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TOWERS, CONJUGACY AND CODING

S. ALPERN AND V.S. PRASAD

We dedicate this paper to the memory of Shizuo Kakutani. His kind manner and strong

presence will be missed.

Abstract. We consider three theorems in ergodic theory concerning a fixed

aperiodic measure preserving transformation σ of a Lebesgue probability space

(X,A, µ) and show that these theorems are all equivalent. Two of these results
concern the existence of a partition of the space X with special properties.

The third theorem asserts that the conjugates of σ are dense in the uniform

topology on the space of automorphisms. The first partition result is Alpern’s
generalization of the Rokhlin Lemma, the so-called Multiple Rokhlin Tower

theorem stating that the space can be partitioned into denumerably many
columns and the measures of the columns can be prescribed in advance; the

second partition result is a coding result which asserts that any mixing Markov

chain can be represented by σ and some partition of the space indexed by the
state space of the Markov chain.

1. Introduction

Suppose (X,A, µ) is a Lebesgue probability space with σ an invertible measure
preserving bijection of the measure space X onto itself, with sigma-algebra A and
probability measure µ (we will say σ is an automorphism of (X,A, µ)). We assume
that σ is aperiodic; i.e., the measure of the points which are periodic for σ is a
µ-null set. In this paper we consider three theorems about such an automorphism
σ and show that all three theorems are equivalent: two of these results assert the
existence of a partition of X with special properties under the action of σ, and
the other result states that the conjugates of σ form a dense class in the space of
automorphisms in a certain topology on the automorphisms.

The two partition results are: the Multiple Rokhlin Tower decomposition for σ
[3], a generalization of Rokhlin’s Lemma, (the latter is one of the basic constructions
in ergodic theory — see for example Kornfeld’s survey [21]); the Coding theorem
[6] shows that given any mixing Markov chain P, there is a partition of the space
X so that σ moves the partition elements according to the transitions prescribed
by the Markov chain P — this result is a reformulation of a coding question of
Kiefer that asks if a stationary stochastic process can be coded to have prescribed
marginal distributions. The third theorem, the Conjugacy theorem of the title, is
Alpern’s Approximate Conjugacy Theorem [3] for σ, which states that except for a
previously prescribed set of small measure, there is some conjugate of σ that agrees
pointwise with a given weak mixing automorphism.

Date: Draft March 19, 2005.

1991 Mathematics Subject Classification. 37.
Key words and phrases. Rokhlin towers, conjugacy, weak mixing, stationary, aperiodic irre-

ducible markov chain.

1
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To show the equivalence of these theorems, there are three implications to prove.
Only one of these implications in the equivalence proof is new. Because of recent
activity involving these results (see the next section) we feel it might be useful to
point out why and how these theorems are connected. A good reference for these
theorems is our book Typical dynamics of volume preserving homeomorphisms [8,
Appendix 1]: it contains proofs of each of the three Theorems (as well as the first
two implications in Section 3).

We give a formal statement of these results and describe some applications of
these results. This is followed by a proof of the main result that the three theorems
are logically equivalent.

2. Three theorems from ergodic theory

Suppose (X,A, µ) is Lebesgue probability space and σ an automorphism of the
measure space X onto itself which is aperiodic. We consider in detail the three
results mentioned in the previous section.

2.1. Towers. S. Alpern has proven the following theorem which extends Rokhlin’s
Lemma (see [21], for a survey and history of this “theorem” of Rokhlin). We will
refer to this Mutiple Rokhlin Tower theorem as MRT.

Theorem 2.1 (MRT). Let σ be an aperiodic µ-preserving automorphism of a
Lebesgue probability space (X,A, µ) onto itself. Let π = (π1, π2, . . .) be a probability
distribution such that {k : πk > 0} is a relatively prime set of positive integers.
Then there is a partition P = {Pk,i : k = 1, 2, . . . ,∞; i = 1, 2, . . . , k} of X so that
for each integer k = 1, 2, . . . ,∞

(1) Pk,i = σi−1(Pk,1) for i = 1, 2, . . . , k.
(2) µ(∪k

i=1Pk,i) = πk.
We call P a multitower partition for σ.

