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abstract: 
In this review, we present several variations of the Alpern-Reyniers two-sided matching model, 
with particular application to its biological interpretation as a mate selection game. In this context, 
the model describes equilibrium behavior in a dynamic game where unmated males and females 
of various types in a given cohort group are randomly matched in a succession of periods. If they 
'accept' each other, they mate permanently and leave the cohort. The models differ in the utility 
u(x,y) they assign to individuals of type x who mates with one of type y. The two main models 
assume that (i) individuals prefer mates of similar type, u(x,y)= -|x-y|; or that (ii) they have a 
common preference for high types, u(x,y)= y. Other applications of the matching model, for 
example to job search, are only described briefly 

 
�
 



1 INTRODUCTION

Who we are as individuals, and also as a species, has been greatly in�uenced
by the mate choices of our personal and collective ancestors. This may in part
explain the extensive literature, in both the biological and social sciences, on
the subject of mate selection. However, as observed by Bergstrom and Real
[6], relatively little of this literature is concerned with the problem of mutual
mate choice, where mating requires a positive choice from both partners (in
many species, the males compete while the females alone choose, so selection is
one-sided).
This article surveys the work carried out by Steve Alpern and Diane Reyniers

[2,3] at the London School of Economics, towards modelling the problem of mu-
tual mate choice as a dynamic nonatomic game. (Some recent extensions of the
theory by Steve Alpern and Ioanna Katrantzi [1] are also described.) The game
is played in successive periods (of a �mating season�) by a cohort of males and
females, who are randomly paired in each period and mate by mutual consent
based on their own preferences over traits of their potential partners. These
games tend to have positive assortative mating in their equilibrium outcomes,
a widely observed empirical �nding in both humans and animals.
Although the models we discuss are formal and based on rigorous math-

ematics, our discussion here will be less formal and for the most part proofs
will be omitted. Our brief in this exercise did not include surveying related
work, but it should be mentioned that the papers of McNamara and Collins [19]
and Johnstone [15] are particularly signi�cant, and will be brie�y mentioned at
appropriate places.

1.1 A �grand programme�

Much of the work in this area has its background and its inspiration in a �grand
programme� in which empirical data (e.g. observed patterns of a posteriori
couples and positive assortative mating) could be used to infer processes (game
structures) and preferences (utilities of individuals for potential mates) which
may have led to such patterns. For example the work of Kalick and Hamilton [17]
seeks to determine the mate preferences which have led to the observed high
correlation in facial attractiveness - in particular an analysis of the so called
�matching hypothesis�which asserts that individuals prefer similarly attractive
mates. In fact there is no established theory that we are aware of that can
e¤ectively carry out this �grand programme�. Even if the process (game) is
known apart from the preferences (payo¤s), there seems to be no theory parallel
to that of �revealed preferences�(developed by Samuelson [25, Chapter VI] and
others to infer utilities from actions in an economic setting) which determines the
payo¤s from observations of (equilibrium) play. However this �grand programme�
is still at the heart of many models, including ours, in which equilibrium behavior
is determined in various formal models of unknown or partially known processes.
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1.2 The Kalick-Hamilton �dating simulation model�

The game theoretic models of the authors have as their immediate inspiration
the simulation model developed by Kalick and Hamilton [17] to analyze the
matching hypothesis stated earlier. They created (in a computer simulation
model) an initial cohort of male and female individuals of various attractiveness
levels, and randomly paired them (�dates�) in a sequence of periods. If both
individuals on a date accepted the other, they formed a �mated couple� and
left for the remainder of the simulation. In one simulation, all individuals were
programmed to accept similar mates (close attractiveness levels) with higher
probability than dissimilar ones. As expected, this led to high inter-couple at-
tractiveness levels at the end of the run (when everyone was paired). In another
run, everyone was programmed simply to accept dates with high attractiveness
levels with high probability. This simulation, more controversially (at least in
the social science literature - see [4],[18]), also led to high correlations. In fact
both correlations were near empirically observed ones.

