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Abstract: The “Enumeration of All Extreme Equilibria of Bimatrix Games” algorithm
of Audet et al. (2001) uses the best response condition of Nash Equilibria to create a
search tree in which pure strategies are forced to be either a best response or played
with zero probability. Finding sets of constraints with no feasible solution allows the
algorithm to avoid searching all game supports and thereby speeds the enumeration
process. This paper presents two new improvements to the EEE algorithm. First, the
algorithm is implemented in Java using only integer arithmetic, as opposed to previous
implementation using floating-point arithmetic. This exact solution of linear programs
for the algorithm avoids potential rounding errors. Preliminary running time results of
this implementation, determining the relative efficacy of objective functions for the lin-
ear program search, and a comparison to another enumeration algorithm are reported.
Second, the degeneracy check is improved, drastically cutting running time for certain
classes of games and making the algorithm theoretically clearer. The new approach
introduces constraints until the feasible set consists of only one strategy or is empty.
The combination of these two improvements increases EEE’s usefulness as a tool for
bimatrix game solution.
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1 Bimatrix Games and Nash Equilibria

A bimatrix game is a two-player, normal-form game in which the matrices A and B
hold the payoffs to players I and II, respectively. In a normal-form game, each player
simultaneously chooses an action either deterministically (a pure strategy) or through
a probability distribution over all possible actions (a mixed strategy). Payoffs are de-
scribed by a matrix for each player in which the entry at position (i, j) is the payoff
when Player I chooses action i and Player II chooses action j. Player I’s pure strate-
gies are represented by the rows of the matrix and Player II’s by the columns; the pure
strategies of Player I are described as belonging to the set M = 1, 2, . . . m and those of
Player II as belonging to the set N = 1, 2, . . . n. The sets M and N need not be of equal
size but, by definition of the payoff structure, both matrices A and B must be of the
same size.

Player I’s choice of strategy, pure or mixed, can be described as a probability vector
over the elements of M; the space of all such probability vectors is denoted X and any
particular vector as an x ∈ X. A pure strategy is an x ∈ X such that one element of
x has value 1 and the rest have value 0. Similarly, Player II’s space of strategy vectors
is denoted Y with any particular choice y ∈ Y. Both x and y are denoted as column
vectors; the former of size m× 1 and the latter of size n× 1.

The choice of a particular x ∈ X for Player I and y ∈ Y for Player II defines an
expected payoff for each of the players. Player I chooses a pure strategy in M based
on the probabilities assigned in x, Player II chooses a pure strategy in N based on
the probabilities assigned in y. While the actual payoff to Player I is an element of
A and that to Player II is the corresponding element of B, the expected payoff is the
weighted average of the payoffs of all possible outcomes, based on the probability of
occurring. The probability of any particular payoff Aij to Player I is just the probability
that Player I plays i and Player II plays j: xiyj. Therefore, the expected payoff to Player
I is the probability of each payoff occurring multiplied by its value, or x>Ay. Player
II’s expected payoff is x>By.

In all the bimatrix games that follow, the assumption is made that each player seeks
to maximize his or her own expected payoff without regard to the other player’s ex-
pected payoff. Both agents are risk-neutral. The payoffs in the matrices are meant
to already reflect any risk preferences the players may have over the payoffs. Much
of this description of bimatrix games and Nash Equilibria follows the survey by von
Stengel (2002).

A Nash Equilibrium (NE) is a pair of strategies for which both players maximize
expected payoff given the strategy of the other player. An NE in a bimatrix game is a
pair of strategies (x∗, y∗) such that no other x ∈ X provides a higher expected payoff
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for Player I than x∗ given that Player II’s strategy is y∗, and no y ∈ Y provides a higher
expected payoff for than y∗ for Player II given that Player I’s strategy is x∗. Given the
strategy of the other player neither wishes to change his strategy. Nash proved that
every bimatrix game has at least one such equilibrium.

Nash Equilibria may share a strategy of either Player I or II while the strategy of
the other player varies. Given NE pairs (x̂, ŷ) and (x̂, ŷ′), all linear combinations of
the form (x̂, αŷ + (1 − α)ŷ′) ∀α ∈ [0, 1] are also NE. These equilibria are known as
degenerate equilibria; bimatrix games containing degenerate equilibria are referred to
as degenerate games.

Determining whether a point is a NE is easy and requires only checking what is
known as the best response condition: at a NE, the distributions x∗ and y∗ must play
with non-zero probability only those pure strategies which are best responses to the
other player’s mixed strategy. A given y∗ determines Player I’s payoff vector Ay∗. Each
entry (Ay∗)i is the payoff to Player I of choosing strategy i ∈ M. Any probability Player
I places on a strategy corresponding to a non-maximal element of Ay∗ could be used to
further increase the expected payoff through a shift to a best response. More formally,
the best response condition states that (x∗, y∗) is a Nash Equilibrium if and only if
xî > 0 implies that î = arg max

i∈M
(Ay∗)i and y ĵ > 0 implies that ĵ = arg max

j∈N
(x∗>B)j for

all i ∈ M and j ∈ N.
The best response condition of NE can also be described as a set of equations that

must hold for a pair of strategies (x∗, y∗) to be a NE. Define α to be the maximum
payoff to Player I given y (the maximum of the vector Ay) and β to be the maximum
payoff to Player II given x (maximum of the vector x>B). Then, since each strategy
must be either played with zero probability or be a best response to the other player’s
strategy, each i ∈ M and j ∈ N must satisfy the equations xi(α− (Ay)i) = 0 or yj(β−
(x∗>B)j) = 0, respectively.

1.1 Linear Programming

A player’s best response to the chosen strategy of the other player is the vector x ∈ X
or y ∈ Y that maximizes his expected payoff. As such, computing a best response falls
into a class of problems known as linear programs; a linear program seeks to maximize
a given linear function of variables subject to a number of linear constraints on those
variables. This discussion of linear programming follows Chvátal’s well-known 1983
text, incorporating bimatrix game issues from von Stengel’s survey. Given 1× k vectors
f and b of constants and a g × k constraint matrix C, a linear program is the problem
of maximizing the product z = f · v subject to C · v ≤ b by choosing a k × 1 vector v.
The function z is called the objective function and any vector v that satisfies C · v ≤ b
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is said to be a feasible solution of the linear program. A solution to the linear program
is a feasible solution that maximizes the objective function.

Calculating a best response corresponds to solving the linear program whose ob-
jective function is the expected payoff and whose constraint is that the variables are
nonnegative and sum to 1. For Player I, the linear program is

max
x

z = x>Ay

s.t. x · 1 = 1
xi ≥ 0 ∀i ∈ M

and similarly for Player II
max

y
z = x>By

s.t. 1 · y = 1
yj ≥ 0 ∀j ∈ N.

where 1 is a row vector of ones such that the product involved is scalar.
At a Nash Equilibrium, both players must play best responses to each others’ strate-

gies; the vector y used in Player I’s objective function must be the solution to Player
II’s linear program and vice versa.

Consider the linear program

max
x1,x2

z = 7x1 + 3x2

s.t. 3x1 + x2 ≤ 11
x1 + 2x2 ≤ 7
x1, x2 ≥ 0

This can be easily altered to equality form in the constraints by introducing two slack
variables, r1 and r2, which take a value such that the two numerical constraints are
tight. Following the convention of placing all variables on one side of the equation,
subtract the objective function from z and require that it equal 0; in essence the goal is
to maximize z subject to minimizing the opposite of the sum of the variables.

max
x1,x2

z = 7x1 + 3x2

s.t. 3x1 + x2 + r1 ≤ 11
x1 + 2x2 + r2 ≤ 7
x1, x2, r1, r2 ≥ 0

=

min
x1,x2

−7x1 − 3x2

s.t. 3x1 + x2 + r1 ≤ 11
x1 + 2x2 + r2 ≤ 7
x1, x2, r1, r2 ≥ 0
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Representing this system in matrix form yields

max
x1,x2,r1,r2

(
1 −7 −3 0 0

) (
z x1 x2 r1 r2

)>

s.t.

(
3 1 1 0
1 2 0 1

)(
x1 x2 r1 r2

)>
=

(
11
7

)

It is usual to concatenate this into a tableau, of which one type is of the form(
C b
− f z

)

where C is the coefficients of the C matrix, b is the vector of constants, f is the coeffi-
cients of the objective function, and z is the value of the objective function ( f · x for the
particular values of x in question. Here, this matrix is initially 3 1 1 0 11

1 2 0 1 7
−7 −3 0 0 0

 .

The solution of linear programs involves a partition of the choice variables v into
those that can take non-zero values, known as the basis, and those which are set to
zero, known as the cobasis. Each constraint is expressed such that each basic variable
is present in one, and only one, row of the tableau. As a result, the cobasic variables
serve as a representation of the basic variables. With this formulation the value of any
basic variable is just the value of b in that column, which is the maximum value that
the variable can take and still have the constraint satisfied.

It follows that the basic variables constitute an identity submatrix of the tableau. In
the example above, the rows corresponding to r1 and r2 are an identity matrix; thus the
basis here is r1 and r2. The variables x1 and x2 constitute the cobasis.

The simplex algorithm solves linear programming problems by pivoting elements
between the basis and cobasis in an attempt to maximize the given function. At each
step, the algorithm chooses the member of the cobasis that can contribute most to the
objective function, the variable with largest (in absolute value) negative coefficient in
the objective function row of the tableau. The variable to exit the basis is chosen by
determining the strictest bound on the value of that variable; this minimum ratio test
is meant to ensure that pivoting does not render a choice of v which is infeasible. The
tableau is renormalized to assure the basis constitutes an identity submatrix. The algo-
rithm repeats until there are no positive coefficients left in the objective function row;

4



at this point making the value of any cobasic variable non-zero (i.e. moving it into the
basis) would result in a lower value of the objective function. Thus, a maximum has
been reached.

An important theorem in linear programming, the duality theorem, involves solv-
ing a linear program by minimizing an upper bound on its objective function. Recall
the original form of the linear program from above

max
x1,x2

z = 7x1 + 3x2

s.t. 3x1 + x2 ≤ 11
x1 + 2x2 ≤ 7
x1, x2 ≥ 0.

Adding twice the first constraint to the second constraint, yields

7x1 + 4x2 ≤ 29 → z = 7x1 + 3x2 ≤ 29

which provides an upper bound on the objective function. The duality theorem states
that minimizing such an upper bound yields the same result as maximizing the func-
tion. The dual of the original linear program is the problem of minimizing this upper
bound. The constraints now require that the linear combination of the constraints has
each coefficient greater than or equal to the coefficient in the objective function.

The minimized upper bound can be interpreted as the payoff to a player in a bi-
matrix game, given the formulation of the game in linear programming form. For the
remainder of the paper, α will denote the dual variable for Player I (his payoff) while β

will denote that for Player II (her payoff).

1.2 Nash Equilibria - Geometrically

While Nash Equilibria are often considered in the algebraic context discussed above,
much attention has been recently given to its geometric interpretation (see von Sten-
gel, 2002). A player choosing a probability distribution over h pure strategies chooses
a point in h dimensional space subject to the constraint that the sum of the coordinates
is 1. As a result, he can choose any point on a h− 1 dimensional closed set (a polytope)
within Rh. Player II, in a normal form game, chooses a point y ∈ Y on a n− 1 dimen-
sional polytope in Rn. The set Y is this n− 1 dimensional polytope; it is the union of all
points in Rn such that the sum of the coordinates is exactly one. For every such point
y ∈ Y, each pure strategy i ∈ M has a determined payoff, which is (Ay)i. The pure
strategies with the highest such payoffs are the best responses to y.

Best response diagrams are often employed in the geometric view of bimatrix games
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Figure 1: Best response diagrams for Player I (left) and Player II (right)

of small dimension. Consider the bimatrix game

A =

(
1 5
2 4

)
B =

(
2 3
5 2

)

where Player I’s strategies are T (top) and B (bottom) and Player II’s strategies are l
(left) and r (right). Player I’s payoffs from playing T or B can be plotted against Player
II’s strategy y ∈ Y, which is determined by a single value p, the probability of playing
the strategy r. Player II’s choice lies along a line segment from p = 0 to p = 1. The
payoff to Player I’s pure strategy T varies linearly from A11 to A12 as p changes from 0
to 1, and is therefore a line segment in R2. The same is true for the bottom strategy. The
left plot in Figure 1 results, in which the dark gray line segments represent Player II’s
pure strategies p = 0 and p = 1, while the light gray line segments represent Player I’s
pure strategies T and B.

Given any particular choice of y, Player I should choose to play only those pure
strategies that provide the highest payoff. This is a restatement of the best response
condition. The geometric realization of the best response condition is the n− 1 dimen-
sional “upper envelope,” which in a 2 × 2 game is the union of all line segments that
are above all other line segments. In Figure 1, the upper envelope consists of the solid
light gray and dark gray line segments; the points on the best response curve for B
from p = 0 to p = 1

2 , and of the points on the best response curve for T from p = 1
2 to

p = 1 along with the points corresponding to p = 0 and p = 1.
Since the upper envelope is the maximal payoff for any pure strategy x given a

strategy y of Player II, it is the value of α, the dual variable in the linear programming
solution for best responses. Given a specific y, using the simplex method to find the
value of α is equivalent to finding the point on the upper envelope corresponding to
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y. This is perhaps a more intuitive explanation of how using the dual variable as the
objective function helps solve for a player’s best response given the strategy of the
other player.

By the best response condition, NE only exist on the upper envelope, as any point
on a best response curve below the upper envelope is suboptimal. One implication is
that any mixed equilibrium is a mix of two strategies that intersect to make a point on
the upper envelope. In Figure 1, a mixed strategy is only possible (but not necessarily
present) in a NE where p = 1

2 . At any other value of p, one strategy is better than
the other, and therefore that strategy must be played with probability 1. The right plot
in Figure 1 is the best response diagram for Player II’s choice of l or r as Player I’s
probability of playing B changes from q = 0 to q = 1. The only possible mixed strategy
for x in equilibrium is at the point where x = (3

4 , 1
4).

Nash Equilibria, in the geometric approach, are pairs of points at which every strat-
egy i ∈ M or j ∈ N is either a best response to the strategy of the other player or is
played with zero probability. A strategy is a best response where the point chosen on
the player’s best response diagram is on the portion of the upper envelope comprised
by that strategy. A strategy is played with zero probability where the point chosen on
the other player’s best response diagram is on the polytope where that strategy’s prob-
ability is zero; in these 2× 2 games these are the p = 0, p = 1, q = 0, and q = 1 line
segments parallel to the y-axis. Thus, for a pair of points to be a NE, every strategy
i ∈ M and j ∈ N must fulfill the best response condition in one diagram or the other.
In Figure 2, the best response condition is fulfilled for i = 2 and j = 1 in the left plot as
the point is on the segment p(y1) = 0 and the portion of the response curve for x2 on
the upper envelope. In the right plot, the best response condition is fulfilled for i = 1
and j = 2 where p(x1) = 0 and y2 is a best response to x. Since all 4 best response
conditions are true for this set of points, it is a Nash Equilibrium.

The conventional way, as discussed in von Stengel (2002) referencing the work of
Shapley, to represent such diagrams is by labeling each polytope with a strategy num-
ber. A certain point is labeled with i ∈ M if that point is either on the upper envelope
of the best response curve comprised by i in Player I’s best response diagram, or if i
is played with zero probability in Player II’s best response diagram. The strategies are
often labeled continuously, so Player I’s strategies are labeled ① and ② while Player
II’s are labeled ③ and ④ .

A pair of points is a NE if it is completely labeled, that is it has all labels i ∈ M and
j ∈ N. This is just a restatement of the linear complementarity condition; a completely
labeled pair of points has either xi = 0/yj = 0 or α = (Ay)i/β = (x>B)j for all i ∈ M
and j ∈ N. This allows identification of Nash Equilibrium points by inspection for 2 ×
2 games. In Figure 3, the three pairs of same-colored points are Nash Equilibria.
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Figure 2: A Nash Equilibrium

Figure 3: A labeled best response diagram and its three Nash Equilibria
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2 The EEE Algorithm

The best response condition and its geometric analog provide an easy way of deter-
mining whether a given pair of strategies is a Nash Equilibrium of a bimatrix game.
Finding NE given the game remains a more difficult problem. A variety of algorithms
have been developed to solve problems in this vein. To find one NE of a given bima-
trix game, the Lemke-Howson algorithm is often employed. This algorithm relaxes the
best response condition for one pure strategy and searches the feasible set of points un-
til that condition is once again satisfied. In its geometric form, the algorithm begins at
the completely labeled (but non equilibrium) point where all strategies are played with
zero probability. Allowing one strategy’s label to be missing allows movement along
the best-response polytope, and at each vertex some label is doubly introduced. Mov-
ing away from the double label provides a path that provably ends with the originally
dropped label being reintroduced, thus landing at a Nash Equilibrium. The survey by
von Stengel (2002) provides a more thorough introduction to Lemke-Howson.

The Lemke-Howson algorithm only finds one NE of a bimatrix game; however in
many cases the question of enumerating all NE is relevant. Several algorithms have
been proposed for solving this problem; it remains very much an active area of com-
putational game theory. In particular, these algorithms attempt to find all extreme
equilibria, which are all Nash Equilibria that are non-degenerate and the endpoints of
degenerate equilibria. With such a set of extreme equilibria, all equilibria are described
explicitly in the set or as a convex combination of interchangable extreme equilibria
(see von Stengel (2002), Theorem 2.14). The equilibrium pair (x, y) and (x′, y′) are in-
terchangable if and only if (x, y′) and (x′, y) are also equilibria; that is the equilibrium
strategies within the set can be interchanged to form equilibria.

One enumeration algorithm uses polytope theory to enumerate all vertices of the
best response polyhedra and then matches up vertices that together form the full set
of best response labels. This algorithm has been implemented by Savani and a more
recent version by Avis using Avis’ (lexicographic reverse search) algorithm (2005) and
will here be referred to as the LRS algorithm, though it should be clear that the LRS
algorithm here refers to Avis’ implementation incorporating both the lexicographic
reverse search program and the equilibrium enumeration. Its efficiency in solving for
all Nash Equilibria will be discussed later.

A 2001 paper by Audet, Hansen, Jaumard, and Savard provides a different ap-
proach to the problem of enumerating all NE in a bimatrix game. Their algorithm
employs the best response condition of Nash Equilibria to restrict the set of possible
x ∈ X and y ∈ Y until the only ones remaining are NE. Recall that for every i ∈ M,
the best response condition states that xi(α− (Ay)i) = 0, and therefore either xi = 0 or

9



α = (Ay)i. Similarly, for every j ∈ N either yj = 0 or β = (x>B)j. At a NE, both players
play only best responses (α = (Ay)i or β = (x>B)j) to the others’ move with positive
probability. If a pure strategy is not a best response, it is played with zero probability
(xi = 0 or yj = 0).

The EEE algorithm chooses some i ∈ M or j ∈ N and explores the implications
of setting that to be a best response (α = (Ay)i or β = (x>B)j) or forcing it to be an
unplayed strategy (xi = 0 or yj = 0). If the action of forcing these conditions does not
exclude all possible solutions, another i or j is chosen and the process is repeated. Once
all m + n best response conditions are fulfilled, any point (x, y) that is still feasible is
a NE. In essence, the algorithm chooses a given strategy and explores the hypothetical
possibility that the strategy is a best response and separately the hypothetical possi-
bility that the strategy is played with zero probability. Impossibilities are removed by
checking for feasibility.

Treating the search for NE as a set of linear programs, the algorithm checks whether
imposing certain strict equalities makes the linear program infeasible. For example, if
x1 is set to 0 to ensure that x1(α− (Ay)1) = 0, a check must be performed to determine
whether there exists a feasible solution to a linear program described by the constraints

∑
i∈M

xi = 1, α ≥ (Ay)i, x1 = 0. In a 2× 2 game, forcing both x1 and x2 to equal 0 leaves

no feasible solution, since the probability constraint x1 + x2 = 1 cannot be satisfied
when x1 = x2 = 0.

The Audet et al. paper employs two linear programs, each of which incorporates
aspects of both Player I’s strategy and Player II’s strategy. In particular let the two
linear programs P and Q be defined by

P(x|y) ≡ max
x, β

x>Ay− β

s.t. ∑
i∈M

xi = 1

β ≥ (x>B)j, ∀j ∈ N
xi ≥ 0, ∀i ∈ M

and

Q(y|x) ≡ max
y, α

x>By− α

s.t. ∑
j∈N

yj = 1

α ≥ (Ay)i, ∀i ∈ M
yj ≥ 0, ∀j ∈ N.

Each i ∈ M and j ∈ N corresponds to one constraint in P(x|y) and one constraint
in Q(y|x). For i ∈ M the P constraint is a constraint on the probability (xi ≥ 0) while
for j ∈ N it is a payoff constraint (α ≥ (Ay)i). Similarly, the Q constraint for i ∈ M is
a constraint on the payoff (β ≥ (x>B)j) while for j ∈ N it is a probability constraint
(yj ≥ 0). It follows from the earlier discussion of best response constraints that an NE
results from searching the feasible domains of these linear programs only if for each
i ∈ M either P(x|y) is constrained to force xi = 0 or Q(y|x) is constrained to force
α = (Ay)i, and correspondingly for all j ∈ N. The algorithm chooses, for each feasible
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node, a pure strategy i or j which has not yet been forced to satisfy the best response
constraint. The node then creates two children, one in which the inequality in P is
made into an equality, and one in which the inequality in Q is made into an equality.

The algorithm starts with the linear programs P and Q from above each being con-
strained solely by their m + n inequalities. For each node at depth d ≤ m + n, there are
m + n− d best response conditions that are not yet forced. Any one of these m + n− d
unforced strategies can be tightened in a child node. The authors define a vector of
size m + n where all already forced components have value −1 and the unforced com-
ponents have value xi(α− (Ay)i) for i ∈ M and yj(β− (xB)j) for j ∈ N. These values
are simply the complementary slackness, a measure of how far the product is from the
value it must take, 0. The variable corresponding to the largest such value is chosen
and the tree branches off in two directions; in one, the variable is forced via its prob-
ability constraint and in the other by its best response constraint. Once the depth has
reached m + n, feasibility implies that the branch of the tree being followed (strategy
1 is a best response, strategy 2 should be played with probability zero, etc.) defines a
NE, since all best response conditions are fulfilled.

If a node is not feasible, it and its potential children cannot be NE and therefore
it can be abandoned. This allows the algorithm to avoid searching all 2m+n possible
combinations of best-response/zero-probability pairs in most cases. Once the depth
has reached m + n, all remaining nodes at that level are feasible values of x and y for
which the best response conditions are all satisfied - therefore they are all NE.

In addition, there are a number of subproblems that may also be NE. By level
d = m + n, all strategies are forced to be either a best response or played with zero
probability. However, it is possible that a strategy is both a best response and played
with zero probability in the case of degeneracies. In a Nash Equilibrium, a strategy
must be a best response or played with zero probability, but those that are best re-
sponses also can be played with zero probability, provided there exists more than one.
It is particularly all the inequalities that can still be tightened after the first m + n steps.
Every one of these that is found to be feasible is a NE, and its children are derived in
the same way until there are no more nodes to look at in the queue. This “polychoto-
mous branching” follows the “dichotomous branching” of the earlier steps (Audet et
al. terminology).

Figure 4 shows a subset of a possible tree for a generic 2× 2 game. The node num-
bered v is obtained by setting both x1 and y1 to 0. The algorithm chooses i = 2 as the
next forced variable, and creates node v + 1. In this particular tree, that node is feasible.
Its first child, created by forcing y2 = 0 is not; if y1 = y2 = 0 then y1 + y2 6= 1. The
right child of v + 1, node v + 3, introduces the best response constraint for j = 2 by
setting β = (x>B)2. For this particular tree, the node is a Nash Equilibrium. The four
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Figure 4: A possible subtree of a 2× 2 game with x1 = y1 = 0

branches emanating from v + 3 represent the polychotomous branching step. After
all polychotomous branches reach infeasibility (there are no new Nash Equilibria since
this is a generic game) the algorithm backtracks to the right child of v, node v + 8. Since
x1 = x2 = 0 implies x1 + x2 6= 1, node v + 8 is infeasible and the subtree is finished.

The feasible set does not increase as the inequalities are forced. Either the set re-
mains the same size, as in the case where a variable already equal to 0 is forced to
be 0, or it decreases in size. The linear program is infeasible, at the very latest, at the
point where all strategies for one player are forced to be played with zero probability.
It is clear that all non-degenerate equilibria are found since all feasible combinations of
played strategies (supports) are considered. Finding all extreme points of degenerate
equilibria is trickier, and will be discussed more thoroughly in Section 6.