The Rokhlin Lemma asserts that for σ as above, and any positive integer n and
any positive number ε > 0, there is a subset R ∈ A, so that the first n iterates of
R are disjoint and µ(∪n−1

i=0 σ
i(R)) = 1 − ε. The Multiple Rokhlin Tower theorem

applied to the probability vector π with π1 = ε and πn = 1 − ε yields a set Pn,1,
which, if we take to be R, gives the Rokhlin Lemma . We note that the Multiple
Rokhlin Tower theorem states that more generally (than the Rokhlin Lemma) that
an aperiodic automorphism can be represented by (denumerably many) columns
(∪k

i=1Pk,i) of given heights (k) and given measures (πk) as long as the heights are
relatively prime. The MRT asserts the existence of a set P = ∪kPk,1 whose relative
distribution of first return times to P is given by π. Note that if d divides all k
for which πk > 0 then for any set P whose relative distribution of return times
to P is given by π and for any m which is not a multiple of d, we would have
µ(P ∩ σm(P )) = 0. If σ is mixing for example, such a set cannot exist.

For finite dimensional distributions π, Theorem 2.1 was obtained by Alpern [2]
(see [12] for another proof which uses Kakutani’s proof of the Rokhlin Lemma) and
the general case is proved in [3]. See also [25] for another proof by Prikhod′ko and
Ryzhikov. An extension of Theorem 2.1 for Zd-actions [24], has also been obtained
by Prikhod′ko. We also note for finite dimensional distributions, that Grillenberger
and Krengel [13] previously considered a deep generalization of Theorem 2.1 where
the partition of X is required to generate the sigma algebra. Extensions of the
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MRT to automorphisms of an infinite measure spaces can be found in [5] and [11];
for aperiodic nonsingular automorphisms of a Lebesgue space see [7].

The MRT is one of the main tools used by Alpern and Alpern-Prasad to prove
that any measure theoretic property which is generic for automorphisms of a Lebesgue
measure space is a generic property for measure preserving homeomorphisms of
manifolds. This forms the main topic of our book [8]. In recent work on topolgical
(and measurable) orbit equivalence, the MRT has been used by N. Ormes [23] and
Kornfeld-Ormes [22] to prove strong orbit equivalence theorems and generalizations
of the Jewett-Krieger theorem. A nice survey of the use of MRT and associated
Bratteli diagrams to obtain Vershik adic-maps in topological orbit equivalence the-
ory can be found in [21].

2.2. Conjugacy. We refer to the following Approximate Conjugacy Theorem as
ACT (note in our book [8], the ACT is referred to as the Pointwise Conjugacy
Theorem); the ACT is used to prove the denseness of the conjugacy class of the
automorphism σ.

Theorem 2.2 (ACT). Let σ be an aperiodic µ-preserving automorphism of a
Lebesgue probability space (X,A, µ) onto itself and let τ be a weak mixing invert-
ible measure preserving automorphism of a Lebesgue space (Y,B, ν). Then for any
F ∈ B with ν(F ) < 1, there is conjugate of σ which agrees with τ on F ; i.e., there
is an invertible measure preserving bijection

ψ : (Y,B, ν) → (X,A, µ)

such that

σ̂(y) = ψ−1σψ(y)
= τ(y)

for ν-a.e. y ∈ F .

This theorem asserts that the conjugates C(σ) of an aperiodic automorphism are
dense in the weak mixing automorphisms of (X,A, µ) if the distance between two
automorphisms σ, τ is given by µ{x ∈ X : σ(x) 6= τ(x)}.