1.3 The Alpern-Reyniers game

The Alpern-Reyniers game �n (ux; uy; F1; G1) (or its sex-symmetric version
�n (ux; F1) ) introduced in [2] took the dynamic aspects of the Kalick-Hamilton
simulation model [17](�xed initial cohort, random pairing of unmated individu-
als in each period, mutual acceptance for mating) and made it into a game. The
players are the males x in a type set X and females in a type set Y; where X and
Y are taken to be a common �xed interval, either [0; 1] or [�1; 1] (used when
the symmetry around the central type 0 is important for the analysis). Thus we
consider only a single parameter of di¤erentiation of individuals, though there
is nothing in our model that would restrict us from considering higher dimen-
sions. Sometimes a discrete type set f1; 2; : : : ; ng is adopted for even greater
simplicity. It is convenient to think of X and Y as simply the set of males and
females; however in the continuous model males are distributed over X accord-
ing to an initial continuous cumulative distribution F1 (with females over Y
according to G1): In any case we will still talk of "a male x" rather than "of
type x": This game di¤ers from the Kalick-Hamilton simulation in the process
by which individuals choose to accept or reject their date. In their simulation,
the choice was programmed into the model (probabilistically). In our game the
choice depends on the chooser�s preferences, which are modelled by specifying
their utility function. The utility that a male x gets from mating with a female
y is denoted ux (y) ; the female�s utility is wy (x) (in symmetric models we just
use u): Their actual choice (when considering a particular date) then depends
on many things. They must take into account the choices of other individuals
(of both the same and opposite sex), because those choices will a¤ect the dis-
tribution over type in the next period, and this will a¤ect their estimation of
how well they will do (the expected utility of their eventual mate) if they reject
their current date and enter the next period unmated. All these considerations
are combined into our notion of an equilibrium strategy.
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For simplicity, we now restrict our attention to games where there is complete
symmetry between the sexes, so that X = Y; F1 = G1; and ux (y) is the utility
any person of type x (male or female) gets when mated with a type y: A sex-
symmetric strategy (for either sex, in a symmetric model) is a function s =
(s1; s2; : : : ; sn�1) such that for each t = 1; : : : ; n � 1 (in the �nal period t any
date is accepted) st (x) � Y is the set of all types y 2 Y that an individual of
type x will accept. If everyone adopts the strategy s then the distributions Ft
of types in period are determined as well as the expected payo¤s vt (x) to an
individual of type x who enters period t unmated. In particular,

vn (x) =

Z
Y

ux (y) dFn (y) (1)

is simply the expected utility to x of a random unmated individual in the �nal
period n: The equilibrium condition is that

y 2 st (x), ux (y) � vt+1 (x) : (2)

That is, at equilibrium x accepts y if and only this mating would give him at
least as much utility as he gets on average if he enters the next period unmated.

1.4 Particular preferences

Section 2 gives the analysis of the game � (n) for similarity (or homotypic)
preferences ux (y) = � jx� yj ; where the cost of a mating between types x and
y (for each player) is the distance jx� yj between their types. This section is
based mainly on the original article of Alpern and Reyniers [2], together with
some recent results of Alpern and Katrantzi [1]. Section 3 gives the analysis
of Alpern and Reyniers [3] of the game � (n) with common (or maximizing)
preferences ux (y) = y; where there is a common ranking (all males have a
common ranking of the females, and visa versa) and higher ranking goes with
higher types. Readers should note the similar paper of Johnstone [15] which is
more computational and also o¤ers more biological insight.
It is worth noting that both of the preference types (utility functions) we

discuss (similarity and common) are equivalent to one of the form u
z(x)
x (y) =

� jy � z (x)j ; where the cost of a mating with y to an individual of type x is the
distance to x�s ideal mate, z (x) : For similarity preferences we have z (x) = x
(an identical mate is the ideal), and for common preferences the common ideal
mate is the one with maximum type z = 1; and u1x (y) = � (1� y) = y � 1;
which is a¢ ne equivalent (same preference structure) to y:

1.5 Alternative interpretations of the models

As the models presented here are formal and mathematical, they may be easily
interpreted in other situations. The two groups X and Y need not represent
males and females of a biological species who wish to mate with preferred in-
dividuals. They could equally represent buyers and sellers (mating equals a
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sale), employers and employees (the so-called job search problem, as described
by McNamara and Collins [19]), or schools and students. The last two matching
problems are generally one to many, so some modi�cations are needed. It should
also be observed that, as long as symmetric assumptions are made between the
sexes, the model can be interpreted as matching within a single group X. Ex-
amples of this might be �nding car pool partners (where preferences would by of
similarity type with respect to home address) or �nding tennis partners (perhaps
the ideal for x is x+ "; if one likes to have a slightly better partner). However
centrally organized systems are very distinct from our decentralized models,
where meeting (dating) is random. Indeed internet auctions which bring buy-
ers and sellers together (or dating sites) will require very di¤erent models than
those discussed here.

1.6 Related work

In the economics literature, some of the work on �matching theory�is related to
mate selection models. Articles of this type mentioned in our surveyed papers
but not discussed individually here are: [7], [8], [9], and [13][26]. In the biology
literature, the related articles not discussed individually here but mentioned in
our surveyed papers are the following: [11], [16], [20].