3 EEE Geometrically

While the authors describe the EEE algorithm using the algebraic equations of the best
response conditions, the geometric discussion of Nash Equilibria presented earlier is
enlightening. By requiring a variable i ∈ M to satisfy xi = 0 or α = (Ay)i, the EEE
algorithm introduces the a new label each time the tree splits. The label is the same
in both branches but is derived in the opposite best response diagram. In one branch,
the label is added by restricting the space of possible equilibria to the polytope xi = 0
in P(x|y). In the other, it is added by restricting the space of possible equilibria to
the polytope α = (Ay)i in Q(y|x), which is the portion of the larger dimensional best-
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response polytope where the payoff to i is greater or equal to the payoff from any other
pure strategy. The reverse holds for all j ∈ N. As a result, when m + n distinct labels
have been added, the remaining polytope is an extreme NE as it is guaranteed to have
all m + n labels. Infeasible solutions occur for a given linear program P or Q when the
restrictions on the polytopes are such that no points fulfill all the requirements.

The algorithm works with two sets of points, P̂ and Q̂, which are the feasible solu-
tions to linear programs P and Q respectively. At each step, a restriction is placed on
the elements of P̂ or Q̂ and the algorithm terminates if that set becomes empty. The
sets P̂ and Q̂, at depth d, are of the form

P̂ =
g⋂

k=0

Lx( f (k)) and Q̂ =
h⋂

p=0
Ly( f (p))

where g + h = d, and the set Lx( f (i)) is the set of all points with label f (k). The
initial constraints Lx(0) and Ly(0) maintain that the sum of the probabilities must be
1 and that the point must be on the upper envelope. The latter of these requirements
is enforced by the linear programming objective functions, which for this example will
be P(x|y) = max

x,β
−β and Q(y|x) = max

y,α
−α. These objective functions find the lowest

point on the feasible portion of the upper envelope.
Figure 5 shows the algorithm initialization for the 2 × 2 game from Section 1.2

A =

(
1 5
2 4

)
B =

(
2 3
5 2

)
.

Q is solved first. The vector x is set to (1, 0), and y looks for the lowest point on the
upper envelope (because of the form of the objective function), arriving at y = (1, 0).
When P is solved, x = (3

4 , 1
4). This completes the linear program processing of the first

node.
The second node (Node 1) is obtained by requiring that α = (Ay)1, meaning that

Player I’s first strategy is a best response. This, in effect, reduces the possibilities for
Player II’s strategies to those in which Player I’s first pure strategy has a payoff greater
than or equal to that of his second pure strategy. Graphically, the points in Q̂ must be
on the portion of the first pure strategy response curve where that curve constitutes the
upper envelope. In Figure 6, the feasible region is the bolded line. Alternatively, the
feasible region consists of all points in Q̂ that have label ① . After linear programming
pivoting, y = (1

2 , 1
2) as this is the lowest point on the upper envelope for x. Player

I’s response remains unchanged, as x = (3
4 , 1

4) remains the minimization point on the
upper envelope of Player II.

The first node at depth 2 (Figure 7) results from adding the requirement that α =
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Figure 5: Node 0, Depth = 0

Figure 6: Node 1, Depth = 1
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Figure 7: Node 2, Depth = 2

Figure 8: Node 3, Depth = 3

(Ay)2. All points in the set Q̂ must be on both best response curves for Player I as
well as on the upper envelope. Only one point, y = (1

2 , 1
2) satisfies these criteria. I’s

response remains unchanged; x = (3
4 , 1

4). Label ② has now been introduced.
The set P̂ is first restricted in the Node 3. Requiring that β = (x>B)1 means that

all points in the feasible set must be on the best response curve for Player II’s left
move. Figure 8 incorporates this restriction. The lowest point on I’s best response
curve remains x = (3

4 , 1
4). As Q̂ is unchanged and consists of only one point, y = (1

2 , 1
2).

P̂ now consists of all best response points with label ③ .
The fifth node (Node 4) is the first in which every variable i ∈ M and j ∈ N is forced

to obey the best response condition, meaning that introducing the label ④ means that
all 4 labels are present, and any feasible point is an extreme Nash Equilibrium. The final
restriction is that β = (x>B)2. Only one point has both labels ③ and ④ , x = (3

4 , 1
4). The

resulting pair x = (3
4 , 1

4), y = (1
2 , 1

2) is guaranteed to be a Nash Equilibrium because
it is a completely labeled set of points, one that results from a forced best response
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Figure 9: Node 4, Depth = 4

Figure 10: Node 9: An infeasible node.

situation for all i ∈ M and j ∈ N.
Since all the branching steps followed to achieve this particular Nash Equilibrium

employed best responses rather than unplayed strategies, the polychotomous branch-
ing steps will only force variables to be played with zero probability. Since any single
such restriction makes either P̂ or Q̂ empty, this particular branch of the tree terminates
at the next level.

As the algorithm employs a depth first search, the next node to check is that which
is a sibling of the NE node. As the NE node was obtained by forcing α = (Ay)2,
its sibling is obtained by confirming the label ④ in the other manner, namely setting
y2 = 0. Figure 10 results. Note that there is no point in the left plot that satisfies all
three criteria; the intersection of the best response curves for top and bottom, along
with the line segment y2 = 0 is empty.

Node 9 is therefore a leaf; the sequence terminates. It is finding these infeasible
points that make the algorithm terminate. Finding infeasible points high in the tree
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Figure 11: Best response curves for a degenerate game

decreases the number of nodes to explore and thus a good method of choosing which
conditions to impose on P̂ and Q̂ is important for the speed of the algorithm.

Degeneracies occur when points on the best response curves for a specific player
have more labels than the number of dimensions in which it is plotted (number of
strategies for the other player). The extra label provides an extra degree of freedom on
the other best response diagram; rather than requiring some number l of labels, only
l − 1 are required. Since there can be a continuum of points with a specific label, all
points on this continuum are NE. Consider Figure 11. Since labels ① , ② , and ③ are
acquired by the point in the left plot, Player I in the right plot can choose any point
along the black line segment consisting of the points labeled ④ that are on the upper
envelope. As the linear programming procedure finds the lowest point on the best
response curve, the extreme equilibrium in Figure 12 is discovered. At another point,
the degeneracy in the left diagram is not used and label ② is acquired by setting x2 = 0.
This constrains the set P̂ to the single equilibrium point in 13. As a result, both extreme
equilibria are found. Since y is the same in both cases, any linear combination of the
two points is a Nash Equilibrium. Thus, all points on the yellow line segment in 11 are
identified by the algorithm.

It is possible that, given certain degenerate games, not all extreme equilibria are
found in the first m + n levels of the search tree. An example where this is the case will
be provided in Section 6.
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Figure 12: First endpoint of the degenerate equilibrium

Figure 13: Second endpoint of the degenerate equilibrium
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4 Integer Pivoting

The previously available implementation of the EEE algorithm uses a commercially
available library (CPLEX) to solve the linear programs present in each step of the al-
gorithm with the standard simplex method. This employs division at each step in the
algorithm, with no guarantee that the results will be integers. As a result, floating-
point numbers must be used in the implementation. In many cases, performing this
division as part of the pivot step is sufficient.

The storage of floating-point numbers by a computer necessitates some rounding;
regardless of the base used to store a number, there exist some rational numbers that
cannot be expressed as a single number in a finite number of digits. Representing 2

3 as a
decimal point followed by 100 sixes may be close to 2

3 and may suit most computations
well, but it is not exact.

Since all strategies that provide a player with a less than maximal payoff are played
with probability zero, it is crucial that an algorithm be able to distinguish between
even minuscule differences in payoffs. In large bimatrix games, small rounding errors
due to the use of floating-point numbers may well add up over the course of the large
number of pivot steps needed to solve a large linear program. As a result, a more exact
method of solving the linear programs for these problems is necessary.

One known solution to the above problem is avoiding division resulting in non-
integral values. This practice, known as integer pivoting, is a variation on the standard
simplex algorithm, where it is generally attributed to Edmonds. Azulay and Pique
(2001) describe a version of the technique and provide several historical references.

Recall the linear program from 1.1

max
x1,x2

z = 7x1 + 3x2

s.t. 3x1 + x2 ≤ 11
x1 + 2x2 ≤ 7
x1, x2 ≥ 0

and its tableau representation  3 1 1 0 11
1 2 0 1 7
−7 −3 0 0 0

 .

The first step of the integer pivoting procedure selects the variables to enter and exit
the basis in the same way as the original pivot procedure. The variable with largest (in
absolute value) negative coefficient in the objective function, here x1, is chosen to enter
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the basis. There are two bounds on x1 to ensure non-negativity of the variables

Constraint 1 → 3x1 ≤ 11 → x1 ≤ 11
3

Constraint 2 → x1 ≤ 7 → x1 ≤ 7.

As the first bound is more restrictive, r1 (the basis variable corresponding to the first
row) exits the basis while x1 enters.

The first step in the pivot procedure is multiplication by the pivot element, the
intersection of the pivot row and the pivot column, of all non-pivot rows. This is the
coefficient of the variable entering the basis in the row where it will enter. Here this
corresponds to the first element of the tableau; multiplying yields 3 1 1 0 11

3 6 0 3 21
−21 −9 0 0 0

 .

As x1 is meant to enter the tableau, the column corresponding to x1 must take the
form of a column of the identity matrix, namely all elements except the pivot element
must be zero. To accomplish this, a multiple of the pivot row is subtracted from each
other row such that the element in the pivot column is zero. Subtracting the first row
from the second row and 7 times the first row from the objective (third) row yields 3 1 1 0 11

0 5 −1 3 10
0 −2 7 0 77

 .

At this point the basis columns constitute a multiple of the identity matrix. x1 and
r2 now constitute the basis. The entire tableau is thus triple the value it would take in
the normal simplex algorithm. x1 now takes the value 11

3 , and the vector (x1, x2, r1, r2)
is (11

3 , 0, 0, 10
3 ). The value of the objective function has increased from 0 to 77

3 .
The key to the integer pivoting algorithm is that the basis is allowed to remain

a multiple of the identity matrix rather than the identity matrix itself. The multiple,
which results from the multiplication pivot step, is a single value by which all of the
elements of the b vector must be ultimately divided. Delaying this division, however,
allows all values to remain integral.

In the next pivot step, x2 enters the basis while r2 exits. Multiplying by the pivot
element yields  15 5 5 0 55

0 5 −1 3 10
0 −10 35 0 385
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and subtraction to ensure the basis is a multiple of the identity matrix results in 15 0 6 −3 45
0 5 −1 3 10
0 0 45 0 405

 .

Note that the non-pivot rows, the first and third, are both divisible by 3, which happens
to be the pivot element of the previous step. This is not accidental; it occurs at each step
in the pivoting procedure. Division by the previous multiple allows the elements of the
tableau to stay of reasonable size. Division by 3 of these two rows yields 5 0 2 −1 15

0 5 −1 3 10
0 0 15 0 135

 .

There remain no positive coefficients in the objective function. The function thus
takes its maximum value at 135

5 = 27 with the vector (x1, x2, r1, r2) at (3, 2, 0, 0). While
these values happen to be integral, non-integral values at this point can be represented
in fractional form, i.e. if the tableau had read 7 0 2 −1 15

0 7 −1 3 10
0 0 15 0 135


the vector (x1, x2, r1, r2) would read (15

7 , 10
7 , 0, 0). Storing in such a way allows compu-

tation of the solutions for the linear program exactly.
To recap, given a linear program in a tableau with a feasible basic solution, integer

pivoting is accomplished by

1. Determining the element to enter the basis

2. Determining the element to leave the basis (using the minimum ratio test)

3. Multiplying all rows other than the pivot row by the pivot element

4. Subtracting a multiple of the pivot row from each other row so that the non-pivot
rows equal 0 in the pivot column

5. Dividing all rows other than the pivot row by the multiple of the identity matrix
from the previous step

6. Repeating steps 1-5 while at least one coefficient in the objective function is neg-
ative
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The result will be the optimal solution, multiplied by an integer number which is
the multiple of the identity matrix used in the last step. Dividing by this multiple
yields the appropriate result.

4.1 Proof of Divisibility

The claim that each non-pivot row is divisible by the pivot element of the previous
step is not immediately obvious. It is necessary to prove that in each iteration of the
integer pivoting simplex algorithm, all elements in non-pivot rows are divisible by the
previous multiple after the subtraction of pivot row multiples step. In addition, the
value resulting from this division must be the same as the value of the current pivot
element, as to make a multiple of the identity matrix. What follows is a description of
how this works; readers wishing a more formal view involving determinants should
see Azulay and Pique (2001).

Let the basis start as an identity matrix and the first pivot element be ars. The pivot
row is r and the pivot column is s. The first step in the integer pivoting procedure is to
multiply each row other than the pivot row by the pivot element. This corresponds to
the rule

aij → arsaij i 6= r
aij → arj i = r

Then, a multiple of the pivot row is subtracted from each other row to make the ele-
ment in the pivot column zero. The appropriate multiple is aisars

ars
= ais since, in column

s for rows i 6= r, this yields aijars − arjais = aisars − aisars = 0. This corresponds to the
rule

aij → arsaij − aisarj i 6= r
aij → arj i = r

This completes the first pivot step. The value of the multiple M is now ars, which is
true both for the pivot element itself and the basis elements of the tableau since they
begin with value 1 and all other values are in the column are zero (by definition of the
identity matrix assumption) yielding arsaij − aisarj = ars − 0(ais) = ars.

For the second step, first assume that the new pivot element comes from the same
row as the last pivot element, in particular let the new row g = r. Again, each element
is multiplied by the pivot element; as the pivot element is from the old pivot row, it
must be of the form arh where h represents whichever column happens to have the new
pivot element. The matrix becomes

aij → arh(arsaij − aisarj) i 6= r
aij → arj i = r = g.
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The elements in column h but not agh must be made zero so that they can serve as the
zeroes in the identity matrix. This corresponds to subtracting a multiple of the pivot
row from each row. The appropriate multiple in this case is

arh(arsaih − aisarh)
arh

= arsaih − aisarh.

The matrix becomes

aij → arh(arsaij − aisarj)− arj(arsaih − aisarh) i 6= r
aij → arj i = r = g

Expanding the expression yields

aij → arharsaij − arhaisarj − arjarsaih + arhaisarj i 6= r
= arharsaij − arjarsaih

= ars(arhaij − arjaih)
aij → arj i = r = g

All elements of the non-pivot row r = g are clearly divisible by ars when the pivot row
is the same for both steps.

The columns corresponding to the basis, ars in the previous step, are multiplied by
arh in the new step to yield arsarh. Again, nothing is subtracted since all elements in
other rows, by definition of the basis matrix, are zero. Hence the resultant arsarh, when
divided by ars is simply arh, and all elements of the basis matrix have the same value.

If r 6= g, the pivot element is multiplies each element in the rows other than g.
The pivot element itself is of the form arsagh − agsarh since it was in the non-pivot row
previously. Therefore, the multiplication yields

aij → (arsagh − agsarh)(arsaij − aisarj) i 6= r, g
aij → (arsagh − agsarh)arj i = r
aij → arsagj − agsarj i = g

Again, the old element in the pivot row is subtracted (times a multiple) from all other
rows. The element in column j of row g is arsagj − agsarj. For elements in rows i 6= r, g
the multiple of this number subtracted from each element in row i is b = arsaih − aisarh

while for elements in row i = r it is b = arh. This step yields

aij → (arsagh − agsarh)(arsaij − aisarj)− (arsaih − aisarh)(arsagj − agsarj) i 6= r, g
aij → arj(arsagh − agsarh)− arh(arsagj − agsarj) i = r
aij → arsagj − agsarj i = g
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Expanding these expressions and factoring yields

aij → ars[aij(arsagh − agsarh)− ags(arhaij − aiharj)] i 6= r, g
aij → ars(arjagh − arsagj) i = r
aij → arsagj − agsarj i = g

Both rows that need to be divisible by ars, namely those rows for which i 6= g, are
clearly divisible by that factor.

Recall that after the first pivot step, all basis elements are ars. Multiplying by the
pivot element arsagh − agsarh only in the new non-pivot rows yields

aij → ars(arsagh − agsarh) i 6= g.

Dividing by ars gives arsagh − agsarh, which is the same value as the new pivot element.
Therefore, all elements of the basis submatrix have the same value.

The above argument has shown that, given any tableau, all non-pivot rows after the
second pivot operation are divisible by the pivot element from the first pivot operation
and result in a multiple of the identity matrix in the basis submatrix. In a similar man-
ner, the elements of the tableau after the first pivot can be considered a new “original”
tableau, and thus all non-pivot rows are divisible by the second pivot element after
the third pivot step with the appropriate result for the identity submatrix. The initial
tableau, with multiple 1, provides the base case as all elements are trivially divisible by
1. It has already been shown that, in this case, all elements of the basis submatrix have
value ars. This illustrates how the the integral division works for the first few steps of
the algorithm.
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5 Algorithm Implementation

The integer pivoting EEE algorithm (EEE-I) is a Java-encoded stand-alone program
that reads the payoff matrices A and B from text files and, using only integer opera-
tions, outputs all extreme Nash Equilibria of the bimatrix game. As the integers in-
volved can easily exceed the standard integer size, the built-in Java BigInteger class is
used for all operations in the linear program. This allows integers constrained in size
only by available memory, and thus removes any question of overflow in large games
or those with large payoffs.

The implementation consists of 4 major classes and several ancilliary classes. EEE.java,
the main class, controls the flow of the algorithm at the highest level by referencing the
other classes. Bimatrix.java performs the read-in procedures and returns a data ob-
ject containing two BigInteger arrays. Each node of the search tree is simulated in the
Node.java class. Each instance of Node holds the current linear programs P and Q, the
current state of both x and y, a boolean vector describing the forced constraints, the
current value of α and β, and a number of tracking variables. In addition, Node.java
contains the implementation of all methods needed on the level of the node, including
the choice of variable to force and the creation of new child nodes. LPType.java defines
the linear program tableau LPType, vectors labeling the basis and cobasis elements of
the linear program, and all necessary operations on the linear program including so-
lution by integer pivoting and adaptation of the linear program to new constraints.
Other classes, including NElist.java, NENode.java, and Tools.java provide support to
these major classes. These classes are all available in Appendix A.

Rather than create an explicit tree, the EEE-I algorithm implementation uses recur-
sion and stack properties to explore potential nodes through a simulated depth-first
search. Child nodes, through recursion, are added to the top of the stack and are re-
moved only when no further children exist; in this way a depth first search is simulated
on a tree that is built as it is searched. While the explicit tree structure is helpful for
understanding the EEE algorithm, it provides no added benefit in the implementation.
Rather, the existence of such a tree structure would have all nodes present in memory,
drastically increasing the demand on the machine. Given the depth first method only
those nodes created but not solved, along with the current node being solved, are in
memory.

As the implementation relies on calls between classes and data types (particular as
relating to the recursive calls), a description class-by-class is complex and relatively
uninformative. Therefore, what follows is a description of the implementation as it
runs, which provides a more intuitive connection between the implementation and the
theoretical aspects of the algorithm itself.
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Upon invocation, the EEE.java class (the runnable class) calls Bimatrix.java to cre-
ate a new Bimatrix object. The Bimatrix class reads in to this new object the BigInteger
matrices A and B from external text files. User input dictates the size of the game.
The game parameters, which are the number of strategies of each player, and the ma-
trices themselves comprise the Bimatrix object, which is a complete description of the
bimatrix game in question.

5.1 Initialization

The first node contains the initial linear programs. By convention of the original EEE
paper, the linear program Q(y|x) is solved first and its solution used as an initial feasi-
ble point for P(x|y). Note that x is not involved in any constraints, it is simply involved
in the objective function. As a result, the value of x is irrelevant to all but one line of
the tableau, and will be ignored here until it is necessary.

Initialization requires that a given vector be found that satisfies all the initial con-
straints. In addition, it is necessary to use this vector to calculate the tableau. It is easy

to choose a vector y that satisfies the first constraint
n

∑
j=0

yj = 1; in particular, the vector

with a 1 in the first position and 0 elsewhere. The remaining constraints are of the form
α ≥ (Ay)i, ∀i ∈ M. In this section, the constraint α ≥ (Ay)i will be written in the

equivalent form α ≥
n

∑
j=1

Aijyj, ∀i ∈ M for reasons that will become clear. There are m

of these constraints. Introducing a slack variable for each of these constraints, labeled

st for constraint t, yields st = α−
n

∑
j=1

Atjyj, where s must be nonnegative. The smallest

α that can be chosen to satisfy the non-negativity constraint is the largest subtracted
term max

q
Aq1 since y1 = 1. Substituting in this value of α leaves

st = max
q

Aq1y1 − At1y1

for t 6= arg max
q

Aq1y and

st = max
q

Aq1y1 −max
t

At1y1 = 0

for t = arg max
q

Aq1y. For future notational purposes, let q̂ = arg max
q

Aq1y1.

Given the chosen vector y, the constraint equation set simplifies to
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y1 + ∑n
k=2 yk = 1

s1 + ∑n
j=1 A1jyj − α = 0

s2 + ∑n
j=1 A2jyj − α = 0

...
sq̂ + ∑n

j=1 Aq̂jyj − α = 0
...

sm + ∑n
j=1 Amjyj − α = 0

There already exists an expression for y1 in cobasic variables, y1 = 1−
n

∑
k=2

yk. Sub-

stituting yields

y1 + ∑n
k=2 yk = 1

s1 + A11 + ∑n
j=2(A1j − A11)yj − α = 0

s2 + A21 + ∑n
j=2(A2j − A21)yj − α = 0

...
sq̂ + Aq̂1 + ∑n

j=2(Aq̂j − Aq̂1)yj − α = 0
...

sm + Am1 + ∑n
j=2(Amj − Am1)yj − α = 0

in which y1 has been removed from all except the first equation.
By construction, sq̂ is 0 (since α at first set to that value) and therefore α can be

expressed entirely in cobasic variables as

α = sq̂ + Aq̂1 +
n

∑
j=2

(Aq̂j − Aq̂1)yj.

Substituting into the constraint set and simplifying gives

y1 + ∑n
k=2 yk = 1

s1 − sq̂ −∑n
j=2(Aq̂j − Aq̂1 − A1j + A11)yj = Aq̂1 − A11

s2 − sq̂ −∑n
j=2(Aq̂j − Aq̂1 − A2j + A21)yj = Aq̂1 − A21

...
α− sq̂ −∑n

j=2(Aq̂j − Aq̂1)yj = Aq̂1
...

sm − sq̂ −∑n
j=2(Aq̂j − Aq̂1 − Amj + Am1)yj = Aq̂1 − Am1

This set of equations describes a feasible solution to the first linear program. In
particular, there are m + 1 basic variables (y1, α, si ∀i 6= q̂ ∈ M) and n basic variables
(yi ∀i 6= 1, sq̂).

These equations can be put into the tableau form described earlier. The same com-
putations, switching the appropriate variables, sets up the initial feasible solution for
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P(x|y). The only difference is that a y = y∗ has already been found by the LP, which is
used in the objective function.

Since the objective function line of the tableau depends on the other player’s strat-
egy, it must be updated before each integer pivoting procedure is started. Recall that
the objective function P(x|y) is x>Ay − β, consisting of a linear combination of each
of the x variables along with the dual variable β. Each of the m variables xi for i ∈ M
can be in the basis, the cobasis, or previously removed from the linear program. In
this last case the variable has value 0 and, as a result, nothing need be added to the
objective row of the LP. If xi is in the cobasis, adding xi(Ay)i to the objective of the LP
requires only adding (Ay)i to the objective row in the column representing xi. If xi is
in the basis, the row corresponding xi is a representation of xi in cobasic variables; to
add xi(Ay)i to the objective row requires adding xj(Ay)i or sj(Ay)i to the objective row
for each j in the cobasis. The result, after subtracting the β row, is an objective row that
contains the up-to-date representation of the objective function in cobasic variables.

5.2 Introducing Constraints, Determining Feasibility, and Integer Piv-

oting

At each node other than the root, a decision or slack variable is forced to have value
0. Since these variables are all constrained to be non-negative, any change in the value
of the variable is a decrease from positive to zero. In the EEE-I implementation, it is
necessary to incorporate this additional constraint into the tableau and, in addition, de-
termine whether the tableau remains feasible. Fortunately, it is possible to accomplish
both steps simultaneously.

Instead of thinking of removing a variable x1 from the tableau, consider the linear
program defined by minimizing the value of x1. As the goal is to determine whether
there exists a feasible solution when x1 = 0, the set of constraints is exactly the same as
that defined in the tableau. If the minimized value of x1 subject to those constraints is
non-zero, there exists no feasible solution to the tableau with x1 = 0 and, thus, forcing
x1 = 0 renders the linear program infeasible. This defines the end of a path from the
root and the node in question is a leaf of the algorithmic tree.

However, if x1’s minimized value is 0, it is possible to pivot x1 into the cobasis.
Since x1 will no longer deviate from 0, its column in the cobasis can be dropped. At
each step, one column is removed from the cobasis, decreasing the dimension of the
linear program. The one exception is when all cobasic values are 0, in which case the
basic variable can be dropped immediately (assuming its b value is 0) as there is no
interaction between it and any other variable and it has already been minimized to
have value 0. Applying this method allows the new tableau to be directly computed
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from the old tableau, incorporating the additional constraint without requiring a new
initialization procedure at each step.

