
When to say “Don’t Know”: Confidence in Automatically

Generated Hypotheses without the Assumption of an

Underlying Distribution

Iain Morrow

Department of Mathematics, London School of Economics

Houghton Street, London WC2A 2AE, United Kingdom

email: iain.morrow@gmail.com

05-December 2005

CDAM Research Report LSE-CDAM-2005-17

Abstract

We have a set S ⊂ {0,1}n, together with, for each x ∈ S, the result of some unknown function F :

{0,1}n → {0,1} applied to x, and a method for generating a hypothesis h ∈ H about F given S.

We present theoretical and experimental results on four possible methods (similarity, convexification,

prevalence and Hamming distance) for determing, given two elements y,z ∈ {0,1}n\S, whether we

should be more confident that h(y) = F(y), or that h(z) = F(z), or indeed that we should attach the

same degree of confidence to both statements. We consider whether it is possible to have an absolute

measure of confidence in the statement that h(a) = F(a) for any given a ∈ {0,1}n\S. We introduce a

modification of a standard learning algorithm for Boolean functions, which naturally partitions new

examples into three categories: 1,0 and don’t know.
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1 Introduction

The theory of learning Boolean functions has been significantly developed over the last few years,

particularly within the framework of the probably approximately correct (PAC) model proposed by

Valiant (1984). In this framework, the learner is given a set S ⊂{0,1}n (the training sample), together

with, for each x ∈ S, the result of some unknown function F : {0,1}n → {0,1} applied to x. It

processes this information to generate a hypothesis h about F . Crucially, the PAC model assumes

that the elements of S are drawn at random from the set of all possible examples (i.e. all Boolean

strings of length n) based on some fixed but unknown probability distribution (say µ), and that any

new examples that are shown to the learner for it to classify using h are drawn from all possible

examples based on the same distribution µ . Under these assumptions, Valiant showed that for a broad

range of function classes, a learner can, given a large enough training sample S, efficiently generate a

hypothesis h about F that, with any chosen probability less than 1, will agree with F on (100− ε)%

of new randomly drawn examples, for any desired ε > 0.

Investigating the question of what the learner should do if the assumption of a fixed distribution

µ is not valid is the main aim of this paper. The fact that a new example is drawn based on the same

distribution as the original examples that the learner was trained on means that in some sense the new

examples are quite like the training sample, and what Valiant showed was that this relationship allows

us to make precise statements about how likely our hypothesis is to be correct on a new example.

This paper considers some other ways of determining how like the original examples a new example

is, in the absence of a common distribution, and asks whether any of them provide us with a way

to give a degree of confidence to our classification. We look at both the theoretical basis of these

methods (Section 4), and at how they perform in practice (Section 7), using standard datasets from

the Machine Learning Database held at the University of California at Irvine (Hettich et al. 1998). We

also present a number of algorithms that use the new measures (in particular, similarity as proposed

by Anthony & Hammer (2004)) to estimate confidence (Section 6), to generate hypotheses (Section

5.1) and to identify likely outliers in datasets (Section 5.2).

Another reason for considering alternative ways of determining the relationship between a new ex-

ample and the examples used for training is that even in existing frameworks like the PAC framework,

we may need a significant number of examples (possibly more than are available) for the confidence

bounds provided by that framework to be useful. We explore this in more detail later, but we first

briefly cover the terminology and notation we use in this paper when discussing Boolean functions.

Readers familiar with Boolean functions can skip the next section.

2



2 Learning Boolean Functions

In this paper, we are interested in producing a hypothesis h about an unknown Boolean function

F : {0,1}n →{0,1}; we assume that h is also a Boolean function. Elements of {0,1}n are referred to

as examples, and there are two types of example, as defined below:

Definition 2.1 Positive/ Negative Example

x ∈ {0,1}n is a positive example of the function F if F(x) = 1.

x ∈ {0,1}n is a negative example of the function F if F(x) = 0.

Each x ∈ {0,1}n can be thought of as an n-tuple (x1,x2, . . . ,xn). We refer to the element xi as bit

i of x. As well as the whole space {0,1}n , we are sometimes interested in subsets T of the space,

where each member of T has certain bits fixed, and the other bits are allowed to vary; these are called

subcubes. We first define the concept of a positional substring, and then the definition for subcube

follows naturally. A positional substring of x is a series of bits from x, together with the positions of

those bits. For example, suppose x = 11010. Then ∗1∗∗0 is a positional substring of length 2 (where

∗ is a placeholder that can represent either 0 or 1). Notice that the position of the specified bits is

crucial; ∗1∗∗0 6= ∗10∗∗, for example. Formally:

Definition 2.2 Positional Substring

Let I ⊆ [n] = {1,2, . . . ,n}, with |I| = k. Let y = x |I be the bits of x in the positions corresponding to

the elements of I. Then (y, I) is a positional substring of x.

Definition 2.3 Subcube

Let (y, I) be any positional substring. Then T = {x ∈ {0,1}n : x |I= y} is a subcube of {0,1}n. We say

that T has co-dimension k = |I| and dimension n− k.

2.1 Disjunctive Normal Form

Consider the simple Boolean function which gives 1 on x ∈ {0,1}n if and only if a given bit of x is

also 1. Call this function ui, where i is the position of the bit in x. Define ui to be the complement of

this function, i.e. ui(x) = 1 ⇔ ui(x) = 0. These functions are known as literals, and functions of the

form ui are known as negated literals.

Now consider the Boolean functions formed by the conjunction of one or more literals. These

functions are known as monomials. For example, the function u1 ∧ u2 ∧ u3 is a Boolean function

which returns 1 on x if and only if the first bit of x is 1 AND the second bit is 0 AND the third bit is 1.

It is usual, when writing monomials, to leave out the conjunction signs (so the example given earlier

would be written as u1u2u3). We also note that a monomial with no negated literals (i.e. which does

not contain any ui) is called a monotone monomial.
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There is a simple one-to-one relationship between monomials and positional substrings. Given a

positional substring (y, I), with I = {i1, i2, . . . , ik} and y = {y1,y2, . . . ,yk}, consider the monomial m

formed by the conjunction of the literals ui j (where y j = 1) and negated literals uil (where yl = 0).

Then for x∈ {0,1}n, m(x) = 1 iff x contains the positional substring (y, I). For example, the monomial

corresponding to the positional substring (1011,{3,5,6,7}) is u3u5u6u7. We will frequently use this

relationship, speaking of the monomial “corresponding to” a positional substring, and vice versa.

We now go one stage further and consider Boolean functions formed by the disjunction of one or

more monomials:

Definition 2.4 Disjunctive Normal Form

Suppose we have a function F : {0,1}n → {0,1}. Then F can be written as m1 ∨m2 ∨ . . .∨ml where

mi is a monomial and such a representation is called a Disjunctive Normal Form.

It is well known that any Boolean function F has a (not necessarily unique) representation in

Disjunctive Normal Form. We say that F ∈ Dn,k if we can write F as a disjunction of monomials mi

such that the maximum number of literals in any mi is ≤ k. Clearly ∀k, Dn,k ⊆ Dn,k+1 and Dn,n is the

set of all functions F : {0,1}n →{0,1}.

We also consider later the number of terms in a DNF of F .