2 SIMILARITY PREFERENCES

In this section we discuss the mating game �n for similarity (homotypic) pref-
erences, following Alpern and Reyniers [2], except for the analysis of I2 and
I3 which comes from Alpern and Katrantzi [1]. This means that the common
cost (negative utility) to an x and a y who mate is simply jx� yj ; and players
are minimizers. (These preferences are a particular case of what Eriksson and
Strimling [14] describe as romantic, or symmetric preferences, as x likes y just
as much as y likes x:) Similarity preferences seem to be fairly common across
various traits and species, and may have some explanatory value in positive
assortative mating. For example, psychologists Russell and Bartrip [24] assert
that, "Substantial investigations ... going back to the last century have shown
that what people want in a mate is someone like themselves." For animals, it
may seem impossible that they choose mates who look like themselves (i.e. the
trait in question may be an observable surface feature), as they may lack this
type of self knowledge (humans have mirrors). However, they do see their par-
ents, whose appearance has a positive correlation with their own. So choosing
someone �like mom�, may be revealing a form of similarity preference. There
is evidence of this; for example Cooke and Davies [10] found that Snow Geese
tend to choose a mate who has similar coloration to their parents. Partridge
[21] observed the importance of adaptation to local conditions, so that o¤spring
of parents from nearby (type is location) places, who also are brought up in that
area, will be well suited to the environment.
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Returning to our mathematical model, the game �n de�ned in the Intro-
duction, we see that with similarity preferences there is no di¤erence between
types which are high or low in the type interval X - the signi�cant property is
how far from the center they are. Hence for this preference it is useful to take
X = [�1; 1] in order to exploit the symmetry around 0: This means we need only
consider the behavior of positive types x � 0; and may assume that types �x
behave like x: (Of course there may also be spatially asymmetric solutions, but
these have not yet been explored.) Recall that a strategy s = (s1; s2; : : : ; sn�1)
speci�es the set of y�s that an x will accept at time t: Writing the equilibrium
condition (2) in minimizing form with cx (y) = �ux (y) = jx� yj gives

y 2 st (x), cx (y) � vt+1 (x) : (3)

so that st (x) = [x� vt+1 (x) ; x+ vt (x)]\[�1; 1] : Given that equilibrium strate-
gies must be of this form, it is reasonable to identify a strategy st (x) with a
maximum distance at which x will accept a y at time t: So we interpret st (x)
as a number rather than a set. That is, x accepts y at time t if and only if
jx� yj � st (x) : Recall from the Introduction that vt (x) = vt (s; x) (the latter
denoting its dependence on the strategy s) denotes the minimum expected cost
that an individual of type x can obtain if unmated at the beginning of period
t; assuming everyone else is adopting strategy s: The equilibrium condition can
now be written simply as

st (x) = vt+1 (x) ; for (4)

1 � t � n� 1; � 1 � x � 1:

If the cumulative distribution of the population (same for males and females) in
the �nal period is denoted by F (that is, F (y) is the fraction of the �nal period
population with type less than y); then the expected payo¤ to a type x entering
this period unmated is given by the value function

vn (x) =

Z 1

�1
jx� yj dF (y) : (5)

This function has some nice properties:

Theorem 1 ([2], Theorem 1) If F denotes the �nal period cumulative distri-
bution function over types, then the �nal period value function vn corresponding
to a strategy pro�le s has the following properties:

1. vn is a symmetric (even) convex function

2. vn has a unique minimum at 0

3. vn (�1) = vn (1) = 1

4. v0n (x) = 2F (x)� 1; and in particular

5. v0n (�1) = �1; v0n (0) = 0; v0n (1) = 1:
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2.1 Equilibrium for n = 2

In this section we determine equilibrium properties of the symmetric two-period
game �2 for an initial distribution which is uniform on the interval X = [�1; 1] :
For notational simplicity we let s (x) = s1 (x) denote the �rst period acceptance
strategy and v (x) = v2 (x) denote the value of entering the second and �nal
period. For equilibrium we have the single equation

s (x) = v (x) ; (6)

as a special case of (4). So Theorem 1 ensures that an equilibrium strategy
s (x) must be increasing on [0; 1] : That is, types closer to the central type 0 are
choosier (smaller acceptance distance s) than those further from 0: This implies
that if 0 < x1 < x2 then x1 accepts x2 implies x2 accepts x1: The following
simple consequence of Theorem 1 will be useful.

Corollary 2 ([2], Theorem 2) At equilibrium, if x0 < x1 < x2 and x0 ac-
cepts x2; then x1 also accepts x2: That is, if s is an equilibrium strategy (s = v)
then

x0 + s (x0) � x2 implies x1 + s (x1) � x2:

We now consider the process by which a �rst period strategy s determines
the second period population distribution F and hence the second period value
function, via (5). Given a strategy s; what fraction of the type x�s will be mated
in period 1 (and hence not enter period 2). A type x will be mated if and only
if he meets a type y in the �mutual acceptance set�M (x) de�ned by x accepts
y (jx� yj � s (x)) and y accepts x (jx� yj � s (y)), that is

M (x) = fy : jx� yj � min [s (x) ; s (y)]g :

If we de�ne

R (x) = Rs (x) = x+ s (x) ;