In the bimatrix game discussed in Section 1.2 (and using the same objective func-
tions), the tableau for Q(y|x) upon entering the second node (Node 1) is

Q(y|x) =


−2 −1 2
1 0 1
2 −1 1
2 1 /


where the basis, in order of rows, is (α, y1, s1) and the cobasis, in order of columns, is
(y2, s2). (Note that here and throughout this paper, a / is placed in the z position to
replace the number there. This is because the algorithm is not set up to compute the
value of z - the value is irrelevant to the algorithm - and thus having the number that is
there in the implementation may lead to confusion.) This node explores the possibility
that Player II’s first pure strategy is a best response, which corresponds to s1 = 0. As
s1’s representation is the third row of the matrix, that row (temporarily) becomes the
objective function of the new linear program to minimize s1.

Minimization proceeds along the same lines as maximization, with the sole differ-
ence that positive coefficients, rather than negative, are chosen in the objective line to
determine the incoming variable. By the normal selection process, s1 leaves the basis
while y2 enters the basis. The resulting tableau reads

Q(y|x) =


2 −4 6
−1 1 1
1 −1 1
−2 4 /


with basis (α, y1, y2) and cobasis (s1, s2) and M = 2. s1’s value, as it is in the cobasis,
has been reduced to 0. This provides a feasible solution with the additional constraint:
(α, y1, y2, s1, s2) = (3, 1

2 , 1
2 , 0, 0). The column corresponding to s1 can be dropped as it

will not change from 0, leaving

Q(y|x) =


4 6
−1 1
1 1
−4 /

 .

s2 has now been permanently removed from the tableau, relegating y2 to be a best
response in all subsequent nodes as is prescribed by the algorithm.
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A later node of the same bimatrix game algorithm tree provides an example of what
happens in the case of infeasibility. In this step, P(x|y) is constrained. On entering the
node,

P(x|y) =


−1 5
−1 3
0 1
1 /


with basis (β, r2, x2) and cobasis (r1). x1’s absence from the basis and cobasis shows
that it has been removed in an earlier step, namely x1 = 0 has been forced. This node
attempts to set x2 = 0. It should be clear that such an assignment is infeasible; by the
probability constraint x1 and x2 cannot both be 0. Examining the tableau, the third row
(corresponding to x2) cannot be decreased from its value of 1 as there is no positive
coefficient in its cobasic representation. As a result, there is no feasible solution with
x2 = 0 given the previous constraints, and this path from the root can be abandoned.

The above description of the EEE-I methodology for incorporating constraints and
determining feasibility is a prime example of how solving the linear programming step
internally rather than with calls to an external program clarifies the algorithm. While
external programs likely use more complex procedures to enforce tight constraints,
the concept of decreasing the dimension of one of the linear programs in each step
has an intuitive feel as there is one less of the m + n best response criteria that need
to be solved after any particular node. In addition, the geometric view of the algo-
rithm provided above ties in nicely; each constraint means a decrease of one dimen-
sion in the geometric space in question, being on a polytope corresponding to xi = 0
or ri = 0. This is encoded, as is the depth of the node, in the size of the linear program
tableau. The geometric representation of infeasibility, the inability to find a point in the
decreased dimension corresponding to all constraints, is mimicked in the inability to
decrease the size of the tableau. Therefore, this particular step of the implementation
nicely connects a number of aspects in this work.

Feasible linear programs, once the constraint variable is removed, are solved through
the integer pivoting steps described earlier. Given the implementation up to this point,
the actual pivot step is easy to implement and requires only basic operations using Big-
Integers. The algorithm output includes the bimatrix game, all extreme Nash Equilib-
ria in rational-number form, and a list of the connected equilibria. In addition, the total
number of nodes visited and the total number of pivots is listed, as this is a machine
and platform format that may be more reasonable for cross-algorithm testing that time.
Figure 14 provides the output for a 5× 5 game, modeled after Savani’s implementation
of the LRS enumeration algorithm available at http://banach.lse.ac.uk.
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The matrix is of size 5 by 5.
Matrix A:
8 3 8 2 2
5 5 7 3 2
9 10 8 5 7
8 6 9 4 9
2 9 9 1 2
Matrix B:
1 10 2 5 7
6 6 9 10 8
5 4 4 8 1
5 9 10 7 2
6 7 5 10 4
Solving.....
5 extreme equilibria.
EE #1 x = {1} ( 0 0 1/13 8/13 4/13 ) y = {1} ( 0 1/7 5/7 1/7 0 )
EE #2 x = {2} ( 0 0 3/7 4/7 0 ) y = {2} ( 0 0 1/2 1/2 0 )
EE #3 x = {3} ( 0 0 0 2/3 1/3 ) y = {3} ( 0 0 1 0 0 )
EE #4 x = {4} ( 0 0 0 1 0 ) y = {3} ( 0 0 1 0 0 )
EE #5 x = {5} ( 0 0 1 0 0 ) y = {4} ( 0 0 0 1 0 )

A total of 94 nodes.
A total of 81 pivots.

Figure 14: A 5 × 5 game and its output.
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6 Degeneracy

The binary tree obtained by the dichotomous branching on the first m + n best response
conditions ensure that all pure strategy equilibria are found. The procedure enumer-
ates all 2m+n possible divisions of pure strategies into those that are best responses and
those that are played with zero probability. However, in degenerate games there exist
equilibria in which pure strategies which are best responses are played with zero prob-
ability. This can occur as long as there exist other pure strategies that have the same
payoff and at least one is played with positive probability. The question of how to deal
with such potential degeneracies in the EEE algorithm is the topic of this section.

The original EEE algorithm addresses the degeneracy problem by branching off
into m + n nodes at each discovered Nash Equilibrium, such that there is one node for
each pure strategy of the game. At the node corresponding to pure strategy i, the half
of the best response condition that is not fixed is then forced to be an equality, thereby
making the pure strategy be both a best response and played with zero probability. If
xi = 0, then the node adds the constraint that α = (Ay)i and vice versa. The authors
refer to this as polychotomous branching. If the node is feasible, it is a Nash Equilib-
rium and the polychotomous branching procedure continues for all non-doubly fixed
pure strategies.

Such a method will find all degeneracies as it explores all 22(m+n) combinatorial
possibilities of fixing variables and slack variables, but involves large computational
overhead. Consider a 20× 20 non-degenerate bimatrix game with 51 Nash Equilibria.
At each of these 51 equilibria, each of the 40 pure strategies requires its own node to
be checked for feasibility. As these are all non-degenerate equilibria, all are infeasible.
The result is 40× 51 = 2040 unnecessary nodes. As Nash Equilibria are found on the
m + n level, the degeneracy check increases the tree size dramatically, particularly for
games in which the search tree is relatively full or in which there are many equilibria.
As will be described in the next section, tree size is very important in determining the
running time of the algorithm.

In a non-degenerate game, applying m constraints onto the strategy space of Player
I and n constraints onto the strategy space of Player II results in either infeasiblity or a
unique pair of feasible points. The EEE algorithm attempts to minimize the search time
by finding sets of constraints that yield no feasible points well before the m + n level of
the search tree. In a degenerate game, however, the introduction of m + n labels leaves
a continuum of feasible points in at least one player’s strategy set. Finding when such
a continuum exists is thus a restatement of the degeneracy check problem.

In understanding degeneracy, the geometric interpretation of the EEE algorithm is
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Figure 15: Best response diagrams for Player I (left) and Player II (right)

Figure 16: The Nash Equilibria of the degenerate game

helpful. Consider the 2× 2 game

A =

(
2 4
1 5

)
B =

(
5 5
1 1

)

whose best response curves are plotted in Figure 15. The bimatrix game has 4 extreme
Nash Equilibria (Figure 16), of which two are the pure strategy pairs represented by
the white and gray points. If Player I plays with positive probability both of his pure
strategies (as represented by the black point), any point on the second player’s best
response diagram which contributes both labels ③ and ④ is a Nash Equilibrium. Any
strategy of Player II provides both labels, and thus x = (1

2 , 1
2), y = (t, 1− t) is a Nash

Equilibrium for all t ∈ [0, 1]. The extreme equilibria are the endpoints of the best
response line segment, x = (1

2 , 1
2), y = (0, 1) and x = (1

2 , 1
2), y = (1, 0).

There exists some node in the tree where Player II’s first strategy ③ is a best response
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Figure 17: A node where Player I’s strategies are both best responses, and one of Player
II’s strategies is a best response. The diagram does not change when the second of
Player II’s strategies is made a best response.

(β = (x>B)1) and her second strategy is to be added as a best response (β = (x>B)2),
or vice versa. In Figure 17, both of Player I’s strategies have been forced to be best
responses. Forcing Player II’s second strategy to be a best response does not decrease
the size of the feasible set - it is a repetitive constraint corresponding to a redundant
equation.

Finding both endpoints of a degenerate game within the first m + n levels of the
search tree depends critically on the objective function used. Only if the objective func-
tion happens to find both endpoints at various nodes in the search tree will a degener-
acy check remain unlikely. In this game, the objective function P(x|y) = x>Ay − β

and Q(x|y) = x>By − α finds only one of the two extreme points within the first
m + n levels of the tree. However, the objective function P(x|y) = x>(A + B)y − β

and Q(y|x) = x>(A + B)y− α finds both. Switching the rows of Player II’s payoff ma-
trix (which changes the game) yields the opposite result. It seems very unlikely that
there exists a pair of objective functions that are guaranteed to find all extreme equi-
libria without a degeneracy check, and therefore some sort of degeneracy check seems
necessary.

However, the insight gained from the geometric approach can be used to improve
the efficacy of the degeneracy check. Recall that the EEE-I implementation discussed
in this paper includes constraints in a linear program by solving the linear program
of minimizing the variable (or slack) to be removed. If the minimized value of the
variable is 0, it can be pivoted into the cobasis where the column corresponding to
the variable can be removed. If the minimized value of the variable is non-zero, the
potential linear program is infeasible.

The one exception to this rule is when the row corresponding to the variable to be
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removed is all zero and there is at least one variable in the cobasis. In this case, the
basic variable cannot be pivoted since all potential pivot elements are zero. However,
deleting this constraint from the tableau has no effect on the feasible set since there
is no interaction between it and any other variable. The basic variable’s line in the
tableau thus describes a redundant equation, exactly the condition described above
for degenerate cases. Therefore, deletion of an all-zero row necessitates a degeneracy
check; all Nash Equilibria with no row deletion can be considered terminal nodes.

Analyzing the tableau structure aids in the understanding of this fact. In non-
degenerate cases, each of the m + n imposed constraints corresponds to the deletion
of one column in one of the tableaus. At the equilibrium level, only the constant b col-
umn remains. However, in a degenerate equilibrium, a row has been deleted at some
point in the first m + n levels and therefore there remains at least one cobasic variable
in at least one of the tableaus. The fact that this cobasic variable remains implies that
the value of the basic variables is unfixed, as it depends on the value of the cobasic
variable. Therefore, it remains necessary to perform a degeneracy check only as long
as there is at least one cobasic variable.

In the fourth node, both pure strategies of Player I have been forced to be best re-
sponses and the first strategy of Player II has been forced to be a best response. There-
fore, this node is exactly as diagrammed in Figure 17. Upon initialization of node 4
using the objective function from the original EEE paper, the tableaus read

Q(y|x) =


6
1
1
/

 P(x|y) =


−4 1
1 1
0 0
4 /


As expected, the two constraints on Player I’s strategies has reduced one of the tableaus
to only a b column. The third row in the P(x|y) tableau, the all zero row, is the basis
row corresponding to s2. Were this row not all zero, introducing Player II’s second
strategy as a best response would correspond to pivoting the variable out of the basis.
However, the fact that the row is completely zero makes this impossible, and dropping
the row equates to introducing a redundant equation. Hence, in the next node, there
remain two columns in the tableau (one cobasic variable).

The preceding discussion implies a change to the structure of the algorithm. The
EEE algorithm searches by binary branching through the first m + n levels and poly-
chotomous branching whenever there is a feasible node at the Nash Equilibrium level.
The EEE-I refinement is to branch dichotomously and then polychotmously until only
the b column remains. This ensures that all extreme equilibria are found, without the
drastic search increase that the original EEE algorithm requires. The result is a cleaner
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and more readily understandable degeneracy check structure.
It is important to note that the refinement to the degeneracy check finds all extreme

equilibria regardless of the objective function employed. Finding all extreme points of
degenerate equilibria is not a matter of luck; the few branches required below depth
m + n explore all possibilities of variable choices until none remain and all variables are
fixed. What is being removed from the original EEE degeneracy description is purely
nodes that either are immediately infeasible, or equilibria that will be discovered else-
where.

In addition, rather than branching on all strategies on each level after m + n, in-
dex numbering of the variables is used to ensure combinations of forced variables are
not rechecked. When the degeneracy check is necessary, all variables from the unfixed
linear program (or both if both are unfixed) are checked by polychotomously branch-
ing on each index; however each feasible branch then only deals with those variables
with indices larger than its own. In this way, all combinations of forced variables are
explored, but not multiple times.

Figure 18 shows the search tree using the original EEE method handling degenera-
cies in a 2 × 2 game for an optimized objective function that will be discussed in the
next section. Some sort of degeneracy check is necessary to find all 4 extreme equi-
libria. Sixty-seven nodes are searched by the algorithm. Figure 19 shows the search
tree for the improved EEE-I handling of degeneracies. Only 29 nodes are necessary to
find all equilibria. While this example is particularly chosen to show the increase, it is
clear that such a dramatic change in a game as small as 2× 2 projects to even greater
differences in search tree sizes for games of large size.

While the new degeneracy check clarifies the algorithm, the computational im-
provement is difficult to measure. The number of nodes to search decreases dramat-
ically, however it is unclear exactly how much time this saves. The EEE-I algorithm,
by virtue of the column decrease at every level in non-degenerate equilibria, requires
only checking the value of the b column corresponding to the pure strategy variable is
non-zero. As long as it is so, there exists no feasible solution when both parts of the
best response condition are introduced. Therefore, in pure strategy equilibria it seems
likely that the computational time is minimal for the degenerate case, though certainly
non-zero.

However, the inner workings of a commercial linear program solver likely do not
lend themselves as readily to easy identification of infeasible nodes past the m + n
level. It is quite possible that these nodes take as long in feasibility determination as
the other nodes in the search tree. In that case, the improvement garnered from the
new degeneracy check would certainly be significant. In a hypothetical 2 × 2 non-
degenerate game with 51 equilibria, none of the 2040 unnecessary nodes (calculated at
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the beginning of this section) would be searched in the new check.
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10 × 10 12 × 12 14 × 14 16 × 16 18 × 18 20 × 20
EEE-I time (s) 1.13 6.27 24.03 97.13 596.60 1383.93
LRS time (s) 0.85 4.02 18.23 155.85 1472.41 5732.65

20 × 10 22 × 10 24 × 10 26 × 10 28 × 10 30 × 10
EEE-I time (s) 20.37 18.72 27.87 64.89 62.18 91.22
LRS time (s) 5.54 6.08 6.60 9.52 12.21 15.45

Figure 20: Average running time for 5 random games of each size by EEE-I and LRS.
While running time for both increases with game size, LRS increases at a much faster
rate.

7 Experimental Results

This section provides some brief experimental results describing EEE-I’s behavior in
terms of running time. The primary determinant of EEE-I’s speed for a particular in-
stance is the number of nodes searched and the number of pivots required at each
node. EEE-I generally solves for equilibria faster than enumerating all 2m+n possi-
ble supports because sets of constraints that render the linear program infeasible are
found and their descendants ignored. For a given game, the earlier such infeasible
constraints are found, the faster the algorithm will run. Finding infeasible constraint
sets is the domain of the objective function and will be discussed shortly.

Games may require different search tree sizes to find all equilibria regardless of
the objective function. As the number of player strategies increases, so too does the
depth of the tree m + n required to find a Nash Equilibrium; increased payoff matrix
dimensions thus slows the algorithm. Figure 20 compares the running time of the
EEE-I implementation and the LRS algorithm, discussed earlier, for random games of
both square and rectangular dimension. While the running time for both algorithms
increases with size, the LRS algorithm seems to be far more sensitive to the smaller
of the two dimensions, making it suboptimal for games in which both dimensions
are large. The LRS algorithm thus seems useful for games with large discrepancies in
number of strategies while the EEE-I implementation is more promising for solution
of general large games.

Empirically, the number of NE often increases as the size of the game increases. To
remove the possibility that this increase in running time is wholly due to the number of
equilibria, Figure 21 provides the EEE-I and LRS running times for the unique, pure-
strategy equilibrium multiplication game defined by Aij = Bij = (i + 1)(j + 1). By
deletion of strictly dominated strategies, the only NE of this game has both agents
play their last strategy. As game size increases so does running time.

Games of the same size are not all created equal; some games require a larger num-
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20 × 20 30 × 30 40 × 40 50 × 50 60 × 60
EEE-I time (s) 0.32 0.58 1.13 2.00 3.23
LRS time (s) 1.17 2.32 4.06 6.21 8.81

20 × 20 30 × 20 40 × 20 50 × 20 60 × 20
EEE-I time (s) 0.32 0.42 0.56 0.74 0.98
LRS time (s) 1.16 1.73 2.07 2.57 3.01

Figure 21: Running time for the unique, pure-strategy multiplication game.

ber of searched nodes. Consider Figure 22, two search trees for different 2× 2 games
using the optimized objective function described below. On top, a highly degenerate
game, large constraint sets are required before feasibility is obtained. This is separate
from the issue of degeneracy discussed previously. While the improved degeneracy
check decreases the size of the search tree, the game simply requires more searched
nodes than the bottom tree, a non-degenerate game with 1 pure strategy NE. Search
tree size is also a function of the number of NE of the instance game; since each Nash
Equilibria requires at least 1 node at depth m + n, a game with more equilibria may
well require a larger search tree.

Hence, good instances for EEE-I for a given game size are non-degenerate games
with a small number of equilibria. Bad instances either have a large number of equi-
libria or are highly degenerate. Figure 23 provides the average running time and the
average number of equilibria for two 9× 9 games as run by an optimized (by objective
function) version of EEE-I and by the same version without the improved degeneracy
check (EEE-o).

In the symmetric r× r “guessing game,” each player chooses a number from 1 to r.
The player choosing the lower number receives that value, while the player choosing
the higher number receives the difference between the high and low choices. If both
choose the same value, they receive the lowest payoff. The payoff matrices are

Aij =


i + 6 i < j
i− j + 6 i > j
1 i = j

Bij =


j− i + 6 i < j
j + 6 i > j
1 j = i.

The “dollar game” is a combination of the Grab the Dollar and War of Attrition
games as described in the GAMUT’s User Guide (2004). Players surround two objects,
one with utility value 100 and one with utility value 50. If both players grab for the
objects at the same time, both receive nothing. If one grabs an object earlier than the
other, the faster moving agent receives the object valued 100 while the slower moving
player receives the object valued 50. In addition, both players value time and their
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Figure 22: Search tree for a highly degenerate game (top) and a non-degenerate game
(bottom). *s represent NE, ** represent the first time an NE is found.
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Guessing Dollar
Game Game
5 NE 73 NE

EEE-I time 0.36 25.25
nodes 337 141531
pivots 530 43987

EEE-o time 0.37 14806.06
node 427 279020949

pivots 530 20326989

Figure 23: Comparison of running time, nodes, and pivots for the 4 tested objective
functions.

potential payoff decreases two units for each time period before a player grabs for the
better object. For solution purposes, one unit is added to all payoffs. The payoff matrix
is thus

Aij =


101− 2i i < j
51− 2j j < i
1 i = j

Bij =


51− 2i i < j
101− 2j j < i
1 j = i.

The “guessing game,” which has a small number of equilibria, provides an example
of a good instance for EEE and one for which the improved degeneracy check makes
no improvement. The “dollar game,” however, provides a poor instance as it results
in a large number of equilibria, many of which are degenerate. The difference is more
pronounced for the old degeneracy version EEE-o than the improved EEE-I; in fact
the “dollar game” provides an example of a game that benefits greatly from the im-
proved degeneracy check. While the EEE-o algorithm takes over 4 hours to find the 73
equilibria, the EEE-I algorithm takes less than half a minute.

7.1 Objective Functions

Each node of the EEE search tree solves a linear program, whose constraint set is at the
heart of the EEE algorithm but whose objective function has, to this point, been mostly
ignored. The EEE algorithm proceeds by altering the constraint set and searching for
feasibility, with Nash Equilibria found solely through the feasible set. While, regardless
of the objective function, all NE are found by the algorithm, the form of the objective
function is a major determinant of the running time of the algorithm.

The EEE algorithm’s ability to find infeasibility at early tree depths depends on the
order of variables chosen to force into equalities. If the combination of two particular
variables renders the linear program infeasible, exploring the combination early in the
search tree saves exploration of a far larger number of nodes than exploring the same
combination late in the search tree. At each step, the pure strategy with largest com-
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plementary slackness xi(α − (Ay)i) ∀i ∈ M or yj(β − (x>B)j) ∀j ∈ N is chosen as
the next pure strategy to be forced as a best response or played with zero probability.
The relative values of the complementary slackness is a function of the values of A and
y (for i ∈ M) or B and x (for j ∈ N) which are determined by the solution to the lin-
ear program in the last step, values determined by the objective function. As a result,
choosing the proper objective function can have a large impact on EEE running time.

The original EEE algorithm uses the objective functions P(x|y) = max
x,β

x>Ay − β

and Q(y|x) = max
y,α

x>By − α. Several objective functions may appear more intuitive,

including simply minimizing the dual variable; P(x|y) = −β and Q(y|x) = −α. This
requires less computation than the original EEE algorithm and therefore may save time
since the objective function is recalculated for each linear program at each node.

Another pair of objective functions worth exploring are the empty objective func-
tions: P(x|y) = max

x,β
0 and Q(y|x) = max

y,α
0. Since the EEE-I implementation proceeds

until there exists only one feasible solution, even the empty objective function will find
all Nash Equilibria as the feasible set does not depend on the objective function. The
fact that this objective function does not appear to move the system towards Nash
Equilibria may be compensated for in running time by the fact that it searches for the
first feasible point, and then terminates. This may avoid a large number of pivot steps,
which appear to be a major determinant of the time spent by the algorithm on each
node.

The last pair of objective functions explored in this section is developed directly
from the endpoint of the algorithm, the search for points where xi(α− (Ay)i) = 0 ∀i ∈
M and yj(β − (x>B)j) = 0 ∀j ∈ N. As x, y, A, B, α, and β are all nonnegative, the
algorithm searches for the point that minimizes

xi(α− (Ay)i) + (β− (x>B)j)yj ∀i ∈ M, j ∈ N.

If the minimized point has objective value 0, it is a Nash Equilibrium; otherwise it is
not. A logical objective function to check is therefore

min
x,y,α,β

xi(α− (Ay)i) + (β− (x>B)j)yj ∀i ∈ M, j ∈ N

which can be rewritten in vector form with the all 1 vector 1 to remove the ∀i ∈ M, j ∈
N as

min
x,y,α,β

x(1 · α− Ay) + (1 · β− x>B)y.
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Random Guessing Dollar
(average) Game Game
17× 17 22× 22 10× 10
57 NE 3 NE 91 NE

P = max
x,β

x>Ay− β

Q = max
y,α

x>By− α
185.74 43.75 126.21

P = max
x,β

−β

Q = max
y,α

−α
408.27 185.27 118.99

P = max
x,β

0

Q = max
y,α

0
396.80 169.10 117.23

P = max
x,β

x>(A + B)y− β

Q = max
y,α

x>(A + B)y− α
145.65 32.66 121.83

Figure 24: Comparison of running time, nodes, and pivots for the 4 tested objective
functions.

Multiplying and replacing the probability sums x · 1 = 1 and 1 · y = 1 yields

min
x,y,α,β

α− x>Ay + β− x>By

which in maximization form is

max
x,y,α,β

x>Ay + x>By− α− β = max
x,y,α,β

x>(A + B)y− α− β.