Definition 2.5 l-term k-DNF

F is an l-term k-DNF if F has a DNF with at most l terms, where each term has at most k literals. We

write F ∈ Dl
n,k

We are interested here in learning (i.e. producing a hypothesis) from data, in particular from an

initial set of examples called a training sample:

Definition 2.6 Training Sample

A training sample S for a function t is a set of ordered pairs (xi, t(xi)) where xi ∈ {0,1}n.

2.2 Existing Frameworks for Learning Boolean Functions

There are several existing frameworks for learning Boolean functions. In the discussion that follows,

we will refer to learning algorithms, which are simply functions that take as input a training sample

for a given unknown function t : X → {0,1} and output a hypothesis h : X → {0,1} where X is the

example space ({0,1}n for our purposes).

2.2.1 Probably Approximately Correct Learning

Valiant (1984) gave the first definition of probably approximately correct, or PAC, learning. A learn-

ing algorithm is said to be PAC if:
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Definition 2.7 PAC learning algorithm

Let L be a learning algorithm and let h = L(S) be the hypothesis that it produces given the training

sample S. Let erµ (h) be the probability that the hypothesis h disagrees with the target concept t on

an example drawn at random according to µ and S(m, t) be the set of training samples of size m for

the target concept t. Let µ m(Θ) be the probability that a sample of size m drawn from S according to

µ is in Θ. Then L is PAC if:

∀ε > 0,∀δ > 0,∃m0 = m0(δ ,ε) s.t. ∀t,∀µ ,∀m > m0, µm{S ∈ S(m, t) : erµ (L(S)) < ε} > 1−δ

Informally, “the probability that a randomly chosen training sample will lead to a hypothesis

which has error < ε is > 1− δ”.There are many known PAC learning algorithms, and in particular

any learning algorithm for functions on finite Boolean spaces that is consistent is PAC (for a proof of

this fact see for example Anthony & Biggs (1992)).

Definition 2.8 Consistency

A training sample S is consistent for a given hypothesis space H if there is some element h0 ∈ H such

that ∀s ∈ S, h0(s) = t(s), i.e. one of the possible hypotheses agrees with the target concept on all the

labelled examples in the training sample.

A learning algorithm L that produces hypotheses in H is consistent if given a training sample S

that is consistent with H, h = L(S) ∈ H satisfies h(s) = t(s), ∀s ∈ S, where t is the unknown target

function. In other words, h classifies each element of the training sample in the same way as the target

function.

Valiant showed that we can efficiently learn certain types of target function, including DNFs with

most k literals in each term, for some fixed k < n. Valiant’s algorithm is consistent (for a proof of this

see Anthony & Biggs), and therefore PAC. We present a modified version in Section 6.

Consideration of PAC learning immediately raises the question of how big m0 has to be to guar-

antee PAC learning. Bounds on m0 are known1:

m0 ≤
1
ε

log2

(

| H |

δ

)

where H is the (finite) hypothesis space. In this paper it is generally assumed to be Dn,k for some

fixed k < n, and it can easily be shown that | Dn,k |≤ 2(2n)k
. Hence by the bound stated above we

can, with any consistent DNF learning algorithm, generate a PAC hypothesis with a sample of size no

more than:
1
ε

log2

(

| Dn,k |

δ

)

≤
(2n)k

ε
log2

(

1
δ

)

1for a longer explanation including proofs see Anthony & Biggs (1992)
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We can also give a lower bound on the size of the sample we need, using the Vapnik-Chervonenkis

dimension 2 of Dn,k. It can be shown that the Vapnik-Chervonenkis dimension of Dn,k, VCdim(Dn,k)≥
(n

k

)

(see Anthony & Biggs page 114). It can also be shown that any PAC learning algorithm needs a

sample of size at least:

VCdim(H)−1
32ε

Consideration of these bounds shows that even for relatively simple hypothesis classes we may

not be able to guarantee PAC learning with a sample of any reasonable size. We might therefore want

to be cautious and investigate other confidence measures before making predictions, even in the PAC

framework.

2.2.2 Reliable and Useful Learning

The reliable and useful learning approach introduced by Rivest & Sloan (1988) shows that it is

possible to learn Boolean functions in such a way that the output hypothesis either gives the correct

answer or outputs “don‘t know” (in other words it never wrongly classifies an example). As with PAC

learning, examples are assumed to be drawn according to a fixed probability distribution.

Rivest & Sloan also made the assumption that rather than having the algorithm try to produce a

hypothesis for the target concept “all at once”, it would be taught sub-concepts first and these would be

used to build up the hypothesis for the concept as a whole. More precisely, the teacher splits the target

concept into a number of sub-concepts (and possibly sub-sub-concepts and so on), each of which is

a simple disjunction or conjunction of two of the inputs or of two lower level concepts. The learner

starts by requesting a labelled example, and the teacher provides this example, labelled according to

the first low level concept. The learner asks for more examples until it has learnt that concept to its

satisfaction. When it next requests an example, the teacher classifies the example according to the

next low level concept. This process continues until all the sub-concepts (and the concept of interest)

have been covered. For example, to learn the function u1u2 ∨u3u4 the learner would first be taught

u1u2 (call this s1) then u3u4 (call this s2) and then s1 ∨ s2. This is illustrated by Figure 1 on page 7.

However, Kivinen (1995) showed that without the teacher breaking up the target concept as as-

sumed by Rivest & Sloan, it is not possible to reliably and usefully learn even monotone monomials

over {0,1}n in time polynomial in n. This suggests that finding an absolute measure of confidence

that can be computed efficiently is likely to be difficult at best.

2For a treatment directly relevant to computational learning theory, see again Anthony & Biggs

6



u1u2 v u3u4

u1u2

u4u3u2u1

u3u4

Main Concept

Sub Concepts

Inputs

Figure 1: Example of a simple disjunction of two short monomials, broken down into sub-concepts
as required for reliable and useful learning

2.2.3 Transductive Confidence Machines

We also briefly note that Vovk (2002) has proposed a learning method which he calls a Transductive

Confidence Machine. We do not go into details of the method here, except to note that it is designed to

produce a hypothesis which both classifies new examples and assigns a measure of confidence to that

classification. While this is clearly similar to the subject of this paper, Vovk’s work again assumes

that examples are drawn at random according to some fixed but unknown probability distribution

µ . In this paper we are looking at what can be said without the assumption of a fixed underlying

distribution, and we will not discuss Vovk’s work further.

3 Dealing with Numeric Data

Our focus in this paper is learning Boolean functions, but of course much real world data does not

come in this form. We can use the results presented here for data in numeric form, through a process

called binarization; see Boros et al. (1996) for a more complete explanation.

Suppose that we have a set A⊆R
n of numeric examples, and suppose that for each example a ∈ A

we know whether a is a positive example or a negative example. This gives us n numeric inputs, which

we can convert to a set of corresponding Boolean inputs as follows. Consider a single numeric input

i = 1, . . . ,n. Take the value of this input in each example a ∈ A and call the set of all these values

Γi = {γi1,γi2, . . .}. We call the γi j the cut points. We then introduce a set of Boolean binarization

functions bi j , defined as:

bi j(x) =







1 i f x ≥ γi j

0 otherwise

We repeat this process for each numeric input i, and then compute, for each resulting b i j function,

the value of bi j(ai) for each a ∈ A, where ai is the ith input for example a. These values are the initial

set of binary inputs (and there are i j of them for each example).

