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Abstract

Strategies in a stochastic game are δ > 0 perfect if the induced one-stage
games have certain δ equilibrium properties. Sufficient conditions are proven
for the existence of δ perfect strategies for all δ > 0 implying the existence
of ε equilibria for every ε > 0. Using this approach we prove the existence of
ε equilibria for every ε > 0 for a special class of quitting games. The impor-
tant technique of the proof belongs to algebraic topology and reveals that
more general proofs for the existence of ε equilibria in stochastic games must
involve the topological structure of how the equilibria of one-stage games are
related to changes in the payoffs.

Key words: Stochastic Games, Equilibria, Orbits of Dynamic Systems (Dis-
crete Time), Martingales, Markov Chains, Total Variation, The Structure
Theorem (Game Theory)
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1 Introduction

A stochastic game is played on a state space. The present state and the
present behavior of all players determines stochastically the transition to a
new state. All players have complete knowledge of the past history of play
and the present state. A priori there is no bound on the number of stages of
play.

We define a stochastic game to be normal if
(1) there are countably many states,
(2) there are finitely many players and at any state the action sets for all
players are finite,
(3) the payoffs defined in the game are uniformly bounded,
(4) the payoffs are functions on the histories of play that are measurable with
respect to the Borel σ-algebra defined by the finite stages of the game. This
fourth property will be made more precise later.

For any ε ≥ 0, an ε equilibrium in a game is a set of strategies, one
for each player, such that no player can gain in payoff by more than ε by
choosing a different strategy, given that all the other players do not change
their strategies. An equilibrium is a 0 equilibrium. We say that approximate
equilibria exist if for every ε > 0 there exists an ε equilibrium.

It is not known whether all normal stochastic games have approximate
equilibria. This question is arguably the most important open question of
game theory today. Advantageous for approximate equilibria in stochastic
games is the common knowledge by the players of the past history of play and
the present options and their consequences. The only uncertainty concerns
what the other players will do in the present and in the future. If the stochas-
tic game has finitely many stages then equilibria exist, a consequence of the
original Nash proof (Nash [9]). Disadvantageous for approximate equilibria
are the infinite number of stages of play.

A stochastic game is a limit average game when for every player n the pay-
off is between limi→∞ inf and limi→∞ sup of the average 1

i

∑i−1
k=0 wn

sk
(a1

k, . . . , a
m
k )

where m is the number of players and for every state s ∈ S wn
s is a real func-

tion defined on the collections (a1, a2, . . . , am) of actions, once for each player,
at the state s.

So far, most positive results of profound generality have concerned two-
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player limit average stochastic games. Mertens and Neyman [7] proved that
every zero-sum limit average and normal stochastic game played on a finite
state space has approximate equilibria. Maitra and Sudderth [5] extended
this result to zero-sum stochastic games with countably many states and
Martin [6] extended this result further to payoff functions defined on the
infinite paths of play that are Borel with respect to the σ algebra generated
by the finite stage truncations.

Concerning two-player non-zero-sum limit average and normal stochastic
games the central result was accomplished by Vieille [14]; he proved that all
such stochastic game with finitely many states have approximate equilibria.
For two-player non-zero-sum normal games with countably many states the
question is still open.

One approach to non-zero-sum normal stochastic games is to break down
the game into infinitely many one-stage games. Given a strategy for each
player and any given present state and past history of play, one can look at the
one-stage game that starts with this present state and ends with reaching the
state on the following stage. One assumes that the players will act according
to the given strategies on all the future stages but on the present stage they
are free to choose and the payoff consequences for their choices of actions
at the present state are determined accordingly. As was shown in Simon
[10], the existence of approximate equilibrium implies a property known as
perfection, which concerns ε equilibrium conditions for the one stage games.

This break down of a stochastic game to its one-stage games also breaks
down the problem of the existence of approximate equilibria to two separate
questions:
a) does some perfection property hold, and
b) can this perfection property imply the existence of approximate equilibria?
In many situations the perfection property allows one to construct approxi-
mate equilibrium through statistical testing and punishment in response to
statistical deviation. We establish some conditions (Theorems 1 and 2) for
which perfection implies the existence of approximate equilibria.

The general model for normal non-zero-sum stochastic games is given
in the second section. Basic results showing that some forms of perfection
properties will imply the existence of approximate equilibria is the subject of
the third section. This approach was inspired by the Vieille proof [14], which
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uses a special case of Theorem 2.

In the fourth section we investigate a special class of stochastic games
called quitting games. Examples of quitting games were studied first by
Flesch, Thuijsman, and Vrieze [2] but defined in generality by Solan and
Vieille [13]. For quitting games the perfection property does imply the exis-
tence of approximate equilibria, and we prove this below.

In the fifth section we define a class of quitting games called escape games.
Using algebraic topology we prove that all escape games have the perfection
property, hence have approximate equilibria.

In the Conclusion, we discuss the broader question of whether all normal
stochastic games have approximate equilibria.

2 The Model

2.1 Normal Stochastic Games

For every finite or countable set A let ∆(A) stand for the set of all probability
distributions on A. If A is finite then ∆(A) is a finite dimensional simplex.
If x ∈ ∆(A) and a ∈ A then the a coordinate of x will be represented as x(a)
(the probability given to a by x).

There is a countable or finite state space S and a finite set N of players.
For every player n ∈ N and every s ∈ S there is a finite set An

s of actions.
For every s ∈ S and every a ∈ As :=

∏
n∈N An

s (a choice of action for each
player) there will be a transition law ps

a ∈ ∆(S) governing the motion to
states at the next stage of play after a visit to s.

We assume that the game starts at an initial state ŝ ∈ S. (If one prefers
to start with a distribution on all the states in S one can add an initial state
ŝ that occurs only at the start of the game and such that every player has
only one action at this state.) Define H∞ := {(ŝ = s0, a0, s1, a1, . . .) | ∀i ≥
0 ai ∈ Asi

, psi
ai

(si+1) > 0}, the set of possible infinite histories of play. Define
Hŝ

0 := {(ŝ)}, and for every i ≥ 1 let Hs
i be the set of truncations of H∞ of

the form (ŝ = s0, a0, s1, a1, . . . , si−1, ai−1, si = s) (leaving out the actions at
stage i). Let Hi be the union ∪s∈SHs

i and let Hs be the union ∪∞i=0Hs
i . Let

Hω be the union ∪∞i=0Hi = ∪s∈SHs. If h ∈ Hω is also in Hs then we say that
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h terminates at s. The i stage truncation of either an infinite history in H∞
or of a finite history in Hj for j ≥ i is the canonical projection to Hi.

A payoff for a player n ∈ N in a normal stochastic game is a function
Vn on H∞ that is uniformly bounded and measurable with respect to the
Borel σ-algebra generated by the partitions of H∞ induced by the discrete
partitions of Hi. A two-player game is zero-sum if V1(h) + V2(h) = 0 for all
h ∈ H∞ (where without loss of generality we assume that N = {1, 2}). Let
M ≥ 1 be a positive real number larger than the maximal difference between
all payoffs in the game.

2.2 Strategies and Equilibria

A strategy σn of Player n ∈ N is a collection of functions (σn
s | s ∈ S) such

that for every s ∈ S σn
s is a function from Hs to ∆(An

s ). For every profile
σ = (σn | n ∈ N) of strategies, one strategy for each player, probability
distributions µσ,i are induced on the Hi in the natural way. We start at the
initial history (ŝ) ∈ Hŝ

0 with µσ,0({(ŝ)}) = 1. Given that µσ,i(hi) is positive
for some hi ∈ Hsi

i and hi+1 ∈ Hi+1 is a history such that the i stage truncation
of hi+1 is equal to hi ∈ Hsi

i with hi+1 = (hi, ai, si+1) and ai = (an
i | n ∈ N)

we define inductively µσ,i+1(hi+1) := µσ,i(hi)p
si
ai

(si+1)
∏

n∈N σn
si
(hi)(a

n
i ). A

regular Borel probability distribution µσ is induced onH∞ in the natural way,
by the µσ,i and Kolmogorov’s Extension Theorem. For every player n ∈ N
and every strategy profile σ the distribution µσ generates a payoff Vn(σ) for
player n as the expected value of the function Vn on H∞, determined by the
probability distribution µσ.

For any profile σ = (σn | n ∈ N) of strategies, an alternative profile
σ̃ = (σ̃n | n ∈ N) and a player k ∈ N define σ|σ̃k to be the strategy profile
such that σ̃k is the strategy for player k but if n 6= k then σn is the strategy
for player n. An ε equilibrium is a strategy profile σ = (σn | n ∈ N) such
that for any alternative strategy profile (σ̃n | n ∈ N) and every player n ∈ N
it holds that Vn(σ|σ̃n) ≤ ε + Vn(σ). A zero-sum game has the value r ∈ R
for a designated first player if for every positive ε there is an ε equilibrium
whose expected payoff for the first player is within ε of r.
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2.3 Perfection

For any profile σ of strategies, a player n ∈ N , and a stage i of play define
vn

σ : Hi → R by vn
σ(hi) equaling the expected value of Vn(σ) conditioned on

reaching hi on the ith stage, with vn
σ(hi) defined to be any quantity bounded

within the payoffs defining the game if the probability of reaching hi is zero.
Extend to a definition of vn

σ : Hω → R in the natural way.

