, we let Dk = {x ∈ {0, 1}n : d(x,A) ≤ n− k}, then we have
the hierarchy

{0, 1}n = D0 ⊇ D1 ⊇ · · · ⊇ Dn−1 ⊇ Dn = A.

It can be shown [4] that, for all k, Ak ⊆ Dk. So, in this sense, the hierarchy resulting
from the use of similarity is a refinement of that resulting from Hamming distance.
However, the two approaches are quite different. For example, as shown in [4], if
Ak 6= {0, 1}n, then {0, 1}n \ Ak contains an element of {0, 1}n that is at Hamming
distance only 1 from A.

4 Classification accuracy and similarity

In this paper we explore, experimentally, the extent to which it appears that, on
standard data-sets, standard learning algorithms produce more accurate classifica-
tions on unseen instances that have high similarity to those in a training set. We
assume, therefore, that there is some underlying target concept c : {0, 1}n → {0, 1}
that represents the ‘true’ classifications of all x ∈ {0, 1}n. What we see when we
learn is a subset A ⊆ {0, 1}n together with the corresponding values of c(y) for
y ∈ A. On the basis of the training data-set and its classifications, we then pro-
duce a hypothesis h : {0, 1}n → {0, 1} that we hope to be a good approximation to
c. Typically, we might aim to produce, using one of a standard range of learning
algorithms, a function h such that h(y) = c(y) for all y ∈ A. Such a hypothesis
is said to be consistent with the target concept on A (so that h is an extension
of c). Ideally, we would hope that for many other points of {0, 1}n (not in A),
we would also have h(x) = c(x). This has been thoroughly modelled and investi-
gated within computational (or statistical) learning theory (see [19, 21, 5, 2, 10] for
instance). However, as mentioned earlier, the theoretical results of computational
learning theory require probabilistic assumptions about the way in which the data
set is generated. Therefore, rather than require, as there, that highly probable in-
stances be classified correctly, we might ask whether highly similar instances will be
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classified correctly by our hypothesis. That is, can we be sure that if the similarity
of x to A is sufficiently high, then h(x) will indeed be correct?

There is some theoretical evidence that such an approach might work. Veal [22] has
shown that if there is a ‘simple’ underlying target concept, and if we use an algorithm
that produces a simple classifier, then the classifications given to instances with
sufficiently high similarity to the training data-set will be correct. More precisely,
suppose the target concept, c, is an l-term k-DNF function and that the data-set is
A. Suppose also that we have a hypothesis h which is an l′-term k′-DNF function
and is consistent with the target concept on A. Then, for any x ∈ {0, 1}n, if
s(x,A) ≥ max{l′+k, l+k′}, then h(x) = c(x). Of course, we don’t necessarily know
a priori bounds on k and l, so this is not in practice necessarily very useful. However,
it does show that if the similarity is sufficiently high, we will classify correctly. One
might be tempted to think that, generally, an instance with a higher similarity to
A is more likely to be correctly classified that one with a lower similarity. In the
notation used above, this would mean that if r > s then the proportion of points
in Ar misclassified by h would be smaller than the proportion of points in As that
are misclassified by h. We investigate experimentally, on standard data sets and
using standard learning algorithms, whether this might be the case, and it does
generally appear to be, at least for such standard data-sets. However, as shown
in [22], it is possible to construct examples in which such a relationship does not
hold: there is a target concept c and a training data-set A and hypothesis h such
that h is consistent with c on A (that is, in an extension of c), but such that all the
instances misclassified by h are of higher similarity that those correctly classified.
It will not, therefore, be true in general that higher similarity necessarily implies
higher classification accuracy, but this might, at least often, be the case for ‘real’,
natural data-sets and target concepts.
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5 Empirical results on classification accuracy for

different data-sets

5.1 The data-sets

In our experiments we used the following nine real life data-sets, taken from the UCI
Machine Learning Repository [18].

• Cleveland heart disease (hea)

• Pima Indian Diabetes (pid)

• German credit (nominal data from Statlog, made numeric and then binarized)

• Hepatitis

• Ionosphere

• Mushroom

• Tic-Tac-Toe

• House Votes (voting)

• Wisconsin breast cancer (bcw).

The data-sets were pre-processed in several ways before we ran our experiments.
First, any observations in the data-set that had any missing attribute values were
deleted. Next, the data-sets were binarized, according to the method described
in [6], so that any numerical or nominal attribute values were changed to binary
values. Next, techniques from [8, 9] were used to determine that some attributes (of
the binarized data) could be deemed irrelevant and therefore deleted. (Set covering
was used to find a small ‘support set’.) The binarized data was then projected onto
the remaining binary attributes. If this process resulted in any repetition, these were
deleted, and if any of the processed observations appeared once with each class label,
all its occurrences were deleted. After pre-processing in this manner, the data-sets
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consisted of binary vectors, generally in a higher-dimensional space than the original
data. The following table describes the characteristics of the data-sets before and
after this pre-processing.

Dataset

# observa-
tions

# attributes After preprocessing

Positive Negative Numeric Nominal
# observa-
tions

# binary attributes

Positive Negative
Cleveland Heart
Disease

139 164 10 3 137 158 63

Pima Indian Dia-
betes

130 262 8 0 130 262 47

German credit 700 300 7 13 697 300 66
Hepatitis 123 32 6 13 92 19 28
Ionosphere 225 126 34 0 216 125 49
Mushroom 3916 4208 0 22 2188 2047 50
Tic-Tac-Toe 626 332 0 9 626 332 27
Voting 267 168 16 0 96 64 16
Wisconsin Breast
Cancer

458 241 9 0 203 182 48

1

5.2 Cross validation, error and accuracy

5.3 The learning algorithms

The classification methods, or learning algorithms, used in this experiment were
taken from commonly used packages. These included See5 [17] and LAD [9] (see [12,
13] for background), the specific implementations used being Datascope [7] and La-
doscope [15]. We also used WEKA (see [25] and http://www.cs.waikato.ac.nz/ ml/weka/index.html),
which consists of many algorithms. Those we used in our experiments are:

• J48, which generates a pruned or unpruned C4.5 decision tree. (See [17]).

• IBk K-nearest neighbours classifier. This normalizes the attributes by default
and can select appropriate value of K based on cross-validation. For more
information, see [1].
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• Simple Logistic Regression Classifier for building linear logistic regression mod-
els. LogitBoost with simple regression functions as base learners is used for
fitting the logistic models. The optimal number of LogitBoost iterations to
perform is cross-validated, which leads to automatic attribute selection. For
more information see [14].

• SMO implements John Platt’s sequential minimal optimization algorithm for
training a support vector classifier [16, 11, 25].

• Multilayer Perceptron, using back-propagation to train.

6 Accuracy on similarity hierarchy

The first set of experiments we conducted was intended to investigate whether the
classification accuracy improved as we restricted the domain on which we predict,
according to similarity.

To describe this in more detail, we must first explain cross-validation estimates.
Suppose we randomly partition the data-set into two equally-sized parts, S and
R. Suppose, further that we then use S as input to the learning (or classification)
algorithm and measure the accuracy of the output hypothesis, hS, of the algorithm
on R, by which is meant the proportion of observations in R that are correctly
classified by hS. Then, suppose we instead use R as input to the learning algorithm
and measure the accuracy of the output hypothesis, hR, of the algorithm on S.
If these two accuracy rates are then averaged, we obtain what is known as a 2-
fold cross-validation estimate of accuracy for that partitioning of the data-set. If
we repeat this procedure ten times, each time with a different randomly chosen
partitioning of the data into two parts, then, for our purposes, we refer to the average
accuracy of the ten cross-validation estimates as the 10-times 2-fold CV (cross-
validation) estimate of the accuracy. We shall sometimes find it more convenient to
consider error rather than accuracy. Error measures the proportion of observations
incorrectly classified, and so it is just 1 minus the accuracy.

Now, we are interested in the performance of a classifier on observations that have at
least a given similarity to the observations that were used as input to the learning
algorithm that produced the classifier (or hypothesis). Suppose that k is some
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positive integer. We might then adapt the cross-validation procedure outlined above
as follows: instead of finding the accuracy of hS on R and then of hR on S, and
averaging the two, we instead determine the accuracies of hS on R ∩ Sk and of hR

on S ∩ Rk, and average the two. Recall that Sk is the set of points in the data-set
that have similarity at least k to S (and Rk is similarly defined). Repeating this ten
times and averaging, we obtain an estimate which we call the 10-times 2-fold CV
estimate on observations of similarity at least k.