Clearly there can be a very large number of these functions bi j , but it turns out that we can discard
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most of them as unnecessary. The first observation is that only cut-points that separate positive and

negative examples are required. We call these essential cut-points.

The second observation is that what we need is a set of inputs that is small yet still separates the

positive and negative examples in our training set; Boros et al. call this a support set. We find a

support set as follows.

Suppose we have q essential cut-points. For each cut-point, we have a corresponding binary input

whose value is given by the appropriate bi j function from earlier, acting on the appropriate numeric

input. Suppose we are dealing with medical data, and one of the numeric inputs is the patient’s

temperature. We have found that 38◦C is an essential cut-point. Then the corresponding binary input

would be “temperature above 38◦C”, and if the value of this input was 1 for a given patient, it would

indicate that the patient was running a fever.

Let C = {cp} be the set of binary inputs corresponding to the essential cut-points. Each example

a ∈ A now corresponds to an element of {0,1}q . Let B be the set of binarized versions of all examples

in A. Partition B into two samples, one containing all the positive examples B+ and one containing

all the negative examples B−. Then, for each y ∈ X = {(x+,x−) : x+ ∈ B+,x− ∈ B−}, determine the

binary inputs on which the two elements of y differ. Suppose there are l = |B+||B−| such pairs. Define

indicator functions Irp, with Irp = 1 if pair r of examples differs in bit p (r = 1, . . . , l and p = 1, . . . ,q)

and = 0 otherwise. We then need to find a subset Z of the binary inputs C such that, for each pair X , at

least one of the binary inputs on which they differ is included in Z, i.e. ∀r = 1, . . . , l, ∃c p ∈ Z : Irp = 1.

This means that each positive example will differ from any negative example in at least one bit, using

the reduced set of binary inputs Z. We find Z by solving the following integer programme:

minimise ∑
k=1,...,q

yk sub ject to ∑
j=1,...,q

y jIi j ≥ λ ,∀i = 1, . . . , l

where yk = 1 if ck is included in Z, and 0 otherwise. Note that ∑k yk = |Z|. Minimising this

sum keeps the support set as small as possible, which speeds up later analysis. Note also that the

constraints are defined in terms of a parameter λ . This represents the desired minimum separation

between any positive and any negative example. It is normally set to 1, but can be increased if we

want to achieve a more robust separation. Of course, increasing λ will increase the eventual size of Z,

which will increase the time taken by the learning algorithm, and the time taken for the binarization.

For the experimental results presented in this paper we have always taken λ = 1.

We now turn to solving the integer programme. Boros et al. note that this problem is equivalent to

set-covering, which is known to be NP-hard, but that a simple greedy algorithm (details can be found

in their paper) will produce an approximate solution in polynomial time. Broadly, their algorithm

adds at each stage the binary input that increases the total separation of the positive and negative

examples (summed over all pairs not yet distance λ apart) by the largest amount. Using the approx-
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imate solution from the greedy algorithm means that Z will be larger than absolutely necessary, but

experimental results with standard datasets suggest that the support sets generated are of a reasonable

size (and there may be less danger of over-fitting the binarization to the training sample). For the

datasets used in this paper, which each contain about 10 numeric inputs, we find that a support set

contains between 12-16 inputs, which agrees well with the binarization of some of the same datasets

by Hammer & Bonates (2005).

4 Confidence Measures - Definitions and Theoretical Relationships

We now turn to the main focus of this paper, namely possible confidence measures usable without

requiring the assumption of a fixed distribution for the examples. The intuitive notion underlying our

discussion of confidence measures is that the more a new example y has in common with members of

the training sample S, the more likely we are to be able to classify it correctly. We give four possible

ways to measure how much y has in common with the members of S: Hamming distance, prevalence,

convexity and similarity. We look here at how the measures are related in theory, and then in Section

7 use them with standard data sets to see how they perform in practice.

4.1 Hamming Distance

One obvious way to measure how closely y is related to the members of S is to ask how far y is from

S using the well-known Hamming distance measure. Let d(x,y) be the Hamming distance between

x,y ∈ {0,1}n. We can then define Dk,A = {w ∈ {0,1}n : d(w,A) ≤ k}, the set of points Hamming dis-

tance ≤ k from A. Clearly D0,A = A,D j,A ⊆ D j+1,A,Dn,A = {0,1}n. We consider minimum Hamming

distance from the sample as a measure of confidence, and show in Section 7 that our hypotheses do

seem to be more accurate on examples which are a low Hamming distance from our training sample.

4.2 Prevalence of Monomials

Suppose we have a hypothesis h ∈ Dn,k for some k < n, and a training sample S split into a set of

positive examples S+ and a set of negative examples S−, i.e. S = S+∪S−. We are presented with two

new examples x1,x2 ∈ {0,1}n . If h(xi) = 1, there must be at least one monomial in h which gives 1 on

xi. Call the set of these monomials Mi. Now if h is consistent, each mi ∈Mi must be satisfied by N ≥ 0

positive examples in the training sample, and no negative examples. Using a medical analogy for a

moment, suppose h is our hypothesis about the symptoms that indicate a particular disease. Then for

a new patient z, h(z) = 1 means that h classifies z as having the disease in question because z exhibits

a set of symptoms that have not been seen in any patient who doesn’t have the disease, and have been

seen in N patients known to have the disease (or if N = 0, have not been seen in any patients at all).
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We would expect to be increasingly confident in our diagnosis as N increases, and conversely if N is

‘small’, we would be cautious; in the extreme case N = 0, it would be difficult to justify diagnosing

the disease. We would also expect to be increasingly confident in our diagnosis as the proportion of

positive examples that satisfy elements of Mi increases. Suppose for example we can find a monomial

m in h which is satisfied by both x1 and 50 positive examples in the training sample, but that there

is no monomial m′ in h which satisfies both x2 and any set of 10 or more positive examples in the

training sample. We might intuitively expect that the classification of x1 as a positive example is more

likely to be correct, as there is more “supporting evidence” from S+.

Based on this intuition, and following Hammer & Bonates (2005), we say that the prevalence

of a monomial m is the proportion of positive examples s in the training set for which m(s) = 1.

We introduce the closely related concept of a prevalence count ρ for each monomial m, where ρ is

defined as the number of positive examples in our training sample (i.e. elements of S+) on which m

gives 1. More formally:

Definition 4.1 Prevalence

The prevalence count of m is ρ(m,S) = |{s ∈ S+ : m(s) = 1}|

The prevalence of m is: ρ(m,S)
|S+|

m is k-prevalent on A if ρ(m,S) ≥ k.

Since h is a disjunction of a finite number of monomials, we can define for each example classified

as positive by our hypothesis (i.e. ∀x ∈ {0,1}n with h(x) = 1) the maximum prevalence count over

all the monomials in the DNF of h that x satisfies (i.e. mi : mi(x) = 1). Call this function p(x,h,S).