Note that the sum of game matrices is now used rather than each separately. Choosing
over x already determines α while choosing over y already determines β, so the result-
ing objective functions are P(x|y) = max

x,β
x>(A + B)y − β and Q(y|x) = max

y,α
x>(A +

B)y− α.
Figure 24 provides the results of a series of tests meant to determine how the ob-

jective functions act on three types of games: a set of 5 random games, the guess-
ing game, and the dollar game. No one objective function is the best in all three
cases, however the objective functions P(x|y) = max

x,β
x>(A + B)y − β and Q(y|x) =

max
y,α

x>(A + B)y− α seem to be best overall as they work far better in the random and

guessing cases, and very slightly worse in the dollar case. Importantly, this objective
function solves all three game classes faster than the original EEE objective functions
P(x|y) = max

x,β
x>Ay− β and Q(y|x) = max

y,α
x>By− α.
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8 Conclusions

Variations on the EEE algorithm appear promising as a method of solving for all Nash
Equilibria of bimatrix games, particularly for large games. This paper provides tan-
gible improvements to the EEE family of algorithms. The implementation presented
here uses only integer arithmetic in solution of the linear programs at each node of the
EEE search tree. Rather than necessitating rounding in the linear program solution,
the use of integer pivoting to solve linear programs removes any doubt of error due
to rounding, which becomes more of a concern as the size of games increases. Integer
pivoting appears not to increase the running time so much as to make it undesirable,
though an exact comparison with the original EEE implementation is difficult because
of differing machinery and programming languages.

The integer pivoting implementation also provides insight into the inner working
of the algorithm. Introducing new constraints and its connection to the geometric prop-
erties of the algorithm, as well as the dimensions of the LP tableau, is clarified by the
new implementation. The tableau need not be recalculated (other than the objective
function) for each node; altering the tableau to incorporate the new constraint simul-
taneously checks for feasibility.

EEE in its original form performs a degeneracy check, regardless of the information
in the search tree, that requires a large number of additional nodes. A contribution of
this paper is to improve and clarify the degeneracy check, checking nodes past the NE
level only where necessary. Constraints are fixed not until a certain point in the tree,
but until the feasible set is reduced to one point or infeasibility. This drastically de-
creases the number of nodes, and thereby the running time in several cases, improving
one of the previously weak points of the algorithm.

In the near future, the EEE-I implementation will be made publicly accessible as a
tool for the academic community on a website with the LRS equilibrium enumeration
implementation by Avis. Use by the academic community will hopefully lead to more
improvements on the EEE family of algorithms and the EEE-I algorithm in particular.
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A Java Implementation of the EEE-I Algorithm

This appendix contains the primary code written for the EEE-I implementation: EEE.java,
Node.java, LPType.java, Bimatrix.java, NENode.java, NEList.java, and Tools.java. The
code is included here to serve as a reference for readers interested in the implemen-
tation details, as broadly described in Section 5. Not included here is ColFormat.java,
which is a simple formatting class.
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}

  
  
  
  
}

  
  
}

  
  

vo
id

 o
ld

_
d

e
g

e
n

e
ra

te
(N

o
d

e
 N

)
  
  

//
 o

ld
 d

e
g

e
n

e
ra

cy
 c

h
e

ck
  
  
{

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 N
.c

o
n

st
ra

in
t.
le

n
g

th
; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  

i
f

 (
!N

.c
o

n
st

ra
in

t[
i][

L
C

P
])

  
  
  
  
  
  
  
  
so

lv
e

N
o

d
e

(N
.a

d
d

C
h

ild
(i
, 
L

C
P

))
;

P
ag

e 
3/

7
E

E
E

.ja
va

  
  
  
  
  
  

e
l
s
e

 
i
f

 (
!N

.c
o

n
st

ra
in

t[
i][

C
H

O
IC

E
])

  
  
  
  
  
  
  
  
so

lv
e

N
o

d
e

(N
.a

d
d

C
h

ild
(i
, 
C

H
O

IC
E

))
;

  
  
  
  
}

  
  
}

  
  
L

P
T

yp
e

 in
itQ

(B
im

a
tr

ix
 G

a
m

e
)

  
  

//
 c

re
a

te
s 

th
e

 in
iti

a
l L

P
 f
o

r 
Q

 −
−

 s
e

e
 in

iti
a

liz
a

tio
n

 s
e

ct
io

n
 o

f 
p

a
p

e
r

  
  
{

  
  
  
  
B

ig
In

te
g

e
r[

][
] 
A

 =
 G

a
m

e
.A

;
  
  
  
  
B

ig
In

te
g

e
r[

][
] 
B

 =
 G

a
m

e
.B

;

  
  
  
  
B

ig
In

te
g

e
r[

][
] 
L

P
 =

 
n
e
w

 B
ig

In
te

g
e

r[
G

a
m

e
.r

o
w

 +
 2

][
G

a
m

e
.c

o
l +

 1
];

  
  
  
  

in
t

 Q
ro

w
s 

=
 L

P
.le

n
g

th
;

  
  
  
  

in
t

 Q
co

ls
 =

 L
P

[0
].
le

n
g

th
;

  
  
  
  

in
t

 q
h

a
t 
=

 T
o

o
ls

.g
e

tL
a

rg
e

st
C

o
l(
G

a
m

e
.A

, 
0

);

  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 Q
co

ls
 −

 2
; 
j+

+
)

  
  
  
  
{

  
  
  
  
  
  
L

P
[0

][
j] 

=
 A

[q
h

a
t]
[0

].
su

b
tr

a
ct

(A
[q

h
a

t]
[j 

+
 1

])
;

  
  
  
  
  
  
L

P
[1

][
j] 

=
 B

ig
In

te
g

e
r.

O
N

E
;

  
  
  
  
}

  
  
  
  
L

P
[0

][
Q

co
ls

 −
 2

] 
=

 B
ig

In
te

g
e

r.
O

N
E

.n
e

g
a

te
()

;
  
  
  
  
L

P
[1

][
Q

co
ls

 −
 2

] 
=

 B
ig

In
te

g
e

r.
Z

E
R

O
;

  
  
  
  
L

P
[0

][
Q

co
ls

 −
 1

] 
=

 A
[q

h
a

t]
[0

].
m

u
lti

p
ly

(B
ig

In
te

g
e

r.
O

N
E

);
  
  
  
  
L

P
[1

][
Q

co
ls

 −
 1

] 
=

 B
ig

In
te

g
e

r.
O

N
E

;

  
  
  
  

f
o
r

 (
in

t
 i 

=
 2

; 
i <

 q
h

a
t 
+

 2
; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 Q
co

ls
 −

 2
; 
j+

+
)

  
  
  
  
  
  
  
  
L

P
[i]

[j]
 =

 (
A

[q
h

a
t]
[0

].
su

b
tr

a
ct

(A
[q

h
a

t]
[j 

+
 1

])
)

  
  
  
  
  
  
  
  
  
  
  
  
.a

d
d

(A
[i 

−
 2

][
j +

 1
].
su

b
tr

a
ct

(A
[i 

−
 2

][
0

])
);

  
  
  
  
  
  
L

P
[i]

[Q
co

ls
 −

 2
] 
=

 B
ig

In
te

g
e

r.
O

N
E

.n
e

g
a

te
()

;
  
  
  
  
  
  
L

P
[i]

[Q
co

ls
 −

 1
] 
=

 A
[q

h
a

t]
[0

].
su

b
tr

a
ct

(A
[i 

−
 2

][
0

])
;

  
  
  
  
}

  
  
  
  

f
o
r

 (
in

t
 i 

=
 q

h
a

t 
+

 2
; 
i <

 Q
ro

w
s 

−
 1

; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 Q
co

ls
 −

 2
; 
j+

+
)

  
  
  
  
  
  
  
  
L

P
[i]

[j]
 =

 (
A

[q
h

a
t]
[0

].
su

b
tr

a
ct

(A
[q

h
a

t]
[j 

+
 1

])
)

  
  
  
  
  
  
  
  
  
  
  
  
.a

d
d

(A
[i 

−
 1

][
j +

 1
].
su

b
tr

a
ct

(A
[i 

−
 1

][
0

])
);

  
  
  
  
  
  
L

P
[i]

[Q
co

ls
 −

 2
] 
=

 B
ig

In
te

g
e

r.
O

N
E

.n
e

g
a

te
()

;
  
  
  
  
  
  
L

P
[i]

[Q
co

ls
 −

 1
] 
=

 A
[q

h
a

t]
[0

].
su

b
tr

a
ct

(A
[i 

−
 1

][
0

])
;

  
  
  
  
}

  
  
  
  
L

P
T

yp
e

 Q
 =

 
n
e
w

 L
P

T
yp

e
()

;
  
  
  
  
Q

.L
P

 =
 L

P
;

  
  
  
  
Q

.L
P

R
o

w
s 

=
 Q

ro
w

s;
  
  
  
  
Q

.L
P

C
o

ls
 =

 Q
co

ls
;

  
  
  
  
Q

.b
a

si
s 

=
 d

e
te

rm
in

e
B

a
si

s(
G

a
m

e
.c

o
l, 

G
a

m
e

.r
o

w
, 
q

h
a

t)
;

  
  
  
  
Q

.c
o

b
a

si
s 

=
 d

e
te

rm
in

e
C

o
b

a
si

s(
G

a
m

e
.c

o
l, 

G
a

m
e

.r
o

w
, 
q

h
a

t)
;

  
  
  
  

r
e
t
u
r
n

 Q
;

  
  
}

P
ag

e 
4/

7
E

E
E

.ja
va



  
  

in
t

[]
 d

e
te

rm
in

e
B

a
si

s(
in

t
 p

ri
m

a
lV

a
rs

, 
in

t
 d

u
a

lV
a

rs
, 

in
t

 h
a

t)
  
  

//
 f
ill

s 
th

e
 b

a
si

s 
in

d
e

x 
ve

ct
o

r
  
  
{

  
  
  
  

in
t

[]
 b

a
si

s 
=

 
n
e
w

 
in

t
[d

u
a

lV
a

rs
 +

 1
];

  
  
  
  
b

a
si

s[
0

] 
=

 0
;

  
  
  
  
b

a
si

s[
1

] 
=

 1
;

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 h
a

t;
 i+

+
)

  
  
  
  
  
  
b

a
si

s[
2

 +
 i]

 =
 p

ri
m

a
lV

a
rs

 +
 i 

+
 1

;
  
  
  
  

f
o
r

 (
in

t
 i 

=
 h

a
t 
+

 1
; 
i <

 d
u

a
lV

a
rs

; 
i+

+
)

  
  
  
  
  
  
b

a
si

s[
1

 +
 i]

 =
 p

ri
m

a
lV

a
rs

 +
 i 

+
 1

;

  
  
  
  

r
e
t
u
r
n

 b
a

si
s;

  
  
}

  
  

in
t

[]
 d

e
te

rm
in

e
C

o
b

a
si

s(
in

t
 p

ri
m

a
lV

a
rs

, 
in

t
 d

u
a

lV
a

rs
, 

in
t

 h
a

t)
  
  

//
 f
ill

s 
th

e
 c

o
b

a
si

c 
in

d
e

x 
ve

ct
o

r
  
  
{

  
  
  
  

in
t

[]
 c

o
b

a
si

s 
=

 
n
e
w

 
in

t
[p

ri
m

a
lV

a
rs

];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 c
o

b
a

si
s.

le
n

g
th

 −
 1

; 
i+

+
)

  
  
  
  
  
  
co

b
a

si
s[

i] 
=

 2
 +

 i;
  
  
  
  
co

b
a

si
s[

co
b

a
si

s.
le

n
g

th
 −

 1
] 
=

 p
ri
m

a
lV

a
rs

 +
 h

a
t 
+

 1
;

  
  
  
  

r
e
t
u
r
n

 c
o

b
a

si
s;

  
  
}

  
  
L

P
T

yp
e

 in
itP

(B
im

a
tr

ix
 G

a
m

e
)

  
  

//
 c

re
a

te
s 

th
e

 in
iti

a
l L

P
 f
o

r 
P

 −
−

 s
e

e
 in

iti
a

liz
a

tio
n

 s
e

ct
io

n
 o

f 
p

a
p

e
r

  
  
{

  
  
  
  
B

ig
In

te
g

e
r[

][
] 
A

 =
 G

a
m

e
.A

;
  
  
  
  
B

ig
In

te
g

e
r[

][
] 
B

 =
 G

a
m

e
.B

;

  
  
  
  
B

ig
In

te
g

e
r[

][
] 
L

P
 =

 
n
e
w

 B
ig

In
te

g
e

r[
G

a
m

e
.c

o
l +

 2
][
G

a
m

e
.r

o
w

 +
 1

];

  
  
  
  

in
t

 P
ro

w
s 

=
 L

P
.le

n
g

th
;

  
  
  
  

in
t

 P
co

ls
 =

 L
P

[0
].
le

n
g

th
;

  
  
  
  

in
t

 p
h

a
t 
=

 T
o

o
ls

.g
e

tL
a

rg
e

st
(G

a
m

e
.B

[0
],
 0

, 
G

a
m

e
.B

[0
].
le

n
g

th
 −

 1
);

  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 P
co

ls
 −

 2
; 
j+

+
)

  
  
  
  
{

  
  
  
  
  
  
L

P
[0

][
j] 

=
 B

[0
][
p

h
a

t]
.s

u
b

tr
a

ct
(B

[j 
+

 1
][
p

h
a

t]
);

  
  
  
  
  
  
L

P
[1

][
j] 

=
 B

ig
In

te
g

e
r.

O
N

E
;

  
  
  
  
}

  
  
  
  
L

P
[0

][
P

co
ls

 −
 2

] 
=

 B
ig

In
te

g
e

r.
O

N
E

.n
e

g
a

te
()

;
  
  
  
  
L

P
[1

][
P

co
ls

 −
 2

] 
=

 B
ig

In
te

g
e

r.
Z

E
R

O
;

  
  
  
  
L

P
[0

][
P

co
ls

 −
 1

] 
=

 B
[0

][
p

h
a

t]
.m

u
lti

p
ly

(B
ig

In
te

g
e

r.
O

N
E

);
  
  
  
  
L

P
[1

][
P

co
ls

 −
 1

] 
=

 B
ig

In
te

g
e

r.
O

N
E

;

  
  
  
  

f
o
r

 (
in

t
 i 

=
 2

; 
i <

 p
h

a
t 
+

 2
; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 P
co

ls
 −

 2
; 
j+

+
)

  
  
  
  
  
  
  
  
L

P
[i]

[j]
 =

 (
B

[0
][
p

h
a

t]
.s

u
b

tr
a

ct
(B

[j 
+

 1
][
p

h
a

t]
))

  
  
  
  
  
  
  
  
  
  
  
  
.a

d
d

(B
[j 

+
 1

][
i −

 2
].
su

b
tr

a
ct

(B
[0

][
i −

 2
])

);
  
  
  
  
  
  
L

P
[i]

[P
co

ls
 −

 1
] 
=

 B
[0

][
p

h
a

t]
.s

u
b

tr
a

ct
(B

[0
][
i −

 2
])

;
  
  
  
  
  
  
L

P
[i]

[P
co

ls
 −

 2
] 
=

 B
ig

In
te

g
e

r.
O

N
E

.n
e

g
a

te
()

;
  
  
  
  
}

P
ag

e 
5/

7
E

E
E

.ja
va

  
  
  
  

f
o
r

 (
in

t
 i 

=
 p

h
a

t 
+

 2
; 
i <

 P
ro

w
s 

−
 1

; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 P
co

ls
 −

 2
; 
j+

+
)

  
  
  
  
  
  
  
  
L

P
[i]

[j]
 =

 (
B

[0
][
p

h
a

t]
.s

u
b

tr
a

ct
(B

[j 
+

 1
][
p

h
a

t]
))

  
  
  
  
  
  
  
  
  
  
  
  
.a

d
d

(B
[j 

+
 1

][
i −

 1
].
su

b
tr

a
ct

(B
[0

][
i −

 1
])

);
  
  
  
  
  
  
L

P
[i]

[P
co

ls
 −

 1
] 
=

 B
[0

][
p

h
a

t]
.s

u
b

tr
a

ct
(B

[0
][
i −

 1
])

;
  
  
  
  
  
  
L

P
[i]

[P
co

ls
 −

 2
] 
=

 B
ig

In
te

g
e

r.
O

N
E

.n
e

g
a

te
()

;
  
  
  
  
}

  
  
  
  
L

P
T

yp
e

 P
 =

 
n
e
w

 L
P

T
yp

e
()

;
  
  
  
  
P

.L
P

 =
 L

P
;

  
  
  
  
P

.L
P

R
o

w
s 

=
 P

ro
w

s;
  
  
  
  
P

.L
P

C
o

ls
 =

 P
co

ls
;

  
  
  
  
P

.b
a

si
s 

=
 d

e
te

rm
in

e
B

a
si

s(
G

a
m

e
.r

o
w

, 
G

a
m

e
.c

o
l, 

p
h

a
t)

;
  
  
  
  
P

.c
o

b
a

si
s 

=
 d

e
te

rm
in

e
C

o
b

a
si

s(
G

a
m

e
.r

o
w

, 
G

a
m

e
.c

o
l, 

p
h

a
t)

;

  
  
  
  

r
e
t
u
r
n

 P
;

  
  
}

  
  
N

o
d

e
 in

iti
a

liz
e

(B
im

a
tr

ix
 G

a
m

e
)

  
  

//
 c

re
a

te
s 

th
e

 in
iti

a
l n

o
d

e
  
  
{

  
  
  
  
L

P
T

yp
e

 P
 =

 
n

u
ll

;
  
  
  
  
L

P
T

yp
e

 Q
 =

 
n

u
ll

;

  
  
  
  
P

 =
 in

itP
(G

a
m

e
);

  
  
  
  
Q

 =
 in

itQ
(G

a
m

e
);

  
  
  
  
B

ig
In

te
g

e
r[

] 
x 

=
 

n
e
w

 B
ig

In
te

g
e

r[
G

a
m

e
.r

o
w

];
  
  
  
  
x[

0
] 
=

 B
ig

In
te

g
e

r.
O

N
E

;
  
  
  
  

f
o
r

 (
in

t
 i 

=
 1

; 
i <

 x
.le

n
g

th
; 
i+

+
)

  
  
  
  
  
  
x[

i] 
=

 B
ig

In
te

g
e

r.
Z

E
R

O
;

  
  
  
  
B

ig
In

te
g

e
r[

] 
y 

=
 

n
e
w

 B
ig

In
te

g
e

r[
G

a
m

e
.c

o
l];

  
  
  
  
y[

0
] 
=

 B
ig

In
te

g
e

r.
O

N
E

;

  
  
  
  

f
o
r

 (
in

t
 i 

=
 1

; 
i <

 y
.le

n
g

th
; 
i+

+
)

  
  
  
  
  
  
y[

i] 
=

 B
ig

In
te

g
e

r.
Z

E
R

O
;

  
  
  
  

b
o

o
le

a
n

[]
[]
 c

o
n

st
ra

in
t 
=

 
n
e
w

 
b

o
o

le
a

n
[G

a
m

e
.r

o
w

 +
 G

a
m

e
.c

o
l][

2
];

  
  
  
  
N

o
d

e
 N

 =
 

n
e
w

 N
o

d
e

()
;

  
  
  
  
N

.c
o

n
st

ra
in

t 
=

 T
o

o
ls

.c
o

p
y(

co
n

st
ra

in
t)

;
  
  
  
  
N

.d
e

p
th

 =
 0

;
  
  
  
  
N

.G
a

m
e

 =
 G

a
m

e
;

  
  
  
  
N

.o
u

t 
=

 0
;

  
  
  
  
N

.P
 =

 P
;

  
  
  
  
N

.Q
 =

 Q
;

  
  
  
  
N

.x
 =

 x
;

  
  
  
  
N

.y
 =

 y
;

  
  
  
  
N

.a
lp

h
a

 =
 B

ig
In

te
g

e
r.

Z
E

R
O

;
  
  
  
  
N

.b
e

ta
 =

 B
ig

In
te

g
e

r.
Z

E
R

O
;

  
  
  
  

r
e
t
u
r
n

 N
;

  
  
}

  
  

s
t
a
t
i
c

 
vo

id
 d

ir
e

ct
io

n
s(

)
  
  
{

  
  
  
  
S

ys
te

m
.o

u
t

  
  
  
  
  
  
  
  
.p

ri
n

tln
("

In
vo

ke
 th

e 
pr

og
ra

m
 fr

om
 th

e 
co

m
m

an
d 

lin
e 

us
in

g
")

;

P
ag

e 
6/

7
E

E
E

.ja
va



  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

\"
ja

va
 E

E
E

 m
 n

 a
rg

1 
ar

g2
 a

rg
3 

ar
g4

\"
")

;
  
  
  
  
S

ys
te

m
.o

u
t

  
  
  
  
  
  
  
  
.p

ri
n

tln
("

w
he

re
 m

 is
 th

e 
nu

m
be

r 
of

 s
tr

at
eg

ie
s 

fo
r 

P
la

ye
r 

I
")

;
  
  
  
  
S

ys
te

m
.o

u
t

  
  
  
  
  
  
  
  
.p

ri
n

tln
("

an
d 

n 
is

 th
e 

nu
m

be
r 

of
 s

tr
at

eg
ie

s 
fo

r 
P

la
ye

r 
II.

")
;

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

ar
g1

 −
 o

ut
pu

t t
yp

e")
;

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

\t 
0:

 s
ta

nd
ar

d 
ou

tp
ut

 [d
ef

au
lt]")
;

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

\t 
1:

 v
er

bo
se

 o
ut

pu
t

")
;

  
  
  
  
S

ys
te

m
.o

u
t

  
  
  
  
  
  
  
  
.p

ri
n

tln
("

\t 
2:

 la
te

x 
tr

ee
 o

ut
pu

t (
us

in
g 

sy
nt

tr
ee

 p
ac

ka
ge

)
")

;
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

ar
g2

 −
 o

bj
ec

tiv
e 

fu
nc

tio
n")
;

  
  
  
  
S

ys
te

m
.o

u
t

  
  
  
  
  
  
  
  
.p

ri
n

tln
("

\t 
0:

 P
 =

 x
(A

+
B

)y
 −

 a
lp

ha
 \t

 Q
 =

 x
(A

+
B

)y
 −

 b
et

a 
[d

ef
au

lt]")
;

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

\t 
1:

 P
 =

 x
A

y 
−

 a
lp

ha
 \t

 \t
 Q

 =
 x

B
y 

−
 b

et
a

")
;

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

\t 
2:

 P
 =

 −
al

ph
a 

\t 
\t 

\t 
Q

 =
 −

be
ta")
;

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

\t 
3:

 P
 =

 0
 \t

 \t
 \t

 Q
 =

 0")
;

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

ar
g3

 −
 in

pu
t t

yp
e")

;
  
  
  
  
S

ys
te

m
.o

u
t

  
  
  
  
  
  
  
  
.p

ri
n

tln
("

\t 
0:

 A
 in

 m
at

rix
A

.tx
t, 

B
 in

 m
at

rix
B

.tx
t [

de
fa

ul
t]")

;
  
  
  
  
S

ys
te

m
.o

u
t

  
  
  
  
  
  
  
  
.p

ri
n

tln
("

\t 
1:

 p
ay

of
f m

at
ric

es
 in

 G
am

e 
T

ra
ce

r 
fo

rm
 in

 G
T

.g
am

e
")

;
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

ar
g4

 −
 d

eg
en

er
ac

y 
ch

ec
k

")
;

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

\t 
0:

 n
ew

 E
E

E
−

I c
he

ck
 [d

ef
au

lt]")
;

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

\t 
1:

 o
ld

 E
E

E
 c

he
ck"

);
  
  
}

}

P
ag

e 
7/

7
E

E
E

.ja
va



i
m
p
o
r
t

 ja
va

.m
a

th
.*

;

p
u
b
l
i
c

 
c
l
a
s
s

 
N

o
d

e
{   
  

in
t

  
  
  
  
  
N

o
d

e
ID

;
  
  
B

im
a

tr
ix

  
  
 G

a
m

e
;

  
  
L

P
T

yp
e

  
  
  
 P

, 
Q

;
  
  
B

ig
In

te
g

e
r[

] 
x,

 y
;

  
  
B

ig
In

te
g

e
r 

  
a

lp
h

a
, 
b

e
ta

;
  
  

b
o

o
le

a
n

[]
[]
  
co

n
st

ra
in

t;
  
  

b
o

o
le

a
n

  
  
  
ch

a
n

g
e

d
P

;
  
  

in
t

  
  
  
  
  
o

u
t 
 =

 0
;

  
  

in
t

  
  
  
  
  
d

e
p

th
;

  
  

s
t
a
t
i
c

 
in

t
  
 N

O
N

E
 =

 0
;

  
  
B

ig
In

te
g

e
r 

  
P

M
, 
Q

M
;

  
  

b
o

o
le

a
n

  
  
  
re

m
o

ve
d

R
o

w
;

  
  

in
t

  
  
  
  
  
co

u
n

te
r;

  
  

in
t

  
  
  
  
  
d

in
d

e
x,

 d
e

n
d

;

  
  

b
o

o
le

a
n

 d
o

N
o

d
e

L
P

s(
)

  
  

//
 s

o
lv

e
s 

th
e

 L
P

s 
fo

r 
th

e
 n

o
d

e
. 
D

e
te

rm
in

e
s 

w
h

ic
h

 t
o

 s
o

lv
e

 f
ir
st

 b
y 

ch
e

ck
in

g
  
  

//
 if

 P
 o

r 
Q

 w
a

s 
ch

a
n

g
e

d
  
  
{

  
  
  
  
B

ig
In

te
g

e
r[

][
] 
A

 =
 (

E
E

E
.c

lin
e

[3
] 
=

=
 1

) 
?