For values of k between 2 and 6, and for each of the nine data-sets and each of
the seven learning algorithms, we determined the 10-times 2-fold CV estimate on
observations of similarity at least k. It is conceivable that any perceived improve-
ment in the accuracy estimates as we increase the similarity might be an artefact
of the use of a particular learning algorithm, so we report two types of result here.
First, for each data-set, we report the average, over all seven learning algorithms, of
the accuracy estimates. Secondly, we report, for each algorithm, the average of the
accuracy estimates over all nine data-sets.
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6.1 Performance on each data-set

Figure 1 illustrates the accuracies obtained on restricting the domain of prediction
to observations of increasing similarity for the Cleveland Heart Disease data, and
Figure 2 does likewise for the German Credit data. These accuracies are the average
accuracies over all seven learning algorithms. The detailed results for all the data-
sets are indicated in the Tables in Section A1 of the appendix (which also indicate
the average number of observations having at least a given similarity). Figure 3
shows the average, over all the data-sets, of the average accuracies over all seven
algorithms.

Figure 1: The average, over all seven learning algorithms, of the 10-times 2-fold
CV estimates on observations of similarity at least k = 2, 3, 4, 5, 6 for the Cleveland
Heart Disease Data
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Figure 2: The average, over all seven learning algorithms, of the 10-times 2-fold CV
estimates on observations of similarity at least k = 2, 3, 4, 5 for the German Credit
Data
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Figure 3: The average, over all nine data-sets of the average, over all seven learning
algorithms, of the 10-times 2-fold CV estimates on observations of similarity at least
k = 2, 3, 4, 5.
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6.2 Performance of each learning algorithm

Figure 4 illustrates the accuracies obtained on restricting the domain of prediction to
observations of increasing similarity when the LAD learning algorithm is used, and
Figure 5 does likewise for the SEE5 algorithm. These accuracies are the average
accuracies over all nine data-sets. The results for all the learning algorithms are
indicated in the Tables in Section A2 of the appendix (which also indicate the
average number of observations having at least a given similarity). Figure 6 shows
the average, over all seven algorithms, of the average accuracies over all nine data-
sets.

Figure 4: The average, over all nine data sets, of the 10-times 2-fold CV estimates
on observations of similarity k = 2, 3, 4, 5, 6 using the LAD algorithm

17



Figure 5: The average, over all nine data sets, of the 10-times 2-fold CV estimates
on observations of similarity k = 2, 3, 4, 5, 6 using the SEE5 algorithm
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Figure 6: The average, over all seven algorithms, of the average over the nine data-
sets, of the 10-times 2-fold CV estimates on observations of similarity at least k =
2, 3, 4, 5.
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7 Accuracy on Hamming distance hierarchy

The next set of experiments investigates whether the same type of increased accuracy
estimates result when the domain of prediction is determined by Hamming distance
rather than similarity. We use the same cross-validation partitions as for the previous
experiments. The Hamming-distance estimates we use are defined in a a similar
way to the CV estimates on observations of similarity at least k. For a range of
values of d, we proceed exactly as described in Section 6, but instead of using the
accuracies of hS on R ∩ Sk and of hR on S ∩ Rk, we instead find the accuracies
of hS on {x ∈ R : d(x, S) ≤ d} and of hR on {x ∈ S : d(x,R) ≤ d}. We call
the resulting version of the 10-times 2-fold CV estimate the 10-times 2-fold CV
estimate on observations of Hamming distance at most k. Again, as for similarity,
we report two types of result. First, for each data-set, we report the average, over
all seven learning algorithms, of the accuracy estimates. Secondly, we report, for
each algorithm, the average of the accuracy estimates over all nine data-sets.

7.1 Performance on each data-set

Figure 7 illustrates the accuracies obtained on restricting the domain of prediction
to observations of decreasing Hamming distance for the Cleveland Heart Disease
data. Figure 8 does likewise for the German Credit data. These accuracies are the
average accuracies over all seven learning algorithms. Results for all the data sets
(together with information about the number of observations with a given Hamming
distance) can be found in the table in Section A3 of the appendix.

7.2 Performance of each learning algorithm

Figure 9 illustrates the accuracies obtained on restricting the domain of prediction
to observations of given Hamming distance when the LAD learning algorithm is
used, and Figure 10 does likewise for the SEE5 algorithm. These accuracies are
the average accuracies over all nine data-sets. Results for all the algorithms can be
found in the table in Section A4 of the appendix.
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Figure 7: The average, over all seven learning algorithms, of the 10-times 2-fold CV
estimates on observations at Hamming distance at most d for the Cleveland Heart
Disease data.
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Figure 8: The average, over all seven learning algorithms, of the 10-times 2-fold CV
estimates on observations at Hamming distance at most d for the German Credit
data.
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Figure 9: The average, over all nine data-sets, of the 10-times 2-fold CV estimates
on observations at Hamming distance at most d for the LAD learning algorithm.
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Figure 10: The average, over all nine data-sets, of the 10-times 2-fold CV estimates
on observations at Hamming distance at most d for the SEE5 learning algorithm.
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8 Comparing error rates on similarity and Ham-

ming hierarchies

The experimental results appear to suggest that higher accuracies are obtained when
we restrict prediction to observations of high similarity to those used as input to the
learning algorithm, and that we also obtain higher accuracies when we restrict pre-
diction to observations that have small Hamming distance to the set of observations
used to produce the classifier. To compare the effects of both type of restriction, the
tables in Sections A5.1 of the Appendix show, for each data-set, for each relevant
value of k and d, the ratio of the errors under each type of restriction, averaged
over each learning algorithm. Explicitly, the entry in the row labelled ‘HD<= d’
and column labelled k is the ratio of the 10-times 2-fold CV error estimates (which
are 1 minus the accuracy estimates) on observations of similarity at least k to the
10-times 2-fold CV error estimates on observations of Hamming distance at most
d. (We compare error rates rather than accuracy rates because when both accuracy
rates are close to 1, as they usually are, the ratio of accuracies will also be very close
to 1. For this reason, a comparison of error rates is more revealing.) The cells in
these tables that are highlighted in grey are where these ratios are greater than 1
(indicating that the error restricted to the corresponding similarity is greater than
that when restricted to the given Hamming distance). The accuracies correspond-
ing to each column and to each row are also indicated. The tables in Section A5.2
indicate the corresponding ratios when the errors are averaged, for each learning
algorithm, over all data-sets.

9 Using similarity and Hamming distance together

An observation that has both high similarity and low Hamming distance to a given
set A is, arguably, strongly ‘like’ the members of A. We have seen that classification
accuracy appears to improve when we, separately, restrict prediction to observations
of high similarity to, or small Hamming distance from, those used to produce the
classifier. In this section, we report experimental results examining the accuracy
when prediction is restricted simultaneously by similarity and Hamming distance.
Explicitly, for each d between 1 and 16, and each k between 2 and 6, we proceed
exactly as described in Section 6, but using the accuracies of hS on {x ∈ R :
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d(x, S) ≤ d, s(x, S) ≥ k} and of hR on {x ∈ S : d(x,R) ≤ d, s(x,R) ≥ k}.

9.1 Performance on each data-set

Figure 11 and Figure 12 illustrate, respectively, the average accuracies on Hamming
distance at most d and similarity at least k for the Cleveland Heart Disease and
German Credit data-sets.

Figure 11: The average, over all seven learning algorithms, of the 10-times 2-fold
CV estimates on observations of given similarity and Hamming distance for the
Cleveland Heart Disease Data

Figure 13 shows the average, over all nine data sets, of the average, over all seven
learning algorithms, of the accuracies on Hamming distance at most d and similarity
at least k.
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Figure 12: The average, over all seven learning algorithms, of the 10-times 2-fold CV
estimates on observations of given similarity and Hamming distance for the German
Credit Data
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Figure 13: The average, over all nine data sets, of the average, over all seven learning
algorithms, of the 10-times 2-fold CV estimates on observations of given similarity
and Hamming distance.
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Further data can be found in the Tables in Section A6.1 of the Appendix, where
numbers of observations of at most a given Hamming distance and at least a given
similarity are also indicated.

9.2 Performance of each learning algorithm

Figure 14 and Figure 15 illustrate, respectively, the average accuracies, over all data-
sets, on Hamming distance at most d and similarity at least k when using the LAD
and SEE5 classification techniques.

Figure 14: The average, over all nine data-sets, of the 10-times 2-fold CV estimates
on observations of given similarity and Hamming distance when using the LAD
classification technique.