Definition 4.2 Maximum Positive Prevalence of x

Let h = ∨i mi. The Maximum Positive Prevalence of x is p(x,h,S) = maxi:mi(x)=1ρ(mi,S)

We can then construct the sets Pk(h,S)= {x∈{0,1}n,h(x)= 1 : p(x,h,S)≥ k}. Clearly ∀i, Pi+1(h,S)⊆

Pi(h,S). We propose that as i increases, we should be more confident in the classification h(x) = 1.

Experimental results in Section 7 suggest that this is correct up to a point. More precisely, they suggest

that there is a threshold prevalence count, such that monomials with a prevalence count below this are

not accurate in classifying new examples. Monomials with a prevalence count above this threshold

are substantially more accurate but the accuracy does not increase with increasing prevalence count

once we have passed the threshold.

4.3 Convexification

It is well known that Hamming distance is a metric, and so ∀x,y,z ∈ {0,1}n, d(x,z) ≤ d(x,y)+d(y,z).

Suppose we say that y is between x and z in the case where this is actually an equality. Equivalently,
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consider the subcube T ⊆ {0,1}n which has x and z as its opposite corners. Then the points between

x and z are precisely the elements of that subcube.

Having defined what between means in {0,1}n, we can, given a set A, define Ci(A), the i-

convexification of A, to be the set of all elements of {0,1}n that are between two elements x,y of

A, where the Hamming distance between x and y is no more than i. We can think of i-convexification

as “filling in” all subcubes of co-dimension at most i which have two elements of A at opposite cor-

ners.

Definition 4.3 i-convexification

Ci(A) = {w ∈ {0,1}n : ∃x,y ∈ A with d(x,w)+d(w,y) = d(x,y) ≤ i}.

Clearly A ⊆ Ci(A) ∀i, and A ⊆ C2(A) ⊆ C3(A) . . . ⊆ Cn(A) ⊆ {0,1}n . Note that the last of these,

Cn(A) is not necessarily equal to the whole of {0,1}n; there may be points in {0,1}n that are not

between any points in A. Intuitively, we might expect that elements of {0,1}n that are in Ci(A) for i

“small” are more like points in A than those that are not.

Rather than the slightly clumsy statement “w is in some convexification of A”, we propose the

term flanked and define the flanking distance F(w,A). Formally:

Definition 4.4 Flanked

We say that w is flanked by A if ∃i such that w ∈ Ci(A), and we write F(w,A) = i if w ∈ Ci(A) and

w /∈ C j(A),∀ j < i. Further we can say that w is closely flanked by A if i is “small”.

While in this paper we will focus on the convexification hierarchy defined above (which we will

call the one application convexification hierarchy), Anthony & Hammer (2005) have proposed two

other convexification hierarchies. First, consider what happens if we apply i-convexification to A

to produce Ci(A), and then apply i-convexification to Ci(A) and so on, repeating this process until

the resulting set does not change under i-convexification. Call this final set C
∗
i (A), and the process

iterated i-convexification. Then we have the hierarchy:

Definition 4.5 Iterated i-convexification hierarchy

A ⊆C∗
2(A) ⊆C∗

3(A) . . . ⊆C∗
n(A) ⊆ {0,1}n

The set C
∗
i (A) is also known as the i-convex hull of A. Note that C∗

n(A) may not be the whole of

{0,1}n .

Secondly, start with A and apply 2-convexification to get C2(A), which we will call I2(A) then

apply 3-convexification to C2(A) to get I3(A) and so on. This gives the hierarchy:

Definition 4.6 Increasing convexification hierarchy

A ⊆ I2(A) ⊆ I3(A) . . . In(A) ⊆ {0,1}n
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Again, In(A) may not be the whole of {0,1}n.

Experimental results on the single application convexification hierarchy, using binarizations of

standard datasets, are given in Section 7. We note that when we experimented with iterated convexi-

fication we found that, for the datasets used, C
∗
2(A) is either the whole of {0,1}n or very close to it,

which means that the hierarchy is trivial. This may well be at least partly an artifact of the binarization

process. Valiant’s Dn,k learning algorithm takes O(mnk) time, where m is the size of the training sam-

ple, n is the number of binary inputs and k is the maximum length of any monomial in the hypothesis.

Since this time increases like the kth power of n, the binarization process is designed to keep n small,

which means that the Hamming distance between examples in the training sample will be small.

4.3.1 Computing Convexification Hierarchies

Algorithms for computing convex hulls in R
n are known e.g. QuickHull (Barber, Dobkin & Huhdanpaa

1996), but these are not applicable to Boolean spaces. Ekin et al. (1998) provide a polynomial time

algorithm for finding the k-convex hull of A ⊆ {0,1}n , which in our notation is C
∗
k(A). Ekin’s algo-

rithm works by considering the DNF of the Boolean function F which takes the value 1 on all points

a ∈ A and the value 0 elsewhere, then repeatedly searching for monomials m1,m2 in the DNF which

are distance ≤ k apart. If such monomials are found, the algorithm removes them and replaces them

with a new monomial which includes precisely those literals found in both m1 and m2. The process is

repeated until there are no such pairs of monomials, at which point each monomial is distance at least

k + 1 from any other. The first stage of this algorithm takes O(|A|2) time, since all possible pairs of

monomials have to be checked. Subsequent stages will take less time, as we remove monomials from

the DNF at each stage.

However, we are more often interested in the result of applying a single k-convexification oper-

ation to a set A ⊆ {0,1}n rather than finding the k-convex hull. We present Algorithm 4.7 on page

13, which computes the k-convexification hierarchy of a set A ⊆ {0,1}n with each set in the hier-

archy taking O(|A|
(n

k

)

) time, which is faster than Ekin et al. for |A| >
(n

k

)

. Further, experimental

evidence suggests that C
∗
k(A) is rather uninteresting in practice (in that C

∗
k(A) = {0,1}n for all or

almost all possible k), whereas the convexification hierarchy generated by the single application of

k-convexification does seem to be useful in estimating confidence.

To understand why the iterated convexification hierarchy might be uninteresting in practice, we

first note that for the special case k = n, we can give a simple and rather weak necessary and sufficient

condition for the convex hull of a set of points A to be the whole of {0,1}n , which is that ∀i = 1, . . . ,n

we can find x+,x− ∈ A such that x+
i = 1 and x−i = 0. To show this, suppose we compute the set

C
∗
n(A). Let Γ be the DNF of the function that gives 1 on x if x ∈ C

∗
n(A) and 0 otherwise. Now Γ is an

n−convex function, and Ekin et al. showed that it must have a DNF consisting of at most 1 monomial

(to see this, consider that if the DNF contained 2 monomials, they must be distance ≤ n apart and
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so we could further convexify the function using the procedure suggested by Ekin et al.). Suppose

Γ = m, say. Now m must contain at least one literal, which without loss of generality we suppose to

be u1. Now there is by assumption y ∈ A such that y1 = 0, and d(y,m) ≤ n since we are in {0,1}n .

So following Ekin et al. we can replace m with the convex hull of y and m, which certainly has fewer

literals in it than m, since we have removed u1. So we have expanded the set of points covered by

Γ by convexification. But by definition C
∗
n(A) cannot be expanded by convexification. Hence our

assumption that there were any monomials in the DNF of Γ must be false, and it must be the whole

of {0,1}n . This shows that the condition is sufficient. To see that it is necessary, simply note that any

point in the convex hull of a set of points all of which have the same value for a particular bit must

itself have the same value for that bit.