L (x) = Ls (x) = x� s (x) ;

then R (x) and L (x) are the rightmost and leftmost types that x accepts in
strategy s: Hence In Figure 1 the mutually acceptable pairs (x; y) constitute
the light set, the set where only one accepts the other is medium grey, and the
set where neither accepts the other is dark. For a given horizontal value x; the
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vertical set M (x) is the light portion of the vertical line above x:

Figure 1: Acceptance patterns, s (x) = 1� (1=2) cos (x=2)

Given a strategy s; the probability p (x) = ps (x) that a type x is mated in
period 1 is simply the probability that a random y will belong to the mutual
mating interval M (x) = Ms (x) ; that is, the length of M (x) divided by the
length of X = [�1; 1] ; or

p (x) = length [M (x)]=2: (7)

We seek to determine p (x) for x � 0; as our symmetry assumption implies
p (�x) = p (x) : For any strategy s; de�ne two particular types b = bs and
a = as; as follows

a = max fx : �x accepts xg = max fx : �x+ s (x) = xg ; or (8)

s (a) = 2a (this equation has a unique solution).
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b = min fx : x accepts 1g (9)

= min fx : x+ s (x) = 1g ; or
s (b) = 1� b (this equation has a unique solution)

For example, if s (x) = 1� (1=2) cos (x=2) (as in Figure 2), we have a � 1=4 and
b � 1=2:

Figure 2: Plots of 1� (1=2) cos (x=2) ; 1� x; 2x

In general, de�ne three intervals

I1 = [0; a] ; I2 = [a; b] ; I3 = [b; 1] :

For x 2 [0; 1] ; we have M (x) =Ms (x) is given by

M (x) =

8<: [L (x) ; R (x)] ; for x 2 I1;
[R�1 (x) ; R (x)]; for x 2 I2;�
R�1 (x) ; 1

�
; for x 2 I3:

(10)

and so by (7), p (x) = ps (x) is given by

p (x) =

8>>><>>>:
s (x) ; for x 2 I1;

x+ s (x)�R�1 (x)
2

; for x 2 I2;
1�R�1 (x)

2
; for x 2 I3:

(11)

It is useful to note that types in I3 are �universal acceptors�in the sense that
if a type y accepts a type x in I3; then the x also accepts the y: So the mating
behavior is determined entirely by the de�nition of the strategy s on the interval
I1 [ I2 = [0; a] That is
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Proposition 3 If two strategies s and ŝ agree for jxj � as = aŝ; then ps (x) =
pŝ (x) and consequently vs (x) = vŝ (x) for all x 2 X:

At equilibrium we have s = v; so if we di¤erentiate part 4 of Theorem 1, we
see that any equilibrium strategy s must satisfy the di¤erential equation

s00 (x) = v00 (x) = 2F 0 (x) : (12)

If the �rst period density function is the uniform density 1=2 on [�1; 1] ; and any
types x leave the population with probability p (x) then the normalized density
function F 0 in the �nal period is given by

F 0 (x) =
(1� p (x)) =2

c
; (13)

where

c = cs =

Z 1

�1
((1� p (x)) =2) dx (14)

is the total population (of either sex) in the �nal period. Thus we have

s00 (x) = 2F 0 (x) (15)

=
1� ps (x)

c
= C (1� ps (x)) ; taking C = 1=c:

s0 (0) = 0 (because s (x) = s (�x))

Applying this di¤erential equation to the interval I1 gives

s00 (x) = C (1� s (x))
s0 (0) = 0:

Consequently we have the following.

Theorem 4 ([2], p. 77) Let s be an equilibrium strategy for the two period
game �2 with an initial uniform distribution. Then for all x 2 I1 (s) ; that is
for all x with s (x) � 2x; the strategy s must be of the form

s1 (x) = 1� (1� s (0)) cos
�p
C x

�
: (16)

Numerical data from a discrete approximation indicates that s (0) � 0:55
and C � 1:96 (that is, c � :51; so about half the population is mated in the �rst
period).
For the interval I2 di¤erential equation for the equilibrium solution is given

by (15) and (11) as

s00 (x) = C

�
1� x+ s (x)�R

�1 (x)

2

�
; a � x � b: (17)
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Here s (a) and s0 (a) are known from the solution of s on I1 = [0; a]; and R�1 (x)
is known from that solution as well, as R (a) = Rs (a) = a+s (a) = 3a is assumed
to be greater than b and Rs (�a) = �a+ 2a = a; so Rs ([�a; a]) � [a; b] = I2:
For the interval I3; the di¤erential equation for the equilibrium solution is

given by (15) and (11) as

s00 (x) = C

�
1� 1�R

�1 (x)

2

�
(18)

= C

�
R�1 (x)� 1

2

�
;

with s (b) and s0 (b) known from the solution for s (x) on I2 given by (17) (as
functions of s (0)): Note that s (x) does not appear on the right hand side of
(18) so it can be solved by integration. We also know that s0 (1) = v0 (1) = 1 =
v (1) = s (1) from Theorem 1 and the n = 2 period equilibrium equation(6).