Figure 16 shows the average, over all seven learning algorithms, of the average, over
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Figure 15: The average, over all nine data-sets, of the 10-times 2-fold CV estimates
on observations of given similarity and Hamming distance when using the SEE5
classification technique.
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all nine data-sets, of the accuracies on Hamming distance at most d and similarity
at least k.

Figure 16: The average, over all seven learning algorithms, of the average, over all
nine data-sets, of the 10-times 2-fold CV estimates on observations of given similarity
and Hamming distance.

Further data can be found in the Tables in Section A6.2 of the Appendix.

10 Conclusions

The experimental results here indicate that there is some advantage in using ‘simi-
larity’ and Hamming distance, separately and in combination, to restrict the obser-
vations on which one is willing to offer a confident prediction. As noted, there are
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provably cases in which this is not so, but the principle does appear generally to be
borne out by the data-sets and algorithms used here.
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APPENDIX  
 
A1. Average cross-validation accuracy on observations of at least a given similarity, for each of 
the data-sets, averaged over all learning algorithms.  

 
For values of k between 2 and 6, and for each of the nine data-sets the following tables show the 
following: (1) in the small boxes, the average (over the 10 cross-validations) of the numbers of non-
training observations having at least a given similarity to the training set, (2) the average, over all 
seven learning algorithms, of the 10-times 2-fold cross-validation estimate on observations of 
similarity at least k, and (3) (labeled ‘ALL’) the average accuracy, over all seven learning algorithms, 
on all non-training observations.   
 
 
CLEVELAND HEART DISEASE DATASET 
      
k 6 5 4 3 2 
# of observations with 
similarity at least k, and 
accuracy on these 

1 
1

3
0.974

14
0.893

55
0.814

115 
0.802 

ALL 
148
0.801  

      
      
      
DIABETES DATASET   
      
k 6 5 4 3 2 
# of observations with 
similarity at least k, and 
accuracy on these 

1 
1

1
1

2
0.987

170
0.790

190 
0.746 

ALL 
196
0.746  

      
      
GERMAN CREDIT DATASET  (nominal) 
      
k 6 5 4 3 2 
# of observations with 
similarity at least k, and 
accuracy on these 

1
0.857

41
0.803

193
0.751

493 
0.720 

ALL 
499
0.712  
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HEPATITIS DATASET   
      
k 6 5 4 3 2 
# of observations with 
similarity at least k, and 
accuracy on these 

0 
 

0
 

21
0.998

6
0.960

40 
0.845 

ALL 
56
0.811  

      
      
IONOSPHERE DATASET   
      
k 6 5 4 3 2 
# of observations with 
similarity at least k, and 
accuracy on these 

0 
 

1
1

7
0.990

61
0.948

170 
0.855 

ALL 
171
0.855  

      
      
MUSHROOM DATASET   
      
k 6 5 4 3 2 
# of observations with 
similarity at least k, and 
accuracy on these 

1693
0.999

1896
0.998

1989
0.997

2068 
0.993 

ALL 
2117
0.981  

      
      
TIC-TAC-TOE DATASET   
      
k 6 5 4 3 2 
# of observations with 
similarity at least k, and 
accuracy on these 

0 
 

7
0.969

287
0.899

473
0.900

479 
0.900 

ALL 
479
0.900  
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VOTING DATASET    
      
k 6 5 4 3 2 
# of observations with 
similarity at least k, and 
accuracy on these 

1 
1

2
1

13
0.996

47
0.957

76 
0.935 

ALL 
80
0.928  

      
      
WISCONSIN BREAST CANCER DATASET 
      
k 6 5 4 3 2 
# of observations with 
similarity at least k, and 
accuracy on these 

3 
1

9
0.992

36
0.983

121
0.951

185 
0.927 

ALL 
193
0.926  

      
 
      
AVERAGE OF AVERAGE PREDICTIONS 
            
            
k 6 5 4 3 2 
Accuracy on observations 
of similarity at least k 1 0.974 0.950 0.897 0.858 
ALL 0.851      
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A2. Average cross-validation accuracy on observations of at least a given similarity, for each 
of the learning algorithms, averaged over all data-sets. 
  

For values of k between 2 and 6, and for each of the seven learning algorithms, the following tables 
show the following: (1) the average, over all nine data-sets, of the 10-times 2-fold cross-validation 
estimate on observations of similarity at least k, and (2) (labeled ‘ALL’) the average accuracy, over all 
nine data-sets, on all non-training observations.   
 
 
 
LAD   
      
k 6 5 4 3 2 
Accuracy on 
observations of 
similarity at least k 1 0.965 0.943 0.893 0.850 
ALL 0.842     
      
SEE5   
      
k 6 5 4 3 2 
Accuracy on 
observations of 
similarity at least k 1 0.984 0.966 0.928 0.880 
ALL 0.871     
      
SMO   
      
k 6 5 4 3 2 
Accuracy on 
observations of 
similarity at least k 1 0.972 0.967 0.913 0.874 
ALL 0.868     
      
SIMPLELOGISTIC 
      
k 6 5 4 3 2 
Accuracy on 
observations of 
similarity at least k 1 0.972 0.960 0.913 0.874 
ALL 0.869     
 
 
      



 5

MULTILAYERPERCETRON 
      
k 6 5 4 3 2 
Accuracy on 
observations of 
similarity at least k 1 0.991 0.958 0.903 0.864 
ALL 0.857     
      
IB3   
      
k 6 5 4 3 2 
Accuracy on 
observations of 
similarity at least k 1 0.979 0.942 0.881 0.842 
ALL 0.840     
      
J48   
      
k 6 5 4 3 2 
Accuracy on 
observations of 
similarity at least k 1 0.967 0.941 0.893 0.851 
ALL 0.843     
      
AVERAGE OF AVERAGE PREDICTIONS   
            
k 6 5 4 3 2 
Accuracy on 
observations of 
similarity at least k 1 0.976 0.954 0.904 0.862 
ALL 0.856     
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A3. Average cross-validation accuracy on observations of at most a given Hamming distance, for 
each of the data-sets, averaged over all learning algorithms.  

 
For values of d between 1 and 16, and for each of the nine data-sets the following table shows the 
following: (1) in the small boxes, the average (over the 10 cross-validations) of the numbers of 
non-training observations having at most Hamming distance d to the training set, and (2) the 
average, over all seven learning algorithms, of the 10-times 2-fold cross-validation estimate on 
observations of Hamming distance at most d.  
 
 
 hea pid GermanCredit hepatitis ionosphere mushroom tic-tac-toe vot bcw AVERAGE 

HD=1 
10 

0.936 
3 

0.980 
2 

0.858 
1 
0.996 

15 
0.949 

1581 
0.993 

0 
  

36 
0.964 

49 
0.984 0.958 

HD<=2 
25 

0.923 
13 

0.842 
5 

0.854 
6 
0.996 

43 
0.965 

1980 
0.995 

325 
0.917 

64 
0.938 

91 
0.986 0.935 

HD<=3 
45 

0.881 
38 

0.833 
15 

0.867 
16 
0.951 

62 
0.949 

2023 
0.994 

394 
0.891 

76 
0.929 

120 
0.978 0.919 

HD<=4 
72 

0.853 
75 

0.832 
34 

0.825 
29 
0.886 

79 
0.934 

2048 
0.992 

469 
0.901 

80 
0.929 

144 
0.972 0.903 

HD<=5 
98 

0.829 
113 

0.797 
84 

0.819 
41 
0.855 

98 
0.925 

2065 
0.990 

479 
0.900 

80 
0.929 

159 
0.964 0.890 

HD<=6 
120 

0.813 
151 

0.769 
146 

0.790 
50 
0.823 

115 
0.901 

2078 
0.988 

479 
0.900 

80 
0.929 

172 
0.951 0.874 

HD<=7 
131 

0.809 
178 

0.761 
226 

0.776 
54 
0.818 

128 
0.886 

2090 
0.987 

479 
0.900 

80 
0.929 

181 
0.943 0.868 

HD<=8 
138 

0.806 
190 

0.752 
311 

0.761 
55 
0.816 

141 
0.873 

2098 
0.985 

479 
0.900 

80 
0.929 

186 
0.934 0.862 

HD<=9 
143 

0.801 
195 

0.749 
388 

0.746 
56 
0.815 

150 
0.865 

2107 
0.983 

479 
0.900 

80 
0.929 

190 
0.929 0.857 

HD<=10 
145 

0.801 
196 

0.748 
436 

0.737 
56 
0.815 

158 
0.861 

2110 
0.982 

479 
0.900 

80 
0.929 

191 
0.927 0.856 

HD<=11 
146 

0.800 
196 

0.747 
473 

0.728 
56 
0.815 

163 
0.857 

2112 
0.981 

479 
0.900 

80 
0.929 

192 
0.927 0.854 

HD<=12 
147 

0.800 
196 

0.747 
489 

0.722 
56 
0.815 

166 
0.855 

2114 
0.981 

479 
0.900 

80 
0.929 

192 
0.926 0.853 

HD<=13 
147 

0.800 
196 

0.747 
495 

0.721 
56 
0.815 

169 
0.854 

2116 
0.980 

479 
0.900 

80 
0.929 

193 
0.926 0.852 

HD<=14 
147 

0.800 
196 

0.747 
498 

0.720 
56 
0.815 

170 
0.853 

2117 
0.980 

479 
0.900 

80 
0.929 

193 
0.926 0.852 

HD<=15 
148 

0.800 
196 

0.747 
498 

0.720 
56 
0.815 

170 
0.853 

2117 
0.979 

479 
0.900 

80 
0.929 

193 
0.926 0.852 

HD<=16 
148 

0.800 
196 

0.747 
499 

0.720 
56 
0.815 

170 
0.853 

2117 
0.979 

479 
0.900 

80 
0.929 

193 
0.926 0.852 
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A4. Average cross-validation accuracy on observations of at most a given Hamming distance, for 
each of the learning algorithms, averaged over all the data-sets.  