Suppose for k < n we strengthen the condition in the obvious way to be: ∀i = 1, . . . ,n we can find

x+,x− ∈ A such that x+
i = 1 and x−i = 0, with d(x+,x−) ≤ k. It turns out that this condition is not

always sufficient for large n (Appendix A gives a counter-example in {0,1}20 , with k = 2). However,

we conjecture that there is some function β such that for n ≤ β (k), this condition is sufficient to imply

that C
∗
k(A) = {0,1}n .

Algorithm 4.7 k-Convexification Algorithm

In this algorithm SP j(a) is the set of all points distance exactly j from the point a ∈ {0,1}n, the

j-sphere around a.

Set C = A initially .

for j=2 to k

Compute SP j(0)

for each x ∈ A

Exclusive-OR each element of SP j(0) with x to produce the set SP j(x).

for each y ∈ S j(x)

If y ∈ A, add all points between x,y to C

end for

end for

Output C as C j(A).

end for

Each iteration of the for loop compares each element a ∈ A with every point in SP j(a) which

clearly has size
(n

j

)

and so generating each set in the convexification hierarchy takes O(|A|
(n

j

)

) time.

Clearly for the whole hierarchy, the running time will be O(|A| ∑k
j=2

(n
j

)

), and for small A, a naive

algorithm that compared every element of A with every other would be faster 3.

3We can determine whether y ∈ A in constant time, provided that A is constructed as a hashtable - see for example
Cormen, Leiserson & Rivest (1990)
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4.4 Similarity

Similarity was proposed by Anthony & Hammer (2004). The similarity of a binary string x ∈ {0,1}n

to a set A is defined as the maximum k such that all positional substrings (recall Definition 2.2 on

page 3) of length ≤ k in x are found in one or more members of A. This allows us to define similarity

as follows:

Definition 4.8 For A ⊆ {0,1}n and x ∈ {0,1}n , the similarity s(x,A) of x to A is the largest integer

k ≥ 0 such that for every positional substring (v, I) with | I |= k, ∃y ∈ A such that (v, I) is also a

positional substring of y, i.e:

s(x,A) = max{i : ∀I ⊆ [n], |I| ≤ i,∃y ∈ A,y |I= x |I}

To illustrate the definition, suppose the set A consists of the following members of {0,1}6:
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and let x = (011100). Then s(x,A) ≥ 2, since all positional substrings of x of length ≤ 2 are

contained in some element of A (not necessarily the same element). For example the positional

substring ∗1∗∗∗0 is contained in 110000 which is in A. But the positional substring 011∗∗∗ is not

contained in any element of A, which implies that s(x,A) < 3, and so s(w,A) = 2.

Similarity can also be thought of as related to the presence or absence of symptoms in a group

of patients. Consider a doctor who has seen many patients, some of whom have disease X and some

who do not. The doctor bases his or her diagnosis on the presence of syndromes (combinations of

symptoms) in the patient. If we suppose there are n possible symptoms, and identify each patient with

z ∈ {0,1}n, where bit i of z is set to 1 if the symptom is present and 0 otherwise, then a syndrome

corresponds to a positional substring of z. Suppose a new patient arrives, and call the binary string

corresponding to their symptoms zα . If there is a positional substring β of length l contained in zα

such that the doctor has not previously seen any patient with that grouping of symptoms, the doctor

might be reluctant to make a diagnosis if l was “small”. In the extreme case where l = 1, the patient

has a symptom that the doctor has never seen before, and it would be strange to make a diagnosis in

this case. This is analogous to saying that if a new example has low similarity to the set of previously

seen examples, we should be reluctant to classify that example. Clearly as l increases, we might

become more confident. We note that we will always (unless the new string is identical to one seen
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previously) have s(zα ,A) < n, since any substring of length n is equal to the whole string, zα , i.e.

s(x,A) < n ⇔ x /∈ A.

Based on this similarity measure, we define, for any A ∈ {0,1}n,k ∈ Z
+ the set of points with

similarity at least k to A, AS
k = {w ∈ {0,1}n : s(w,A) ≥ k}. Clearly A = AS

n ⊆ AS
n−1 . . . ⊆ AS

0 = {0,1}n .

4.4.1 Computing Similarity

Anthony & Hammer note that for arbitrary w and A the problem is equivalent to set-covering, which

is known to be NP-hard. However, they also showed that if we only want to know whether similarity

is above a certain fixed k ∈ Z
+, we can do this in time O(|A|nk), i.e. in time polynomial in n. The

algorithm, which is essentially Valiant’s DNF learning algorithm, is as follows:

Algorithm 4.9 Compute Similarity

Gener ate all possible monomials of length k.

for each a ∈ A

remove any monomials that give 1 on a.

end for

Call the disjunction of any remaining monomials gk

Then s(w,A)≥ k ⇔ gk(w) = 0, since the monomials in gk correspond precisely to those positional

substrings of length k that do not appear in any element of A.

4.4.2 Implications of Similarity for Confidence

What are the implications of the similarity measure for confidence in our hypothesis h about a target

concept t? Recall the notion of a l-term-k-DNF function, written Dl
n,k (Definition 2.5 on page 4).

Suppose we know that h ∈ Db
n,a, t ∈ Dd

n,c for some known a,b,c,d ∈ Z. Veal (2005a) has shown that,

if h is consistent with t and j = max(a + d,b + c), ∃φm ∈ Dn, j such that φm(x) = 1 ⇔ h(x) 6= t(x).

In other words, there is a function whose terms are of bounded size which will give 1 whenever the

hypothesis and the target concept disagree (and only when they disagree). We might call φm(x) the

misclassification function. The knowledge that this function exists allows Veal to show that ∀x ∈ A,

whenever s(x,A) ≥ max(a+d,b+ c), h(x) = t(x), i.e. that the hypothesis will be correct on x.

Veal also showed that we cannot simply assume that a hypothesis is more likely to be correct on

examples with high similarity to the training sample. He gives a set A⊆{0,1}4, together with a target

concept c and a hypothesis h, both in D4,3, where h is consistent on A, such that all the elements of

{0,1}4 that are misclassified by h have higher similarity to A than those examples that are classified

correctly. However, the set A is “unusual” in the sense that the pervasiveness of A is 0. Anthony &

Hammer (2004) define pervasiveness as:

15



Definition 4.10 The pervasiveness of A, written P(A) = minx∈{0,1}n s(x,A)

The pervasiveness of A is linked to the size of the largest subcube of {0,1}n that does not have a

member of A in it; we can find a subcube of {0,1}n of dimension n− p−1 that does not intersect A,

but there is no subcube of dimension n− p that does not intersect A.

We can show with a simple combinatorial argument that sets with pervasiveness 0 are rare. To say

that P(A) = 0 implies that there is a dimension n− 1 subcube T ⊂ {0,1}n which does not intersect

A, i.e. that we can find b ∈ {0,1} and i ∈ {1, . . . ,n} such that T = {x ∈ {0,1}n : xi = b}. But this is

the same as saying that there is some j ∈ 1, . . . ,n such that ∀a ∈ A, a j = (1− b). Assume that each

possible element of A is chosen independently from {0,1}n with probability p. Then E(|A|) = p2n.