For every player n define χn : S → R so that χn(s) is the min-max value
for player n at the state s, the upper bound for what player n can obtain from
a start at s in response to all strategy choices of the other players. Formally
χn(s) equals infσ supσ̃n Vn

s (σ|σ̃n) where the payoff function Vn
s is defined by

the game for which s is the initial state. The importance of the function χn

is that it represents the ability of the players to punish player n with prede-
termined strategies (for example as part of an approximate equilibrium).

For every an ∈ An
s and â ∈ ∏

k 6=n Ak
s let (â, an) be the corresponding

member of As =
∏

k∈N Ak
s , with âk the corresponding action of Player k for

all k 6= n.

For any function f : Hω → R, state s ∈ S, finite history h ∈ Hs, action
an ∈ An

s and strategy profile σ define wf
σ(h)(an) to be the expected value of

f on the next stage after h, conditioned on the use of an by Player j and the
use of σk

s (h) by all the other players k 6= j. This means that

wf
σ(h)(an) =

∑
t∈S

∑
â∈

∏
k 6=n

Ak
s

f(h, (â, an), t)
∏

k∈N\{n}
σk

s (h)(âk)ps
(â,an)(t).

Define wn
σ(h)(an) to be wvn

σ
σ (h)(an). For any σ and player n the functions wn

σ

and vn
σ have the property that for every h ∈ Hω the value vn

σ(h) is equal to the
expectation of wn

σ(h)(·) taken over all the actions of player n and wn
σ(h)(an)

is equal to the expectation of vn
σ on the next stage following h, conditioned

on the event that an was chosen with positive probability.
For every player n ∈ N and strategy profile σ, define the jump function

jn
σ : Hs

ω → R by

jn
σ (h) = max

an∈An
s

∑
t∈S

χn(t)
∑

â∈
∏

k 6=n
Ak

s

∏
k∈N\{n}

σk
s (h)(âk)ps

(â,an)(t),

namely the maximal expected value of χn on the next stage following s.
Extend this definition to jn

σ : Hω → R in the natural way. With the definition
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of χn extended to a function on Hω so that if h terminates at t then χn(h)
is equal to χn(t), for all h ∈ Hs we have jn

ω(h) = maxan∈An
s
wχn

σ (h)(an).

Definitions: A strategy profile σ of a stochastic game is ε perfect if for every
player n ∈ N there exists a function rn : Hω → R and a subset B ⊆ Hω such
that the probability of reaching Hω\B with the strategies σ does not exceed
ε and for all players n ∈ N and all finite histories h ∈ B,
rn(h) ≥ jn

σ (h)− ε,
|rn(h)− vn

σ(h)| ≤ ε, and
for all actions an chosen with positive probability by σn at h
|wrn

σ (h)(an)− rn(h)| ≤ ε.
A stochastic game is ε self-perfect if for all players n the function rn is equal
to the function vσ. A stochastic game is perfect if there exists an ε perfect
strategy profile for every positive ε and self perfect if there is an ε self-perfect
strategy profile for every positive ε.

The following theorem was proven in Simon [10]: A normal stochastic
game with approximate equilibria is also perfect.

3 From Perfection to Approximate Equilibria

3.1 The Basic Result

For a normal stochastic game it is easy to define a topology on the infinite
histories H∞ of the game. For each finite stage i there will be only countably
many histories in Hi. A member of the base of open sets is a set of the
form {Ohi

:= {h | the ith stage truncation of h is hi} for any finite history
hi ∈ Hω. Given a strategy profile σ the µσ is a regular Borel probability
distribution, meaning that for every Borel measurable subset A ⊆ H∞ and
every ε > 0 there is a closed subset C of infinite histories contained in A and
an open subset O of infinite histories containing A such that the measure of
the open set O\C is no more than ε.

A collection f = (fn : Hω → R | n ∈ N) of functions is called viable if
for every ε > 0 and finite history h that terminates at s from a start at the
state s there are strategies σ = (σn | n ∈ N) by the players such that no
player n can receive more than fn(h) + ε from any choice of an alternative
strategy σ̂n played against the strategies (σk | k 6= n) of the other players. If
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additionally for every player n ∈ N the expected payoff from σ were within ε
of fn(h0) with h0 = (ŝ) then we would be describing a 2ε equilibrium of the
game. With only two players viability means exactly that for every state s
the function gives to each player at any history terminating at s at least her
min-max value for the state s, as both players can hold down the other player
simultaneously to their min-max value plus any arbitrary ε > 0. However
with three or more players viability is more complex.

We define a strategy profile σ to be δ-viable if there are viable functions
f = (fn | n ∈ N) such that vn

σ(h) ≥ fn(h)− δ for every history h in Hω.

For every player n, strategy profile σ, and finite history h = (s0, a1, . . . , si) ∈
Hω define W n

σ (h) =
∑i−1

j=0(w
n
σ(hj)(a

n
j )− vn

σ(hj)), where hj is the j stage trun-
cation of h.

Theorem 1: If 0 < ε ≤ 1 and σ is an ε self-perfect and ε-viable strategy
profile of a normal stochastic game such that for every player n with prob-
ability no more than ε some history h is reached with W n

σ (h) > ε, then the
game has a 3(M |N |+ 5)ε equilibrium.

Proof: For every player j ∈ N define vj
σ : H∞ → R by vj

σ(h) = limi→∞ sup vj
σ(hi).

By the Martingale Convergence Theorem this limit equals the lim inf of the
same expression almost everywhere. Furthermore vj

σ equals Vj almost every-
where, as their integrals are equal on all open sets of positive measure and
the distribution µσ induced on H∞ is Borel.

Due to the regularity of µσ there is an open subset O of H∞ of measure
no more than ε/(2|N |M) that contains all infinite histories where some finite
truncation is outside of B (defining the perfection property) and where for
all n ∈ N the function vn

σ does not equal the function Vn on H∞. We extend
this to an open set A of H∞ of probability no more than (1 + |N |)ε that
contains all infinite histories with finite truncations h where W n

σ (h) > ε for
some n ∈ N .

Define the following strategies of the players. If any player n chooses an
action that was not given positive probability by σ then on the next following
stage all other players hold player n down to an expectation of no more than
χn(s)+ ε for the rest of the game, where s is the state on the following stage.
(If two players do this simultaneously then punishment follows according to
any predetermined ordering of the players.) If h is the first finite history
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reached which implies that any infinite extension of h must be in A yet
no player had chosen an action given zero probability (well defined by the
definition of the topology) then the players perform according to strategies
holding down each player n to a future expectation of no more than fn(h)+ε
where the fn are the viable functions with vn

σ ≥ fn−ε. Otherwise the players
follow the strategies σ. Let σ̂ stand for this strategy profile . Due to the
unlikelihood of reaching the set A we have vn

σ̂(h0) ≥ vn
σ(h0) − (2 + |N |)Mε

for every player n, (where h0 ∈ H0 is the initial history).

Define σ to be the strategy profile where Player n chooses some alternative
strategy σn and the other players stay with their strategies as defined by σ̂.
Define a stop rule t onHω by t(h) being the first stage where all future infinite
histories must belong to the open set A or the next stage following the first
stage when player n chooses a strategy given zero probability. Otherwise if
neither occurs let t(h) be infinite. For player n define two functions g̃n

i , gn
i :

Hi → R by gn
i (hi) = vn

σ(hi) − W n(hi) and g̃n
i (hi) = vn

σ(hi) if t > i and
otherwise gn

i (h) = fn(ht(h))−W n(ht(h))− ε and g̃n
i (h) = fn(ht(h)) + ε if t(h)

is the first stage implying that A must be reached in the future (but no
player had chosen an action given zero probability) or gn

i (h) = χn(st(h)) −
W n(ht(h))− ε and g̃n

i (h) = χn(st(h)) + ε if t(h) is the first stage when player
n had chosen an action given zero probability. The function gn defines a
sub-martingale with respect to the distribution µσ. The function g̃n is never
4ε more than gn. Both functions gn

i and g̃n
i converge everywhere to Borel

measurable functions gn : H∞ → R and g̃n : H∞ → R, the former because
a sub-martingale is defined and the latter because the stop time t is defined
using the open set A that covers all points in H∞ where the limit vn

σ doesn’t
exist or doesn’t equal the payoff function Vn. Furthermore, the expectation
Vn(σ) does not exceed the expectation of g̃n. As the gn

i is a sub-martingale
we must conclude that the expectation of gn does not exceed that of vn

σ(h0),
and that concludes the proof. 2.

Question 1: Does Theorem 1 hold if viability is dropped?

The difficulty of Question 1 lies with determining whom is to be punished.
Given that A is an open subset of infinite histories covering all of the finite
histories which should trigger punishment, the relevant question is “who is
responsible for steering the game toward the set A” (and therefore should
be punished)? Without the viability of the strategies, Player n may want to
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steer the game toward A in such a way that often player k is held responsible
for entering the set A, although player k was adhering faithfully to her part
of the proscribed strategy profile σ. If the stochastic game is structured in a
sufficiently simple way, viability may be unnecessary. As we will see below,
the viability property can be dropped for quitting games.