 
For values of d between 1 and 16, and for each of the learning algorithms, the following table 
shows the average, over all nine data-sets of the 10-times 2-fold cross-validation estimate on 
observations of Hamming distance at most d. 

  
AVERAGE PREDICTION FOR ALL METHODS     
         
         

 LAD SEE5 SMO SimpleLogistic MultilayerPerceptron IB3 J48 AVERAGE

HD=1 0.892 0.967 0.967 0.973 0.967 0.968 0.969 0.958 

HD<=2 0.907 0.936 0.952 0.951 0.937 0.930 0.932 0.935 

HD<=3 0.906 0.919 0.933 0.934 0.927 0.899 0.918 0.919 

HD<=4 0.894 0.899 0.917 0.913 0.907 0.889 0.900 0.903 

HD<=5 0.880 0.887 0.903 0.903 0.893 0.875 0.886 0.890 

HD<=6 0.862 0.871 0.888 0.887 0.878 0.863 0.868 0.874 

HD<=7 0.854 0.865 0.884 0.883 0.873 0.856 0.860 0.868 

HD<=8 0.848 0.859 0.878 0.878 0.867 0.850 0.853 0.862 

HD<=9 0.844 0.855 0.874 0.873 0.862 0.846 0.848 0.857 

HD<=10 0.843 0.852 0.872 0.872 0.860 0.843 0.846 0.855 

HD<=11 0.841 0.851 0.870 0.870 0.858 0.841 0.845 0.854 

HD<=12 0.840 0.850 0.869 0.869 0.857 0.840 0.844 0.853 

HD<=13 0.840 0.849 0.869 0.869 0.856 0.840 0.843 0.852 

HD<=14 0.840 0.849 0.869 0.869 0.856 0.840 0.843 0.852 

HD<=15 0.840 0.849 0.869 0.869 0.856 0.840 0.843 0.852 

HD<=16 0.840 0.849 0.869 0.869 0.856 0.840 0.843 0.852 
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A5.1 Comparing Hamming distance and similarity approaches: for each data set  
 

The following tables show the ratios of the average cross-validation error estimates on similarity at 
least k to the average cross-validation error estimates on observations of Hamming distance at most d 
for each of the data-sets, averaged over all the learning algorithms.  
 
 
 
 
CLEVELAND HEART DISEASE DATASET  
       
k:  6 5 4 3 2 
  1 0.974 0.893 0.814 0.802 
HD=1 0.936 0 0.406 1.672 2.906 3.094
HD<=2 0.923 0 0.338 1.390 2.416 2.571
HD<=3 0.881 0 0.218 0.899 1.563 1.664
HD<=4 0.853 0 0.177 0.728 1.265 1.347
HD<=5 0.829 0 0.152 0.626 1.088 1.158
HD<=6 0.813 0 0.139 0.572 0.995 1.059
HD<=7 0.809 0 0.136 0.560 0.974 1.037
HD<=8 0.806 0 0.134 0.552 0.959 1.021
HD<=9 0.801 0 0.131 0.538 0.935 0.995
HD<=10 0.801 0 0.131 0.538 0.935 0.995
HD<=11 0.800 0 0.130 0.535 0.930 0.990
HD<=12 0.800 0 0.130 0.535 0.930 0.990
HD<=13 0.800 0 0.130 0.535 0.930 0.990
HD<=14 0.800 0 0.130 0.535 0.930 0.990
HD<=15 0.800 0 0.130 0.535 0.930 0.990
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DIABETES DATASET     
       
k:  6 5 4 3 2 
  1 1 0.987 0.790 0.746 
HD=1 0.980 0 0 0.650 10.500 12.700
HD<=2 0.842 0 0 0.082 1.329 1.608
HD<=3 0.833 0 0 0.078 1.257 1.521
HD<=4 0.832 0 0 0.077 1.250 1.512
HD<=5 0.797 0 0 0.064 1.034 1.251
HD<=6 0.769 0 0 0.056 0.909 1.100
HD<=7 0.761 0 0 0.054 0.879 1.063
HD<=8 0.752 0 0 0.052 0.847 1.024
HD<=9 0.749 0 0 0.052 0.837 1.012
HD<=10 0.748 0 0 0.052 0.833 1.008
HD<=11 0.747 0 0 0.051 0.830 1.004
HD<=12 0.747 0 0 0.051 0.830 1.004

 
 
GERMAN CREDIT DATASET  (nominal) 
      
k:  5 4 3 2 
  0.857 0.803 0.751 0.720 
HD=1 0.858 1.007 1.387 1.754 1.972
HD<=2 0.854 0.979 1.349 1.705 1.918
HD<=3 0.867 1.075 1.481 1.872 2.105
HD<=4 0.825 0.817 1.126 1.423 1.600
HD<=5 0.819 0.790 1.088 1.376 1.547
HD<=6 0.790 0.681 0.938 1.186 1.333
HD<=7 0.776 0.638 0.879 1.112 1.250
HD<=8 0.761 0.598 0.824 1.042 1.172
HD<=9 0.746 0.563 0.776 0.980 1.102
HD<=10 0.737 0.544 0.749 0.947 1.065
HD<=11 0.728 0.526 0.724 0.915 1.029
HD<=12 0.722 0.514 0.709 0.896 1.007
HD<=13 0.721 0.513 0.706 0.892 1.004
HD<=14 0.720 0.511 0.704 0.889 1.000
HD<=15 0.720 0.511 0.704 0.889 1.000



 10

HD<=16 0.720 0.511 0.704 0.889 1.000
IONOSPHERE DATASET   
      
k:  5 4 3 2 
  1 0.990 0.948 0.855 
HD=1 0.949 0 0.196 1.020 2.843
HD<=2 0.965 0 0.286 1.486 4.143
HD<=3 0.949 0 0.196 1.020 2.843
HD<=4 0.934 0 0.152 0.788 2.197
HD<=5 0.925 0 0.133 0.693 1.933
HD<=6 0.901 0 0.101 0.525 1.465
HD<=7 0.886 0 0.088 0.456 1.272
HD<=8 0.873 0 0.079 0.409 1.142
HD<=9 0.865 0 0.074 0.385 1.074
HD<=10 0.861 0 0.072 0.374 1.043
HD<=11 0.857 0 0.070 0.364 1.014
HD<=12 0.855 0 0.069 0.359 1.000
HD<=13 0.854 0 0.068 0.356 0.993
HD<=14 0.853 0 0.068 0.354 0.986
HD<=15 0.853 0 0.068 0.354 0.986
HD<=16 0.853 0 0.068 0.354 0.986
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MUSHROOM DATASET   
      
k:  5 4 3 2 
  0.999 0.998 0.997 0.993 
HD=1 0.993 0.143 0.286 0.430 1.002
HD<=2 0.995 0.188 0.377 0.565 1.319
HD<=3 0.994 0.162 0.323 0.485 1.132
HD<=4 0.992 0.128 0.255 0.383 0.893
HD<=5 0.990 0.102 0.204 0.305 0.713
HD<=6 0.988 0.086 0.172 0.259 0.604
HD<=7 0.987 0.075 0.151 0.226 0.527
HD<=8 0.985 0.066 0.132 0.198 0.463
HD<=9 0.983 0.058 0.116 0.174 0.406
HD<=10 0.982 0.055 0.111 0.166 0.387
HD<=11 0.981 0.053 0.106 0.160 0.373
HD<=12 0.981 0.052 0.104 0.155 0.363
HD<=13 0.980 0.050 0.100 0.150 0.350
HD<=14 0.980 0.049 0.098 0.147 0.343
HD<=15 0.979 0.048 0.097 0.145 0.339
HD<=16 0.979 0.048 0.097 0.145 0.338