For any given index j, the probability that all elements of A will agree on it is ≤ 2( 1
2
|A|

) = 2−p2n+1. So

the probability that the elements of A will agree on any index is γ ≤ 2n( 1
2|A|

) = n2−p2n+1, which is very

small even for small n and A. For example, suppose |A| = 10 and n = 5. Then γ ≤ 2∗5∗ 1
2

10
< 0.01.

Further, Veal showed that as n → ∞, almost surely we have that the pervasiveness of a randomly

chosen set A tends to n− blog2(nlog 1
1−p

(2))c − 1. It is unclear whether higher similarity implies

higher accuracy for more “typical” values of pervasiveness.

4.5 Relationship between Similarity and Hamming Distance

Anthony & Hammer (2004) showed that making a statement about similarity is in a sense stronger

than a statement about Hamming distance. They showed that if we can put a lower bound on the

similarity of a point x to a set A we can put an upper bound on the Hamming distance between them.

We present their result with a new proof:

Theorem 4.11 Suppose for x ∈ {0,1}n,A ⊆{0,1}n we have s(x,A) ≥ k. Then d(x,A) ≤ n−k. Hence

As
k ⊆ Dn−k,A.

Proof. Suppose s(x,A) ≥ k. Let (z, I) be a positional substring of x with | I |= k. Then ∃y ∈ A

such that (z, I) is also a positional substring of y. But this means that x and y must agree in at least

k bits. So they can disagree in at most n− k bits, which means that d(x,y) ≤ n− k. But y ∈ A so

d(x,A) ≤ n− k, which completes the proof.

However, a low Hamming distance does not imply high similarity, as Anthony & Hammer showed

(we state their result without proof):

Theorem 4.12 Suppose As
k 6= {0,1}n . Then ∃x ∈ {0,1}n\As

k with d(x,A) = 1.
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4.6 Relationship between Hamming Distance and Convexification

The definition of convexification depends on the notion of Hamming distance, so one would intu-

itively expect a strong relationship. Suppose we have an element w and a set A, and recall that d(w,A)

is the Hamming distance from w to A, i.e. d(w,A) = miny∈Ad(w,y). Then it is trivial to show that

d(w,A) = x ⇒ w /∈ C j(A), ∀ j < 2x. However, we cannot deduce from the value of d(w,A) that

w ∈ Ck(A) for any k (simply consider a set A consisting of a single element).

4.7 Relationship between Similarity and Convexification

Similarity and convexity are quite different measures, although we can make some rather weak state-

ments about the implications of a certain degree of similarity for the flanking distance and vice versa.

We first look at the implications of high similarity. Suppose we have a set A ⊂ {0,1}n and an

element w /∈ A. We show that we can bound the flanking distance if similarity is sufficiently high:

Theorem 4.13 Suppose s(w,A) = k, and k ≥ n
2 . Define j = n− k. Then w ∈ C2 j(A).

Proof. Without loss of generality suppose that w = (11 . . .1); a similar argument works for any

w∈ {0,1}n . Then since s(w,A) = k, ∃x∈ A with xα = 1,α = 1, . . . ,k, and ∃y∈ A with yβ = 1,β = n−

k+1, . . . ,n. Crucially, we show that x 6= y. Suppose x = y. Then xα = 1, α = 1, . . . ,k,n−k+1, . . . ,n.

But k ≥ n
2 ⇒ n− k ≤ k ⇒ n− k + 1 ≤ k + 1 ⇒ xα = 1,α = 1 . . .n ⇒ x = w ⇒ w ∈ A. But w /∈ A by

assumption. So our original assumption was false, and x 6= y.

Now d(x,y) ≤ 2(n−k) = 2 j with equality iff xα = 0,α = k+1, . . . ,n and yβ = 0,β = 1, . . . ,n−k.

In that case, d(w,x) = j and d(w,y) = j, so w ∈ C2 j(A). Let a = |{xα : xα = 1,α = k + 1, . . . ,n}|

and let b = |{yβ : yβ = 1,β = 1, . . . ,n− k}|. Then d(w,x) = j−a and d(w,y) = j−b, by definition.

But d(x,y) = 2 j− a− b since changing some of the bits xα(α = k + 1, . . . ,n) to 1 can only reduce

d(x,y) by the number of bits changed (since the corresponding bits of y are always 1, since k ≥ n
2 ) and

similarly changing some of the bits yβ (β = 1, . . . ,n− k) to 1 can only reduce d(x,y) by the number

of bits changed (since the corresponding bits of x are always 1). So d(x,y) = d(x,w) + d(w,y) =

2 j−a−b ≤ 2 j which means that w ∈ C2 j(A) as required.

The bound from the previous theorem is tight; while it will sometimes be the case that w ∈ C p(A)

for some p < 2 j, we cannot guarantee this.

Claim 4.14 Given w and k ≥ n
2 ,k 6= n, ∃A ⊆ {0,1}n such that w /∈ Cp(A) for any p < 2 j, where

j = n− k (i.e. F(w,A) ≥ 2 j).

Proof. Again without loss of generality suppose w = (11 . . .1); a similar argument works for any

element of {0,1}n . Let A be the set of all points with exactly k bits equal to 1. Clearly s(w,A) = k. But
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for any a ∈ A, d(a,w) = j. Suppose w is between a1,a2 ∈ A. Then d(a1,a2) = d(a1,w)+d(w,a2) =

2 j. So F(w,A) ≥ 2 j.

In the other direction, we can show that any degree of convexity implies 1-similarity.

Lemma 4.15 Suppose w ∈ Ci(A) for some i. Then s(w,A) ≥ 1

Proof. By definition of convexity w is between some x,y ∈ A, i.e. d(x,y) = d(x,w) + d(w,y).

Now for each bit w j, j = 1, . . . ,n, either x j 6= y j , in which case either w j = x j or w j = y j , or x j = y j .

Suppose that in that case w j 6= x j. Then define w′ to be w except that w′
j = 1−w j. Now d(w′,x) =

d(w,x)−1 since w′ differs from x in one fewer bit than w does. Similarly d(w′,y) = d(w,y)−1. So

d(x,y) ≤ d(x,w′)+ d(w′,y) < d(x,w)+ d(w,y) = d(x,y) which is a contradiction. So w j = x j . But

then we have shown that for every bit w j either w j = x j or w j = y j. So s(w,A) ≥ 1.

This bound is the best we can do, since:

Claim 4.16 For any i < n and w ∈ {0,1}n, ∃A ⊆ {0,1}n such that w ∈ Ci(A) but s(w,A) = 1.

Proof. Without loss of generality suppose that w = (1 . . . .1). If i is even, i.e. i = 2p, p ∈ Z

then define x ∈ {0,1}n s.t. xi = 1 ⇔ i ≤ n− p and define y ∈ {0,1}n s.t. y j = 1 ⇔ j > p. Then

d(x,y) = 2p = d(x,w) + d(y,w) (p is of course ≤ n
2 ). If i is odd, i.e. i = 2p + 1, p ∈ Z, define

x ∈ {0,1}n s.t. xi = 1 ⇔ i ≤ n− p and define y ∈ {0,1}n s.t. y j = 1 ⇔ j > p + 1. Then d(x,y) =

2p + 1 = d(x,w)+ d(y,w). Now let A be the set containing only the elements x,y. By construction,

w ∈ Ci(A), but neither x nor y contains the positional substring of length 2 with bit 1 and bit n equal

to 1, which is certainly in w. So s(w,A) < 2, but by the previous result we know that s(w,A) ≥ 1. So

s(w,A) = 1.