3.2 Discrete Decision Processes

Let X be a countable or finite set. For every x ∈ X let Yx be a countable
or finite set, with Y := ∪x∈XYx. For every x ∈ S there is a transition law
px ∈ ∆(Yx) and for every y ∈ Yx there is a transition law py ∈ ∆(X). The
process starts at some fixed x̂ ∈ X and on the even stages i = 0, 2, 4, . . . the
process is in X and on the odd stages the process is in Y . There is a function
v : X ∪ Y → R such that for every y ∈ Yx v(y) is the expectation of v(x)
on the next stage following y and v(x) is the expectation of v(y) on the next
stage following x. We assume that v is uniformly bounded, with M ≥ 1 a
bound on the greatest difference between any two values of v.

A Markov chain with a function as described in the above paragraph is
called a discrete decision process.

The interpretation of a discrete decision process is as follows. There is an
agent choosing the actions in Yx. The agent receives as a payoff the lim-sup
of the function v on the path of states in X. Given that the agent chooses
elements in Y according to the time independent Markovian strategy defined
by the px at any state the function v will represent the agent’s future expected
payoff (since by the uniform bound for v and the Martingale Convergence
Theorem there will be convergence almost everywhere). We presume that the
agent will follow the given strategy, but we will image what could happen if
the agent chose to follow a different strategy.

The connection to stochastic games is direct. Let j be a player in a
normal stochastic game. Given any strategy profile σ a discrete decision
process for Player j is defined by extending the state space so that X = Hω.
Define Yh to be only those actions in Aj

s (h terminating at s) chosen with
positive probability. Because every state in the new expanded state space is
encountered at most once, time indendendent Markovian strategies are well
defined, in addition to a function v derived from the vj

σ on the set X = Hω
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of finite histories and from the wj
σ(h) on the actions in Yh. Also a discrete

decision process for Player j may be defined by any partition of the finite
histories that is equal to or finer than the partition {Hx | x ∈ S} such that
vj

σ(h) = vj
σ(h′) and σj(h) = σj(h′) for all h, h′ in the same partition member.

When this occurs the discrete decision process for Player j is generated by
the stochastic game and the strategy profile σ. We get the following corollary
of Theorem 1.

Corollary 1: If for a normal stochastic game there were a strategy profile σ
that is ε self-perfect, ε-viable, and for every player j a discrete decision process
is generated such that the probability that there is an l with

∑l
i=0,2,...(v(yi+1)−

v(xi)) ≥ ε does not exceed ε then this stochastic game has a 3ε(M |N | + 5)
equilibrium.

For any given path p = (x0, y1, x2, y3, . . .) of a discrete decision process
define w(p) to be

∑
i=0,2,... |v(yi+1)− v(xi)|.

Notice that discrete decision processes and the functions w involve no
loss of generality from Markov chains and the total variation of a martingale
function defined on them. Given a Markov chain, we could define Yx so that
there is a bijection between Yx and the states that follow x with positive
probability, and then for every y ∈ Yx define the distribution py to be the
appropriate Dirac mass.

Definition: A discrete decision process is is ε balanced if for all states x ∈ X
and y ∈ Yx it follows that |v(y)− v(x)| ≤ ε.

Proposition 1: Assume that a discrete decision process is δ balanced, that
the expectation of w(p) does not exceed a finite B > 0 and δ is less than
or equal to ε2ρ/B for some positive ρ > 0. Then the probability that there
exists an l with |∑l

i=0,2,...(v(yi+1)− v(xi))| ≥ ε does not exceed ρ.

Proof: The Doob sub-martingale inequality states that if (Si | i = 0, 1, . . . , n)
is a martingale with zero expectation then for every n ≥ 0, positive value
c > 0 and exponent p ≥ 1 the probability that maxi≤n |Si| > c does not ex-
ceed E(|Sn|p)/cp (Williams [15], Section 14.6). Since the martingale property
implies that E(S2

n) is equal to the sum over all the stages 1 ≤ i ≤ n of the
E(s2

i ) where si = Si − Si−1 is the change in value between the i − 1st stage
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and the ith stage, we can re-write as

Probability
(

max
i≤n

|Si| > ε
)

<
1

ε2
E

( n∑
i=1

s2
i

)
.

In the context of a discrete decision process, for every i = 0, 2, . . . define
the random variable ri to be v(yi+1)− v(xi), and for every i = 0, 2, . . . let Ri

be the sum of the rk for the even k ≤ i. The process Ri is a martingale with
zero expectation and so for every even and non-negative integer Q and even
non-negative even integer i less than or equal to Q

Probability
(

max
i≤Q

|Ri| > ε
)

<
1

ε2
E

( ∑
i=0,2,...Q

r2
i

)
.

By taking the limit as Q goes to infinity and δ ≤ |ri| we get

Probability
(

max
i<∞

|Ri| > ε
)

<
1

ε2
E

( ∑
i<∞

r2
i

)
≤

δ
1

ε2
E

( ∑
i<∞

|ri|
)
≤ δB/ε2

The conclusion follows from the size of δ. 2

For all even i and path p = (x0, y1, . . .) in a discrete decision process,
either infinite or finite going at least to some xi, define
Wi(p) :=

∑
j=0,2,...,i(v(yi+1 − v(xi)).

3.3 Rank

Given a discrete decision process, for any subset A ⊆ X, x ∈ A and any
y ∈ Yx define rA(y) ∈ ∆(A) to be the distribution on A determined by the
location of the next visit to A. Formally, consider the process such that
x is the initial state, the action y is chosen at the initial stage at x, and
at all subsequent stages the actions are chosen according to the given time
independent distributions. Let qA

y be the probability that this process returns
to the set A at some stage after the initial stage and for every z ∈ A let qA,z

y

be the probability that this return occurs and first at the state z. If qA
y is

13



positive then define rA
y ∈ ∆(A) by rA

y ({z}) = qA,z
y /qA

y and otherwise define
rA
y to be anything.

Definitions: A state x ∈ X of a discrete decision process is varied if there
exists some y ∈ Yx such that v(y) 6= v(x). The rank of a discrete decision pro-
cess is the minimal number n such that the varied states can be partitioned
into n subsets A1, . . . , An with the property that for every k = 1, 2, . . . , n
and every x ∈ Ak there is a distribution rAk

x ∈ ∆(Ak) such that for every
y ∈ Yx the distribution rAk

y is equal to rAk
x .

Proposition 2: If a discrete decision process has rank n then the expectation
of w does not exceed 2nM .

Proof: For every subset A = Ak and x ∈ A let lx be the probability that
the last visit to A occurs at x, let mx be the probability that there is no
return to A from a start at x, and let ni(x) be the probability that x is
the state on the ith stage. We have lx =

∑
i ni(x)mx,

∑
x∈A lx ≤ 1, and

mx =
∑

yinYx
(1− qA

y )px(y)

Define vx to be the expected value of v conditioned on starting at x and
returning to the set A (with vx defined to be anything if this occurs with zero
probability). Because the distributions are Markovian and time independence
and there is a constant rA

x for the distributions rA
y for all y ∈ Yx we have

v(y) = qA
y vx+(1−qA

y )sy for some sy whose difference from vx does not exceed
M , and therefore |v(y)− vx| ≤ M(1− qA

y ).

Next consider the quantity |vx−v(x)|. The equality v(x) =
∑

y∈Yx
px(y)((1−

qA
y )sy+qA

y vx) implies v(x)−vx =
∑

y∈Yx
px(y)(1−qA

y )(sy−vx) and |v(x)−vx| ≤
Mmx.

By the triangle inequality |v(y) − v(x)| ≤ |v(y) − vx| + |vx − v(x)|. By
mx =

∑
yinYx

(1− qA
y )px(y) the contribution to w in the set A = Ak does not

exceed 2M
∑

i

∑
x∈A ni(x)mx, which is no more than 2M . 2

The following example shows that the conclusion of Proposition 2 must
be dependent on the rank or on some similar concept.

Example 1: The set X has 2n+1 states, namely x−n, x−n+1, . . . , x0, . . . , xn−1,
xn. Assume that |Yx−n| = |Yxn| = 1 and that the state on the next stage
following any visit to x−n is again x−n and the same holds for the state xn.
Define v(−n) to be −1 and v(n) to be 1. The process starts at x0 and for

14



every i strictly between −n and n there are two elements of Yxi
, namely L

and R. If L is chosen then the process moves to the state xi−1 with certainty
and if R is chosen then the process moves to the state xi+1 with certainty.
At every state strictly between x−n and xn the actions L and R are both
chosen with 1/2 probability. Extend v to a function v : X → [0, 1] that
defines a Martingale; it follows that v(xi) = i

n
for all −n ≤ i ≤ n. Given any

small δ > 0, one can make n large enough so that δ is less than 1
n
. However

from a start at the position 0 the probability that Wi will reach 1 for some
i will be exactly 1/2. By Kolmogorov’s inequality with probability at least
1/2 the process will avoid −n and n for at least n2

2
stages, implying that the

expectation of w will be at least n
2
.

3.4 Chain Reduction

We would like to exploit Proposition 2 in combination with Corollary 1. We
look for any way to reduce our discrete decision process to that of fewer states
so that the rank could go down but the distribution of maxi Wi(p) does not
change significantly.