 
 
TIC-TAC-TOE DATASET   
      
k:  5 4 3 2 
  0.969 0.899 0.900 0.900 
HD<=2 0.917 0.373 1.217 1.205 1.205
HD<=3 0.891 0.284 0.927 0.917 0.917
HD<=4 0.901 0.313 1.020 1.010 1.010
HD<=5 0.900 0.310 1.010 1.000 1.000
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VOTING DATASET     
       
k:  6 5 4 3 2 
  1 1 0.996 0.957 0.935 
HD=1 0.964 0 0 0.111 1.194 1.806
HD<=2 0.938 0 0 0.065 0.694 1.048
HD<=3 0.929 0 0 0.056 0.606 0.915
HD<=4 0.929 0 0 0.056 0.606 0.915
HD<=5 0.929 0 0 0.056 0.606 0.915

 
 
WISCONSIN BREAST CANCER DATASET  
       
k:  6 5 4 3 2 
  1 0.992 0.983 0.951 0.927 
HD=1 0.984 0 0.500 1.063 3.063 4.562
HD<=2 0.986 0 0.571 1.214 3.500 5.214
HD<=3 0.978 0 0.364 0.773 2.227 3.318
HD<=4 0.972 0 0.286 0.607 1.750 2.607
HD<=5 0.964 0 0.222 0.472 1.361 2.028
HD<=6 0.951 0 0.163 0.347 1.000 1.490
HD<=7 0.943 0 0.140 0.298 0.860 1.281
HD<=8 0.934 0 0.121 0.258 0.742 1.106
HD<=9 0.929 0 0.113 0.239 0.690 1.028
HD<=10 0.927 0 0.110 0.233 0.671 1.000
HD<=11 0.927 0 0.110 0.233 0.671 1.000
HD<=12 0.926 0 0.108 0.230 0.662 0.986
HD<=13 0.926 0 0.108 0.230 0.662 0.986
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The following table shows the ratios for the averages, over the data-sets, of the two error estimates.  
 
 
AVERAGE ERROR RATIO    
       
k:  6 5 4 3 2 
  1 0.974 0.950 0.897 0.858 
HD=1 0.958 0 0.619 1.190 2.452 3.381
HD<=2 0.935 0 0.400 0.769 1.585 2.185
HD<=3 0.919 0 0.321 0.617 1.272 1.753
HD<=4 0.903 0 0.268 0.515 1.062 1.464
HD<=5 0.890 0 0.236 0.455 0.936 1.291
HD<=6 0.874 0 0.206 0.397 0.817 1.127
HD<=7 0.868 0 0.197 0.379 0.780 1.076
HD<=8 0.862 0 0.188 0.362 0.746 1.029
HD<=9 0.857 0 0.182 0.350 0.720 0.993
HD<=10 0.856 0 0.181 0.347 0.715 0.986
HD<=11 0.854 0 0.178 0.342 0.705 0.973
HD<=12 0.853 0 0.177 0.340 0.701 0.966
HD<=13 0.852 0 0.176 0.339 0.698 0.962
HD<=14 0.852 0 0.176 0.339 0.698 0.962
HD<=15 0.852 0 0.176 0.339 0.698 0.962
HD<=16 0.852 0 0.176 0.339 0.698 0.962
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A5.2 Comparing Hamming distance and similarity approaches: for each learning algorithm  
 
 
The following tables show the ratios of the average cross-validation error estimates on similarity at 
least k to the average cross-validation error estimates on observations of Hamming distance at most d 
for each learning algorithm, averaged over all the data-sets.  
 
 
 
 
LAD       
       
k:  6 5 4 3 2
  1 0.965 0.943 0.893 0.850 
HD=1 0.892 0 0.324 0.528 0.991 1.389
HD<=2 0.907 0 0.376 0.613 1.151 1.613
HD<=3 0.906 0 0.372 0.606 1.138 1.596
HD<=4 0.894 0 0.330 0.538 1.009 1.415
HD<=5 0.880 0 0.292 0.475 0.892 1.250
HD<=6 0.862 0 0.254 0.413 0.775 1.087
HD<=7 0.854 0 0.240 0.390 0.733 1.027
HD<=8 0.848 0 0.230 0.375 0.704 0.987
HD<=9 0.844 0 0.224 0.365 0.686 0.962
HD<=10 0.843 0 0.223 0.363 0.682 0.955
HD<=11 0.841 0 0.220 0.358 0.673 0.943
HD<=12 0.840 0 0.219 0.356 0.669 0.938
HD<=13 0.840 0 0.219 0.356 0.669 0.938
HD<=14 0.840 0 0.219 0.356 0.669 0.938
HD<=15 0.840 0 0.219 0.356 0.669 0.938
HD<=16 0.840 0 0.219 0.356 0.669 0.938

 
 
 
 
 
 
 
 
 
 
 



 15

 
SEE5       
       
k:  6 5 4 3 2
  1 0.984 0.966 0.928 0.880 
HD=1 0.967 0 0.485 1.030 2.182 3.636
HD<=2 0.936 0 0.250 0.531 1.125 1.875
HD<=3 0.919 0 0.198 0.420 0.889 1.481
HD<=4 0.899 0 0.158 0.337 0.713 1.188
HD<=5 0.887 0 0.142 0.301 0.637 1.062
HD<=6 0.871 0 0.124 0.264 0.558 0.930
HD<=7 0.865 0 0.119 0.252 0.533 0.889
HD<=8 0.859 0 0.113 0.241 0.511 0.851
HD<=9 0.855 0 0.110 0.234 0.497 0.828
HD<=10 0.852 0 0.108 0.230 0.486 0.811
HD<=11 0.851 0 0.107 0.228 0.483 0.805
HD<=12 0.850 0 0.107 0.227 0.480 0.800
HD<=13 0.849 0 0.106 0.225 0.477 0.795
HD<=14 0.849 0 0.106 0.225 0.477 0.795
HD<=15 0.849 0 0.106 0.225 0.477 0.795
HD<=16 0.849 0 0.106 0.225 0.477 0.795
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SMO       
       
k:  6 5 4 3 2 
  1 0.972 0.967 0.913 0.874 
HD=1 0.967 0 0.848 1.000 2.636 3.818
HD<=2 0.952 0 0.583 0.688 1.813 2.625
HD<=3 0.933 0 0.418 0.493 1.299 1.881
HD<=4 0.917 0 0.337 0.398 1.048 1.518
HD<=5 0.903 0 0.289 0.340 0.897 1.299
HD<=6 0.888 0 0.250 0.295 0.777 1.125
HD<=7 0.884 0 0.241 0.284 0.750 1.086
HD<=8 0.878 0 0.230 0.270 0.713 1.033
HD<=9 0.874 0 0.222 0.262 0.690 1.000
HD<=10 0.872 0 0.219 0.258 0.680 0.984
HD<=11 0.870 0 0.215 0.254 0.669 0.969
HD<=12 0.869 0 0.214 0.252 0.664 0.962
HD<=13 0.869 0 0.214 0.252 0.664 0.962
HD<=14 0.869 0 0.214 0.252 0.664 0.962
HD<=15 0.869 0 0.214 0.252 0.664 0.962
HD<=16 0.869 0 0.214 0.252 0.664 0.962
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SIMPLELOGISTIC     
       
k:  6 5 4 3 2 
  1 0.972 0.960 0.913 0.874 
HD=1 0.973 0 1.037 1.481 3.222 4.667
HD<=2 0.951 0 0.571 0.816 1.776 2.571
HD<=3 0.934 0 0.424 0.606 1.318 1.909
HD<=4 0.913 0 0.322 0.460 1.000 1.448
HD<=5 0.903 0 0.289 0.412 0.897 1.299
HD<=6 0.887 0 0.248 0.354 0.770 1.115
HD<=7 0.883 0 0.239 0.342 0.744 1.077
HD<=8 0.878 0 0.230 0.328 0.713 1.033
HD<=9 0.873 0 0.220 0.315 0.685 0.992
HD<=10 0.872 0 0.219 0.313 0.680 0.984
HD<=11 0.870 0 0.215 0.308 0.669 0.969
HD<=12 0.869 0 0.214 0.305 0.664 0.962
HD<=13 0.869 0 0.214 0.305 0.664 0.962
HD<=14 0.869 0 0.214 0.305 0.664 0.962
HD<=15 0.869 0 0.214 0.305 0.664 0.962
HD<=16 0.869 0 0.214 0.305 0.664 0.962
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MULTILAYERPERCEPTRON    
       