So it seems that the fact that w is in some convexification of A implies little about its similarity

to A. This should not be surprising, as similarity is a strong requirement. For any given k ∈ Z
+, w is

a member of
(n

k

)

subcubes of {0,1}n of dimension (n− k). The statement s(w,A) ≥ k implies that A

contains some element of every one of those subcubes. An element of A can be in more than one such

subcube, so A can have fewer than
(n

k

)

elements, but by contrast, the statement that w ∈ Ck(A) only

requires that A contains 2 elements, say x,y, such that d(x,y) = d(x,w)+d(w,y) and d(x,y) = k. The

requirement imposed by Hamming distance is even less strict - d(x,A) = k only requires A to contain

one point y such that d(x,y) = k.

Could we strengthen the convexity requirement to try to find a stronger relationship with similar-

ity? Under the existing definition, an element w is in Ci(A) if there is at least one pair x,y ∈ A such

that w is between x and y. Define the more restrictive set Ci j(A) to be all elements w ∈ {0,1}n that

are between at least j pairs of elements of A each no more than distance i apart. These pairs must be

distinct but do not have to be disjoint.
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Definition 4.17 Ci j(A) = {w ∈ {0,1}n : ∃xk,yk ∈ A,k = 1, . . . , j : d(xk,w)+d(w,yk) = d(xk,yk)≤ i}.

So by our previous definition of convexification, Ci(A) = Ci1(A). This allows us to say slightly

more about the relationship between convexity and similarity.

Lemma 4.18 w ∈ C22(A) ⇒ s(w,A) ≥ 2.

Proof. w ∈ C22(A), so at least 3 neighbours of w (i.e. elements of {0,1}n that differ from w in

exactly one bit) are in A, say n1,n2,n3. Suppose they differ from w in positions i, j,k respectively.

Then any positional substring of w that is missing from n1 must differ from n1 in position i and

similarly any positional substring of w that is missing from n2 must differ from n2 in position j,

and any positional substring of w that is missing from n3 must differ from n3 in position k. So any

positional substring of w that is missing from all elements of A must differ from them in positions

i, j,k. But it must therefore be of length at least 3.

However, the following result shows that the measures are still quite different, even for low simi-

larity.

Theorem 4.19 Suppose w ∈ {0,1}n. Let α = 6n−15. Then there is a set A such that w ∈ C3α(A) ⊆

{0,1}n and |A| = 3n−3 but s(w,A) = 2.

Proof. Suppose without loss of generality that w = (00 . . .0).

Now consider the set A which contains x1 = (1000 . . .0), x2 = (0100 . . .0) and x3 = (0010 . . .0).

Suppose A also contains all yi ∈ {0,1}n with either exactly 2 bits equal to 1 in positions 1,2,3, or with

exactly 1 bit equal to 1 in positions 1,2,3 and 1 bit equal to 1 in positions 4,5,. . . ,n. Now there are
(3

2

)

+3(n−3) = 3n−6 vectors yi, since there are
(3

2

)

= 3 vectors with two 1’s in positions 1,2,3 and

3(n− 3) with exactly one 1 in position 1,2 or 3 and one 1 in positions 4, . . . ,n. So ∀i,d(w,x i) = 1

and ∀ j,d(w,y j) = 2. Moreover, each x j is distance 3 from exactly 1 + 2(n − 3) of the yi, and in

that case d(x j,w)+ d(w,yi) = 1 + 2 = 3 = d(x j,yi), which means that w is between x j and yi. w is

therefore between 3(1+2(n−3)) = 6n−15 pairs of elements of A, so w ∈ C3,(6n−15)(A). But there

is no element a ∈ A such that a has 0 in positions 1,2,3. So the similarity of w to A is at most 2, as

required. Further, since A contains the xi (of which there are 3) and the y j (of which there are 3n−6),

|A| = 3+3n−6 = 3n−3.

We conclude that a statement about convexity, or flanking, even with this modified definition is

unlikely to guarantee a significant degree of similarity, and that the measures are quite different. In

a sense, this is good news. Intuitively, there are many different ways that a new example (such as a

new patient) can be “like” a set of previously seen examples (e.g. patients). Indeed if a new example
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is very “like” previously seen examples in more than one way, intuitively we should be even more

confident about classifying it based on experience of those examples than if it were very like the

previously seen examples in one way but unlike them in another. Experimental results in Section 7

support this intuition; an example w which is both very similar to, and closely flanked by, a training

sample A, is more likely to be accurately classified by a hypothesis h generated from A than a new

example x which is, for example, very similar to A but not closely flanked by it.

5 Other Uses of Confidence Measures

Up to now, we assumed that we had a hypothesis h about the target function F and were using

similarity, convexity, prevalence or Hamming distance to determine confidence. We can also use

similarity and convexity for other purposes, including directly predicting F(y) for a new example y.

5.1 Confidence Measures as a Means of Prediction

5.1.1 Similarity

In general, the fact that for some element y ∈ {0,1}n and training sample A we have s(y,A) = k is not

in itself enough to be sure about F(y), even for large k. However, in certain circumstances we can be

sure, as shown by the following result.

Lemma 5.1 Suppose it is known that the target function F ∈ Dn,k for some n,k ∈ Z. Let A ⊆ {0,1}n

be a set of examples, and split A into A− = {x ∈ A : F(x) = 0} and A+ = {x ∈ A : F(x) = 1}. Then

s(y,A−) ≥ k ⇒ F(y) = 0.

Proof. Assume that F(y) = 1. Since F ∈ Dn,k it can be written as a disjunction of monomials

each of length ≤ k. F(y) = 1 implies that at least one of these monomials of length ≤ k must give 1

on y. Suppose the monomial is dependent on the values of bits in positions b i, i = 1, . . . , j, j ≤ k. But

since s(y,A−) ≥ k there must be z ∈ A− with the same values as y in the bits bi. So the monomial

must give the same result for z as for y, i.e. F(z) = 1. But this is a contradiction since z ∈ A−. Hence

our assumption that F(y) = 1 must be false, and the result follows.

Note that the proof does not rely on the hypothesis h. Unfortunately, the corresponding result

with s(y,A+) ≥ k does not hold, as the following counterexample shows.

Example 5.2 Consider the function F = u3u4 ∨ u2u4 ∨ u2u3 ∨ u1u4 ∨ u1u3 ∨ u1u2. Clearly F ∈ D4,2,

and A+ = {(0011),(0101),(0110),(1001),(1010), (1100)} is a set of positive examples. Consider

y = (0000). Now F(z) = 1, ∀z ∈ A+, and all positional substrings of y of length 2 appear in at least

one element of A+, so s(y,A+) ≥ 2. But F(y) = 0.
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It is interesting that similarity makes it easier to determine whether a new example is a negative

example, and suggests that we should consider the complement of F , F , defined by F(x) = 1 −

F(x), ∀x ∈ {0,1}n .