2.2 A discrete uniform initial distribution

Given the analytical problems associated with establishing even existence for an
equilibrium in a continuous type model, an analysis with a uniform distribution
over types X = f�m;�m+ 1; : : : ; 0; 1; 2; : : :mg was carried out. First assume
that n = 2: A type k corresponds to the type x = k=m in the previous section,
so comparisons can be made, particularly as m gets large. Denoting discrete
strategies by s (k) ; �m � k � m; observe that a strategy which accepts anyone
whose distance from k is less than or equal to say 2.3 is equivalent to one where
the given distance is 2.4, or their common �oor b2:3c = b2:4c = 2. So we may
restrict � to taking integer values. The equilibrium equation in this case is
simply

� (k) = bv� (k)c ;�m � k � m: (19)

Here v� (k) is the expected distance of a second period individual to k if strategy
� is adopted in the �rst period. The population is simply a 2m+1 vector giving
the fraction of types of each k. The set of strategies is �nite. For any strategy
� we may mirror the equilibrium equation (19) to de�ne a new strategy T (�)
by the equation

(T�) (k) = bv� (k)c ;�m � k � m: (20)

Any �xed point of (20) satis�es (19) and is an equilibrium. So if the iterates
of T converge (are eventually constant, as the domain is �nite), they converge
to a �xed point. The iterates of the strategy � � 1 (accept your type or your
neighbor�s) converge to the discrete strategy plotted in Figure 3, together with
the continuous solution s1 (x) on I1. The discrete values were used to estimate
the initial condition s1 (0) and C; the explicit solution for I1 (that is, before the
strategy meets the line 2x) is taken from (16). The solution on I2 is obtained by
number solution of the ODE (17). A close �t was expected only for x � a � :295
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(up to intersection with line 2x) but in fact goes further.

Figure 3: Continuous and discrete equilibria

The iterative method used to calculate an equilibrium strategy for the two
period discrete problem can also be used to for any n�period problem.

2.3 Steady-state models

The previous models discussed in this article all had a �cohort�of individuals who
left the unmated population without replacement once they were mated, which
took at most n periods. In the steady-state model the population statistics
(distribution over types) remain constant over time. There is no limit on the
number of periods an individual can wait until accepting a mate. However,
there is some pressure not to wait for an ideal mate because a waiting penalty
r > 1 is imposed in that the cost to x of mating y after k periods is given
by rk jx� yj : In addition to r; the other exogenous variable of the model is
the population Q (a distribution over types) which arrives in each period. A
symmetric stationary strategy s (x) ; as before, gives the maximum distance
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that x will accept a mate, which is the same (stationarity) in each period in
this steady-state model. At the end of each period there is a residual unmated
population G (again, a distribution over types). The next period thus begins
with a population G+Q: If for some type x; the stationary probability of mating
is given by p and the expected distance to a mate is �; then the expected cost
V = V (x) of the eventual mate is given by

V = p� + r (1� p) p� + r2 (1� p)2 p� + � � �

=
p�

1� (1� p) r ; if (1� p) r < 1:

We seek a pair (s;G) ; where s is a steady state symmetric strategy and G is a
residual distribution, for which the population dynamics are constant over time
and each type x is acting optimally. This motivates the following.

De�nition 5 A pair (s;G) is a steady-state equilibrium (SSE) for the r;Q game
if it satis�es the following:

1. (steady-state condition) If the strategy s is adopted against the initial pop-
ulation distribution G+Q; then the distribution of unmated individuals at
the end of the period with be G:

2. (equilibrium condition) s (x) = r V (x) ; for all types x:

As an example, consider the game with Q = (:2; :2; :2; :2; :2) is the uniform
distribution of �ve types x = 1; 2; 3; 4; 5: Take r = 1:6: An SSE is given by the
strategy s = (4; 1; 1; 1; 4) in which central types accept only neighbors and ex-
treme types accept everyone; and a residual populationG = (2=15; 2=15; 2=15; 2=15; 2=15) :
In this case the residual population mirrors the given in�ux population Q in be-
ing uniform. This is not necessarily the case, as is indicated by keeping the
same Q and taking r = 1:5: Then an SSE is given by the strategy (2; 1; 1; 1; 2)
and residual population (to three places) of

G = (0:293; 0:136; 0:186; 0:136; 0:293) :

Note that while this is still symmetric (it has to be, as the strategy is symmetric),
it is no longer uniform - some types are more likely to be mated than others. A
steady-state model with common preferences (as described in the next section)
was developed earlier by McNamara and Collins [19].