 G
a

m
e

.A
 :
 G

a
m

e
.s

u
m

;
  
  
  
  
B

ig
In

te
g

e
r[

][
] 
B

 =
 (

E
E

E
.c

lin
e

[3
] 
=

=
 1

) 
?

 G
a

m
e

.B
 :
 G

a
m

e
.s

u
m

;

  
  
  
  

i
f

 (
ch

a
n

g
e

d
P

)
  
  
  
  
{

  
  
  
  
  
  
u

p
d

a
te

O
b

je
ct

iv
e

(P
, 
T

o
o

ls
.m

a
tr

ix
T

im
e

sV
e

ct
o

r(
A

, 
y)

);
  
  
  
  
  
  
p

ri
n

tS
ta

te
("

B
ef

or
e 

pi
vo

ts
 P

:",
 P

);
  
  
  
  
  
  

i
f

 (
!P

.I
P

(o
u

t)
)

  
  
  
  
  
  
  
  

r
e
t
u
r
n

 
fa

ls
e

;
  
  
  
  
  
  
u

p
d

a
te

V
a

rs
(P

, 
x,

 G
a

m
e

.r
o

w
 +

 1
, 
’P

’)
;

  
  
  
  
  
  
p

ri
n

tS
ta

te
("

A
fte

r 
pi

vo
ts

 P
:",

 P
);

  
  
  
  
  
  
u

p
d

a
te

O
b

je
ct

iv
e

(Q
, 
T

o
o

ls
.v

e
ct

o
rT

im
e

sM
a

tr
ix

(x
, 
B

))
;

  
  
  
  
  
  
p

ri
n

tS
ta

te
("

B
ef

or
e 

pi
vo

ts
 Q

:",
 Q

);
  
  
  
  
  
  
Q

.I
P

(N
O

N
E

);
  
  
  
  
  
  
u

p
d

a
te

V
a

rs
(Q

, 
y,

 G
a

m
e

.c
o

l +
 1

, 
’Q

’)
;

  
  
  
  
  
  
p

ri
n

tS
ta

te
("

A
fte

r 
pi

vo
ts

 Q
:",

 Q
);

  
  
  
  
} 

e
l
s
e

  
  
  
  
{

  
  
  
  
  
  
u

p
d

a
te

O
b

je
ct

iv
e

(Q
, 
T

o
o

ls
.v

e
ct

o
rT

im
e

sM
a

tr
ix

(x
, 
B

))
;

  
  
  
  
  
  
p

ri
n

tS
ta

te
("

B
ef

or
e 

pi
vo

ts
 Q

:",
 Q

);
  
  
  
  
  
  

i
f

 (
!Q

.I
P

(o
u

t)
)

  
  
  
  
  
  
  
  

r
e
t
u
r
n

 
fa

ls
e

;

  
  
  
  
  
  
u

p
d

a
te

V
a

rs
(Q

, 
y,

 G
a

m
e

.c
o

l +
 1

, 
’Q

’)
;

  
  
  
  
  
  
p

ri
n

tS
ta

te
("

A
fte

r 
pi

vo
ts

 Q
:",

 Q
);

  
  
  
  
  
  
u

p
d

a
te

O
b

je
ct

iv
e

(P
, 
T

o
o

ls
.m

a
tr

ix
T

im
e

sV
e

ct
o

r(
A

, 
y)

);
  
  
  
  
  
  
p

ri
n

tS
ta

te
("

B
ef

or
e 

pi
vo

ts
 P

:",
 P

);
  
  
  
  
  
  
P

.I
P

(N
O

N
E

);
  
  
  
  
  
  
u

p
d

a
te

V
a

rs
(P

, 
x,

 G
a

m
e

.r
o

w
 +

 1
, 
’P

’)
;

  
  
  
  
  
  
p

ri
n

tS
ta

te
("

A
fte

r 
pi

vo
ts

 P
:",

 P
);

  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 
tr

u
e

;
  
  
}

P
ag

e 
1/

5
N

o
d

e.
ja

va

  
  

vo
id

 u
p

d
a

te
V

a
rs

(L
P

T
yp

e
 L

, 
B

ig
In

te
g

e
r[

] 
p

ri
m

a
l, 

in
t

 le
n

g
th

, 
ch

a
r

 t
yp

e
)

  
  

//
 u

p
d

a
te

s 
va

ri
a

b
le

s 
u

si
n

g
 t
h

e
 f
in

is
h

e
d

 t
a

b
le

a
u

, 
to

 b
e

 r
u

n
 a

ft
e

r 
co

m
p

le
te

d
  
  

//
 L

P
 s

o
lu

tio
n

  
  
{

  
  
  
  

//
 g

o
 t
h

ro
u

g
h

 e
a

ch
 e

le
m

e
n

t 
o

f 
th

e
 b

a
si

s 
a

n
d

 u
p

d
a

te
 it

’s
 v

a
lu

e
, 
w

h
ic

h
 is

  
  
  
  

//
 t
h

e
 la

st
 e

le
m

e
n

t 
o

f 
th

a
t 
ro

w
 d

iv
id

e
d

 b
y 

<
  
  
  
  

in
t

 k
;

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 p
ri
m

a
l.l

e
n

g
th

; 
i+

+
)

  
  
  
  
  
  

i
f

 (
(k

 =
 T

o
o

ls
.lo

o
ku

p
(L

.b
a

si
s,

 i 
+

 1
))

 !
=

 −
1

)
  
  
  
  
  
  
  
  
p

ri
m

a
l[i

] 
=

 L
.L

P
[k

][
L

.L
P

C
o

ls
 −

 1
];

  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
p

ri
m

a
l[i

] 
=

 B
ig

In
te

g
e

r.
Z

E
R

O
;

  
  
  
  

i
f

 (
ty

p
e

 =
=

 ’P
’)

  
  
  
  
{

  
  
  
  
  
  
P

M
 =

 L
.M

;
  
  
  
  
  
  
b

e
ta

 =
 L

.L
P

[0
][
L

.L
P

C
o

ls
 −

 1
];

  
  
  
  
} 

e
l
s
e

 
i
f

 (
ty

p
e

 =
=

 ’Q
’)

  
  
  
  
{

  
  
  
  
  
  
Q

M
 =

 L
.M

;
  
  
  
  
  
  
a

lp
h

a
 =

 L
.L

P
[0

][
L

.L
P

C
o

ls
 −

 1
];

  
  
  
  
} 

e
l
s
e

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

E
R

R
O

R
!")

;
  
  
}

  
  
N

o
d

e
 a

d
d

C
h

ild
(

in
t

 in
d

e
x,

 
in

t
 t
yp

e
)

  
  

//
 a

d
d

s 
a

 n
e

w
 n

o
d

e
 t
o

 t
h

e
 s

ta
ck

 d
e

ri
ve

d
 f
ro

m
 t
h

e
 p

a
re

n
t 
n

o
d

e
, 
w

ith
 o

n
e

  
  

//
 a

d
d

iti
o

n
a

l c
o

n
st

ra
in

t 
a

d
d

e
d

  
  

//
 H

.o
u

t 
is

 c
a

lc
u

la
te

d
 b

y 
d

e
te

rm
in

in
g

 if
 t
h

e
 v

a
ri
a

b
le

s 
is

 C
H

O
IC

E
 o

r 
L

C
P

,
  
  

//
 t
h

e
n

 a
d

d
in

g
 t
h

e
 a

p
p

ro
p

ri
a

te
 c

o
n

st
a

n
t

  
  
{

  
  
  
  
N

o
d

e
 H

 =
 

n
e
w

 N
o

d
e

()
;

  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
=

=
 1

)
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
(

th
is

 +
 "

 p
ar

en
ts

 " 
+

 H
);

  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
=

=
 2

)
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

["
 +

 E
E

E
.c

o
u

n
t)

;
  
  
  
  
H

.c
h

a
n

g
e

d
P

 =
 (

(i
n

d
e

x 
<

 G
a

m
e

.r
o

w
 &

&
 t
yp

e
 =

=
 0

) 
|| 

  
  
  
  
  
  
  
  
(i
n

d
e

x 
>

=
 G

a
m

e
.r

o
w

 &
&

 t
yp

e
 =

=
 1

))
;

  
  
  
  

i
f

 (
!H

.c
h

a
n

g
e

d
P

)
  
  
  
  
{

  
  
  
  
  
  

i
f

 (
ty

p
e

 =
=

 E
E

E
.C

H
O

IC
E

)
  
  
  
  
  
  
  
  
H

.o
u

t 
=

 in
d

e
x 

−
 G

a
m

e
.r

o
w

 +
 1

;
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
H

.o
u

t 
=

 in
d

e
x 

+
 G

a
m

e
.c

o
l +

 1
;

  
  
  
  
} 

e
l
s
e

  
  
  
  
  
  
H

.o
u

t 
=

 in
d

e
x 

+
 1

;

  
  
  
  
H

.c
o

n
st

ra
in

t 
=

 T
o

o
ls

.c
o

p
y(

co
n

st
ra

in
t)

;
  
  
  
  
H

.c
o

n
st

ra
in

t[
in

d
e

x]
[t
yp

e
] 
=

 
tr

u
e

;
  
  
  
  
H

.d
e

p
th

 =
 d

e
p

th
 +

 1
;

  
  
  
  
H

.G
a

m
e

 =
 G

a
m

e
;

  
  
  
  
H

.c
o

u
n

te
r 

=
 E

E
E

.c
o

u
n

t;
  
  
  
  
H

.P
 =

 P
.c

o
p

y(
);

P
ag

e 
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N

o
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ja
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H

.Q
 =

 Q
.c

o
p

y(
);

  
  
  
  
H

.x
 =

 T
o

o
ls

.c
o

p
y(

x)
;

  
  
  
  
H

.y
 =

 T
o

o
ls

.c
o

p
y(

y)
;

  
  
  
  
H

.N
o

d
e

ID
 =

 N
o

d
e

ID
 +

 1
;

  
  
  
  
H

.a
lp

h
a

 =
 a

lp
h

a
.a

d
d

(B
ig

In
te

g
e

r.
Z

E
R

O
);

  
  
  
  
H

.b
e

ta
 =

 b
e

ta
.a

d
d

(B
ig

In
te

g
e

r.
Z

E
R

O
);

  
  
  
  
H

.d
in

d
e

x 
=

 in
d

e
x;

  
  
  
  
H

.d
e

n
d

 =
 d

e
n

d
;

  
  
  
  

r
e
t
u
r
n

 H
;

  
  
}

  
  

in
t

 n
e

xt
T

ig
h

t(
)

  
  

//
 r

e
tu

rn
s 

th
e

 in
d

e
x 

o
f 
th

e
 n

e
xt

 v
a

ri
a

b
le

 t
o

 b
e

 m
a

d
e

 t
ig

h
t

  
  
{

  
  
  
  
B

ig
In

te
g

e
r[

][
] 
va

l =
 

n
e
w

 B
ig

In
te

g
e

r[
2

][
co

n
st

ra
in

t.
le

n
g

th
];

  
  
  
  
B

ig
In

te
g

e
r[

] 
xB

 =
 T

o
o

ls
.v

e
ct

o
rT

im
e

sM
a

tr
ix

(x
, 
G

a
m

e
.B

);
  
  
  
  
B

ig
In

te
g

e
r[

] 
A

y 
=

 T
o

o
ls

.m
a

tr
ix

T
im

e
sV

e
ct

o
r(

G
a

m
e

.A
, 
y)

;

  
  
  
  
B

ig
In

te
g

e
r 

fir
st

T
e

rm
;

  
  
  
  
B

ig
In

te
g

e
r 

se
co

n
d

T
e

rm
;

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 G
a

m
e

.r
o

w
; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  

i
f

 (
co

n
st

ra
in

t[
i][

E
E

E
.C

H
O

IC
E

] 
|| 

co
n

st
ra

in
t[
i][

E
E

E
.L

C
P

])
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
va

l[0
][
i] 

=
 B

ig
In

te
g

e
r.

O
N

E
.n

e
g

a
te

()
;

  
  
  
  
  
  
  
  
va

l[1
][
i] 

=
 B

ig
In

te
g

e
r.

O
N

E
;

  
  
  
  
  
  
} 

e
l
s
e

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
fir

st
T

e
rm

 =
 x

[i]
.m

u
lti

p
ly

(a
lp

h
a

).
m

u
lti

p
ly

(Q
M

);
  
  
  
  
  
  
  
  
se

co
n

d
T

e
rm

 =
 x

[i]
.m

u
lti

p
ly

(Q
M

).
m

u
lti

p
ly

(Q
M

);
  
  
  
  
  
  
  
  
va

l[0
][
i] 

=
 f
ir
st

T
e

rm
.s

u
b

tr
a

ct
(s

e
co

n
d

T
e

rm
);

  
  
  
  
  
  
  
  
va

l[1
][
i] 

=
 P

M
.m

u
lti

p
ly

(Q
M

).
m

u
lti

p
ly

(Q
M

);
  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 G
a

m
e

.c
o

l; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  

i
f

 (
co

n
st

ra
in

t[
i +

 G
a

m
e

.r
o

w
][
E

E
E

.C
H

O
IC

E
]

  
  
  
  
  
  
  
  
  
  
|| 

co
n

st
ra

in
t[
i +

 G
a

m
e

.r
o

w
][
E

E
E

.L
C

P
])

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
va

l[0
][
i +

 G
a

m
e

.r
o

w
] 
=

 B
ig

In
te

g
e

r.
O

N
E

.n
e

g
a

te
()

;
  
  
  
  
  
  
  
  
va

l[1
][
i +

 G
a

m
e

.r
o

w
] 
=

 B
ig

In
te

g
e

r.
O

N
E

;
  
  
  
  
  
  
} 

e
l
s
e

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
fir

st
T

e
rm

 =
 y

[i]
.m

u
lti

p
ly

(b
e

ta
).

m
u

lti
p

ly
(P

M
);

  
  
  
  
  
  
  
  
se

co
n

d
T

e
rm

 =
 y

[i]
.m

u
lti

p
ly

(x
B

[i]
).

m
u

lti
p

ly
(P

M
);

  
  
  
  
  
  
  
  
va

l[0
][
i +

 G
a

m
e

.r
o

w
] 
=

 f
ir
st

T
e

rm
.s

u
b

tr
a

ct
(s

e
co

n
d

T
e

rm
);

  
  
  
  
  
  
  
  
va

l[1
][
i +

 G
a

m
e

.r
o

w
] 
=

 Q
M

.m
u

lti
p

ly
(P

M
).

m
u

lti
p

ly
(P

M
);

  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 v
a

l[1
].
le

n
g

th
; 
i+

+
)

  
  
  
  
  
  

i
f

 (
va

l[1
][
i].

co
m

p
a

re
T

o
(B

ig
In

te
g

e
r.

Z
E

R
O

) 
=

=
 0

)
  
  
  
  
  
  
  
  
va

l[1
][
i] 

=
 B

ig
In

te
g

e
r.

O
N

E
;

  
  
  
  

r
e
t
u
r
n

 T
o

o
ls

.g
e

tL
a

rg
e

st
(v

a
l)
;

P
ag

e 
3/

5
N

o
d

e.
ja

va
  
  
}

  
  

vo
id

 u
p

d
a

te
O

b
je

ct
iv

e
(L

P
T

yp
e

 W
, 
B

ig
In

te
g

e
r[

] 
p

ro
d

u
ct

)
  
  

//
 r

e
ca

lc
u

la
te

s 
th

e
 o

b
je

ct
iv

e
 f
u

n
ct

io
n

 in
 t
e

rm
s 

o
f 
th

e
 c

u
rr

e
n

t 
ta

b
le

a
u

  
  
{

  
  
  
  

in
t

 z
 =

 W
.L

P
R

o
w

s 
−

 1
;

  
  
  
  

in
t

 b
 =

 W
.L

P
C

o
ls

 −
 1

;
  
  
  
  

in
t

 p
o

s;
  
  
  
  
B

ig
In

te
g

e
r 

m
a

x 
=

 B
ig

In
te

g
e

r.
O

N
E

;

  
  
  
  
T

o
o

ls
.f
ill

V
e

ct
o

r(
W

.L
P

[z
],
 0

);

  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[3

] 
=

=
 0

 |
| 
E

E
E

.c
lin

e
[3

] 
=

=
 1

)
  
  
  
  
{

  
  
  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 p
ro

d
u

ct
.le

n
g

th
; 
i+

+
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  

i
f

 (
p

ro
d

u
ct

[i]
.c

o
m

p
a

re
T

o
(m

a
x)

 >
 0

)
  
  
  
  
  
  
  
  
  
  
m

a
x 

=
 p

ro
d

u
ct

[i]
.m

u
lti

p
ly

(B
ig

In
te

g
e

r.
O

N
E

);
  
  
  
  
  
  
}

  
  
  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 p
ro

d
u

ct
.le

n
g

th
; 
i+

+
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  

//
 if

 v
a

ri
a

b
le

 i 
is

 in
 t
h

e
 b

a
si

s 
(c

o
rr

e
sp

o
n

d
in

g
 t
o

 in
d

e
x 

i+
1

)
  
  
  
  
  
  
  
  

//
 t
h

e
n

 t
h

e
 r

o
w

 c
o

rr
e

sp
o

n
d

in
g

 t
o

 t
h

a
t 
va

ri
a

b
le

 m
u

st
 b

e
 a

d
d

e
d

  
  
  
  
  
  
  
  

//
 (

m
u

lti
p

lie
d

 b
y 

th
e

 v
e

ct
o

r 
e

n
tr

y)
 t
o

 t
h

e
 la

st
 r

o
w

  
  
  
  
  
  
  
  

i
f

 (
(p

o
s 

=
 T

o
o

ls
.lo

o
ku

p
(W

.b
a

si
s,

 i 
+

 1
))

 !
=

 −
1

)
  
  
  
  
  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 W
.L

P
[z

].
le

n
g

th
; 
j+

+
)

  
  
  
  
  
  
  
  
  
  
  
  
W

.L
P

[z
][
j] 

=
 W

.L
P

[z
][
j].

a
d

d
(W

.L
P

[p
o

s]
[j]

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
.m

u
lti

p
ly

(p
ro

d
u

ct
[i]

))
;

  
  
  
  
  
  
  
  

//
 if

 v
a

ri
a

b
le

 i 
is

 in
 t
h

e
 c

o
b

a
si

s,
 t
h

e
 c

o
lu

m
n

 c
o

rr
e

sp
o

n
d

in
g

 t
o

  
  
  
  
  
  
  
  

//
 t
h

a
t 
va

ri
a

b
le

 is
 a

d
d

e
d

 (
tim

e
s 

th
e

 v
e

ct
o

r 
e

n
tr

y)
 t
o

 t
h

e
 la

st
  
  
  
  
  
  
  
  

//
 r

o
w

  
  
  
  
  
  
  
  

e
l
s
e

 
i
f

 (
(p

o
s 

=
 T

o
o

ls
.lo

o
ku

p
(W

.c
o

b
a

si
s,

 i 
+

 1
))

 !
=

 −
1

)
  
  
  
  
  
  
  
  
  
  
W

.L
P

[z
][
p

o
s]

 =
 W

.L
P

[z
][
p

o
s]

.s
u

b
tr

a
ct

(p
ro

d
u

ct
[i]

);
  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[3

] 
!=

 3
)

  
  
  
  
{

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 W
.L

P
[z

].
le

n
g

th
; 
j+

+
)

  
  
  
  
  
  
  
  
W

.L
P

[z
][
j] 

=
 W

.L
P

[z
][
j].

su
b

tr
a

ct
(W

.L
P

[0
][
j])

;
  
  
  
  
}

  
  
}

  
  

vo
id

 p
ri
n

tS
ta

te
(S

tr
in

g
 S

, 
L

P
T

yp
e

 L
P

T
)

  
  

//
 o

u
tp

u
t 
ro

u
tin

e
 −

 p
ri
n

ts
 t
h

e
 c

u
rr

e
n

t 
st

a
te

  
  
{

  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
=

=
 1

)
  
  
  
  
{

  
  
  
  
  
  
B

ig
In

te
g

e
r[

][
] 
L

P
 =

 L
P

T
.L

P
;

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
(S

);

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

D
ep

th
 =

 " 
+

 d
e

p
th

);
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

O
ut

 =
 " 

+
 o

u
t)

;
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

C
ob

as
is

 =
 ")
;

  
  
  
  
  
  
T

o
o

ls
.p

ri
n

tV
e

ct
o

r(
L

P
T

.c
o

b
a

si
s)

;

P
ag

e 
4/

5
N

o
d

e.
ja

va



  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

B
as

is
 =

 ")
;

  
  
  
  
  
  
T

o
o

ls
.p

ri
n

tV
e

ct
o

r(
L

P
T

.b
a

si
s)

;
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

M
 =

 "
 +

 L
P

T
.M

);
  
  
  
  
  
  
C

o
lF

o
rm

a
t.
p

ri
n

t(
L

P
);

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

x 
=

 ("
);

  
  
  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 x
.le

n
g

th
 −

 1
; 
i+

+
)

  
  
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
x[

i] 
+

 "
, "

);

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
x[

x.
le

n
g

th
 −

 1
] 
+

 "
)"

);
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
()

;
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

y 
=

 ("
);

  
  
  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 y
.le

n
g

th
 −

 1
; 
i+

+
)

  
  
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
y[

i] 
+

 "
, "

);
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
y[

y.
le

n
g

th
 −

 1
])

;
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

)"
);

  
  
  
  
}

  
  
}

}

P
ag

e 
5/

5
N

o
d

e.
ja

va



i
m
p
o
r
t

 ja
va

.m
a

th
.*

;

p
u
b
l
i
c

 
c
l
a
s
s

 
L

P
T

yp
e

//
 in

te
g

e
r 

lin
e

a
r 

p
ro

g
ra

m
 s

o
lv

in
g

 c
la

ss
{   
  
B

ig
In

te
g

e
r[

][
] 
L

P
;

  
  

in
t

  
  
  
  
  
  
L

P
R

o
w

s,
 L

P
C

o
ls

;
  
  
B

ig
In

te
g

e
r 

  
  
M

  
  
  
  
=

 B
ig

In
te

g
e

r.
O

N
E

;
  
  

in
t

[]
  
  
  
  
  
b

a
si

s,
 c

o
b

a
si

s;
  
  

in
t

  
  
  
  
  
  
co

u
n

tp
iv

 =
 0

;

  
  

p
u
b
l
i
c

 
b

o
o

le
a

n
 I
P

(
in

t
 o

u
t)

  
  
{

  
  
  
  

in
t

 p
iv

o
tR

o
w

, 
p

iv
o

tC
o

l;

  
  
  
  

i
f

 (
!r

e
m

o
ve

V
a

r(
o

u
t)

)
  
  
  
  
{

  
  
  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
=

=
 1

)
  
  
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

R
id

 U
ns

uc
ce

ss
fu

l")
;

  
  
  
  
  
  

r
e
t
u
r
n

 
fa

ls
e

;
  
  
  
  
}

  
  
  
  

//
 s

o
lv

e
 t
h

e
 li

n
e

a
r 

p
ro

g
ra

m
  
  
  
  

w
h
i
l
e

 (
(p

iv
o

tC
o

l =
 T

o
o

ls
  
  
  
  
  
  
  
  
.g

e
tS

m
a

lle
st

(L
P

[L
P

R
o

w
s 

−
 1

],
 0

, 
L

P
C

o
ls

 −
 2

))
 !
=

 −
1

)
  
  
  
  
{

  
  
  
  
  
  
p

iv
o

tR
o

w
 =

 f
in

d
P

iv
o

tR
o

w
(p

iv
o

tC
o

l)
;

  
  
  
  
  
  
p

iv
o

t(
p

iv
o

tR
o

w
, 
p

iv
o

tC
o

l)
;

  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 
tr

u
e

;
  
  
}

  
  

p
u
b
l
i
c

 
b

o
o

le
a

n
 r

e
m

o
ve

V
a

r(
in

t
 o

u
t)

  
  

//
 d

e
te

rm
in

e
s 

fe
a

si
b

ili
ty

 b
y 

a
tt
e

m
p

tin
g

 t
o

 r
e

m
o

ve
 v

a
ri
a

b
le

 o
u

t 
fr

o
m

  
  

//
 L

P
 −

 r
e

m
o

ve
s 

if 
p

o
ss

ib
le

  
  
{

  
  
  
  

in
t

 p
iv

o
tR

o
w

 =
 −

1
, 
p

iv
o

tC
o

l, 
p

o
s;

  
  
  
  

in
t

 r
e

m
o

ve
 =

 T
o

o
ls

.lo
o

ku
p

(c
o

b
a

si
s,

 o
u

t)
;