In approximation problems in ergodic theory, the denseness of C(σ), is used to
show that if a particular aperiodic automorphism σ has a certain measure theoretic
property in the space of automorphisms, then there is dense class of automorphisms
possessing the same property — namely, its conjugacy class C(σ), in the group of all
automorphisms with the weak topology [17]. For infinite measure spaces a version
of the ACT can be found in [9], see also [8]. We further note that in their memoir
[1], Akin et al define a (metric) space X to have the Rokhlin property if there is
some homeomorphism of X whose conjugates (by other homeomorphisms) is dense
in the space of homeomorphisms (they show that when X is the Cantor set, it
has the Rokhlin property; further they obtain a relative Rokhlin property for circle
homeomorphisms).

2.3. Coding. We refer to the next result as the CMC (for Coding Markov Chains)
Theorem. Given a mixing Markov Chain P, we ask if it is possible to “represent”
P, by the aperiodic automorphism σ and some partition P. The theorem below
explains in what sense this is possible.
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Theorem 2.3 (CMC). Let σ be an aperiodic µ-preserving automorphism of a
Lebesgue probability space (X,A, µ) onto itself. Suppose that P = (p(i, j) : i, j ∈ N)
is the transition probability matrix for a positive recurrent, aperiodic, irreducible
Markov chain with state space N the set of positive integers. Let p = (p(i) : i ∈ N)
be the unique positive invariant distribution pP = p (i.e., p(j) =

∑
i∈N p(i)p(i, j)).

Then there is a partition P = {Pi : i ∈ N} of X such that for all i, j ∈ N

(2.1) µ
(
Pi ∩ σ−1Pj

)
= µ(Pi)p(i, j) = p(i)p(i, j).

The result above was proved by us in [6]. This extended to denumerable state
spaces, J. Kieffer’s finite state space result [20] where he considered the question of
coding a stationary stochastic process to one with prescribed marginal distributions.
After reformulation, Kieffer notes that Theorem 2.3 for finite state space Markov
Chains and ergodic σ follows from a deep result of Grillenberger and Krengel [13]
where they also consider the question of obtaining partitions which generate the
sigma algebra A. Kieffer also obtains a “universal” partition P which satisfies (2.1)
for all antiperiodic automorphisms σ. Cohen [10] considers the following finite
dimensional variant of Theorem 2.3, the so-called rotational representations of P:
The transition probabilities (p(i, j) : 1 ≤ i, j ≤ n) are given and it is required to
find a circle rotation σ and a circle partition P consisting of intervals satisfying
(2.1). See also the work of Alpern [4], Haigh [14], Kalpazidou [19], and Kalpazidou-
Tzouvaras [18] for related developments on rotational representations of stochastic
matrices, and cycle decompositions of Markov chains.

3. Proofs of Equivalencies

We show that the three results above are equivalent.

Theorem 3.1. Let σ be an aperiodic automorphism of a Lebesgue probability space
(X,A, µ) onto itself. Then the three theorems for σ, the Multiple Rokhlin Tower
Theorem (MRT, Theorem 2.1), the Approximate Conjugacy Theorem (ACT, The-
orem 2.2), and the Coding Markov Chain Theorem (CMC, Theorem 2.3), are all
equivalent.

The theorem will be proved by showing the following three implications. Again we
note that the first two implications are in Appendix 1 of [8], but in order to make
this paper self contained, we include the proofs of all of these implications.

(1) MRT ⇒ ACT
(2) ACT ⇒ CMC
(3) CMC ⇒ MRT

Proof: MRT ⇒ ACT
Let τ : (Y,B, ν) → (Y,B, ν) be a weak mixing automorphism of the Lebesgue

space (Y,B, ν) and let F ∈ B be any set with ν(F ) < 1. Since τ is ergodic the
τ -orbit of every point y ∈ F eventually exits F . For each integer k = 2, 3, . . . ,∞,
set Rk,1 ⊂ F \ τ(F ) to be the set of points in F \ τ(F ) whose τ -orbit first leaves F
on the (k − 1)th iterate. Setting Rk,i = τ i−1(Rk,1) for i = 1, 2, . . . , k, we note that