3 COMMON PREFERENCES

This section, covering the work of Alpern and Reyniers (2005), assumes that
males have common preferences over females; and females over males. (This
work is parallel to that of Johnstone (1997) which we discuss brie�y in the
next section.) This assumption means that a type x male can be de�ned as
one which is preferred (by all females) to a fraction x of the male population.
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Thus higher number types (in an interval of types that we now take as [0; 1])
are universally preferred to lower numbered types. These preferences are also
known as maximizing preferences, or type preferences, although the latter term
is not very helpful in our context. In a mating of a male x and a female y; the
male�s utility is y and the female�s is x: In the notation of Section 1.3, we have

ux (y) = y; wy (x) = x;

and since these are utilities rather than costs, all players are maximizers. These
utilities determine a particular version of the dynamic mating game �n de�ned
in Section 1:3:
The main �nding is that, at equilibrium, each period t = 1; 2; : : : ; n is asso-

ciated with a pair of acceptance levels at and bt, both decreasing in t (player�s
get �less picky�over time) with the following property: the only couples formed
in period t consist of males over bt and females over at; and all such pairing
result in couples (mating). This mating pattern di¤ers from both the simi-
larity preference version of �n (previous section), where mating patterns vary
continuously with type; and also the steady-state common preference model of
McNamara and Collins [19], where the type spaces were partitioned into bands
of mutual acceptance. The mating pattern of Alpern and Reyniers [3] gives
analytical support to that posited by Parker [20], in that individuals with high
(�tness) levels pair o¤ with each other �rst, leaving the lower �tness individuals
to pair o¤ with each other later. Johnstone [15] has similar �ndings, supported
by computational work in a game model similar to ours. The conclusion that
acceptance levels are decreasing in time (individuals get less picky) is equivalent
to a model in which acceptance levels are constant over time but perceptance of
type is increasing over time, as empirically observed by Pennebaker et. al. [22]
in their investigations prompted by the country and western song "Don�t the
girls get prettier at closing time", and in animal breeding seasons by Real [23].
Let v1m (x) and v

2
m (y) denote the expected utility (type level of eventual

mate) of a male of type x (female of type y) who enters period m unmated, as-
suming a particular strategy (not necessarily symmetry between sexes) is being
followed. Since at equilibrium a male of type x in period m should accept any
y 2

�
v1m (x) ; 1

�
, this acceptance set can be denoted simply by its left endpoint.

Hence we de�ne a male strategy f = (f1; f2; : : : ; fn�1) (since fn = 0) to specify
acceptance of any y � fm (x) by a male of type x in period m; taking g to
denote similar female strategies. Thus the equilibrium condition in this model
is that for all periods m = 1; 2; : : : ;m� 1 and all x; y 2 [0; 1] we have

fm (x) = v1m+1 (x) ; (21)

gm (y) = v2m+1 (y) :

Note the v1n (x) is simply the mean female type y in the �nal period, and as
such does not depend on x: Thus at equilibrium in period n � 1 all males (of
any type x) simply accept a female of type y if and only if y � v1n:
That is, accept anyone with a higher type than the mean type you will be

mated with if you go into the next period unmated.
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If everything is symmetric between the sexes, including equilibrium strate-
gies, the equilibrium condition is simply

fm (x) = vm+1 (x) :

3.1 Two period asymmetric model

To illustrate the general features of a common preference mutual choice mating
model, we consider a two period game �2 with a common uniform distribution
over the type set [0; 1] for both males and females. Since vjn is a constant (see
above), equilibrium strategies for period n � 1 are also constant. So suppose
that in the �rst period males accept females y � a and females accept males
x � b:
Hence the total population of each sex in period 2 is 1 � (1� a) (1� b) =

b + a � ab: The �low�males (below b) have average �tness b=2; and they form
an interval of length b of full density 1; the �high�males have average �tness
(1 + b) =2; form an interval of length 1� b; and have density a (since a fraction
1� a of them have been mated in period 1): Hence period 2 mean male �tness
is

v22 =
(b=2) (b) 1 + ((1 + b) =2) (1� b) a

b+ a� ab

=
1

2

�b2 � a+ ab2
�b� a+ ab :

Thus the second equilibrium condition of (21) is

b =
1

2

�b2 � a+ ab2
�b� a+ ab : (22)

By symmetry, the �rst equilibrium condition of (21) is

a =
1

2

�a2 � b+ ba2
�a� b+ ba : (23)

These two curves are shown together with the line of symmetry b = a in Figure 4,
the top equation (for b) drawn with a thicker line. (For the moment, ignore the
dotted line as it is only relevant in the next paragraph.) The only intersection
corresponds to a symmetric equilibrium

a = b =
3

2
� 1
2

p
5 = : 381 97: (24)

The fact that the two curves meet only on the line a = b is a special case of
Theorem 6 for the uniform distribution.