A subset B of non-varied states of a discrete decision process is removable
if from any visit to a state in B the probability of leaving the set B at some
future stage is one.

In some cases the decisions made in a subset A of states can be represented
equivalently as decisions made at a single state. This happens if there is some
special state s such that the first visit to the subset A∪ {s} is always at the
state s and there is a finite m such that from any state in A before m stages
occur, regardless of the choice of actions, the process leaves the set A. The
probability distributions on the Yx for all the x ∈ A∪{s} can be represented
by probability distributions on the set Y ′

s = ×z∈A∪{s}Yz (Kuhn [4]).

However a reduction of such a subset A ∪ {s} to the single state s could
present problems for applying Corollary 1 to stochastic games. If a player
should be punished for striving to attain a higher payoff, should that player
be punished for the actions actually made or for the actions in Y ′

s? The Y ′
s

may define counter-factual behavior, meaning that many different “actions”
in Y ′

s may generate the same seen behavior. On the other hand, the variance
of the functions Wi(p) may be considerably higher with the actions from the
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original discrete decision process than from such a reduction.

Define two disjoint subsets S and T to be chain reducible if T is removable,
for every s ∈ S there is a finite subset As ⊆ X\T not containing s such that
every visit to the set As∪{s} starts at s, there is a positive integer m such that
from any start in As before m stages the subset As is left, and furthermore
for every x in As\T and any y ∈ Yx either with probability one the first state
reached in X\T is not in As or there is a state n(y) in As\T such that if y is
chosen then with probability one n(y) is reached first before any other state
in X\T . An action y ∈ Ax with x ∈ As such that with probability one the
next state in X\T is not in As is called a completing action. If S and T are
chain reducible then define a new discrete decision process with the new state
space X\(T ∪s∈S As) and for every s ∈ S the action space Y s is defined to be
{(y0, y1, . . . , yk) | y0 ∈ Ys,∀ 0 ≤ i < k yi+1 ∈ Yn(yi) and yk is completing}.
The new discrete decision process is called a chain reduction of the original
discrete decision process.

Lemma 1: If a chain reduction of a discrete decision process is δ > 0
balanced then for every ε > 0 the probability of supi Wi of the original
discrete decision process exceeding ε + δ is not greater than the probability
of the same expression exceeding ε for the chain reduction.

Proof: Let x0, y1, x2, . . . , xi, yi+1 be any sequence in the original discrete de-
cision process. It can be broken down to (x0, . . . , yn1−1), (xn1 , yn1+1, . . . yn2−1), . . . ,
(xnk

, . . . xi, yi+1) where the x0, xn1 , . . . , xnk
are states in the chain reduction.

Given any partial sequence xnl
, . . . ynl+1−1 and y = (ynl+1, . . . , ynl+1−1) ∈ Y xnl

by the probability one properties of the chain reduction
∑

j=nl,...,nl+1−2(v(yj+1)−
v(xj)) = v(y)−v(xnl

). Therefore it suffices for any sequence x0, y1, . . . , xl, yl+1

with x0 ∈ S and x1, . . . , xl ∈ Ax0 that
∑

j=0,2,...,l(v(yj+1)− v(xj)) ≤ δ. Com-
plete x0, . . . , yl+1 to any x0, . . . , yl+1, xl+2, . . . , xk, yk+1 satisfying xi = n(yi−1)
for all even l ≤ i ≤ k, yk+1 is completing, and

∑
j=l+2,l+4,...,k (v(yj+1) −

v(xj)) ≥ 0. By the δ balanced property it follows that
∑

j=0,2,...,l(v(yj+1) −
v(xj)) ≤ δ. 2

Theorem 2: If for a normal stochastic game there is a number k such that
for every 0 < ε ≤ 1 there is a strategy profile σ that is ε self-perfect, ε
viable and for every player there is a generated discrete decision process with
a chain reduction that is ε3/(3kM) balanced of rank k then the game has
approximate equilibria.
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Proof: It follows from Corollary 1, Proposition 1, Proposition 2, and Lemma
1.

A chain reduction can result in a very significant drop in the expectation
of w.

Example 2: The set X consists of x0, x1, . . . , xn and b. At the states b and
xn the sets Yb and Yxn have only one element and the result of this one action
is return to these respective states with certainty. Define v(b) to be 1 and
v(xn) to be −1. At every 0 ≤ i ≤ n−1 the set Yxi

consists of two elements L
and R. If L is chosen then with probability 1

2n−1
there is motion to the state

b and with probability 2n−2
2n−1

there is motion to the state x0. If R is chosen
then there is motion with certainty to the state xi+1. At every state xi with
0 ≤ i ≤ n− 1 the actions L and R are chosen both with 1/2 probability. By

induction one can prove that v(xi) = 1−2i

2n−1
(with v(x0) = 0). The discrete

decision process can be chain reduced to the three states x0, xn, and b with
Ax0 = {x1, . . . , xn−1}. The probability of not returning to x0 from a start at
x0 would be 1

2n−1 , with half of this probability resulting in a move to a and
the other half to a move to xn. The expectation on w in the chain reduction
would be 1, as the number of expected visits to x0 would be 2n−1 and at each
visit to x0 there would be a probability of 1

2n−1 of the function v changing
by exactly a value of 1. However in the original discrete decision process the
expected number of visits to xi is 2−i2n−1 and the expected change in v from
one visit to the state xi is 2i

2n−1
(and hence 2n−1

2n−1
from all visits to xi). This

implies that the expectation on w exceeds n
2
.

3.5 Markov Chains and Total Variation

Let X be the finite state space of a Markov chain and v : X × {0, 1, . . .} →
[0, 1] a function such that for every x on stage i the value v(x, i) is the
expectation of v(·, i+1) on stage i+1. For any infinite path p = (x0, x1, . . .)
in X define the quantity w(p) =

∑∞
i=0 |v(xi+1, i + 1)− v(xi, i)|.

Lemma 2: If the Markov chain is time homogeneous then the expected
value of the function w is no more than |X|.
Proof: For every x ∈ X define qx to be the probability that starting at x the
process will not return to x in the future. The contribution to w at the state
x will not exceed qx times the number of expected visits to x. The number
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of expected visits to x does not exceed 1 + (1− qx) + (1− qx)
2 + . . . = 1/qx.

Conjecture 1: Without the time homogeneous assumption the expected
value of the function w is no more than |X|.
The Markovian property is critical to Conjecture 1; it is easy to find counter-
examples if the transitions and the function are dependent on the past history.
The main difficulty with Conjecture 1 lies with the lack of a state identity
that transcends the stages. We would be satisfied if the expectation of w
does not exceed f(n) for any function f : {1, 2, . . .} → R that is independent
of the choice of Markov chain.

4 Quitting Games

4.1 The Definition

In a quitting game each player has only two action s, c for continue and q
for quit. As soon as one or more of the players at any stage chooses q, the
game stops and the players receive their payoffs, which are determined by
the subset of players that choose simultaneously the action q. As long as no
player has stopped the game, all players receive a payoff of zero.

Let N be the set of players. A strategy profile for the players is a sequence
of probability vectors (pi | i = 0, 1, 2, . . .) such that for every stage i pi ∈
[0, 1]N . pj

i stands for the probability that Player j will stop the game (with
the action q) at stage i conditioned on the event that stage i is reached. With
0 standing for the origin, 0 ∈ [0, 1]N means that all players choose the action
c with certainty.

The payoffs are defined as follows. For every non-empty subset A ⊆ N of
players there is a payoff vector v(A) ∈ RN . At the first stage that any player
chooses the action q and A is the non-empty subset of players that choose q
at this stage, the players receive the payoff v(A). This means that Player i
receives v(A)i ∈ R. If nobody chooses the action q throughout all stages of
play, then all players receive 0.

A quitting game is a normal stochastic game. Let x̂ be the state at the
start and at any stage such that at all previous stages all players had chosen
c. We could define 2|N |−1 additional states corresponding to the non-empty
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subsets of N such that once any of these states is reached then no matter what
the players do the game remains at this state forever and the players receive
the corresponding payoffs. Equivalently we could choose |N | + 1 affinely
independent vectors in RN whose convex hull contains all the payoffs defined
in the game – then a subset A of players quitting at the same time causes an
appropriate probability distribution on the |N |+ 1 states. Let M ≥ 1 be an
upper bound on the difference between all payoffs.

4.2 Correspondences and Orbits

By a correspondence F : X →→ Y we mean any subset F of X × Y . If X0

is a subset of X then F ∩ (X0 × Y ) is called the restriction of F to X0 and
denoted by F |X0. For every x ∈ X define F (x) := {y | (x, y) ∈ F}. It is not
assumed a priori that F (x) 6= ∅ for all or any particular x ∈ X. The domain
of a correspondence F is the subset {x | F (x) 6= ∅} and the image of F is
the subset {y | y ∈ F (x) for some x ∈ X}.