k:  6 5 4 3 2 
  1 0.991 0.958 0.903 0.864 
HD=1 0.967 0 0.273 1.273 2.939 4.121
HD<=2 0.937 0 0.143 0.667 1.540 2.159
HD<=3 0.927 0 0.123 0.575 1.329 1.863
HD<=4 0.907 0 0.097 0.452 1.043 1.462
HD<=5 0.893 0 0.084 0.393 0.907 1.271
HD<=6 0.878 0 0.074 0.344 0.795 1.115
HD<=7 0.873 0 0.071 0.331 0.764 1.071
HD<=8 0.867 0 0.068 0.316 0.729 1.023
HD<=9 0.862 0 0.065 0.304 0.703 0.986
HD<=10 0.860 0 0.064 0.300 0.693 0.971
HD<=11 0.858 0 0.063 0.296 0.683 0.958
HD<=12 0.857 0 0.063 0.294 0.678 0.951
HD<=13 0.856 0 0.063 0.292 0.674 0.944
HD<=14 0.856 0 0.063 0.292 0.674 0.944
HD<=15 0.856 0 0.063 0.292 0.674 0.944
HD<=16 0.856 0 0.063 0.292 0.674 0.944
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IB3       
       
k:  6 5 4 3 2 
  1 0.979 0.942 0.881 0.842 
HD=1 0.968 0 0.656 1.813 3.719 4.938
HD<=2 0.930 0 0.300 0.829 1.700 2.257
HD<=3 0.899 0 0.208 0.574 1.178 1.564
HD<=4 0.889 0 0.189 0.523 1.072 1.423
HD<=5 0.875 0 0.168 0.464 0.952 1.264
HD<=6 0.863 0 0.153 0.423 0.869 1.153
HD<=7 0.856 0 0.146 0.403 0.826 1.097
HD<=8 0.850 0 0.140 0.387 0.793 1.053
HD<=9 0.846 0 0.136 0.377 0.773 1.026
HD<=10 0.843 0 0.134 0.369 0.758 1.006
HD<=11 0.841 0 0.132 0.365 0.748 0.994
HD<=12 0.840 0 0.131 0.363 0.744 0.988
HD<=13 0.840 0 0.131 0.363 0.744 0.988
HD<=14 0.840 0 0.131 0.363 0.744 0.988
HD<=15 0.840 0 0.131 0.363 0.744 0.988
HD<=16 0.840 0 0.131 0.363 0.744 0.988
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J48       
       
k:  6 5 4 3 2 
  1 0.967 0.941 0.893 0.851 
HD=1 0.969 0 1.065 1.903 3.452 4.806
HD<=2 0.932 0 0.485 0.868 1.574 2.191
HD<=3 0.918 0 0.402 0.720 1.305 1.817
HD<=4 0.900 0 0.330 0.590 1.070 1.490
HD<=5 0.886 0 0.289 0.518 0.939 1.307
HD<=6 0.868 0 0.250 0.447 0.811 1.129
HD<=7 0.860 0 0.236 0.421 0.764 1.064
HD<=8 0.853 0 0.224 0.401 0.728 1.014
HD<=9 0.848 0 0.217 0.388 0.704 0.980
HD<=10 0.846 0 0.214 0.383 0.695 0.968
HD<=11 0.845 0 0.213 0.381 0.690 0.961
HD<=12 0.844 0 0.212 0.378 0.686 0.955
HD<=13 0.843 0 0.210 0.376 0.682 0.949
HD<=14 0.843 0 0.210 0.376 0.682 0.949
HD<=15 0.843 0 0.210 0.376 0.682 0.949
HD<=16 0.843 0 0.210 0.376 0.682 0.949

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 21

 
The following table shows the ratios for the averages, over the learning algorithms, of the two error 
estimates.  
 
 
AVERAGE ERROR RATIO    
       
k:  6 5 4 3 2 
  1 0.976 0.954 0.904 0.862 
HD=1 0.958 0 0.571 1.095 2.286 3.286
HD<=2 0.935 0 0.369 0.708 1.477 2.123
HD<=3 0.919 0 0.296 0.568 1.185 1.704
HD<=4 0.903 0 0.247 0.474 0.990 1.423
HD<=5 0.890 0 0.218 0.418 0.873 1.255
HD<=6 0.874 0 0.190 0.365 0.762 1.095
HD<=7 0.868 0 0.182 0.348 0.727 1.045
HD<=8 0.862 0 0.174 0.333 0.696 1.000
HD<=9 0.857 0 0.168 0.322 0.671 0.965
HD<=10 0.855 0 0.166 0.317 0.662 0.952
HD<=11 0.854 0 0.164 0.315 0.658 0.945
HD<=12 0.853 0 0.163 0.313 0.653 0.939
HD<=13 0.852 0 0.162 0.311 0.649 0.932
HD<=14 0.852 0 0.162 0.311 0.649 0.932
HD<=15 0.852 0 0.162 0.311 0.649 0.932
HD<=16 0.852 0 0.162 0.311 0.649 0.932
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A6.1 Combining the Hamming distance and similarity approaches: for each data-set  

 
The following tables show, for each data-set, the average, over all seven learning algorithms, of the 
10-times 2-fold cross validation error estimates on observations of similarity at least k and of at most a 
given Hamming distance from the training set. The numbers in small boxes are the average numbers of 
observations of at least the given similarity and at most the given Hamming distance.  

 
 

CLEVELAND HEART DISEASE   
      
  Error rates   
k: 2 3 4 5 6 

HD=1 
9 
0.050 

7 
0.054 

5 
0.038

1
0.028

1
0

HD<=2 
23 
0.074 

18 
0.065 

9 
0.048

2
0.026

1
0

HD<=3 
42 
0.121 

29 
0.117 

11
0.046

3
0.026

1
0

HD<=4 
65 
0.259 

42 
0.201 

13
0.099

3
0.026

1
0

HD<=5 
86 
0.176 

50 
0.177 

14
0.104

3
0.026

1
0

HD<=6 
102 
0.189 

54 
0.183 

14
0.104

3
0.026

1
0

HD<=7 
109 
0.194 

54 
0.186 

14
0.106

3
0.026

1
0

HD<=8 
112 
0.196 

55 
0.187 

14
0.106

3
0.026

1
0

HD<=9 
114 
0.198 

55 
0.187 

14
0.106

3
0.026

1
0

HD<=10 
114 
0.198 

55 
0.187 

14
0.106

3
0.026

1
0

HD<=11 
114 
0.198 

55 
0.187 

14
0.106

3
0.026

1
0

HD<=12 
115 
0.198 

55 
0.187 

14
0.106

3
0.026

1
0

HD<=13 
115 
0.198 

55 
0.187 

14
0.106

3
0.026

1
0

HD<=14 
115 
0.198 

55 
0.187 

14
0.106

3
0.026

1
0

HD<=15 
115 
0.198 

55 
0.187 

14
0.106

3
0.026

1
0
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DIABETES      
      
  Error rates   
     
k: 2 3 4 5 6 

HD=1 
2 

0 
2 

0 
1 

0
1

0
1

0

HD<=2 
13 

0.133 
9 

0.132 
1 

0.036
1

0
1

0

HD<=3 
37 

0.171 
23 

0.149 
1 

0.020
1

0
1

0

HD<=4 
73 

0.169 
40 

0.158 
2 

0.019
1

0
1

0

HD<=5 
111 

0.204 
54 

0.194 
2 

0.025
1

0
1

0

HD<=6 
147 

0.234 
66 

0.208 
2 

0.022
1

0
1

0

HD<=7 
173 

0.240 
72 

0.209 
2 

0.022
1

0
1

0

HD<=8 
184 

0.249 
74 

0.211 
2 

0.022
1

0
1

0

HD<=9 
188 

0.251 
74 

0.211 
2 

0.022
1

0
1

0

HD<=10 
189 

0.254 
74 

0.211 
2 

0.022
1

0
1

0

HD<=11 
189 

0.254 
74 

0.211 
2 

0.022
1

0
1

0

HD<=12 
190 

0.254 
74 

0.211 
2 

0.022
1

0
1

0
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GERMAN CREDIT    
     
     
  Error rates  
     
k: 2 3 4 5 

HD=1 
2 

0.131 
2
0.125 

1 
0.243 

  
 