Theorem 6 ([3], Theorem 4) If (f; g) is an equilibrium for the two period
symmetric game �2 (F ) = �2 (F; F ) ; then f = g:

14



Figure 4: Male and female equilibrium equations

Suppose we modify the female utility function so that the utility of mating
with male x in period 2 is reduced by c; 0 < c < 1=2; that is, to x� c: There are
no changes to �rst period or male utility functions. The equilibrium is now the
solution to the original male equilibrium equation (23) and the female equation
(22) with c subtracted from the right hand side. The unique solution is given
by period one male and female acceptance levels a and b; where

a =
b

1� 2c ; and

b =
1

2

�
3� 4c�

p
(�8c+ 5)

�
:

In period 1 the females become less choosy (b is decreasing in c); even to the
extent of accepting any male when c = 1=2. Males are choosier than females
(a > b); but less choosy than in the original model (a is also decreasing in c).
The explanation can be seen in Figure 4, the dotted line represents c = :3;
which intersects with the unchanged male (thin) at a smaller a value and a
smaller b value. To understand the limiting case c = 1=2; where females are
universal acceptors, suppose males accept females above a in period 1: Then in
period 2 females are uniformly distributed on [0; a] ; with mean a=2: Hence the
equilibrium equation for the males is a = a=2; with solution a = 0: Hence males
are also universal acceptors.
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3.2 Existence and properties of equilibria

The main results obtained on equilibria are the following. The �rst result says
that any equilibrium must be of the kind described in the beginning of this
section, namely.

Theorem 7 ([3], Theorem 1) Every equilibrium (f; g) in the common pref-
erence game �n (F1; G1) (with given reservation values wn+1 and zn+1 deter-
mining minimum acceptance levels in the �nal period -usually taken to be zero)
is characterized by two sequences

0 = wn+2 � wn+1 < wn < � � � < w2 < w1 = 1 and
0 = zn+2 � zn+1 < zn < � � � < z2 < z1 = 1; such that

x and y are mutually acceptable in period i i¤ x > wi+1, y > zi+1:

Furthermore the strategy pair (f; g) is determined by these sequences according
to the following rules. In period i = 1; : : : ; n; a male x will accept a female y i¤
y � fi (x) ; where.

fi (x) =

�
zk; if x 2 (wk+1; wk) ; k � i+ 2
zi+1; if x > wi+2;

(25)

and a female y will accept a male x i¤ x � gi (y) ; where

gi (y) =

�
wk; if y 2 (zk+1; zk) ; k � i+ 2
wi+1; if y > zi+2:

(26)

The following �gure shows the computed values (using an iterative algo-
rithm) for the common acceptance levels wk = zk; k = 1; : : : ; n � 1; n =
1; 2; : : : ; 10; for the symmetric game � (n) with the uniform initial distribution.
For example the equilibrium acceptance level :381 97 of (24) shown in Figure 3
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is denoted as the single dot at that height above n = 2:

13

5:pdf

Figure 5: Equilibrium acceptance levels in period k = 1; : : : ; n� 1 for n � 10:

The second result says that such equilibria always exist. It uses the Brouwer
Fixed Point Theorem.

Theorem 8 Suppose the initial population distributions F1 and F2; of males
and females, are continuous. Then the common preference game �n (F1; F2)
has an equilibrium strategy pair.

Furthermore, if the initial distributions are the same, then we can say more.

Theorem 9 Every symmetric common preference game �n (F ) = �n (F; F ) ;
with F continuous, has a symmetric equilibrium.

3.3 Multiple and Mixed Equilibria

The theorems in the previous subsection leave open certain questions regarding
mixed strategies and multiple equilibria. To show the variety of equilibria that
can occur in common preference games, we consider a symmetric two period
game with initial an distribution F̂ equally divided (1/3 each) between �tness
levels 0; :1; and :3: At equilibrium a 0 will never be accepted in period 1, while
a :3 will always be accepted. So the only two possible equilibrium strategies in
period 1 are �high�(accepting only :3); or �middle�(accepting only :1 or :3): We
show that both of these are equilibria. We know that only symmetric equilibria
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can occur in a two period symmetric game, so we assume common strategies for
males and females.
For the �high� strategy only two :3 individuals can be mated in the �rst

period. This yields a period 2 population with mass 1=3 of 0; 1=3 of :1; and 2=9
of :3; with a total population of 8=9: The mean type of the period 2 population
is

v2 =

�
1
3

�
0 +

�
1
3

�
:1 +

�
2
9

�
:3

8
9

= : 112 5: (27)

Since
:1 < : 112 5 < :3; (28)

it is consistent (equilibrium behavior) for all individuals to reject a :1 in period
1 (receiving on average : 112 5 in the next period), but to accept a :3: Thus the
strategy of accepting only :3�s in period 1 is an equilibrium.
For the �middle�strategy any pairing not involving a type 0 in period 1 will

result in a mating. The population in period 2 will have a population with
mass 1/3 of 0�s, 1/9 of .1�s and 1/9 of .3�s, with a total population of 5/9. The
population mean in period 2 will be

v2 =

�
1
3

�
0 +

�
1
9

�
:1 +

�
1
9

�
:3

5
9

= 0:0 8: (29)