If F : X →→ X is a correspondence then an infinite orbit of the corre-
spondence F is an infinite sequence (x0, x1, . . .) of points of X such that for
every non-negative integer n ≥ 0 we have (xn, xn+1) ∈ F . A finite orbit is a
finite sequence (x0, . . . , xl) with (xn, xn+1) ∈ F for all 0 ≤ n < l. An extended
orbit of F is a sequence (sj | 0 ≤ j < L) of sequences sj = (xj,i | 0 ≤ i < nj),
possibly with L = ∞ or nj = ∞ for some or all j < L, such that for every
i + 1 < nj xj,i+1 ∈ F (xj,i) and if nj = ∞ then limk→∞ xj,k = xj+1,0 and
otherwise xj,nj−1 = xj+1,0. The extended orbit has bounded total variation
if

∑
j<L

∑
1≤i<nj

||xj,i − xj,i−1|| < ∞, and otherwise it has unbounded total
variation.

For every r ∈ RN let Γr be the one stage game where Player j ∈ N
receives the payoff rj if all players choose the action c.

For every r ∈ RN and p ∈ [0, 1]N , let aj(p) be the expected payoff for
Player j if she chooses q simultaneously with the strategies (pk |k 6= j) and
let bj(p, r) be the expected payoff for Player j from the action c in the game
Γr, given that the other players choose the strategies (pk |k 6= j), meaning
that she will receive the payoff rj if everyone chooses the action c. One can
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calculate aj(p) and bj(p, r) easily. We have

aj(p) =
∑

A⊆N\{j}
v(A ∪ {j})j

∏
k∈A

pk
∏

k 6=j, k 6∈A

(1− pk)

and

bj(p, r) = rj
∏
k 6=j

(1− pk) +
∑

∅6=A⊆N\{j}
v(A)j

∏
k∈A

pk
∏

k 6=j, k 6∈A

(1− pk).

Every strategy profile p = (pi | i = 0, 1, 2, . . .) defines payoff vectors
ri(p) ∈ RN for all i = 0, 1, 2, . . . such that rj

i is the expected payoff for player
j from the strategy profile (pi, pi+1, . . .), equivalent to the payoff conditioned
on all players choosing c before the stage i given that no player chooses q
with certainty before this stage.

Define a function q : [0, 1]N → [0, 1] by q(p) := 1 − ∏
j∈N(1 − pj). The

function q is the probability that at least one player chooses the action q.

We will consider the correspondences generated by moving backward from
some stage i + 1 to stage i through an approximate equilibrium of the one
stage game. For any ε ≥ 0 we define correspondences Eε ⊆ RN × [0, 1]N and
Fε ⊆ RN ×RN :

Eε(r) := {p ∈ [0, 1]N | pj > 0 ⇒ aj(p) ≥ bj(p, r)− ε,

pj < 1 ⇒ bj(p, r) ≥ aj(p)− ε}.

For every r ∈ RN and p ∈ [0, 1]N define a new member of RN , namely

f(r, p) := r
∏
j∈N

(1− pj) +
∑

∅6=A⊂N

v(A)
∏
j∈A

pj
∏
j 6∈A

(1− pj),

the expected payoffs in the game Γr when the players choose p. We define
Fε by Fε(r) := {f(r, p) | p ∈ Eε(r)}.

4.3 Normal Players, Instant and Stationary Equilibria

Definitions: A vector r ∈ RN is feasible if it is in the convex combination
of {v(A) | ∅ 6= A ⊆ N} ∪ {0}. For every player n ∈ N define χj to be χj(x̂)
where x̂ is the initial state. A vector r ∈ RN is ε-rational for any positive ε
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if rn ≥ χn− ε for all n ∈ N . A player n ∈ N is normal if v({n})n ≥ χn. The
vector v ∈ RN is defined by vi := v({i})i for every player i.

Lemma 3: If j is an abnormal player then vj < 0 and v({i})j ≥ χj for every
i 6= j.

Proof: Consider what happens when every other player chooses c with cer-
tainty at every stage. Player j could respond by choosing q at any stage.
vj < χj implies that responding by never choosing q must be at least as good
as χj, meaning that vj < χj ≤ 0.

Let δ > 0 be given, and consider what happens when Player i chooses q
with a probability of δ at every stage of play (and all other players choose
c with certainty). By quitting at any stage Player j would receive no more
than vj +δM , and for small enough δ this would be worse than χj. It follows
that choosing c at all stages would be the much better choice for Player j,
implying that v({i})j ≥ χj. 2

Lemma 4: Let p1, p2, . . . , pk be a sequence of one-stage strategies in [0, 1]N

such that 0 < ρ = 1−∏k
i=1(1− q(pi)) < 1 is the probability that some player

chooses q on some stage and let s0, . . . , sk be a sequence of vectors in RN such
that si = f(si−1, pi) for each 1 ≤ i ≤ k. If ||s0 − sk|| ≤ δ then the strategy
profile p = (pk, pk−1, . . . , p1, pk, . . . , p1, . . .) = p0, p1, . . . , generates a sequence
ri(p) for i = 0, 1, . . . such that ||ri(p)− snk−i|| ≤ δ

ρ
for all (n− 1)k < i ≤ nk

and if pi ∈ Eε(si−1) then pi ∈ Eε+ δ
ρ
(ri(p)).

Proof: Define r ∈ RN to be the payoffs to the players conditioned on the
event that some player chose q from the strategies pk, . . . , p1 (starting with
pk). We have assumed that sk = (1 − ρ)s0 + ρr. With ||s0 − sk|| < δ
and ρ(r − s0) = sk − s0 we have ||r − s0|| ≤ δ/ρ. With rnk(p) = r for
all multiples nk of k and by the definition of the function f(r, p) we have
||ri(p)− snk−i|| ≤ δ/ρ for all (n− 1)k < i ≤ nk. The last claim follows from
|bn(r, p)− bn(s, p)| ≤ ||r − s|| for all vectors r, s ∈ RN and players n ∈ N .

Definitions: A quitting game has stationary approximate equilibria if for
every ε > 0 there is a p ∈ [0, 1]N such that (p, p, p, . . .) is an ε equilibrium. A
quitting game has instant approximate equilibria if for every ε > 0 there is a
p ∈ [0, 1]N with pj = 1 for some player j ∈ N and such that a 2ε equilibrium
is described by the behavior p on the first stage followed by punishment of
Player j on the second stage (given that she didn’t quit) yielding to Player
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j no more than χj + ε.

Lemma 5: If a quitting game does not have stationary approximate equi-
libria or instant approximate equilibria then
1) vj > 0 for some normal player and for every normal player j there is
another normal player k such that v({j})k < vk,
2) there is an ρ > 0 small enough so that if r ∈ RN is a ρ-rational vector
within a distance of 1 of a feasible vector, p ∈ Eρ(r) and y = f(r) then
a) ρq(p) ≤ ||x− y|| and
b) q(p) ≤ 1− ρ.

Proof: 1) If the first claim didn’t hold for some player, normal or abnormal,
then all players choosing c on all stages would be an equilibrium; and by
Lemma 3 this player must be normal. Furthermore, if there were not such a
second player k, normal or abnormal, then with ε > 0 fixed player j choosing q
at every stage with probability small enough would describe an ε equilibrium;
and by Lemma 3 this player must be normal.

2) Let ((ri, si, pi) | i = 1, 2, . . .) be a sequence such that all the ri are
within a distance of 1 of a feasible vector and pi is a member of E1/i(ri)

with si = f(xi, pi), rj
i ≥ χj − 1/i for all j ∈ N and either q(pi)

i
> ||ri − si||

or q(pi) ≥ 1 − 1
i
. Let 0 < ε ≤ 1 be fixed and choose i large enough so

that iε|N | > (3M)|N |. Let r̂i be the vector in RN representing the expected
payoffs of the players from the stationary strategy profile p = (pi, pi, pi, . . .).

If q(p)
i

> ||ri − si|| it holds by Lemma 4 that ||r̂i − ri|| ≤ ε/2 and therefore
pi is in Eε(r̂i). Now assume that q(pi) ≥ 1 − 1

i
. For some player n the

quantity pn is at least 1 − ε/(3M). Define p̂ to be the the strategy profile
such that p̂j = pj if j 6= n and otherwise p̂n = 1. It follows that p̂ along with
punishment of Player n for not quitting does describe an ε equilibrium. 2

4.4 Equivalences

Proposition 3 and Theorem 3 are generalizations of some results of Solan and
Vieille [13].

Proposition 3: Let 0 < ε ≤ 1 be given and let positive δ be less than
ε4

2M3 . A cyclic strategy profile p = (p0, . . . , pk−1, pk = p0, . . .) with all ri(p)
ε-rational, q(pi) positive for some 0 ≤ i ≤ k − 1 and ri(p) ∈ Fδ(ri+1(p)) for
all i = 0, 1, . . . generates a 3ε equilibrium.
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Proof: For all i ≥ 1 and players n ∈ N define un
i to be the summation∑i−1

k=0(b
n(rn

k (p), pk−1)−rn
k−1(p)), the cumulative advantage in expectation that

Player n has obtained by choosing the action c on all stages up to but not
including the stage i, conditioned on the event that no other player has chosen
q. For every player n define i∗n to be the first stage i where un

i is at least ε.
For every player n ∈ N and stage i ≥ 1 define cn

i to be
∏i−1

k=0(1− pn
k), Define

i]n to be the first stage i such that cn
i is no more than ε

M
.