  
  
  
  

i
f

 (
o

u
t 
=

=
 0

)
  
  
  
  
  
  

r
e
t
u
r
n

 
tr

u
e

;

  
  
  
  

i
f

 (
re

m
o

ve
 !
=

 −
1

)
  
  
  
  
{

  
  
  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
=

=
 1

)
  
  
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

In
 th

e 
co

ba
si

s,
 c

ol
um

n " 
+

 r
e

m
o

ve
);

  
  
  
  
  
  
d

e
le

te
C

o
l(
re

m
o

ve
);

  
  
  
  
  
  

r
e
t
u
r
n

 
tr

u
e

;
  
  
  
  
}

  
  
  
  
re

m
o

ve
 =

 T
o

o
ls

.lo
o

ku
p

(b
a

si
s,

 o
u

t)
;

  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
=

=
 1

)
  
  
  
  
{

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

In
 th

e 
ba

si
s,

 r
ow

 " 
+

 r
e

m
o

ve
);

  
  
  
  
  
  
p

ri
n

tS
ta

te
("

B
ef

or
e 

tr
yi

ng
 to

 r
id

:")
;

  
  
  
  
}

P
ag

e 
1/

6
L

P
T

yp
e.

ja
va

  
  
  
  

i
f

 (
L

P
[r

e
m

o
ve

][
L

P
C

o
ls

 −
 1

].
co

m
p

a
re

T
o

(B
ig

In
te

g
e

r.
Z

E
R

O
) 

=
=

 0
)

  
  
  
  
  
  

r
e
t
u
r
n

 r
e

m
o

ve
R

o
w

Z
e

ro
(r

e
m

o
ve

);

  
  
  
  

w
h
i
l
e

 (
(p

iv
o

tC
o

l =
 T

o
o

ls
.g

e
tL

a
rg

e
st

(L
P

[r
e

m
o

ve
],
 0

, 
L

P
C

o
ls

 −
 2

))
 !
=

 −
1

)
  
  
  
  
{

  
  
  
  
  
  
p

iv
o

tR
o

w
 =

 f
in

d
P

iv
o

tR
o

w
(p

iv
o

tC
o

l)
;

  
  
  
  
  
  
p

iv
o

t(
p

iv
o

tR
o

w
, 
p

iv
o

tC
o

l)
;

  
  
  
  
  
  

i
f

 (
p

iv
o

tR
o

w
 =

=
 r

e
m

o
ve

)
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
d

e
le

te
C

o
l(
p

iv
o

tC
o

l)
;

  
  
  
  
  
  
  
  

r
e
t
u
r
n

 
tr

u
e

;
  
  
  
  
  
  
} 

e
l
s
e

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
re

m
o

ve
 =

 T
o

o
ls

.lo
o

ku
p

(b
a

si
s,

 o
u

t)
;

  
  
  
  
  
  
  
  

i
f

 (
L

P
[r

e
m

o
ve

][
L

P
C

o
ls

 −
 1

].
co

m
p

a
re

T
o

(B
ig

In
te

g
e

r.
Z

E
R

O
) 

=
=

 0
)

  
  
  
  
  
  
  
  
  
  

r
e
t
u
r
n

 r
e

m
o

ve
R

o
w

Z
e

ro
(r

e
m

o
ve

);
  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 
fa

ls
e

;
  
  
}

  
  

p
u
b
l
i
c

 
b

o
o

le
a

n
 r

e
m

o
ve

R
o

w
Z

e
ro

(
in

t
 r

e
m

o
ve

)
  
  

//
 if

 t
h

e
 v

a
lu

e
 o

f 
th

e
 b

a
si

c 
va

ri
a

b
le

 is
 z

e
ro

, 
p

iv
o

ts
 it

 o
u

t 
(i
f 
p

o
ss

ib
le

)
  
  

//
 a

n
d

 r
e

m
o

ve
s 

th
e

 v
a

ri
a

b
le

. 
If
 a

ll 
e

le
m

e
n

ts
 a

re
 z

e
ro

 in
 t
h

e
 r

o
w

, 
re

m
o

ve
s

  
  

//
 t
h

e
 r

o
w

  
  
{

  
  
  
  

in
t

 p
o

s 
=

 T
o

o
ls

.g
e

tL
a

rg
e

st
A

b
s(

L
P

[r
e

m
o

ve
],
 0

, 
L

P
C

o
ls

 −
 2

,
  
  
  
  
  
  
  
  
B

ig
In

te
g

e
r.

Z
E

R
O

);
  
  
  
  

i
f

 (
p

o
s 

=
=

 −
1

)
  
  
  
  
  
  
d

e
le

te
R

o
w

(r
e

m
o

ve
);

  
  
  
  

e
l
s
e

  
  
  
  
{

  
  
  
  
  
  

i
f

 (
L

P
[r

e
m

o
ve

][
p

o
s]

.c
o

m
p

a
re

T
o

(B
ig

In
te

g
e

r.
Z

E
R

O
) 

<
 0

)
  
  
  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 L
P

C
o

ls
; 
j+

+
)

  
  
  
  
  
  
  
  
  
  
L

P
[r

e
m

o
ve

][
j] 

=
 L

P
[r

e
m

o
ve

][
j].

n
e

g
a

te
()

;
  
  
  
  
  
  
p

iv
o

t(
re

m
o

ve
, 
p

o
s)

;
  
  
  
  
  
  
d

e
le

te
C

o
l(
p

o
s)

;
  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 
tr

u
e

;
  
  
}

  
  

vo
id

 p
iv

o
t(

in
t

 p
iv

o
tR

o
w

, 
in

t
 p

iv
o

tC
o

l)
  
  

//
 t
h

e
 p

iv
o

t 
p

ro
ce

d
u

re
  
  
{

  
  
  
  
B

ig
In

te
g

e
r 

p
iv

o
tP

o
in

t 
=

 L
P

[p
iv

o
tR

o
w

][
p

iv
o

tC
o

l];
  
  
  
  
B

ig
In

te
g

e
r 

fa
ct

o
r;

  
  
  
  
co

u
n

tp
iv

+
+

;
  
  
  
  

i
f

 (
co

u
n

tp
iv

 >
 1

0
0

0
0

)
  
  
  
  
{

  
  
  
  
  
  
p

iv
o

tC
o

l =
 b

la
n

d
_

ru
le

()
;

  
  
  
  
  
  
p

iv
o

tR
o

w
 =

 f
in

d
P

iv
o

tR
o

w
(p

iv
o

tC
o

l)
;

  
  
  
  
  
  
p

iv
o

tP
o

in
t 
=

 L
P

[p
iv

o
tR

o
w

][
p

iv
o

tC
o

l];
  
  
  
  
}

P
ag

e 
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6
L
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T
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ja
va



  
  
  
  
E

E
E

.p
iv

o
tC

o
u

n
t+

+
;

  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
=

=
 1

)
  
  
  
  
{

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
(c

o
b

a
si

s[
p

iv
o

tC
o

l] 
+

 "
 w

ill
 e

nt
er

.")
;

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
(b

a
si

s[
p

iv
o

tR
o

w
] 
+

 "
 w

ill
 e

xi
t.

")
;

  
  
  
  
}

  
  
  
  

//
 m

u
lti

p
ly

 e
a

ch
 r

o
w

 o
th

e
r 

th
a

n
 t
h

e
 p

iv
o

t 
ro

w
 b

y 
th

e
 p

iv
o

t 
e

le
m

e
n

t
  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 p
iv

o
tR

o
w

; 
i+

+
)

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 L
P

C
o

ls
; 
j+

+
)

  
  
  
  
  
  
  
  
L

P
[i]

[j]
 =

 L
P

[i]
[j]

.m
u

lti
p

ly
(p

iv
o

tP
o

in
t)

;
  
  
  
  

f
o
r

 (
in

t
 i 

=
 p

iv
o

tR
o

w
 +

 1
; 
i <

 L
P

R
o

w
s;

 i+
+

)
  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 L
P

C
o

ls
; 
j+

+
)

  
  
  
  
  
  
  
  
L

P
[i]

[j]
 =

 L
P

[i]
[j]

.m
u

lti
p

ly
(p

iv
o

tP
o

in
t)

;

  
  
  
  

//
 d

e
te

rm
in

e
 t
h

e
 f
a

ct
o

r 
n

e
e

d
e

d
 t
o

 m
a

ke
 t
h

e
 p

iv
o

t 
co

lu
m

n
 a

 m
u

lti
p

le
 o

f
  
  
  
  

//
 a

n
 id

e
n

tit
y 

co
lu

m
n

, 
th

e
n

 s
u

b
tr

a
ct

 o
ff
 t
h

a
t 
m

u
lti

p
le

 f
ro

m
 e

a
ch

 r
o

w
.

  
  
  
  

//
 r

e
p

la
ce

 t
h

e
 p

iv
o

t 
co

lu
m

n
 (

m
o

ve
 it

 o
u

t 
o

f 
th

e
 b

a
si

s)
 w

ith
 t
h

e
  
  
  
  

//
 a

p
p

ro
p

ri
a

te
 n

o
n

b
a

si
c 

co
lu

m
n

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 p
iv

o
tR

o
w

; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  
fa

ct
o

r 
=

 L
P

[i]
[p

iv
o

tC
o

l].
d

iv
id

e
(p

iv
o

tP
o

in
t)

;
  
  
  
  
  
  

i
f

 (
fa

ct
o

r.
co

m
p

a
re

T
o

(B
ig

In
te

g
e

r.
Z

E
R

O
) 

=
=

 0
)

  
  
  
  
  
  
  
  

c
o
n
t
i
n
u
e

;
  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 L
P

C
o

ls
; 
j+

+
)

  
  
  
  
  
  
  
  

i
f

 (
j =

=
 p

iv
o

tC
o

l)
  
  
  
  
  
  
  
  
  
  
L

P
[i]

[j]
 =

 f
a

ct
o

r.
m

u
lti

p
ly

(M
).

n
e

g
a

te
()

;
  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  
  
L

P
[i]

[j]
 =

 L
P

[i]
[j]

.s
u

b
tr

a
ct

(L
P

[p
iv

o
tR

o
w

][
j]

  
  
  
  
  
  
  
  
  
  
  
  
  
  
.m

u
lti

p
ly

(f
a

ct
o

r)
);

  
  
  
  
}

  
  
  
  
L

P
[p

iv
o

tR
o

w
][
p

iv
o

tC
o

l] 
=

 M
;

  
  
  
  

f
o
r

 (
in

t
 i 

=
 p

iv
o

tR
o

w
 +

 1
; 
i <

 L
P

R
o

w
s;

 i+
+

)
  
  
  
  
{

  
  
  
  
  
  
fa

ct
o

r 
=

 L
P

[i]
[p

iv
o

tC
o

l].
d

iv
id

e
(p

iv
o

tP
o

in
t)

;
  
  
  
  
  
  

i
f

 (
fa

ct
o

r.
co

m
p

a
re

T
o

(B
ig

In
te

g
e

r.
Z

E
R

O
) 

=
=

 0
)

  
  
  
  
  
  
  
  

c
o
n
t
i
n
u
e

;
  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 L
P

C
o

ls
; 
j+

+
)

  
  
  
  
  
  
  
  

i
f

 (
j =

=
 p

iv
o

tC
o

l)
  
  
  
  
  
  
  
  
  
  
L

P
[i]

[j]
 =

 f
a

ct
o

r.
m

u
lti

p
ly

(M
).

n
e

g
a

te
()

;
  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  
  
L

P
[i]

[j]
 =

 L
P

[i]
[j]

.s
u

b
tr

a
ct

(L
P

[p
iv

o
tR

o
w

][
j]

  
  
  
  
  
  
  
  
  
  
  
  
  
  
.m

u
lti

p
ly

(f
a

ct
o

r)
);

  
  
  
  
}

  
  
  
  

//
 c

h
a

n
g

e
 t
h

e
 b

a
si

s 
a

n
d

 c
o

b
a

si
s 

in
d

ic
e

s 
to

 r
e

fle
ct

 t
h

e
 c

h
a

n
g

e
  
  
  
  

in
t

 t
e

m
p

 =
 c

o
b

a
si

s[
p

iv
o

tC
o

l];
  
  
  
  
co

b
a

si
s[

p
iv

o
tC

o
l] 

=
 b

a
si

s[
p

iv
o

tR
o

w
];

  
  
  
  
b

a
si

s[
p

iv
o

tR
o

w
] 
=

 t
e

m
p

;

  
  
  
  

//
 d

iv
id

e
 e

a
ch

 e
le

m
e

n
t 
o

f 
th

e
 m

a
tr

ix
 n

o
t 
in

 t
h

e
 p

iv
o

t 
ro

w
 b

y 
M

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 p
iv

o
tR

o
w

; 
i+

+
)

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 L
P

C
o

ls
; 
j+

+
)

  
  
  
  
  
  
  
  
L

P
[i]

[j]
 =

 L
P

[i]
[j]

.d
iv

id
e

(M
);

  
  
  
  

f
o
r

 (
in

t
 i 

=
 p

iv
o

tR
o

w
 +

 1
; 
i <

 L
P

R
o

w
s;

 i+
+

)
  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 L
P

C
o

ls
; 
j+

+
)

  
  
  
  
  
  
  
  
L

P
[i]

[j]
 =

 L
P

[i]
[j]

.d
iv

id
e

(M
);
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ja
va

  
  
  
  

//
 r

e
p

la
ce

 M
 w

ith
 t
h

e
 n

e
w

 v
a

lu
e

  
  
  
  
M

 =
 p

iv
o

tP
o

in
t;

  
  
  
  
p

ri
n

tS
ta

te
("

E
nd

 o
f p

iv
ot

 s
te

p."
);

  
  
}

  
  

in
t

 b
la

n
d

_
ru

le
()

  
  

//
 s

w
itc

h
 t
o

 B
la

n
d

’s
 r

u
le

 a
ft
e

r 
a

 la
rg

e
 n

u
m

b
e

r 
o

f 
p

iv
o

ts
 in

 t
h

e
  
  

//
 s

a
m

e
 L

P
 t
o

 a
vo

id
 c

yc
lin

g
  
  
{

  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
=

=
 3

)
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

B
la

nd
’s

 r
ul

e 
be

in
g 

us
ed

.
")

;

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 L
P

[0
].
le

n
g

th
 −

 1
; 
i+

+
)

  
  
  
  
  
  

i
f

 (
L

P
[L

P
R

o
w

s 
−

 1
][
i].

co
m

p
a

re
T

o
(B

ig
In

te
g

e
r.

Z
E

R
O

) 
<

 0
)

  
  
  
  
  
  
  
  

r
e
t
u
r
n

 i;

  
  
  
  

r
e
t
u
r
n

 −
1

;
  
  
}

  
  

in
t

 f
in

d
P

iv
o

tR
o

w
(

in
t

 p
iv

o
tC

o
l)

  
  

//
 t
h

e
 p

iv
o

t 
ro

w
 s

h
o

u
ld

 b
e

 t
h

e
 r

o
w

 f
o

r 
w

h
ic

h
 t
h

e
 r

a
tio

 o
f 
th

e
  
  

//
 b

 c
o

lu
m

n
 t
o

 t
h

e
 p

iv
o

t 
co

lu
m

n
 h

a
s 

sm
a

lle
st

 a
b

so
lu

te
 v

a
lu

e
.

  
  
{

  
  
  
  

in
t

 b
 =

 L
P

C
o

ls
 −

 1
;

  
  
  
  

in
t

 m
in

 =
 1

;
  
  
  
  
B

ig
In

te
g

e
r 

m
in

_
co

n
st

a
n

t 
=

 L
P

[m
in

][
b

];
  
  
  
  
B

ig
In

te
g

e
r 

m
in

_
co

e
ff
 =

 L
P

[m
in

][
p

iv
o

tC
o

l];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 m

in
 +

 1
; 
i <

 L
P

R
o

w
s 

−
 1

; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  
B

ig
In

te
g

e
r 

le
ft
 =

 m
in

_
co

n
st

a
n

t.
m

u
lti

p
ly

(L
P

[i]
[p

iv
o

tC
o

l])
;

  
  
  
  
  
  
B

ig
In

te
g

e
r 

ri
g

h
t 
=

 m
in

_
co

e
ff
.m

u
lti

p
ly

(L
P

[i]
[b

])
;

  
  
  
  
  
  

i
f

 (
le

ft
.c

o
m

p
a

re
T

o
(r

ig
h

t)
 >

 0
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
m

in
_

co
e

ff
 =

 L
P

[i]
[p

iv
o

tC
o

l];
  
  
  
  
  
  
  
  
m

in
_

co
n

st
a

n
t 
=

 L
P

[i]
[b

];
  
  
  
  
  
  
  
  
m

in
 =

 i;
  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 m
in

;
  
  
}

  
  

vo
id

 d
e

le
te

R
o

w
(

in
t

 r
o

w
)

  
  

//
 r

e
m

o
ve

s 
ro

w
 f
ro

m
 t
h

e
 L

P
  
  
{

  
  
  
  

//
 s

w
a

p
 t
h

e
 r

o
w

 t
o

 r
e

m
o

ve
 w

ith
 t
h

e
 la

st
  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 L
P

C
o

ls
; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  
L

P
[r

o
w

][
i] 

=
 L

P
[L

P
R

o
w

s 
−

 2
][
i];

  
  
  
  
  
  
L

P
[L

P
R

o
w

s 
−

 2
][
i] 

=
 L

P
[L

P
R

o
w

s 
−

 1
][
i];

  
  
  
  
}

  
  
  
  
B

ig
In

te
g

e
r[

][
] 
to

 =
 

n
e
w

 B
ig

In
te

g
e

r[
L

P
.le

n
g

th
 −

 1
][
L

P
[0

].
le

n
g

th
];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 t
o

.le
n

g
th

; 
i+

+
)

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 t
o

[0
].
le

n
g

th
; 
j+

+
)

P
ag

e 
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6
L

P
T

yp
e.

ja
va



  
  
  
  
  
  
  
  
to

[i]
[j]

 =
 L

P
[i]

[j]
.a

d
d

(B
ig

In
te

g
e

r.
Z

E
R

O
);

  
  
  
  
L

P
 =

 t
o

;

  
  
  
  
b

a
si

s[
ro

w
] 
=

 b
a

si
s[

b
a

si
s.

le
n

g
th

 −
 1

];
  
  
  
  

in
t

[]
 b

 =
 

n
e
w

 
in

t
[b

a
si

s.
le

n
g

th
 −

 1
];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 b
.le

n
g

th
; 
i+

+
)

  
  
  
  
  
  
b

[i]
 =

 b
a

si
s[

i];
  
  
  
  
b

a
si

s 
=

 b
;

  
  
  
  
L

P
R

o
w

s−
−

;

  
  
}

  
  

vo
id

 d
e

le
te

C
o

l(
in

t
 c

o
l)

  
  

//
 r

e
m

o
ve

s 
co

lu
m

n
 c

o
l f

ro
m

 t
h

e
 L

P
  
  
{

  
  
  
  

//
 s

w
a

p
 t
h

e
 c

o
lu

m
n

 t
o

 r
e

m
o

ve
 w

ith
 t
h

e
 la

st
  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 L
P

R
o

w
s;

 i+
+

)
  
  
  
  
{

  
  
  
  
  
  
L

P
[i]

[c
o

l] 
=

 L
P

[i]
[L

P
C

o
ls

 −
 2

];
  
  
  
  
  
  
L

P
[i]

[L
P

C
o

ls
 −

 2
] 
=

 L
P

[i]
[L

P
C

o
ls

 −
 1

];
  
  
  
  
}

  
  
  
  
B

ig
In

te
g

e
r[

][
] 
to

 =
 

n
e
w

 B
ig

In
te

g
e

r[
L

P
.le

n
g

th
][
L

P
[0

].
le

n
g

th
 −

 1
];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 t
o

.le
n

g
th

; 
i+

+
)

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 t
o

[0
].
le

n
g

th
; 
j+

+
)

  
  
  
  
  
  
  
  
to

[i]
[j]

 =
 L

P
[i]

[j]
.a

d
d

(B
ig

In
te

g
e

r.
Z

E
R

O
);

  
  
  
  
L

P
 =

 t
o

;
  
  
  
  
co

b
a

si
s[

co
l] 

=
 c

o
b

a
si

s[
co

b
a

si
s.

le
n

g
th

 −
 1

];
  
  
  
  

in
t

[]
 c

o
b

 =
 

n
e
w

 
in

t
[c

o
b

a
si

s.
le

n
g

th
 −

 1
];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 c
o

b
.le

n
g

th
; 
i+

+
)

  
  
  
  
  
  
co

b
[i]

 =
 c

o
b

a
si

s[
i];

  
  
  
  
co

b
a

si
s 

=
 c

o
b

;
  
  
  
  
L

P
C

o
ls

−
−

;
  
  
}

  
  

p
u
b
l
i
c

 L
P

T
yp

e
 c

o
p

y(
)

  
  

//
 r

e
tu

rn
s 

a
 c

o
p

y 
o

f 
th

e
 c

u
rr

e
n

t 
L

P
  
  
{

  
  
  
  
L

P
T

yp
e

 t
o

 =
 

n
e
w

 L
P

T
yp

e
()

;

  
  
  
  
to

.L
P

 =
 T

o
o

ls
.c

o
p

y(
L

P
);

  
  
  
  
to

.b
a

si
s 

=
 T

o
o

ls
.c

o
p

y(
b

a
si

s)
;

  
  
  
  
to

.c
o

b
a

si
s 

=
 T

o
o

ls
.c

o
p

y(
co

b
a

si
s)

;
  
  
  
  
to

.L
P

C
o

ls
 =

 L
P

C
o

ls
;

  
  
  
  
to

.L
P

R
o

w
s 

=
 L

P
R

o
w

s;
  
  
  
  
to

.M
 =

 M
;

  
  
  
  

r
e
t
u
r
n

 t
o

;
  
  
}

  
  

p
u
b
l
i
c

 
vo

id
 p

ri
n

tS
ta

te
(S

tr
in

g
 S

)
  
  

//
 o

u
tp

u
t 
−

 p
ri
n

ts
 t
h

e
 s

ta
te

  
  
{

  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
=

=
 1

)
  
  
  
  
{

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
(S

);

P
ag
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6
L

P
T

yp
e.

ja
va

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

M
 is

: "
 +

 M
);

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

B
as

is
 ="

);
  
  
  
  
  
  
T

o
o

ls
.p

ri
n

tV
e

ct
o

r(
b

a
si

s)
;

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

C
ob

as
is

 ="
);

  
  
  
  
  
  
T

o
o

ls
.p

ri
n

tV
e

ct
o

r(
co

b
a

si
s)

;
  
  
  
  
  
  
C

o
lF

o
rm

a
t.
p

ri
n

t(
L

P
);

  
  
  
  
}

  
  
}

}

P
ag

e 
6/

6
L

P
T

yp
e.

ja
va



i
m
p
o
r
t

 ja
va

.u
til

.*
;

i
m
p
o
r
t

 ja
va

.io
.*

;
i
m
p
o
r
t

 ja
va

.m
a

th
.*

;

p
u
b
l
i
c

 
c
l
a
s
s

 
B

im
at

ri
x

{   
  

in
t

  
  
  
  
  
  
ro

w
;

  
  

in
t

  
  
  
  
  
  
co

l;
  
  
B

ig
In

te
g

e
r[

][
] 
A

;
  
  
B

ig
In

te
g

e
r[

][
] 
B

;
  
  
B

ig
In

te
g

e
r[

][
] 
su

m
;

  
  
B

im
a

tr
ix

(
in

t
 r

, 
in

t
 c

, 
S

tr
in

g
 a

n
a

m
e

, 
S

tr
in

g
 b

n
a

m
e

)
  
  

//
 c

o
n

st
ru

ct
s 

a
n

 r
 x

 c
 B

im
a

tr
ix

 w
ith

 t
h

e
 m

a
tr

ic
e

s 
in

 t
h

e
 f
ile

s 
p

a
ss

e
d

  
  

//
 c

h
e

ck
s 

to
 m

a
ke

 s
u

re
 in

p
u

tt
e

d
 m

a
tr

ix
 h

a
s 

n
o

 z
e

ro
 p

a
yo

ff
 s

tr
a

te
g

ie
s

  
  
{

  
  
  
  
ro

w
 =

 r
;

  
  
  
  
co

l =
 c

;
  
  
  
  
A

 =
 

n
e
w

 B
ig

In
te

g
e

r[
ro

w
][
co

l];
  
  
  
  
B

 =
 

n
e
w

 B
ig

In
te

g
e

r[
ro

w
][
co

l];

  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[4

] 
=

=
 1

)
  
  
  
  
  
  
G

T
M

a
tr

ic
e

s(
A

, 
B

);
  
  
  
  

e
l
s
e

  
  
  
  
{

  
  
  
  
  
  
re

a
d

M
a

tr
ix

(A
, 
a

n
a

m
e

);
  
  
  
  
  
  
re

a
d

M
a

tr
ix

(B
, 
b

n
a

m
e

);
  
  
  
  
}

  
  
  
  

i
f

 (
h

a
sZ

e
ro

(A
) 

|| 
h

a
sZ

e
ro

(B
))

  
  
  
  
{

  
  
  
  
  
  
S

ys
te

m
.o

u
t

  
  
  
  
  
  
  
  
  
  
.p

ri
n

tln
("

C
ur

re
nt

 fu
nc

tio
na

lit
y 

re
qu

ire
s 

po
si

tiv
e 

pa
yo

ffs
.