Since
0 < :0 8 < :1; (30)

it is consistent to accept a .1 in period 1, rather than getting an average of .08 in
period 2. Hence this is also an equilibrium. We could say that the equilibrium
strategy is f (x) = :08; but this is equivalent to f (x) = :1; because there are no
types between .08 and .1.
Let fp be the mixed strategy which always accepts a :3; and accepts a :1

with probability p. If everyone adopts fp (with independent randomization) the
normalized population at the beginning of the second (and last) period has

3

8� 2p� p2 level 0�s,
3� p� p2
8� 2p� p2 level .1�s, and

2� p
8� 2p� p2 level .3�s,

with a �nal period mean �tness level of

v2 (p) =
1

10

3� p� p2
8� 2p� p2 +

3

10

2� p
8� 2p� p2 =

�
1

10

�
�9 + 4p+ p2
�8 + 2p+ p2 : (31)

The mean �tness v2 (p) is strictly decreasing, with v2 (1=2) = :1: Consequently
when the strategy p = 1=2 is adopted, a player is indi¤erent between accepting
a player with �tness :1 in period 1 and going into the next period and getting
on average :1: Thus the mixed strategy with p = 1=2 is an equilibrium strategy.
It is worth noting that the number of equilibrium strategies is odd (3). The
equilibrium de�nition (21) rules out mixed strategy equilibria for continuous
distributions F (or F1; F2); as the only acceptance indi¤erence for a male x in
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period m is of a female y = vm+1 (x) : For continuous F2 (or F ) the probability
of encountering such a y is zero.
Is there a way of seeing the three equilibria described above from a common

viewpoint, that shows the three values v2 of .1125, .8, and .1 in a single diagram.
One method is to consider `relative �tness�. For any individual, let the relative
�tness r; 0 � r � 1; denote the fraction of the population whose �tness (type) is
below that of the individual. For individuals of the same type (as in the discrete
distribution in this subsection) we arbitrarily distinguish an order among them.
So individuals of type .3 will have di¤erent r�s between 1/3 and 2/3. Their
absolute �tness (type) x = A (r) will be the common value 0.1. Suppose a
strategy now denotes the lowest relative �tness r that an individual will accept.
Let m (r) denote the mean second period absolute �tness for strategy r: Any
r with m (r) = A (r) will be an equilibrium. If r corresponds to an interval
on which A is constant, it is interpreted as a mixed strategy. The �gure below
plots 	(r) ( A (r) with vertical lines at discontinuities) and m (r) ; and the
three intersections at r = 1=3; 1/2, and 2/3 correspond to the three equilibria.
A rigorous de�nition of the closed correspondence 	 is given in the original
paper.

Figure 6: Plot of m (r) and correspondence 	(r)
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3.4 Learning

In the Alpern-Reyniers game �n, it is implicitly assumed that individuals know
their own type (a strategy is a function of type). We now consider whether the
model can be adapted to allow individuals to learn about their type over time,
based on knowledge accumulated by learning who has accepted and who has
rejected them. Of course this knowledge is only useful if they remain unmated
after they acquire it. Note that with similarity preferences, it is essential that
individuals know their own type from the start. However this requirement is
not so obvious for common preferences. But for common preferences the nature
of the equilibrium only requires that individuals know the current period (not
their type) to play the equilibrium strategy of Theorem 7. Thus in our models,
any learning that takes place cannot be about one�s own type.
So the uncertainty that one reduces by learning must be about the population

distribution. A simple example analyzed in [3] is the following. There are three
�tness levels, 0, M (medium), and H; in that order. Nature chooses equally
likely between the distributions D1 = (1=4; 1=2; 1=4) and D2 = (1=4; 1=4; 1=2) :
The prior probabilities ofD1 andD2 are each 1/2, but the posterior probabilities
p for a pair of individuals of types (x; y) with x; y 2 fM;Hg (if either type is 0;
there will not be a mating in any case) are as follows:

p (I n (H;H)) = 1=5; p (II n (H;H)) = 4=5; (32)

p (I n (M;M)) = 4=5; p (II n (M;M)) = 1=5;
p (I n (M;H)) = 1=2; p (II n (M;H)) = 1=2;

A strategy [x; y; z] ; x; y; z 2 fM;Hg gives the minimum acceptance level (the
same for both), in the three cases that the paired individuals have unordered
types (H;H) ; (M;M) ; and (H;M) ; respectively. For example, the strategy
[M;H;M ] says that if two type M�s meet (middle entry) each should accept
only an H; and so two M�s will not mate.

Theorem 10 De�ne � = H=M: Then

[H;H;H] is an equilibrium () 38=17 � �

[M;M;M ] is an equilibrium () � � 29=9
[H;M;H] is an equilibrium () 15=7� � 38=17

Note that in some cases there are multiple equilibria. An interesting feature
of this model is that one gets information from observing one�s own type, as
well as that of the individual with whom one is paired.
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