We must determine whom to punish and when. Define î to be minn∈N(i∗n, i
]
n).

If î is equal to i]n for some n ∈ N , then define n̂ ∈ N to be any n ∈ N with
î = i]n. Otherwise if î is less than i]n for all n ∈ N then define n̂ to be any
n ∈ N such that î is equal to i∗n. Before the stage î the players perform
according to p. If the game reaches stage î then player n̂ will be punished
such that the expected future payoff for this player is no more than χn̂+ε/10.

Because the decision to choose q terminates the game immediately, and
the one stage advantage by doing so never exceeds ε4/(2M3), the only deviant
strategy we need to consider is the repetitive decision to choose c by a player.
Due to î ≤ i∗n̂ and that the vectors are ε rational, there is no advantage beyond
2ε for Player n̂ to choose c repetitively. Likewise from î ≤ i∗m for all players
m ∈ N we need only consider the advantage to a player m 6= n̂ from the
punishment of player n̂ at stage î. It suffices to show that even if Player m
never chooses q the stage î (for punishing n̂) is reached with a probability of
no more than ε/M .

Case 1; î < i]n̂ and î = i∗n̂: We will look at the discrete decision
process for Player n̂ generated by the stochastic game and the given profile
of strategies. Let si be the state representing the history where the ith stage
is reached and so far every player has chosen c at every stage up until i.
Notice that from si the distribution on the next visit to {s0, s1, . . .} is the
same for both actions, namely total weight given to the state si+1, (for the
action q this holds because there is a zero probability of returning to the
set). Therefore for player n̂ the generated discrete decision process has rank
1. By Propositions 1 and 2 the probability does not exceed ε2/(M2) that the
stage î is reached. As cm

î
≥ ε/M if Player m never quits the probability of

reaching î is still no more than ε/M .

Case 2; î = i]n̂: Whether or not Player m or any other player other than
n̂ refuses to choose q the probability of Player n̂ not choosing q before stage
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î does not exceed ε/M . 2

Theorem 3: For a quitting game without stationary approximate equilibria
or instant approximate equilibria the following are equivalent:

(i) the game has approximate equilibria,

(ii) for every ε > 0 there is a cyclic strategy profile p = (p0, . . . , pk−1, pk =
p0, . . .) with ri(p) ∈ Fε(ri+1(p)) for all i = 0, 1, . . ., all the ri are ε-rational,
and q(pi) is positive for some 0 ≤ i ≤ k − 1,

(iii) for every ε > 0 and every B > 1 there is a finite orbit of Fε of ε-rational
vectors within a distance of 1 of the feasible vectors with a total variation of
at least B,

(iv) for every ε > 0 there is an infinite orbit of Fε of ε-rational vectors with
unbounded total variation,

(v) for every ε > 0 there is an infinite extended orbit of Fε of ε-rational
vectors with unbounded total variation.

Proof: (ii) implies (i) is the content of Proposition 3. (ii) implies (iii),
(iv) and (v) is trivial and (iv) implies (v) is also trivial.

(iv) implies (iii): As the orbit has unbounded variation, any cluster point
of the orbit must be feasible.

(iii) implies (ii): Let ε > 0 be fixed. By the fact that the feasible and
ε/5 rational vectors form a compact set there will be a B be large enough
so that any finite sequence of Fε/5 of total variation at least B will have two
vectors si and sj with i < j in the sequence separated by a total variation
of at least 2M such that ||si − sj|| < ε/5. As they are also separated by
strategies pj, pj−1, . . . , pi+1 giving a probability of at least 1/2 that q was
chosen, Lemma 4 suffices for (ii).

(i) implies (iii): Assume that there does exist a positive δ and a bound
B > 0 such that every orbit of Fδ of vectors that are feasible and δ rational
has a total variation less than B. Without loss of generality we assume that
δ is less than the ρ given by Lemma 5. By Lemma 5 this case can be re-
formulated: there exists a positive θ > 0 such that any orbit of Fδ of vectors
that are feasible and δ rational is created from a strategy profile where the
probability that all players choose c on all stages is at least θ. Also by Lemma
5 there is a 0 < d ≤ 1 such that vj ≥ d for some normal player j. Assume
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that p = (p0, p1, . . .) is a δθρd/(5M) equilibrium. As some player can obtain
at least d by quitting alone, we must assume that the probability according
to p of no player ever quitting is no more than δθρ/(4M). This means that
there must be a stage i where the probability of no player ever quitting before
reaching i is between θρ/3 and θ/3. Since we have a δθρd/(5M) equilibrium
the steps from stage 0 to stage i generate a finite orbit of Fδ of δ-rational
and feasible vectors, a contradiction.

(v) implies (ii): We assume the existence of an extended orbit ((xl,j | 0 ≤
l < Q), j < nl) of Fε/3 with unbounded total variation in {x | ∀j xj ≥
χj − ε/3}. Let (pl,i) be the corresponding strategies in [0, 1]N) (such that
xl,i+1 = f(xl,i, pl,i)).

Case 1; There is a sequence (xl,0, xl,1, . . .) such that
∑∞

i=0 ||xl,i−xl,i+1|| =
∞:

This implies (iii), and we have proven already that (iii) implies (ii).

Case 2;
∑∞

i=0 ||xl,i − xl,i+1|| < ∞ for every l < ∞:

The argument is essentially the same as (iii) implies (ii). Let x be any clus-
ter point of the sequence (x0,0, x1,0, . . .). Let xm,0 and xn,0 be any two points
in this sequence such that both are within ε/5 of x and

∏
m<l<n

∏
i<nl

(1 −
q(pl,i)) < ε

30M
. We can assume without loss of generality that for every l the

total variation in the lth orbit is Tl > 0. For every m ≤ i ≤ n − 1 define ki

large enough so that the total variation from xi,ki
to xi+1.0 does not exceed

ρε2−iTi. Lemma 4 implies that (ii) holds with the cyclic strategy profile ob-
tained from reversing the probabilities to pn−1,kn−1−1, . . . , pn−1,0, pn−2,kn−2−1,
. . . , p1,0, p0,k0−1, . . . , p0,0, and then repeating. 2

Lemma 6: Assume that all players are normal, that there are neither sta-
tionary nor instant approximate equilibria, and s ∈ Fε2/(2M)(r). If rn ≥
χn − 3ε then sn ≥ χn − 3ε and if rn < χn − 3ε then sn ≥ rn + ε2/(2M).

Proof: For the sake of contradiction assume the contrapositive. In either
case it must hold that sn < χn − 3ε + ε2/(2M), meaning also that bn(p, r)
and an(p) are less than χn− 3ε+ ε2/M . As Player n can get at least χn from
quitting alone we must also assume that the total probability that other
players are quitting according to p must exceed 2ε/M . But then by Lemma
4 the strategies (pk | k 6= n) would be a way to hold the payoff of Player n
down to χn − ε, something impossible. 2
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Corollary 2: If all players are normal and there are neither instant ap-
proximate equilibria nor stationary approximate equilibria then the game
has approximate equilibria if and only if there is an orbit r0, r1, . . . of Fδ of
unbounded total variation.

5 Escape Games

5.1 The Definition

Define the set Wj := {r | rj ≤ vj} and define W := ∪j∈NWj = {r | rj ≤ vj

for some j ∈ N} = RN\{r | rj > vj for all j ∈ N}.
A quitting game is an escape game if

1) every player is normal (vn = v({n})n ≥ χn for all n ∈ N),

and there is a closed subset Q of RN and a positive ε > 0 with the following
existence and closure properties:

2) Q ∩ ∂W 6= ∅ and for every x ∈ Q ∩ ∂W there is a y with yj > vj for all
j ∈ N such that the closed line segment from x to y is in the set Q,

3) if x ∈ Q\W then any payoff vector y ∈ RN in F0(x) with y 6= x satisfies
yj > vj + ε for all j ∈ N ,

4) if x ∈ Q and y ∈ Fε(x) then y ∈ Q.

The name “escape” reflects the assumption that once one has left the set
{x | xj ≤ vj + ε for some j} with the correspondence Fε|Q then one has also
“escaped” this set for good.

5.2 The Spanning Property

We use a property for correspondences called the “spanning” property, de-
fined in Simon, Spiez, and Torunczyk [12]. The homology used in that arti-
cle is the Cech homology with coefficients in a non-trivial compact Abelian
group. This approach was chosen because the Cech homology is defined using
approximations (Eilenberg and Steenrod [1]) and hence many properties are
preserved when passing to limits. Because the approximation arguments of
this article are made explicit, we could use instead the more conventional ho-
mology groups defined by continuous maps from simplicies to the topological
spaces (and with integer coefficients).
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An n dimensional compact manifold with boundary is a topological space
such that every point is contained in a subset of the space topologically
equivalent to the n dimensional disk Dn with this point in the center or on
the boundary of this disk.