")
;

  
  
  
  
  
  
S

ys
te

m
.e

xi
t(

9
9

9
);

  
  
  
  
}

  
  
  
  
g

e
tS

u
m

()
;

  
  
}

  
  

p
u
b
l
i
c

 
vo

id
 g

e
tS

u
m

()
  
  

//
 G

a
m

e
.s

u
m

 =
 G

a
m

e
.A

 +
 G

a
m

e
.B

  
  
{

  
  
  
  
su

m
 =

 
n
e
w

 B
ig

In
te

g
e

r[
A

.le
n

g
th

][
A

[0
].
le

n
g

th
];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 A
.le

n
g

th
; 
i+

+
)

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 A
[0

].
le

n
g

th
; 
j+

+
)

  
  
  
  
  
  
  
  
su

m
[i]

[j]
 =

 A
[i]

[j]
.a

d
d

(B
[i]

[j]
);

  
  
}

  
  

p
u
b
l
i
c

 
vo

id
 G

T
M

a
tr

ic
e

s(
B

ig
In

te
g

e
r[

][
] 
m

a
tA

, 
B

ig
In

te
g

e
r[

][
] 
m

a
tB

)
  
  

//
 r

e
a

d
s 

in
p

u
t 
fo

r 
G

a
m

e
 T

ra
ce

r 
ty

p
e

  
  

//
 in

p
u

t 
p

ro
ce

d
u

re
 d

e
te

rm
in

e
d

 f
ro

m
 F

la
n

a
g

a
n

, 
Ja

va
 I
n

 A
 N

u
ts

h
e

ll
  
  
{

  
  
  
  

t
r
y

  
  
  
  
{

  
  
  
  
  
  
B

u
ff
e

re
d

R
e

a
d

e
r 

G
a

m
e

F
ile

 =
 

n
e
w

 B
u

ff
e

re
d

R
e

a
d

e
r(

n
e
w

 F
ile

R
e

a
d

e
r(

  
  
  
  
  
  
  
  
  
  
"

G
T

.g
am

e")
);

P
ag

e 
1/

4
B

im
at

ri
x.

ja
va

  
  
  
  
  
  
S

tr
in

g
 s

 =
 G

a
m

e
F

ile
.r

e
a

d
L

in
e

()
;

  
  
  
  
  
  
s 

=
 G

a
m

e
F

ile
.r

e
a

d
L

in
e

()
;

  
  
  
  
  
  
s 

=
 G

a
m

e
F

ile
.r

e
a

d
L

in
e

()
;

  
  
  
  
  
  
s 

=
 G

a
m

e
F

ile
.r

e
a

d
L

in
e

()
;

  
  
  
  
  
  
ja

va
.u

til
.S

tr
in

g
T

o
ke

n
iz

e
r 

t 
=

 
n
e
w

 ja
va

.u
til

.S
tr

in
g

T
o

ke
n

iz
e

r(
s)

;
  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 c
o

l; 
j+

+
)

  
  
  
  
  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 r
o

w
; 
i+

+
)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
m

a
tA

[i]
[j]

 =
 

n
e
w

 B
ig

In
te

g
e

r(
In

te
g

e
r.

p
a

rs
e

In
t(

t
  
  
  
  
  
  
  
  
  
  
  
  
  
  
.n

e
xt

T
o

ke
n

()
)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
+

 "
")

;
  
  
  
  
  
  
  
  
  
  

i
f

 (
m

a
tA

[i]
[j]

.c
o

m
p

a
re

T
o

(B
ig

In
te

g
e

r.
Z

E
R

O
) 

<
 0

)
  
  
  
  
  
  
  
  
  
  
  
  

t
h
r
o
w

 
n
e
w

 I
lle

g
a

lA
rg

u
m

e
n

tE
xc

e
p

tio
n

()
;

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
s 

=
 G

a
m

e
F

ile
.r

e
a

d
L

in
e

()
;

  
  
  
  
  
  
t 
=

 
n
e
w

 ja
va

.u
til

.S
tr

in
g

T
o

ke
n

iz
e

r(
s)

;
  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 c
o

l; 
j+

+
)

  
  
  
  
  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 r
o

w
; 
i+

+
)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
m

a
tB

[i]
[j]

 =
 

n
e
w

 B
ig

In
te

g
e

r(
In

te
g

e
r.

p
a

rs
e

In
t(

t
  
  
  
  
  
  
  
  
  
  
  
  
  
  
.n

e
xt

T
o

ke
n

()
)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
+

 "
")

;
  
  
  
  
  
  
  
  
  
  

i
f

 (
m

a
tB

[i]
[j]

.c
o

m
p

a
re

T
o

(B
ig

In
te

g
e

r.
Z

E
R

O
) 

<
 0

)
  
  
  
  
  
  
  
  
  
  
  
  

t
h
r
o
w

 
n
e
w

 I
lle

g
a

lA
rg

u
m

e
n

tE
xc

e
p

tio
n

()
;

  
  
  
  
  
  
  
  
}

  
  
  
  
} 

c
a
t
c
h

 (
N

o
S

u
ch

E
le

m
e

n
tE

xc
e

p
tio

n
 a

)
  
  
  
  
{

  
  
  
  
  
  
E

E
E

.d
ir
e

ct
io

n
s(

);
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

E
rr

or
: M

at
rix

 n
ot

 la
rg

e 
en

ou
gh

 fo
r 

ta
sk

.
")

;
  
  
  
  
  
  
S

ys
te

m
.e

xi
t(

9
9

9
);

  
  
  
  
} 

c
a
t
c
h

 (
IO

E
xc

e
p

tio
n

 b
)

  
  
  
  
{

  
  
  
  
  
  
E

E
E

.d
ir
e

ct
io

n
s(

);
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

E
rr

or
: I

np
ut

 p
ro

bl
em

. C
he

ck
 m

at
ric

es
.

")
;

  
  
  
  
  
  
S

ys
te

m
.e

xi
t(

9
9

9
);

  
  
  
  
} 

c
a
t
c
h

 (
N

u
m

b
e

rF
o

rm
a

tE
xc

e
p

tio
n

 c
)

  
  
  
  
{

  
  
  
  
  
  
E

E
E

.d
ir
e

ct
io

n
s(

);
  
  
  
  
  
  
S

ys
te

m
.o

u
t

  
  
  
  
  
  
  
  
  
  
.p

ri
n

tln
("

E
rr

or
: M

at
rix

 v
al

ue
s 

ar
e 

no
t a

ll 
in

te
gr

al
.

")
;

  
  
  
  
  
  
S

ys
te

m
.e

xi
t(

9
9

9
);

  
  
  
  
} 

c
a
t
c
h

 (
Ill

e
g

a
lA

rg
u

m
e

n
tE

xc
e

p
tio

n
 d

)
  
  
  
  
{

  
  
  
  
  
  
S

ys
te

m
.o

u
t

  
  
  
  
  
  
  
  
  
  
.p

ri
n

tln
("

E
rr

or
: C

ur
re

nt
ly

 r
eq

ui
re

s 
no

n−
ne

ga
tiv

e 
pa

yo
ffs

.
")

;
  
  
  
  
  
  
S

ys
te

m
.e

xi
t(

9
9

9
);

  
  
  
  
} 

c
a
t
c
h

 (
In

d
e

xO
u

tO
fB

o
u

n
d

sE
xc

e
p

tio
n

 e
)

  
  
  
  
{

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

E
rr

or
: I

np
ut

 p
ro

bl
em

. C
he

ck
 m

at
ric

es
.

")
;

  
  
  
  
  
  
S

ys
te

m
.e

xi
t(

9
9

9
);

  
  
  
  
} 

c
a
t
c
h

 (
N

u
llP

o
in

te
rE

xc
e

p
tio

n
 f
)

  
  
  
  
{

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

E
rr

or
: I

np
ut

 p
ro

bl
em

. C
he

ck
 m

at
ric

es
.

")
;

  
  
  
  
  
  
S

ys
te

m
.e

xi
t(

9
9

9
);

  
  
  
  
}

P
ag

e 
2/

4
B

im
at

ri
x.

ja
va



  
  
  
  
;

  
  
}

  
  

p
u
b
l
i
c

 
vo

id
 r

e
a

d
M

a
tr

ix
(B

ig
In

te
g

e
r[

][
] 
m

a
t,
 S

tr
in

g
 f
ile

n
a

m
e

)
  
  

//
 r

e
a

d
s 

in
 f
ile

n
a

m
e

 in
to

 t
h

e
 p

a
ss

e
d

 m
a

tr
ix

  
  

//
 in

p
u

t 
p

ro
ce

d
u

re
 d

e
te

rm
in

e
d

 f
ro

m
 F

la
n

a
g

a
n

, 
Ja

va
 I
n

 A
 N

u
ts

h
e

ll
  
  
{

  
  
  
  

t
r
y

  
  
  
  
{

  
  
  
  
  
  
B

u
ff
e

re
d

R
e

a
d

e
r 

si
ze

 =
 

n
e
w

 B
u

ff
e

re
d

R
e

a
d

e
r(

n
e
w

 F
ile

R
e

a
d

e
r(

  
  
  
  
  
  
  
  
  
  
fil

e
n

a
m

e
))

;

  
  
  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 r
o

w
; 
i+

+
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
S

tr
in

g
 s

 =
 s

iz
e

.r
e

a
d

L
in

e
()

;
  
  
  
  
  
  
  
  
ja

va
.u

til
.S

tr
in

g
T

o
ke

n
iz

e
r 

t 
=

 
n
e
w

 ja
va

.u
til

.S
tr

in
g

T
o

ke
n

iz
e

r(
  
  
  
  
  
  
  
  
  
  
  
  
s)

;
  
  
  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 c
o

l; 
j+

+
)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  
m

a
t[
i][

j] 
=

 
n
e
w

 B
ig

In
te

g
e

r(
In

te
g

e
r.

p
a

rs
e

In
t(

t
  
  
  
  
  
  
  
  
  
  
  
  
  
  
.n

e
xt

T
o

ke
n

()
)

  
  
  
  
  
  
  
  
  
  
  
  
  
  
+

 "
")

;
  
  
  
  
  
  
  
  
  
  

i
f

 (
m

a
t[
i][

j].
co

m
p

a
re

T
o

(B
ig

In
te

g
e

r.
Z

E
R

O
) 

<
 0

)
  
  
  
  
  
  
  
  
  
  
  
  

t
h
r
o
w

 
n
e
w

 I
lle

g
a

lA
rg

u
m

e
n

tE
xc

e
p

tio
n

()
;

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
}

  
  
  
  
} 

c
a
t
c
h

 (
N

o
S

u
ch

E
le

m
e

n
tE

xc
e

p
tio

n
 a

)
  
  
  
  
{

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

E
rr

or
: M

at
rix

 n
ot

 la
rg

e 
en

ou
gh

 fo
r 

ta
sk

.
")

;
  
  
  
  
  
  
S

ys
te

m
.e

xi
t(

9
9

9
);

  
  
  
  
} 

c
a
t
c
h

 (
IO

E
xc

e
p

tio
n

 b
)

  
  
  
  
{

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

E
rr

or
: I

np
ut

 p
ro

bl
em

. C
he

ck
 m

at
ric

es
.

")
;

  
  
  
  
  
  
S

ys
te

m
.e

xi
t(

9
9

9
);

  
  
  
  
} 

c
a
t
c
h

 (
N

u
m

b
e

rF
o

rm
a

tE
xc

e
p

tio
n

 c
)

  
  
  
  
{

  
  
  
  
  
  
S

ys
te

m
.o

u
t

  
  
  
  
  
  
  
  
  
  
.p

ri
n

tln
("

E
rr

or
: M

at
rix

 v
al

ue
s 

ar
e 

no
t a

ll 
in

te
gr

al
.

")
;

  
  
  
  
  
  
S

ys
te

m
.e

xi
t(

9
9

9
);

  
  
  
  
} 

c
a
t
c
h

 (
Ill

e
g

a
lA

rg
u

m
e

n
tE

xc
e

p
tio

n
 d

)
  
  
  
  
{

  
  
  
  
  
  
S

ys
te

m
.o

u
t

  
  
  
  
  
  
  
  
  
  
.p

ri
n

tln
("

E
rr

or
: C

ur
re

nt
ly

 r
eq

ui
re

s 
no

n−
ne

ga
tiv

e 
pa

yo
ffs

.
")

;
  
  
  
  
  
  
S

ys
te

m
.e

xi
t(

9
9

9
);

  
  
  
  
} 

c
a
t
c
h

 (
In

d
e

xO
u

tO
fB

o
u

n
d

sE
xc

e
p

tio
n

 e
)

  
  
  
  
{

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

E
rr

or
: I

np
ut

 p
ro

bl
em

. C
he

ck
 m

at
ric

es
.

")
;

  
  
  
  
  
  
S

ys
te

m
.e

xi
t(

9
9

9
);

  
  
  
  
} 

c
a
t
c
h

 (
N

u
llP

o
in

te
rE

xc
e

p
tio

n
 f
)

  
  
  
  
{

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

E
rr

or
: I

np
ut

 p
ro

bl
em

. C
he

ck
 m

at
ric

es
.

")
;

  
  
  
  
  
  
S

ys
te

m
.e

xi
t(

9
9

9
);

  
  
  
  
}

  
  
  
  
;

  
  
}

  
  

p
u
b
l
i
c

 
vo

id
 o

u
tp

u
t(

)

P
ag

e 
3/

4
B

im
at

ri
x.

ja
va

  
  

//
 o

u
tp

u
t 
m

e
th

o
d

 f
o

r 
th

e
 e

n
tir

e
 b

im
a

tr
ix

  
  
{

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

T
he

 m
at

rix
 is

 o
f s

iz
e " 

+
 r

o
w

 +
 "

 b
y 

" 
+

 c
o

l
  
  
  
  
  
  
  
  
+

 "
."

);
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

M
at

rix
 A

:"
);

  
  
  
  
C

o
lF

o
rm

a
t.
p

ri
n

t(
A

);
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

M
at

rix
 B

:"
);

  
  
  
  
C

o
lF

o
rm

a
t.
p

ri
n

t(
B

);
  
  
}

  
  

p
u
b
l
i
c

 
vo

id
 la

te
x(

)
  
  

//
 la

te
x 

o
u

tp
u

t 
m

e
th

o
d

 f
o

r 
th

e
 e

n
tir

e
 b

im
a

tr
ix

  
  
{

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

$$
\\b

eg
in

{a
rr

ay
}{

cc
c}

")
;

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

A
 =

 \\
le

ft(
\\b

eg
in

{a
rr

ay
}{

")
;

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 c
o

l; 
i+

+
)

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

c"
);

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

}"
);

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 r
o

w
; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 c
o

l −
 1

; 
j+

+
)

  
  
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
A

[i]
[j]

 +
 "

&
")

;
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
A

[i]
[c

o
l −

 1
])

;
  
  
  
  
  
  

i
f

 (
i !

=
 r

o
w

 −
 1

)
  
  
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

\\\
\"

);
  
  
  
  
}

  
  
  
  
S

ys
te

m
.o

u
t

  
  
  
  
  
  
  
  
.p

ri
n

t(
"

\\e
nd

{a
rr

ay
}\

\r
ig

ht
) 

&
 \\

; \
\; 

\\;
 \\

; \
\; 

&
 B

 =
 \\

le
ft(

\\b
eg

in
{a

rr
ay

}{"
);

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 c
o

l; 
i+

+
)

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

c"
);

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

}"
);

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 r
o

w
; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 c
o

l −
 1

; 
j+

+
)

  
  
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
B

[i]
[j]

 +
 "

&
")

;
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
B

[i]
[c

o
l −

 1
])

;
  
  
  
  
  
  

i
f

 (
i !

=
 r

o
w

 −
 1

)
  
  
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

\\\
\"

);
  
  
  
  
}

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

\\e
nd

{a
rr

ay
}\

\r
ig

ht
)")

;
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

\\e
nd

{a
rr

ay
}$

$"
);

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

\\s
yn

ttr
ee

")
;

  
  
}

  
  

b
o

o
le

a
n

 h
a

sZ
e

ro
(B

ig
In

te
g

e
r[

][
] 
m

a
t)

  
  
{

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 m
a

t.
le

n
g

th
; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 m
a

t[
0

].
le

n
g

th
; 
j+

+
)

  
  
  
  
  
  
  
  

i
f

 (
m

a
t[
i][

j].
co

m
p

a
re

T
o

(B
ig

In
te

g
e

r.
Z

E
R

O
) 

=
=

 0
)

  
  
  
  
  
  
  
  
  
  

r
e
t
u
r
n

 
tr

u
e

;

  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 
fa

ls
e

;
  
  
}

}

P
ag

e 
4/

4
B

im
at

ri
x.

ja
va



i
m
p
o
r
t

 ja
va

.m
a

th
.*

;

p
u
b
l
i
c

 
c
l
a
s
s

 
N

E
N

o
d

e
{   
  
B

ig
In

te
g

e
r[

][
] 
x;

  
  

in
t

  
  
  
  
  
  
xT

a
g

 =
 −

1
;

  
  
B

ig
In

te
g

e
r[

][
] 
y;

  
  

in
t

  
  
  
  
  
  
yT

a
g

 =
 −

1
;

  
  
N

E
N

o
d

e
  
  
  
  
 n

e
xt

;
}

P
ag

e 
1/

1
N

E
N

o
d

e.
ja

va



i
m
p
o
r
t

 ja
va

.m
a

th
.B

ig
In

te
g

e
r;

p
u
b
l
i
c

 
c
l
a
s
s

 
N

E
L

is
t

//
 N

a
sh

 E
q

u
ili

b
ri
u

m
 li

st
{   
  
N

E
N

o
d

e
  
  
 r

o
o

t;
  
  

s
t
a
t
i
c

 
in

t
 m

a
xX

T
a

g
 =

 1
;

  
  

s
t
a
t
i
c

 
in

t
 m

a
xY

T
a

g
 =

 1
;

  
  

vo
id

 a
d

d
(B

ig
In

te
g

e
r[

] 
x_

, 
B

ig
In

te
g

e
r[

] 
y_

)
  
  

//
 a

d
d

s 
a

 g
iv

e
n

 e
q

u
ili

b
ri
u

m
 p

a
ir
 t
o

 t
h

e
 N

E
L

is
t 
if 

n
o

t 
a

lr
e

a
d

y 
p

re
se

n
t

  
  
{

  
  
  
  
B

ig
In

te
g

e
r 

xs
u

m
 =

 B
ig

In
te

g
e

r.
Z

E
R

O
, 
ys

u
m

 =
 B

ig
In

te
g

e
r.

Z
E

R
O

;

  
  
  
  
B

ig
In

te
g

e
r[

][
] 
x 

=
 

n
e
w

 B
ig

In
te

g
e

r[
2

][
x_

.le
n

g
th

];
  
  
  
  
B

ig
In

te
g

e
r[

][
] 
y 

=
 

n
e
w

 B
ig

In
te

g
e

r[
2

][
y_

.le
n

g
th

];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 x
_

.le
n

g
th

; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  
x[

0
][
i] 

=
 x

_
[i]

;
  
  
  
  
  
  
xs

u
m

 =
 x

su
m

.a
d

d
(x

_
[i]

);
  
  
  
  
}

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 y
_

.le
n

g
th

; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  
y[

0
][
i] 

=
 y

_
[i]

;
  
  
  
  
  
  
ys

u
m

 =
 y

su
m

.a
d

d
(y

_
[i]

);
  
  
  
  
}

  
  
  
  
T

o
o

ls
.f
ill

V
e

ct
o

r(
x[

1
],
 x

su
m

);
  
  
  
  
T

o
o

ls
.f
ill

V
e

ct
o

r(
y[

1
],
 y

su
m

);

  
  
  
  
N

E
N

o
d

e
 N

E
 =

 
n
e
w

 N
E

N
o

d
e

()
;

  
  
  
  
N

E
.x

 =
 n

o
rm

a
liz

e
(x

);
  
  
  
  
N

E
.y

 =
 n

o
rm

a
liz

e
(y

);

  
  
  
  

i
f

 (
ro

o
t 
=

=
 

n
u

ll
)

  
  
  
  
{

  
  
  
  
  
  
ro

o
t 
=

 N
E

;
  
  
  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
=

=
 0

)
  
  
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

."
);

  
  
  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
=

=
 2

)
  
  
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

*"
);

  
  
  
  
  
  
N

E
.x

T
a

g
 =

 0
;

  
  
  
  
  
  
N

E
.y

T
a

g
 =

 0
;

  
  
  
  
  
  

r
e
t
u
r
n

;
  
  
  
  
}

  
  
  
  

i
f

 (
!p

re
se

n
t(

N
E

))
  
  
  
  
{

  
  
  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
=

=
 0

)
  
  
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

."
);

  
  
  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
=

=
 2

)
  
  
  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

*"
);

  
  
  
  
  
  

i
f

 (
N

E
.x

T
a

g
 =

=
 −

1
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
N

E
.x

T
a

g
 =

 N
E

L
is

t.
m

a
xX

T
a

g
;

P
ag

e 
1/

4
N

E
L

is
t.

ja
va

  
  
  
  
  
  
  
  
N

E
L

is
t.
m

a
xX

T
a

g
+

+
;

  
  
  
  
  
  
}

  
  
  
  
  
  

i
f

 (
N

E
.y

T
a

g
 =

=
 −

1
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
N

E
.y

T
a

g
 =

 N
E

L
is

t.
m

a
xY

T
a

g
;

  
  
  
  
  
  
  
  
N

E
L

is
t.
m

a
xY

T
a

g
+

+
;

  
  
  
  
  
  
}

  
  
  
  
  
  
N

E
N

o
d

e
 H

 =
 r

o
o

t;
  
  
  
  
  
  

w
h
i
l
e

 (
H

.n
e

xt
 !
=

 
n

u
ll

)
  
  
  
  
  
  
  
  
H

 =
 H

.n
e

xt
;

  
  
  
  
  
  
H

.n
e

xt
 =

 N
E

;
  
  
  
  
}

  
  
}

  
  

b
o

o
le

a
n

 is
E

q
u

a
lY

(N
E

N
o

d
e

 N
, 
B

ig
In

te
g

e
r[

][
] 
y)

  
  

//
 c

h
e

ck
s 

if 
st

ra
te

g
y 

y 
is

 a
lr
e

a
d

y 
p

re
se

n
t

  
  
{

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 y
[0

].
le

n
g

th
; 
i+

+
)

  
  
  
  
  
  

i
f

 (
(y

[0
][
i].

co
m

p
a

re
T

o
(N

.y
[0

][
i])

) 
!=

 0
  
  
  
  
  
  
  
  
  
  
|| 

(y
[1

][
i].

co
m

p
a

re
T

o
(N

.y
[1

][
i])

) 
!=

 0
)

  
  
  
  
  
  
  
  

r
e
t
u
r
n

 
fa

ls
e

;
  
  
  
  

r
e
t
u
r
n

 
tr

u
e

;
  
  
}

  
  

b
o

o
le

a
n

 is
E

q
u

a
lX

(N
E

N
o

d
e

 N
, 
B

ig
In

te
g

e
r[

][
] 
x)

  
  

//
  
ch

e
ck

s 
if 

st
ra

te
g

y 
x 

is
 a

lr
e

a
d

y 
p

re
se

n
t

  
  
{

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 x
[0

].
le

n
g

th
; 
i+

+
)

  
  
  
  
  
  

i
f

 (
(x

[0
][
i].

co
m

p
a

re
T

o
(N

.x
[0

][
i])

) 
!=

 0
  
  
  
  
  
  
  
  
  
  
|| 

(x
[1

][
i].

co
m

p
a

re
T

o
(N

.x
[1

][
i])

) 
!=

 0
)

  
  
  
  
  
  
  
  

r
e
t
u
r
n

 
fa

ls
e

;

  
  
  
  

r
e
t
u
r
n

 
tr

u
e

;
  
  
}

  
  

b
o

o
le

a
n

 p
re

se
n

t(
N

E
N

o
d

e
 N

E
)

  
  

//
 d

e
te

rm
in

e
s 

w
h

e
th

e
r 

a
 N

a
sh

 E
q

u
ili

b
ri
u

m
 p

a
ir
 is

 a
lr
e

a
d

y 
p

re
se

n
t

  
  
{

  
  
  
  
N

E
N

o
d

e
 N

 =
 r

o
o

t;

  
  
  
  

w
h
i
l
e

 (
N

 !
=

 
n

u
ll

)
  
  
  
  
{

  
  
  
  
  
  

i
f

 (
is

E
q

u
a

lX
(N

, 
N

E
.x

) 
&

&
 is

E
q

u
a

lY
(N

, 
N

E
.y

))
  
  
  
  
  
  
  
  

r
e
t
u
r
n

 
tr

u
e

;
  
  
  
  
  
  

e
l
s
e

 
i
f

 (
is

E
q

u
a

lX
(N

, 
N

E
.x

))
  
  
  
  
  
  
  
  
N

E
.x

T
a

g
 =

 N
.x

T
a

g
;

  
  
  
  
  
  

e
l
s
e

 
i
f

 (
is

E
q

u
a

lY
(N

, 
N

E
.y

))
  
  
  
  
  
  
  
  
N

E
.y

T
a

g
 =

 N
.y

T
a

g
;

  
  
  
  
  
  
N

 =
 N

.n
e

xt
;

  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 
fa

ls
e

;
  
  
}

  
  

in
t

 p
ri
n

t(
)

  
  

//
 p

ri
n

ts
 o

u
t 
th

e
 N

a
sh

 E
q

u
ili

b
ri
u

m
 li

st

P
ag

e 
2/

4
N

E
L

is
t.

ja
va



  
  
{

  
  
  
  

in
t

 c
o

u
n

te
r 

=
 1

;
  
  
  
  

in
t

 le
n

g
th

 =
 le

n
g

th
()

;
  
  
  
  
N

E
N

o
d

e
 N

 =
 r

o
o

t;

  
  
  
  
N

 =
 r

o
o

t;
  
  
  
  
S

tr
in

g
[]
[]
 N

E
s 

=
 

n
e
w

 S
tr

in
g

[le
n

g
th

][
N

.x
[0

].
le

n
g

th
 +

 N
.y

[0
].
le

n
g

th
  
  
  
  
  
  
  
  
+

 1
0

];
  
  
  
  

b
o

o
le

a
n

[]
[]
 c

o
n

n
e

ct
e

d
 =

 
n
e
w

 
b

o
o

le
a

n
[N

E
L

is
t.
m

a
xX

T
a

g
  
  
  
  
  
  
  
  
+

 N
E

L
is

t.
m

a
xY

T
a

g
][
N

E
L

is
t.
m

a
xY

T
a

g
 +

 N
E

L
is

t.
m

a
xX

T
a

g
];

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
(l
e

n
g

th
 +

 "
 e

xt
re

m
e 

eq
ui

lib
ria

.")
;

  
  
  
  

i
f

 (
E

E
E

.c
lin

e
[2

] 
!=

 3
)

  
  
  
  
{

  
  
  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 le
n

g
th

; 
i+

+
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
N

E
s[

i][
0

] 
=

 (
"

E
E"

);
  
  
  
  
  
  
  
  
N

E
s[

i][
1

] 
=

 (
"

#"
 +

 (
i +

 1
))

;
  
  
  
  
  
  
  
  
N

E
s[

i][
2

] 
=

 "
x 

="
;

  
  
  
  
  
  
  
  
N

E
s[

i][
3

] 
=

 (
"

{"
 +

 (
N

.x
T

a
g

 +
 1

) 
+

 "
}"

);
  
  
  
  
  
  
  
  
N

E
s[

i][
4

] 
=

 "
("

;
  
  
  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 N
.x

[0
].
le

n
g

th
; 
j+

+
)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  

i
f

 (
N

.x
[0

][
j].

co
m

p
a

re
T

o
(B

ig
In

te
g

e
r.