F ∪ τ(F ) = ∪∞k=2 ∪k
i=1 Rk,i

Set R1,1 = Y \(F ∪τ(F )) and let R = {Rk,i : k = 1, 2, . . . ,∞; i = 1, 2, . . . , k}. Then
R is a multitower partition of Y for τ , with column distribution π = (π1, π2, . . .),
given by πk = ν(∪k

i=1Rk,i).
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We note that the gcd{k : πk > 0} = 1: if ν(R1,1) > 0, then 1 ∈ {k : πk > 0} and
{k : πk > 0} is a relatively prime set of integers; on the other hand, if ν(R1,1) = 0,
then Y = F ∪τ(F ) and if gcd{k : πk > 0} = p, then all column heights are multiples
of p. Then for any k with πk > 0, the set D = Rk,1 satisfies ν(D ∩ τnp+1(D)) = 0
for all n. But then this contradicts the assumption that τ is weak mixing. Thus
the distribution π satisfies the hypotheses of the MRT, Theorem 2.1.

Let P = {Pk,i} be the multitower partition for σ on (X,A, µ) with distribution
π. Since ν(Rk,1) = µ(Pk,1) for each k, there is a measure preserving bijection
ψ : ∪kRk,1 → ∪kPk,1. Extend ψ : (Y,B, ν) → (X,A, µ) by setting for y ∈ Rk,i,
ψ(y) = σi−1ψτ1−i(y) for all k with πk > 0 and i = 1, 2, . . . k. Since τ and ψ−1σψ
differ only on the “top” of the tower (which is a subset of Y \ F ), it follows that
τ(y) = ψ−1σψ(y) for all y ∈ F .

Proof: ACT ⇒ CMC
We represent the Markov chain P = (p(i, j) : i, j ∈ N) as a shift transformation

τ on Y = N∞, the two-sided space of infinite sequences y = (. . . , y−1, y0, y1, . . .)
with all of the yi ∈ N, the symbol space of the Markov chain. Denote by ν, the
shift invariant measure, defined on the cylinders in Y via the invariant p and P.
The assumptions on P ensure that the automorphism τ is mixing. Let Qi = {y ∈
N∞ : y0 = i} be the time 0 partition of Y . Observe that ν(τ(Qi)∩Qj)

ν(Qi)
= p(i, j). We

assume that p(0) > 0, so that ν(Q0) > 0.
Apply the Approximate Conjugacy Theorem to F = Y \ τ−1{y ∈ Y : y1 6= 0} to

get a measure preserving bijection

ψ : (Y,B, ν) → (X,A, µ)

Setting P = {Pi : i ∈ N} where Pi = ψ−1(Qi) gives the required partition.
Proof: CMC ⇒ MRT
Given a multitower configuration for σ given by the probability distribution

π = (π1, π2, . . .) we model the multitower as a Markov Chain whose state space
consists of the levels of the multitower. Define the denumerable (multitower) state
space T by

T = {(k, i) : k is postive integer with πk > 0 and for these k, i = 1, 2, . . . , k} ,

on which we put an initial probability distribution p = {p((k, i)) : (k, i) ∈ T }, with
p((k, i)) = πk/k for each (k, i) ∈ T . We define a Markov Chain on T by defining
a transition (k, i) → (k′, i′) to be legal in T , if k = k′ and i′ = i+ 1, or i = k and
i′ = 1. Setting p =

∑
k πk/k, then the nonzero transition probabilities P are

P ((k, i), (k, i+ 1)) = 1 if i < k

and
P ((k, k), (k′, 1)) = p((k′, 1))/p.

The transition probabilities on T with the stationary invariant probability p defines
a “mixing” Markov chain on T . The partition from the CMC Theorem is our
multitower partition P = {P(k,i) : (k, i) ∈ T }, having column distribution π.
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