If C is an n-dimensional compact manifold with boundary in Rn then
by [∂C] we denote the generator element of the reduced homology group
H̃n−1(∂C) according to any orientation. (The reduced homology group differs
from the non-reduced only in dimension 0.) For example, [∂C] could be
generated by any subdivision of C into parts topologically equivalent to Dn

with the boundary map applied to functions from the n dimensional simplex
to these parts of the subdivision. Let U be a non-empty open bounded
subset of E. A compact (correspondence) F ⊆ Rn × Y is said to have
the spanning property for U if there exists a z in the reduced homology
group H̃n−1(F |∂U) such that the images of z in H̃n−1(∂U) and H̃n−1(F )
are [∂U ] and 0, respectively, where the first map is that induced by the
canonical projection of F |∂U to ∂U and the second map is that induced by
the inclusion of F |∂U in the set F (and A stands for the topological closure
of A). If the compact correspondence F ⊆ Rn×Y has the spanning property
for a non-empty open set U then we say that is has the spanning property
for the closure of U . If F has the spanning property for an open set U then
F (x) 6= ∅ for every point x in U (proven in Simon, Spiez, and Torunczyk
[11]). This property is the origin for the term “spanning”.

We demonstrate some of the power of the spanning property. In a usual
proof of Brouwer’s Fixed Point Theorem, if a continuous function g : Dn →
Dn didn’t have a fixed point then there would be a continuous function
f : Dn → Sn−1 such that f(x) = x for all x ∈ Sn−1, and from looking at
the induced homology groups we see that this is not possible. The spanning
property goes further: for any continuous function from Dn to Dn such that
for all x ∈ Sn−1 it holds that f(x) = x the image of f must cover all of Dn.
Indeed, one can go further. Let f : Dn → Rn×Rn be any continuous function
such that f(x) = (x, x) for all x ∈ Sn−1. F := image (f) is contractible,
and hence has zero reduced homology groups for all dimensions. Considering
either the first or second copy of Sn−1 to be the domain of the correspondence
F , the embedding of Sn−1 into Sn−1×Sn−1 yields an appropriate element of
the n−1 reduced homology group of the correspondence over Sn−1, implying
the spanning property for Dn. The spanning property applied to either Dn
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in the first or second position in Rn ×Rn implies that both the image of F
and the domain of F must contain Dn.

An important aspect of the spanning property is that it is preserved by
restrictions of the correspondence to subsets. Lemma 2 of Simon, Spiez, and
Torunczyk [12] states that if F is spanning for an open A and D is any open
subset of A then F |D is also spanning for D.

Lemma 7: If a correspondence F has the spanning property for an open
and bounded set U ⊆ Rn and C is a connected and compact subset of U
then for every pair x, y ∈ C there is some z1 ∈ F (x) and some z2 ∈ F (y)
such that (x, z1) and (y, z2) are in the same connected component of F |C.

Proof: Let Ui be a decreasing sequence of open, bounded and connected
subsets of U converging to C, meaning that C = ∩∞i=1Ui. Since the Ui

are connected by Lemma 2 of Simon, Spiez and Torunczyk [12] there are
connected and compact subsets Zi of F such that the correspondence Zi is
spanning for Ui. Due to Simon, Spiez, and Torunczyk [11] for every i there are
pairs (x, ai) and (y, bi) in Zi. Because the Ui is a decreasing sequence of sets,
again due to Lemma 2 of Simon, Spiez, and Torunczyk ([12]) we can assume
without loss of generality that the Zi is also a decreasing sequence of sets.
Define Z to be the intersection of the Zi. Because the Zi are connected and
compact, Z is also connected and compact. By its compactness Z contains
a pair (x, a) and (y, b) for some a and b as limits, respectively, of some
subsequences of the ai and bi. 2

5.3 The Structure Theorem

A homotopy is a continuous map h : X × [0, 1] → Y , where X and Y
are topological spaces. If Y can be embedded in a convex space then the
homotopy h : X × [0, 1] → Y is a straight line homotopy if for every x ∈ X
and t ∈ [0, 1] h(x, t) = t h(x, 1) + (1− t)h(x, 0).

There is a strong connection between quitting games and another area
of game theory usually not associated with stochastic games – structure
theorems used to establish stability properties of one-shot games. We remind
the readers of the main theorem of Kohlberg and Mertens, [3]. Let N be a
finite player set, (Aj | j ∈ N) the finite sets of actions for the players, X the
space of all |A1|×. . .×|A|N ||matrices with vector payoff entries from RN . For
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any x ∈ X let Gx be the one stage game defined by the matrix x. Let Ã be∏
j∈N ∆(Aj), the strategy space, (where ∆(Aj) is the simplex of probability

distributions on Aj). Let E ⊆ X × Ã be the correspondence defined by
E(x) := {y ∈ Ã | y is an equilibrium of the game Gx}. Let π : X × Ã → X
be the canonical projection. The structure theorem of Kohlberg and Mertens
states that there is a straight line homotopy H(·, ·) from X × [0, 1] to X × Ã
such that π ◦ H(x, 0) = x for all x ∈ X, the image of H(·, 1) is exactly the
correspondence E, and the function H can be extended continuously to the
one-point compactification of X (meaning that for every compact set C ⊆ X
there is an R > 0 large enough that if the norm ||x|| exceeds R then for
all t ∈ [0, 1] the point H(x, t) does not lie over C). Here we have slightly
modified the statement of the structure theorem, using the fact that Ã is
convex.

5.4 Finitely Repeated Quitting Games

For every k ≥ 0 and vector x ∈ RN let Γk
x be the k stage game such that at the

conclusion of k stages the players receive the payoff x given that all players
chose c on all stages. A strategy in Γk

x is a sequence p = (p0, p1, . . . , pk−1) ∈
([0, 1]N)k representing the probabilities that the players would quit on the
various stages. Let Ek ⊆ RN × ([0, 1]N)k be the equilibrium correspon-
dence of the games Γk, meaning that Ek(x) are the equilibria of Γk

x. For
all k ≥ 1 define the function fk : RN × ([0, 1]N)k by f 1(x, p) = f(x, p)
and fk(x, p) = f(fk−1(x, (p1, . . . , pk−1)), p0). Define the correspondences
F k ⊆ RN × RN by F k(x) = {fk(x, p) | p ∈ Ek(x)}. F k is also the k
iteration of the correspondence F0.

Lemma 8: Let a quitting game be fixed. If k ≥ 1 and x and y belong
to a connected and compact subset D of RN such that no equilibrium on
the set D involves some player quitting with certainty then there is a pair
px = (px

1 , p
x
2 , . . . , p

x
k) and py = (py

1, p
y
2, . . . , p

y
k) in ([0, 1]N)k with (x, px) ∈ Ek

and (y, py) ∈ Ek such that (x, px) and (x, py) belong to the same connected
component of Ek|D, the equilibrium correspondence lying over D.

Proof: We represent the k repeated quitting game Γk
r as a game with the

original set N of players and finitely many actions. Let k, the number of
stages, be fixed, and let each player n have the finite set An

k = {c, q1, . . . , qk}
of actions. The action qj means that the player will choose c on all stages
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up to stage j and then choose q on stage j. If no player chooses qj for any
1 ≤ j ≤ k then the players will receive the payoff r. Otherwise, let j be the
first stage such that some player chooses qj and the payoff to the players will
be v(A) where A is the set of players who choose qj.

The actions An
k define games with variable payoff matrices. As above,

define X to be the space of all k + 1× k + 1× . . .× k + 1 payoff matrices, Gx

the corresponding game for every x ∈ X, Ã the space of mixed strategies,
and E ⊆ X × Ã the equilibrium correspondence. Let H(·, ·) from X × [0, 1]
to Ã be the straight line homotopy (Kohlberg and Mertens [3]) as described
above such that the image of H(·, 1) is the equilibrium correspondence E.
Define î : Rn → X so that the (c, c, . . . , c) coordinate of ĩ(r) is equal to r and
otherwise the other coordinates of ĩ(r) are independent of the choice of r and
correspond to the appropriate v(A) defining the quitting game where A is the
set of players choosing ql where l is the smallest number such that no player
chose qi for all i < l. Let D̃ be the image ĩ(D). Let R > 0 be large enough
so that if ||r|| exceeds R then for all t ∈ [0, 1] the point H(r, t) projected
to X does not lie in D̃. Define a function bR : X → [0, 1] by bR(r) = 0 if
||r|| ≥ R + 1, bR(r) = 1 if ||r|| ≤ R, and otherwise bR(r) = R + 1 − ||r||
if R ≤ ||r|| ≤ R + 1. Define a continuous function h : X → X × Ã by
h(r) = H(r, bR(r)). The correspondence h({r | ||r|| ≤ R + 2}) ⊆ X × Ã has
the spanning property for {r | ||r|| ≤ R + 2} (because the projection to X
of h on {r | ||r|| = R + 2} is the identity function). By our choice of R this
same correspondence h({r | ||r|| ≤ R + 2}) over the set D̃ is the equilibrium
correspondence E over the set D̃. As D is compact and therefore there is a
maximal probability ρ < 1 that any player quits in any equilibrium Ek over
D, E|D̃ is topologically equivalent to Ek|D. The rest follows by Lemma 7.
2

5.5 Escape Games Have Approximate Equilibria

We fix an escape game that does not have stationary approximate equilibria
nor instant approximate equilibria, and let ρ > 0 be a quantity defined by
Lemma 5 and let ε > 0 be strictly smaller than either the ε > 0 defining the
escape game or ρ. All claims that follow refer to this game.