Z
E

R
O

) 
=

=
 0

)
  
  
  
  
  
  
  
  
  
  
  
  
N

E
s[

i][
j +

 5
] 
=

 "
0"

;
  
  
  
  
  
  
  
  
  
  

e
l
s
e

 
i
f

 (
N

.x
[1

][
j].

co
m

p
a

re
T

o
(B

ig
In

te
g

e
r.

O
N

E
) 

=
=

 0
)

  
  
  
  
  
  
  
  
  
  
  
  
N

E
s[

i][
j +

 5
] 
=

 "
1"

;
  
  
  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  
  
  
  
N

E
s[

i][
j +

 5
] 
=

 (
N

.x
[0

][
j] 

+
 "

/"
 +

 N
.x

[1
][
j])

;

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
N

E
s[

i][
N

.x
[0

].
le

n
g

th
 +

 5
] 
=

 "
)"

;
  
  
  
  
  
  
  
  
N

E
s[

i][
N

.x
[0

].
le

n
g

th
 +

 6
] 
=

 "
\ty

 =
";

  
  
  
  
  
  
  
  
N

E
s[

i][
N

.x
[0

].
le

n
g

th
 +

 7
] 
=

 (
"

{"
 +

 (
N

.y
T

a
g

 +
 1

) 
+

 "
}"

);
  
  
  
  
  
  
  
  
N

E
s[

i][
N

.x
[0

].
le

n
g

th
 +

 8
] 
=

 "
("

;
  
  
  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 N
.y

[0
].
le

n
g

th
; 
j+

+
)

  
  
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
  
  

i
f

 (
N

.y
[0

][
j].

co
m

p
a

re
T

o
(B

ig
In

te
g

e
r.

Z
E

R
O

) 
=

=
 0

)
  
  
  
  
  
  
  
  
  
  
  
  
N

E
s[

i][
N

.x
[0

].
le

n
g

th
 +

 j 
+

 9
] 
=

 "
0"

;
  
  
  
  
  
  
  
  
  
  

e
l
s
e

 
i
f

 (
N

.y
[1

][
j].

co
m

p
a

re
T

o
(B

ig
In

te
g

e
r.

O
N

E
) 

=
=

 0
)

  
  
  
  
  
  
  
  
  
  
  
  
N

E
s[

i][
N

.x
[0

].
le

n
g

th
 +

 j 
+

 9
] 
=

 "
1"

;
  
  
  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  
  
  
  
N

E
s[

i][
N

.x
[0

].
le

n
g

th
 +

 j 
+

 9
] 
=

 (
N

.y
[0

][
j] 

+
 "

/"
 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
+

 N
.y

[1
][
j])

;

  
  
  
  
  
  
  
  
}

  
  
  
  
  
  
  
  
N

E
s[

i][
N

.x
[0

].
le

n
g

th
 +

 N
.y

[0
].
le

n
g

th
 +

 9
] 
=

 "
)"

;

  
  
  
  
  
  
  
  
co

n
n

e
ct

e
d

[N
.x

T
a

g
][
N

.y
T

a
g

 +
 N

E
L

is
t.
m

a
xX

T
a

g
] 
=

 
tr

u
e

;
  
  
  
  
  
  
  
  
co

n
n

e
ct

e
d

[N
.y

T
a

g
 +

 N
E

L
is

t.
m

a
xX

T
a

g
][
N

.x
T

a
g

] 
=

 
tr

u
e

;

  
  
  
  
  
  
  
  
N

 =
 N

.n
e

xt
;

  
  
  
  
  
  
}

  
  
  
  
  
  
C

o
lF

o
rm

a
t.
p

ri
n

t(
N

E
s)

;
  
  
  
  
}

P
ag

e 
3/

4
N

E
L

is
t.

ja
va

  
  
  
  

//
 r

e
tu

rn
s 

n
u

m
b

e
r 

o
f 
e

xt
re

m
e

 e
q

u
ili

b
ri
a

  
  
  
  

r
e
t
u
r
n

 le
n

g
th

;

  
  
}

  
  
B

ig
In

te
g

e
r[

][
] 
n

o
rm

a
liz

e
(B

ig
In

te
g

e
r 

ve
c[

][
])

  
  

//
 n

o
rm

a
liz

e
s 

th
e

 v
e

ct
o

r 
so

 t
h

a
t 
it 

is
 a

 p
ro

b
a

b
ili

ty
 v

e
ct

o
r

  
  
{

  
  
  
  
B

ig
In

te
g

e
r[

][
] 
n

o
rm

e
d

 =
 

n
e
w

 B
ig

In
te

g
e

r[
ve

c.
le

n
g

th
][
ve

c[
0

].
le

n
g

th
];

  
  
  
  
B

ig
In

te
g

e
r 

su
m

 =
 B

ig
In

te
g

e
r.

Z
E

R
O

;
  
  
  
  
B

ig
In

te
g

e
r 

g
cd

 =
 B

ig
In

te
g

e
r.

Z
E

R
O

;

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 v
e

c[
1

].
le

n
g

th
; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  
g

cd
 =

 v
e

c[
0

][
i].

g
cd

(v
e

c[
1

][
i])

;
  
  
  
  
  
  
n

o
rm

e
d

[1
][
i] 

=
 v

e
c[

1
][
i].

d
iv

id
e

(g
cd

);
  
  
  
  
  
  
n

o
rm

e
d

[0
][
i] 

=
 v

e
c[

0
][
i].

d
iv

id
e

(g
cd

);
  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 n
o

rm
e

d
;

  
  
}

  
  

in
t

 le
n

g
th

()
  
  

//
 d

e
te

rm
in

e
s 

th
e

 n
u

m
b

e
r 

o
f 
e

q
u

ili
b

ri
a

 in
 t
h

e
 li

st
  
  
{

  
  
  
  
N

E
N

o
d

e
 N

 =
 r

o
o

t;
  
  
  
  

in
t

 c
o

u
n

te
r 

=
 0

;

  
  
  
  

w
h
i
l
e

 (
N

 !
=

 
n

u
ll

)
  
  
  
  
{

  
  
  
  
  
  
co

u
n

te
r+

+
;

  
  
  
  
  
  
N

 =
 N

.n
e

xt
;

  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 c
o

u
n

te
r;

  
  
}

}

P
ag

e 
4/

4
N

E
L

is
t.

ja
va



i
m
p
o
r
t

 ja
va

.m
a

th
.*

;

p
u
b
l
i
c

 
c
l
a
s
s

 
T

o
o

ls
//
 t
o

o
ls

 f
o

r 
u

se
 in

 E
E

E
−

I 
im

p
le

m
e

n
ta

tio
n

{   
  

p
u
b
l
i
c

 
s
t
a
t
i
c

 
in

t
 lo

o
ku

p
(

in
t

[]
 v

e
ct

o
r,

 
in

t
 s

e
a

rc
h

)
  
  
{

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 v
e

ct
o

r.
le

n
g

th
; 
i+

+
)

  
  
  
  
  
  

i
f

 (
ve

ct
o

r[
i] 

=
=

 s
e

a
rc

h
)

  
  
  
  
  
  
  
  

r
e
t
u
r
n

 i;

  
  
  
  

r
e
t
u
r
n

 −
1

;
  
  
}

  
  

p
u
b
l
i
c

 
s
t
a
t
i
c

 
in

t
 g

e
tL

a
rg

e
st

A
b

s(
B

ig
In

te
g

e
r[

] 
ro

w
, 

in
t

 f
ir
st

, 
in

t
 la

st
,

  
  
  
  
  
  
B

ig
In

te
g

e
r 

e
xc

e
p

t)
  
  
{

  
  
  
  
B

ig
In

te
g

e
r 

m
a

x 
=

 e
xc

e
p

t;
  
  
  
  

in
t

 m
a

x_
in

d
e

x 
=

 −
1

;
  
  
  
  

in
t

 i 
=

 f
ir
st

;
  
  
  
  

w
h
i
l
e

 (
ro

w
[i]

.c
o

m
p

a
re

T
o

(e
xc

e
p

t)
 =

=
 0

 &
&

 i 
<

 la
st

)
  
  
  
  
  
  
i+

+
;

  
  
  
  
m

a
x 

=
 r

o
w

[i]
;

  
  
  
  
m

a
x_

in
d

e
x 

=
 i;

  
  
  
  

i
f

 (
m

a
x.

co
m

p
a

re
T

o
(e

xc
e

p
t)

 =
=

 0
)

  
  
  
  
  
  

r
e
t
u
r
n

 −
1

;

  
  
  
  

w
h
i
l
e

 (
i <

=
 la

st
)

  
  
  
  
{

  
  
  
  
  
  

i
f

 (
ro

w
[i]

.a
b

s(
).

co
m

p
a

re
T

o
(m

a
x)

 >
 0

  
  
  
  
  
  
  
  
  
  
&

&
 r

o
w

[i]
.c

o
m

p
a

re
T

o
(e

xc
e

p
t)

 !
=

 0
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
m

a
x 

=
 r

o
w

[i]
.a

b
s(

);
  
  
  
  
  
  
  
  
m

a
x_

in
d

e
x 

=
 i;

  
  
  
  
  
  
}

  
  
  
  
  
  
i+

+
;

  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 m
a

x_
in

d
e

x;
  
  
}

  
  

p
u
b
l
i
c

 
s
t
a
t
i
c

 
in

t
 g

e
tL

a
rg

e
st

(B
ig

In
te

g
e

r[
] 
ro

w
, 

in
t

 f
ir
st

, 
in

t
 la

st
)

  
  
{

  
  
  
  
B

ig
In

te
g

e
r 

m
a

x 
=

 B
ig

In
te

g
e

r.
Z

E
R

O
;

  
  
  
  

in
t

 m
a

x_
in

d
e

x 
=

 −
1

;
  
  
  
  

f
o
r

 (
in

t
 i 

=
 f
ir
st

; 
i <

=
 la

st
; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  

i
f

 (
ro

w
[i]

.c
o

m
p

a
re

T
o

(m
a

x)
 >

 0
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
m

a
x 

=
 r

o
w

[i]
;

  
  
  
  
  
  
  
  
m

a
x_

in
d

e
x 

=
 i;

  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 m
a

x_
in

d
e

x;
  
  
}

  
  

p
u
b
l
i
c

 
s
t
a
t
i
c

 
in

t
 g

e
tS

m
a

lle
st

(B
ig

In
te

g
e

r[
] 
ro

w
, 

in
t

 f
ir
st

, 
in

t
 la

st
)

  
  
{
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B

ig
In

te
g

e
r 

m
in

 =
 B

ig
In

te
g

e
r.

Z
E

R
O

;
  
  
  
  

in
t

 m
in

_
in

d
e

x 
=

 −
1

;
  
  
  
  

f
o
r

 (
in

t
 i 

=
 f
ir
st

; 
i <

=
 la

st
; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  

i
f

 (
ro

w
[i]

.c
o

m
p

a
re

T
o

(m
in

) 
<

 0
)

  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
m

in
 =

 r
o

w
[i]

;
  
  
  
  
  
  
  
  
m

in
_

in
d

e
x 

=
 i;

  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 m
in

_
in

d
e

x;
  
  
}

  
  

s
t
a
t
i
c

 
in

t
 g

e
tL

a
rg

e
st

(B
ig

In
te

g
e

r[
][
] 
m

a
t)

  
  
{

  
  
  
  

in
t

 m
a

x 
=

 0
;

  
  
  
  
B

ig
In

te
g

e
r 

m
a

x_
n

u
m

 =
 m

a
t[
0

][
0

];
  
  
  
  
B

ig
In

te
g

e
r 

m
a

x_
d

e
n

 =
 m

a
t[
1

][
0

];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 1

; 
i <

 m
a

t[
0

].
le

n
g

th
; 
i+

+
)

  
  
  
  
{

  
  
  
  
  
  
B

ig
In

te
g

e
r 

le
ft
 =

 m
a

x_
n

u
m

.m
u

lti
p

ly
(m

a
t[
1

][
i])

;
  
  
  
  
  
  
B

ig
In

te
g

e
r 

ri
g

h
t 
=

 m
a

x_
d

e
n

.m
u

lti
p

ly
(m

a
t[
0

][
i])

;
  
  
  
  
  
  

i
f

 (
(r

ig
h

t.
co

m
p

a
re

T
o

(l
e

ft
) 

>
 0

))
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
m

a
x_

n
u

m
 =

 m
a

t[
0

][
i];

  
  
  
  
  
  
  
  
m

a
x_

d
e

n
 =

 m
a

t[
1

][
i];

  
  
  
  
  
  
  
  
m

a
x 

=
 i;

  
  
  
  
  
  
}

  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 m
a

x;
  
  
}

  
  

s
t
a
t
i
c

 
in

t
 g

e
tL

a
rg

e
st

C
o

l(
B

ig
In

te
g

e
r[

][
] 
m

a
tr

ix
, 

in
t

 c
o

lu
m

n
)

  
  
{

  
  
  
  
B

ig
In

te
g

e
r 

la
rg

e
st

 =
 B

ig
In

te
g

e
r.

Z
E

R
O

;
  
  
  
  

in
t

 la
rg

e
st

in
d

e
x 

=
 −

1
;

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 m
a

tr
ix

.le
n

g
th

; 
i+

+
)

  
  
  
  
  
  

i
f

 (
m

a
tr

ix
[i]

[c
o

lu
m

n
].
co

m
p

a
re

T
o

(l
a

rg
e

st
) 

>
 0

)
  
  
  
  
  
  
{

  
  
  
  
  
  
  
  
la

rg
e

st
 =

 m
a

tr
ix

[i]
[c

o
lu

m
n

];
  
  
  
  
  
  
  
  
la

rg
e

st
in

d
e

x 
=

 i;
  
  
  
  
  
  
}

  
  
  
  

r
e
t
u
r
n

 la
rg

e
st

in
d

e
x;

  
  
}

  
  

s
t
a
t
i
c

 B
ig

In
te

g
e

r[
] 
m

a
tr

ix
T

im
e

sV
e

ct
o

r(
B

ig
In

te
g

e
r[

][
] 
m

a
t,

  
  
  
  
  
  
B

ig
In

te
g

e
r[

] 
ve

c)
  
  
{

  
  
  
  
B

ig
In

te
g

e
r[

] 
so

l =
 

n
e
w

 B
ig

In
te

g
e

r[
m

a
t.
le

n
g

th
];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 s
o

l.l
e

n
g

th
; 
i+

+
)

  
  
  
  
  
  
so

l[i
] 
=

 B
ig

In
te

g
e

r.
Z

E
R

O
;

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 m
a

t.
le

n
g

th
; 
i+

+
)

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 m
a

t[
0

].
le

n
g

th
; 
j+

+
)

  
  
  
  
  
  
  
  
so

l[i
] 
=

 s
o

l[i
].
a

d
d

(m
a

t[
i][

j].
m

u
lti

p
ly

(v
e

c[
j])

);
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r
e
t
u
r
n

 s
o

l;
  
  
}

  
  

s
t
a
t
i
c

 B
ig

In
te

g
e

r[
] 
ve

ct
o

rT
im

e
sM

a
tr

ix
(B

ig
In

te
g

e
r[

] 
ve

c,
  
  
  
  
  
  
B

ig
In

te
g

e
r[

][
] 
m

a
t)

  
  
{

  
  
  
  
B

ig
In

te
g

e
r[

] 
so

l =
 

n
e
w

 B
ig

In
te

g
e

r[
m

a
t[
0

].
le

n
g

th
];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 s
o

l.l
e

n
g

th
; 
i+

+
)

  
  
  
  
  
  
so

l[i
] 
=

 B
ig

In
te

g
e

r.
Z

E
R

O
;

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 s
o

l.l
e

n
g

th
; 
i+

+
)

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 m
a

t.
le

n
g

th
; 
j+

+
)

  
  
  
  
  
  
  
  
so

l[i
] 
=

 s
o

l[i
].
a

d
d

(m
a

t[
j][

i].
m

u
lti

p
ly

(v
e

c[
j])

);

  
  
  
  

r
e
t
u
r
n

 s
o

l;
  
  
}

  
  

p
u
b
l
i
c

 
s
t
a
t
i
c

 
vo

id
 p

ri
n

tV
e

ct
o

r(
B

ig
In

te
g

e
r[

] 
ve

ct
o

r)
  
  
{

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

( 
")

;
  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 v
e

ct
o

r.
le

n
g

th
; 
i+

+
)

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
ve

ct
o

r[
i] 

+
 "

 "
);

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

)"
);

  
  
}

  
  

p
u
b
l
i
c

 
s
t
a
t
i
c

 
vo

id
 p

ri
n

tV
e

ct
o

r(
b

o
o

le
a

n
[]
[]
 c

o
n

st
ra

in
t)

  
  
{

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 c
o

n
st

ra
in

t.
le

n
g

th
; 
i+

+
)

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
(c

o
n

st
ra

in
t[
i][

0
] 
+

 "
\t"

 +
 c

o
n

st
ra

in
t[
i][

1
])

;
  
  
}

  
  

p
u
b
l
i
c

 
s
t
a
t
i
c

 
vo

id
 p

ri
n

tV
e

ct
o

r(
in

t
[]
 v

e
ct

o
r)

  
  
{

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
"

( 
")

;
  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 v
e

ct
o

r.
le

n
g

th
; 
i+

+
)

  
  
  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

t(
ve

ct
o

r[
i] 

+
 "

 "
);

  
  
  
  
S

ys
te

m
.o

u
t.
p

ri
n

tln
("

)"
);

  
  
}

  
  

s
t
a
t
i
c

 
in

t
[]
 c

o
p

y(
in

t
[]
 f
ro

m
)

  
  
{

  
  
  
  

in
t

[]
 t
o

 =
 

n
e
w

 
in

t
[f
ro

m
.le

n
g

th
];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 t
o

.le
n

g
th

; 
i+

+
)

  
  
  
  
  
  
to

[i]
 =

 f
ro

m
[i]

;
  
  
  
  

r
e
t
u
r
n

 t
o

;
  
  
}

  
  

s
t
a
t
i
c

 
b

o
o

le
a

n
[]
[]
 c

o
p

y(
b

o
o

le
a

n
[]
[]
 f
ro

m
)

  
  
{

  
  
  
  

b
o

o
le

a
n

[]
[]
 t
o

 =
 

n
e
w

 
b

o
o

le
a

n
[f
ro

m
.le

n
g

th
][
fr

o
m

[0
].
le

n
g

th
];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 t
o

.le
n

g
th

; 
i+

+
)

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 t
o

[0
].
le

n
g

th
; 
j+

+
)

  
  
  
  
  
  
  
  
to

[i]
[j]

 =
 f
ro

m
[i]

[j]
;

  
  
  
  

r
e
t
u
r
n

 t
o

;
  
  
}
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s
t
a
t
i
c

 B
ig

In
te

g
e

r[
][
] 
co

p
y(

B
ig

In
te

g
e

r[
][
] 
fr

o
m

)
  
  
{

  
  
  
  
B

ig
In

te
g

e
r[

][
] 
to

 =
 

n
e
w

 B
ig

In
te

g
e

r[
fr

o
m

.le
n

g
th

][
fr

o
m

[0
].
le

n
g

th
];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 t
o

.le
n

g
th

; 
i+

+
)

  
  
  
  
  
  

f
o
r

 (
in

t
 j 

=
 0

; 
j <

 t
o

[0
].
le

n
g

th
; 
j+

+
)

  
  
  
  
  
  
  
  
to

[i]
[j]

 =
 f
ro

m
[i]

[j]
.a

d
d

(B
ig

In
te

g
e

r.
Z

E
R

O
);

  
  
  
  

r
e
t
u
r
n

 t
o

;
  
  
}

  
  

s
t
a
t
i
c

 B
ig

In
te

g
e

r[
] 
co

p
y(

B
ig

In
te

g
e

r[
] 
fr

o
m

)
  
  
{

  
  
  
  
B

ig
In

te
g

e
r[

] 
to

 =
 

n
e
w

 B
ig

In
te

g
e

r[
fr

o
m

.le
n

g
th

];

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 t
o

.le
n

g
th

; 
i+

+
)

  
  
  
  
  
  
to

[i]
 =

 f
ro

m
[i]

.a
d

d
(B

ig
In

te
g

e
r.

Z
E

R
O

);
  
  
  
  

r
e
t
u
r
n

 t
o

;
  
  
}

  
  

s
t
a
t
i
c

 
vo

id
 f
ill

V
e

ct
o

r(
B

ig
In

te
g

e
r[

] 
ve

ct
o

r,
 

in
t

 f
ill

)
  
  
{

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 v
e

ct
o

r.
le

n
g

th
; 
i+

+
)

  
  
  
  
  
  
ve

ct
o

r[
i] 

=
 

n
e
w

 B
ig

In
te

g
e

r(
fil

l +
 "

")
;

  
  
}

  
  

s
t
a
t
i
c

 
vo

id
 f
ill

V
e

ct
o

r(
B

ig
In

te
g

e
r[

] 
ve

ct
o

r,
 B

ig
In

te
g

e
r 

fil
l)

  
  
{

  
  
  
  

f
o
r

 (
in

t
 i 

=
 0

; 
i <

 v
e

ct
o

r.
le

n
g

th
; 
i+

+
)

  
  
  
  
  
  
ve

ct
o

r[
i] 

=
 f
ill

.m
u

lti
p

ly
(B

ig
In

te
g

e
r.

O
N

E
);

  
  
}

}
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