HD<=2 
5 

0.147 
3
0.160 

1 
0.353   

HD<=3 
15 

0.129 
13 
0.131 

4 
0.125   

HD<=4 
34 

0.177 
29 
0.178 

8 
0.138 

1
0.143

HD<=5 
84 

0.182 
69 
0.177 

17 
0.106 

1
0.143

HD<=6 
146 

0.212 
115 
0.198 

24 
0.150 

1
0.143

HD<=7 
225 

0.228 
170 
0.217 

32 
0.181 

1
0.143

HD<=8 
310 

0.243 
222 
0.228 

38 
0.194 

1
0.143

HD<=9 
386 

0.257 
263 
0.239 

40 
0.196 

1
0.143

HD<=10 
433 

0.266 
283 
0.244 

41 
0.197 

1
0.143

HD<=11 
468 

0.266 
292 
0.245 

41 
0.197 

1
0.143

HD<=12 
483 

0.276 
294 
0.248 

41 
0.197 

1
0.143

HD<=13 
490 

0.279 
295 
0.248 

41 
0.197 

1
0.143

HD<=14 
492 

0.281 
295 
0.248 

41 
0.197 

1
0.143

HD<=15 
492 

0.281 
295 
0.248 

41 
0.197 

1
0.143

HD<=16 
493 

0.281 
295 
0.248 

41 
0.197 

1
0.143
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HEPATITIS   
    
    
  Error rates 
   
k:  2 3 4 

HD=1 
1 

0 
1 

0 
1 

0

HD<=2 
6 

0.001 
3 

0 
2 

0

HD<=3 
15 

0.037 
5 

0.014 
2 

0

HD<=4 
24 

0.083 
5 

0.020 
2 

0

HD<=5 
33 

0.108 
5 

0.020 
2 

0

HD<=6 
37 

0.122 
6 

0.020 
2 

0

HD<=7 
38 

0.129 
6 

0.020 
2 

0

HD<=8 
40 

0.125 
6 

0.020 
2 

0

HD<=9 
40 

0.125 
6 

0.020 
2 

0
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IONOSPHERE    
     
     
  Error rates  
    
k: 2 3 4 5 

HD=1 
15 

0.038 
13 

0.032 
4 

0.018
1

0

HD<=2 
43 

0.031 
31 

0.022 
6 

0.014
1

0

HD<=3 
61 

0.047 
42 

0.030 
7 

0.010
1

0

HD<=4 
79 

0.063 
49 

0.033 
7 

0.010
1

0

HD<=5 
98 

0.073 
55 

0.034 
7 

0.010
1

0

HD<=6 
115 

0.097 
58 

0.044 
7 

0.010
1

0

HD<=7 
128 

0.113 
58 

0.045 
7 

0.010
1

0

HD<=8 
141 

0.125 
60 

0.049 
7 

0.010
1

0

HD<=9 
150 

0.134 
60 

0.052 
7 

0.010
1

0

HD<=10 
158 

0.138 
61 

0.053 
7 

0.010
1

0

HD<=11 
163 

0.142 
61 

0.053 
7 

0.010
1

0

HD<=12 
166 

0.144 
61 

0.053 
7 

0.010
1

0

HD<=13 
169 

0.145 
61 

0.053 
7 

0.010
1

0

HD<=14 
170 

0.145 
61 

0.053 
7 

0.010
1

0

HD<=15 
170 

0.146 
61 

0.053 
7 

0.010
1

0

HD<=16 
170 

0.146 
61 

0.053 
7 

0.010
1

0
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MUSHROOM    
     
     
  Error rates  
    
k: 2 3 4 5 

HD=1 
1581 

0.002
1573 

0.002 
1536

0.001
1418

0

HD<=2 
1979 

0.004
1957 

0.002 
1884

0.002
1689

0.001

HD<=3 
2022 

0.005
1983 

0.003 
1896

0.002
1693

0.001

HD<=4 
2045 

0.006
1989 

0.003 
1896

0.002
1693

0.001

HD<=5 
2057 

0.007
1989 

0.003 
1896

0.002
1693

0.001

HD<=6 
2064 

0.007
1989 

0.003 
1896

0.002
1693

0.001

HD<=7 
2067 

0.007
1989 

0.003 
1896

0.002
1693

0.001

HD<=8 
2068 

0.007
1989 

0.003 
1896

0.002
1693

0.001

HD<=9 
2068 

0.007
1989 

0.003 
1896

0.002
1693

0.001

HD<=10 
2068 

0.007
1989 

0.003 
1896

0.002
1693

0.001

HD<=11 
2068 

0.007
1989 

0.003 
1896

0.002
1693

0.001

HD<=12 
2068 

0.007
1989 

0.003 
1896

0.002
1693

0.001

HD<=13 
2068 

0.007
1989 

0.003 
1896

0.002
1693

0.001

HD<=14 
2068 

0.007
1989 

0.003 
1896

0.002
1693

0.001

HD<=15 
2068 

0.007
1989 

0.003 
1896

0.002
1693

0.001

HD<=16 
2068 

0.007
1989 

0.003 
1896

0.002
1693

0.001
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TIC-TAC-TOE    
     
     
  Error rates  
AVERAGE    
k: 2 3 4 5 
HD=1         

HD<=2 
325 

0.083 
325 

0.083 
242

0.084
7

0.036

HD<=3 
394 

0.109 
394 

0.109 
276

0.102
7

0.036

HD<=4 
469 

0.099 
464 

0.100 
287

0.101
7

0.036

HD<=5 
479 

0.100 
473 

0.101 
287

0.101
7

0.036
 
 
 
VOTING      
      
      
  Error rates   
AVERAGE     
k: 2 3 4 5 6 

HD=1 
35 

0.032 
29 

0.021 
12

0.004
2

0
1

0

HD<=2 
61 

0.057 
43 

0.037 
13

0.004
2

0
1

0

HD<=3 
73 

0.064 
46 

0.044 
13

0.004
2

0
1

0

HD<=4 
76 

0.065 
47 

0.044 
13

0.004
2

0
1

0

HD<=5 
76 

0.065 
47 

0.044 
13

0.004
2

0
1

0
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WISCONSIN BREAST CANCER   
      
      
  Error rates   
AVERAGE     
k: 2 3 4 5 6 

HD=1 
48 

0.016
43 

0.015 
22

0.014
7

0.001
2

0

HD<=2 
91 

0.014
76 

0.015 
32

0.016
8

0.008
3

0

HD<=3 
119 

0.022
93 

0.017 
35

0.015
9

0.008
3

0

HD<=4 
141 

0.028
107 

0.021 
36

0.015
9

0.008
3

0

HD<=5 
156 

0.036
114 

0.029 
36

0.016
9

0.008
3

0

HD<=6 
168 

0.049
117 

0.037 
36

0.016
9

0.008
3

0

HD<=7 
175 

0.057
119 

0.041 
36

0.016
9

0.008
3

0

HD<=8 
179 

0.065
120 

0.046 
36

0.016
9

0.008
3

0

HD<=9 
183 

0.070
121 

0.049 
36

0.016
9

0.008
3

0

HD<=10 
184 

0.071
121 

0.049 
36

0.016
9

0.008
3

0

HD<=11 
184 

0.072
121 

0.049 
36

0.016
9

0.008
3

0

HD<=12 
185 

0.073
121 

0.049 
36

0.016
9

0.008
3

0

HD<=13 
185 

0.073
121 

0.049 
36

0.016
9

0.008
3

0
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The following table shows the ratios for the averages, over the datasets, of the error estimates on 
observations of similarity at least k and of at most a given Hamming distance from the training set. 
 
 
 
AVERAGE OF AVERAGE ERROR RATE  
      
k: 2 3 4 5 6 
HD=1 0.034 0.031 0.040 0.005 0
HD<=2 0.060 0.057 0.062 0.010 0
HD<=3 0.078 0.068 0.036 0.010 0
HD<=4 0.105 0.084 0.043 0.027 0
HD<=5 0.106 0.086 0.041 0.027 0
HD<=6 0.119 0.093 0.046 0.027 0
HD<=7 0.126 0.096 0.049 0.027 0
HD<=8 0.131 0.099 0.051 0.027 0
HD<=9 0.134 0.100 0.051 0.027 0
HD<=10 0.136 0.101 0.051 0.027 0
HD<=11 0.137 0.101 0.051 0.027 0
HD<=12 0.138 0.102 0.051 0.027 0
HD<=13 0.138 0.102 0.051 0.027 0
HD<=14 0.139 0.102 0.051 0.027 0
HD<=15 0.139 0.102 0.051 0.027 0
HD<=16 0.139 0.102 0.051 0.027
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A6.2 Combining the Hamming distance and similarity approaches: for each learning algorithm  
 
The following tables show, for each learning algorithm, the average, over all nine data-sets, of the 10-
times 2-fold cross validation error estimates on observations of similarity at least k and of at most a 
given Hamming distance from the training set.  
 