Lemma 9: There is a quantity B > 0 so large that if xj ≥ B for all j ∈ N
then there is only one equilibrium in Ek, namely 0, the equilibrium where no
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player chooses q with positive probability on any stage.

Proof: By induction, it suffices to prove this for E0. Since every equilibrium
involves a probability of at least ρ that no player chose the action q, it suffices
that B is larger than M+1

ρ
+ maxn∈N χn. 2

Define the positive quantity δ to be ε
10M |N | . Define T := {x | vj ≤ xj ≤

vj + ε for some j ∈ N} ∩ {x | xj ≥ vj for all j ∈ N}.
Define the correspondence F̃j,δ to be {(x, y) | x ∈ T, xj ≤ vj + ε, y =

f(x, p) for some p satisfying 0 ≤ pj ≤ δ and pk = 0 for all k 6= j}. Define
F̃δ := F0 ∪j∈N F̃j,δ.

Lemma 10: F̃δ ⊆ Fε and if an extended orbit of F̃δ starts at a point in
{x | xj ≥ χj − ε} then it remain in this set. If the extended orbit of F̃δ

started at a point in Q then it remains in Q, and if it starts in Q\(W ∪ T )
then it remains in Q\(W ∪ T ).

Proof: Assume that x ∈ T with xj ≤ vj + ε and p ∈ F̃j,δ. By quitting alone
Player j gets a payoff of vj and by not quitting a payoff of xj. By not quitting
any other player k 6= j gets a payoff of at least vk − δM and by quitting a
payoff no better than vk + δM ≤ vk + ε/10. This completes the proof of
F̃δ ⊆ Fε/3. Staying in the set {x | xj ≥ χj − ε} is the result of Lemma 6.

Containment in Q follows by the containment of F̃δ in Fε/3, the definition
of an escape game, and the closure of Q.

We assumed that ε is smaller than the ε > 0 defining the escape game
properties. Assume that x, y ∈ Q with x 6∈ W ∪ T and y ∈ F̃δ(x). Since x is
already outside of T we know that y ∈ F0(x). By the definition of an escape
game either y = x or yj > vj + ε for all j ∈ N . Since ε is larger than ε a
convergence to a point in T is not possible. 2

Define an x ∈ ∂W to be critical if there exists a pair of player j, k in N
such that xj = vj, xk = vk, and v({j})k < vk.

Lemma 11: From any start at a point in T there is a finite orbit of F̃δ

staying in T that ends at a critical point.

Proof: It follows directly from Lemma 5 and the intermediate value theorem.
2

Theorem 4: All escape games have approximate equilibria.
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Proof: It suffices to prove the claim for escape games without stationary or
instant approximate equilibria, and therefore for an escape game with the
assumptions made above. By Theorem 3 and Lemma 11 it suffices to show
that starting at any critical point x ∈ Q ∩ ∂W either there is an extended
orbit of F̃δ in (W ∪ T ) ∩ Q with unbounded total variation or there is an
orbit of F̃δ, finite or infinite, ending or converging to some member of T ∩Q
with total variation of at least δρ/3.

Given a critical point x ∈ Q∩ ∂W with xj = vj, xi = vi and v({j})i < vi

let y = f(x, p) with pj = δ and pk = 0 for all k 6= j. Lemma 10 implies that
y is in Q.

Case 1; there is an infinite orbit of F0 starting at y and contained
in W ∪ T that does not converge: By the definition of an escape game
the orbit is in Q and non-convergence implies unbounded total variation.

Case 2; there is an infinite orbit of F0 starting at y and contained
in W ∪ T that does converge: Convergence to a point z in the interior of
W is impossible, since a distance of t > 0 from the boundary of W implies
that any equilibrium of Γz involves a probability of quitting of at least t/M ,
and by Lemma 5 this would also mean a motion of at least ρt/M away from
this point. With the assumption that the orbit converges to a point in T ,
a total variation of at least ρδ is obtained in the motion from x to y. The
convergence point is in Q because Q is closed.

Case 3; there is no infinite orbit of F0 starting at y and contained
in W ∪ T :

There must be a k such that F k(y) is contained in the complement of
W ∪T , since otherwise by the closure of the correspondence F0 the existence
of a finite orbit of F0 of length k contained in W ∪T for every k would imply
the existence an infinite orbit of F0 in W ∪ T , (an easy exercise, also see
McGehee [8]).

Let p = (p0, . . . , pk−1) be any equilibrium in Ek(y). Let B be a positive
quantity given by Lemma 9 and let x be a point satisfying xj > vj for all
j ∈ N such that the closed line segment between x and x is in Q. Consider
three line segments, that from y to x, that from x to x, and that from x
to the point z := (B, B, . . . , B); define D to be the union of these three
line segments. Define a complete ordering on D in the natural way so that
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z > x > y. By Lemma 8 (z, 0) and (y, p) must be in same connected
component of Ek|D (as Lemma 9 implies that 0 is the only member of Ek(z)).
Let x̃ ∈ D be any point with x < x̃ ≤ x. If (x̃, p̂) ∈ Ek and with p̂
there is a positive probability that some player chooses q then from the
definition of an escape game this probability is at least ε/M . Furthermore
there will be a positive constant c > 0 such that if x̂ ∈ D satisfies x ≤ x̃ ≤ z
then the distance from x̂ to W is at least c, and therefore if p̂ ∈ Ek(x̂)
then the probability that some player chooses q will be at least c/M . Let
d = 1

2M
min{c, ε}.

It suffices to show that there is a finite orbit of F0 of length k starting
at ŷ ∈ D with y ≤ ŷ ≤ x and ending at some ẑ with ẑj = vj + ε for some
j ∈ N . By Lemma 10 all points in this orbit are in Q ∩ (W ∪ T ) and by
Lemma 11 there is a return to the set ∂W ∩Q. A total variation of at least
ε is obtained on the return to T .

Suppose for the sake of contradiction that there is no finite orbit of F0

of length k starting at any ŷ ∈ D with y ≤ ŷ ≤ x and ending at some
ẑ with ẑj = vj + ε for some j ∈ N . Define open subsets O1, O2 of D ×
([0, 1]N)k by O1 := {(x̃, p̃) | x̃ > x,

∑k−1
i=0 q(p̃i) < d} and O2 := {(x̃, p̃) | x̃ <

x, minn∈N(fk(x̃, p̃))n − vn < ε}. Let O be O1 ∪O2. By assumption ∂O, the
boundary of the open set O, contains no members of Ek|D, (here ε < ε is
used). The point (z, 0) is in O and the point (y, p) is in (D × ([0, 1]N)k)\O,
which means that (z, 0) and (y, p) lie in two distinct connected components
of Ek|D, a contradiction. 2

6 Conclusion

How could one extend the proof of Theorem 4 to a proof for all quitting
games? What would a quitting game counter-example look like (to approxi-
mate equilibria) if one existed? Infinite total variation is an analytic property,
orbit existence an algebraic property, and it seems to be a coincidence that
there was a synthesis for a proof of Theorem 4. On the other hand, any
counter-example must fail to be an escape game, which means that over
some x outside of W there are equilibria involving a positive probability of
quitting. Since for any point x outside of W the set F0(x) contains at least
x from the equilibrium 0 and generically F0(x) has an odd number of points
we must presume that for many such x the set F0(x) contains at least two
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points. Any analysis of orbits for a candidate counter-example must involve
multiple choices for some of the vectors reached.

Looking beyond quitting games, the situation doesn’t look any better for
finding a counter-example. Stochastic games are played on infinitely many
stages, and therefore in general the game trees branch wildly. Quitting games
are designed to prevent rapidly growing ways that a player could respond to
the past behavior of the other players. In our opinion, to find a counter-
example one would fair a better chance staying with quitting games that are
not escape games.

The step from perfection to approximate equilibria is well founded for
quitting games, however in general the scope of Theorem 2 is very limited.
It seems that a proof for the existence of approximate equilibria in all normal
stochastic games must tackle this problem – given an ε > 0 how can some
kind of stage-for-stage δ > 0 equilibria translate to the existence of ε > 0
equilibrium? Example 1 is highly discouraging, and perhaps an integration
of a variation of this example into a game with a multitude of players could
be the basis of a counter-example.
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[12] SIMON, R., SPIEŻ, S., and TORUŃCZYK, H. (2002). “Equilibrium
Existence and Topology in Some Repeated Games of Incomplete In-
formation”, Transactions of the American Mathematical Society, 354,
No. 12, pp. 5005-5026.

[13] SOLAN, E. and VIEILLE, N. (2001). “Quitting Games”, Mathematics
of Operations Research, 26, pp. 265-285.

[14] VIEILLE, N. (2000). “Two-Player Stochastic Games I: A Reduction”,
Israel Journal of Mathematics, 119, pp. 55-91, “Two-Player Stochastic
Games II: The Case of Recursive Games”, Israel Journal of Mathemat-
ics, 119, pp. 92-126, “Small Perturbations and Stochastic Games”,
Israel Journal of Mathematics, 119, pp. 127-142.

[15] WILLIAMS, D. (1991). Probability with Martingales, Cambridge Uni-
versity Press.

35