 
 
LAD      
      
k: 2 3 4 5 6 
HD=1 0.050 0.049 0.112 0.007 0
HD<=2 0.055 0.052 0.110 0.006 0
HD<=3 0.079 0.070 0.044 0.006 0
HD<=4 0.097 0.082 0.049 0.034 0
HD<=5 0.096 0.085 0.044 0.034 0
HD<=6 0.110 0.095 0.051 0.034 0
HD<=7 0.117 0.099 0.055 0.034 0
HD<=8 0.122 0.102 0.056 0.034 0
HD<=9 0.126 0.103 0.056 0.034 0
HD<=10 0.127 0.104 0.057 0.034 0
HD<=11 0.127 0.104 0.057 0.034 0
HD<=12 0.128 0.104 0.057 0.034 0
HD<=13 0.129 0.104 0.057 0.034 0
HD<=14 0.129 0.104 0.057 0.034 0
HD<=15 0.129 0.104 0.057 0.034 0
HD<=16 0.129 0.104 0.057 0.034
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SEE5      
      
k: 2 3 4 5 6 
HD=1 0.029 0.022 0.017 0.005 0
HD<=2 0.068 0.062 0.064 0.020 0
HD<=3 0.083 0.073 0.047 0.020 0
HD<=4 0.113 0.089 0.056 0.032 0
HD<=5 0.112 0.090 0.055 0.032 0
HD<=6 0.128 0.097 0.059 0.032 0
HD<=7 0.136 0.102 0.064 0.032 0
HD<=8 0.140 0.104 0.065 0.032 0
HD<=9 0.144 0.106 0.066 0.032 0
HD<=10 0.146 0.107 0.066 0.032 0
HD<=11 0.146 0.107 0.066 0.032 0
HD<=12 0.148 0.107 0.066 0.032 0
HD<=13 0.148 0.108 0.066 0.032 0
HD<=14 0.148 0.108 0.066 0.032 0
HD<=15 0.149 0.108 0.066 0.032 0
HD<=16 0.149 0.108 0.066 0.032

 
 
SMO      
      
k: 2 3 4 5 6 
HD=1 0.033 0.037 0.051 0.005 0
HD<=2 0.049 0.047 0.048 0.005 0
HD<=3 0.065 0.054 0.021 0.005 0
HD<=4 0.094 0.071 0.027 0.028 0
HD<=5 0.096 0.075 0.025 0.028 0
HD<=6 0.109 0.080 0.028 0.028 0
HD<=7 0.114 0.082 0.031 0.028 0
HD<=8 0.119 0.084 0.033 0.028 0
HD<=9 0.122 0.086 0.033 0.028 0
HD<=10 0.124 0.087 0.033 0.028 0
HD<=11 0.124 0.087 0.033 0.028 0
HD<=12 0.125 0.087 0.033 0.028 0
HD<=13 0.126 0.087 0.033 0.028 0
HD<=14 0.126 0.087 0.033 0.028 0
HD<=15 0.126 0.087 0.033 0.028 0
HD<=16 0.126 0.087 0.033 0.028
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SimpleLogistic     
      
k: 2 3 4 5 6 
HD=1 0.027 0.030 0.039 0.005 0
HD<=2 0.049 0.047 0.048 0.006 0
HD<=3 0.067 0.057 0.026 0.006 0
HD<=4 0.095 0.074 0.036 0.029 0
HD<=5 0.095 0.077 0.032 0.029 0
HD<=6 0.109 0.083 0.036 0.029 0
HD<=7 0.114 0.084 0.039 0.029 0
HD<=8 0.118 0.086 0.040 0.029 0
HD<=9 0.121 0.088 0.040 0.029 0
HD<=10 0.123 0.088 0.040 0.029 0
HD<=11 0.124 0.089 0.040 0.029 0
HD<=12 0.125 0.089 0.040 0.029 0
HD<=13 0.125 0.089 0.040 0.029 0
HD<=14 0.125 0.089 0.040 0.029 0
HD<=15 0.126 0.089 0.040 0.029 0
HD<=16 0.126 0.089 0.040 0.029

 
 
MultilayerPerceptron    
      
k: 2 3 4 5 6 
HD=1 0.033 0.033 0.036 0.005 0
HD<=2 0.061 0.061 0.052 0.006 0
HD<=3 0.073 0.064 0.027 0.006 0
HD<=4 0.104 0.081 0.033 0.010 0
HD<=5 0.104 0.083 0.031 0.010 0
HD<=6 0.117 0.089 0.036 0.010 0
HD<=7 0.123 0.092 0.039 0.010 0
HD<=8 0.127 0.094 0.040 0.010 0
HD<=9 0.130 0.096 0.041 0.010 0
HD<=10 0.132 0.096 0.041 0.010 0
HD<=11 0.133 0.097 0.041 0.010 0
HD<=12 0.135 0.097 0.041 0.010 0
HD<=13 0.135 0.097 0.041 0.010 0
HD<=14 0.135 0.097 0.041 0.010 0
HD<=15 0.136 0.097 0.041 0.010 0
HD<=16 0.136 0.097 0.041 0.010
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IB3      
      
k: 2 3 4 5 6 
HD=1 0.032 0.026 0.012 0.005 0
HD<=2 0.070 0.065 0.043 0.007 0
HD<=3 0.098 0.085 0.043 0.007 0
HD<=4 0.123 0.101 0.050 0.021 0
HD<=5 0.125 0.105 0.048 0.021 0
HD<=6 0.136 0.111 0.053 0.021 0
HD<=7 0.143 0.114 0.056 0.021 0
HD<=8 0.148 0.117 0.057 0.021 0
HD<=9 0.152 0.118 0.058 0.021 0
HD<=10 0.154 0.119 0.058 0.021 0
HD<=11 0.155 0.119 0.058 0.021 0
HD<=12 0.157 0.120 0.058 0.021 0
HD<=13 0.157 0.120 0.058 0.021 0
HD<=14 0.158 0.120 0.058 0.021 0
HD<=15 0.158 0.120 0.058 0.021 0
HD<=16 0.158 0.120 0.058 0.021

 
J48      
      
k: 2 3 4 5 6 
HD=1 0.032 0.021 0.011 0.005 0
HD<=2 0.071 0.068 0.068 0.021 0
HD<=3 0.083 0.073 0.045 0.021 0
HD<=4 0.112 0.089 0.053 0.033 0
HD<=5 0.111 0.090 0.052 0.033 0
HD<=6 0.127 0.096 0.057 0.033 0
HD<=7 0.135 0.100 0.061 0.033 0
HD<=8 0.140 0.103 0.063 0.033 0
HD<=9 0.144 0.105 0.063 0.033 0
HD<=10 0.146 0.106 0.063 0.033 0
HD<=11 0.146 0.106 0.063 0.033 0
HD<=12 0.147 0.107 0.063 0.033 0
HD<=13 0.148 0.107 0.063 0.033 0
HD<=14 0.148 0.107 0.063 0.033 0
HD<=15 0.148 0.107 0.063 0.033 0
HD<=16 0.148 0.107 0.063 0.033
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The following table shows the ratios for the averages, over the learning algorithms, of the error 
estimates on observations of similarity at least k and of at most a given Hamming distance from the 
training set. 
 
 
 
AVERAGE OF AVERAGE ERROR RATE  
      
k: 2 3 4 5 6 
HD=1 0.034 0.031 0.040 0.005 0
HD<=2 0.060 0.057 0.062 0.010 0
HD<=3 0.078 0.068 0.036 0.010 0
HD<=4 0.105 0.084 0.043 0.027 0
HD<=5 0.106 0.086 0.041 0.027 0
HD<=6 0.119 0.093 0.046 0.027 0
HD<=7 0.126 0.096 0.049 0.027 0
HD<=8 0.131 0.099 0.051 0.027 0
HD<=9 0.134 0.100 0.051 0.027 0
HD<=10 0.136 0.101 0.051 0.027 0
HD<=11 0.137 0.101 0.051 0.027 0
HD<=12 0.138 0.102 0.051 0.027 0
HD<=13 0.138 0.102 0.051 0.027 0
HD<=14 0.139 0.102 0.051 0.027 0
HD<=15 0.139 0.102 0.051 0.027 0
HD<=16 0.139 0.102 0.051 0.027

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