Corollary 5.3 Let G be the complement of F. For any y ∈ {0,1}n with s(y,C+) ≥ k for some C+ a

set of positive examples for G, G(y) = 1.

The proof is immediate from the previous result, since C+ is a set of negative examples for F .

But what is G? In general it will not be a k−DNF, but it is well known that if F has at most d

terms in its DNF, its complement will have terms with at most d literals, i.e. G ∈ Dn,d . This leads to

the following corollary:

Corollary 5.4 Suppose it is known that the target function F can be represented by a DNF with at

most d terms, i.e. F ∈ Dd
n,k for some k ∈ Z

+. Suppose A+ is a set of positive examples of F. Then

∀y ∈ {0,1}n,s(y,A+) ≥ d ⇒ F(y) = 1.

Proof. Define G(x) = 1−F(x). We know that G ∈ Dn,d , and A+ is a set of negative examples of

G. So by previous lemma, s(y,A+) ≥ d ⇒ G(y) = 0. But G(y) = 0 ⇒ F(y) = 1.

We present experimental results in Section 7.3 which suggest that if a new example is more

similar to the set of positive examples A+ than the set of negative examples A−, it is more likely to be

a positive example.

5.1.2 Convexity

Ekin et al. (1998) defined a class of functions which they called k-convex.

Definition 5.5 k-convex

A function f : {0,1}n →{0,1} is k-convex if and only if for any two points x,y ∈ {0,1}n with f (x) =

f (y) = 1 and d(x,y) ≤ k, f (z) = 1∀z s.t. d(x,y) = d(x,z)+d(z,y).

In other words, a function f is k-convex if any point between two true points of f that are distance

no more than k apart is itself a true point. To illustrate this in another way, if we consider the two

points x and y as opposite corners of a subcube of co-dimension ≤ k, all points in the subcube must

also be true points. Alternatively, f is k-convex if and only if the k-convex hull of f is equal to f

itself.

Clearly if we know that our target function F is k-convex for some k ∈ Z
+, and we have a new

example x ∈ {0,1}n which is flanked by the positive elements A+ of the training sample, such that

21



F(x,A) ≤ k, we know that x is between two true points of the function distance no more than k apart

and so it must be a true point, i.e. F(x) = 1. But how likely is it that our target function will be

k-convex? Ekin et al. showed that if Φ(n,k) is the set of k-convex functions on {0,1}n , we have:

2
2n

∑k
i=0 (n

i) ≤ |Φ(n,k)| ≤ (3k)2n−k

which even for relatively small n,k is a tiny fraction of the total number of possible Boolean func-

tions, i.e. 22n
. However, we might suppose that while a randomly chosen Boolean function is unlikely

to be k-convex, Boolean functions that are encountered in practice as the underlying function for some

real-world phenomenon are generally not completely random and may have enough regularity to be

k-convex, at least for small k.

5.2 Using Confidence Measures to Identify Outliers in a Sample

As well as asking how similar a new example x is to our training sample A we can ask, for each a ∈ A

how similar a is to A\a, i.e. to the rest of the training sample. Our interest in this measure comes from

the intuition that an example with low similarity to the rest of the sample is likely either to contain

errors or to be a particularly unusual instance of a class which merits closer study on its own. We

propose the following algorithm for determining similarity to the rest of the sample:

Algorithm 5.6 j,k-Outliers

Generate all monomials with ≤ j literals.

for each monomial m

for each example a ∈ A

If m(a) = 1 associate a with m. If m has > k associated examples, discard it

end for

end for

Let S be the set of outliers. Set S = /0

for each remaining monomial m

Add any associated examples to S.

end for

Output S

When this algorithm is run with k = 1, the output is all examples with similarity ≤ j to the rest of

the sample A. The inclusion of the k parameter allows us to classify the members of a set T of up to

k examples as outliers if the similarity of any t ∈ T to A\T is ≤ j.

The similarity of a ∈ A to A\a is closely related to the specification number of a, as defined by

Anthony, Brightwell & Shawe-Taylor (1995).
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Definition 5.7 Specification Number

The specification number of a ∈ A is the smallest number of bits of a which we need to know to

distinguish a from any other element of A.

Another way of writing this definition is that the specification number is the length of the shortest

positional substring that distinguishes a from the rest of A. But this is just 1 more than s(a,A\a).

How long does the algorithm take? Recall that computing exactly the similarity of an arbitrary

w ∈ {0,1}n to a set B ⊆ {0,1}n is NP-hard, and so we cannot expect to compute the specification

number in polynomial time. However, the algorithm given here computes, for each a ∈ A whether

s(a,A\a) ≤ j for fixed j. As we have seen before (Algorithm 4.9 on page 15), this can be done

efficiently. The first two for loops compare each monomial with each example at most once, which

will take O(|A|n j) time. The last for loop takes O(kn j) time, since each monomial is examined at

most once, and has at most k associated examples. So the algorithm runs in O((|A|+ k)n j) time,

which is of the same order of magnitude as learning a Dn,k function (Algorithm ?? on page ??).

As well as similarity to the whole sample, we can split A into A−∪A+ where A− is the set of all

negative examples, and A+ the set of all positive examples. We then compute outliers for A+ and A−

separately, remove them, and recalculate our hypotheses. We propose the term removing type outliers

for this process, and the term removing sample outliers if we compute outliers for A as a whole and

then remove them. Note that the process of removing type outliers will always remove at least as

many elements as removing sample outliers, since the similarity of a positive (negative) element to

A+ (respectively A−) cannot be higher than the similarity of that element to A as a whole, and could

well be lower.

We ran experimental tests on standard datasets (listed in Section 7), identifying possible outliers

using similarity and removing them. However any improvement in accuracy was limited, or we had to

classify a significant fraction of the dataset as outliers to see any improvement. The most promising

experiment took the difficult Pima Indian Diabetes dataset (see Section 7.1.2) and removed any type

outliers that had a similarity of less than 4 to the set of positive or negative examples in the sample.

There were 166 such, out of 392 examples. We show later that this dataset is inconsistent with an

underlying function in D16,5. However, with the type outliers removed, the dataset was found to be

consistent with D16,5, and indeed with the simpler hypothesis space D16,4. Classification accuracy also

increased to 82.9% with type outliers removed, against 65.6% for the dataset as a whole (although

given the number of examples that we had to remove, perhaps this is not surprising). We suggest

some avenues for further work in Section 8.1.5.
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6 Modified Dn,k Learning Algorithm including Confidence Measure

The standard Dn,k learning algorithm (Algorithm ?? on page ??) is efficient, but the hypotheses it

generates tend to classify too many examples as positive examples. Valiant recognised this and termed

it a no false negatives algorithm, i.e. the hypotheses it produced would never wrongly classify a new

example as negative when it was actually a positive example. The following lemma shows why.

Lemma 6.1 Let h be the hypothesis produced by the standard Dn,k learning algorithm, with F ∈ Dn,k

the underlying Boolean function, and let y be a new example, with h(y) = 0. Then y is a negative

example.

Proof. We show that s(y,N) ≥ k where N is the set of previously seen negative examples, and

hence by Lemma 5.1 it must be a negative example. Suppose this is false. Then there is a positional

substring of y, of length ≤ k, which does not appear in any x ∈ N. Consider the corresponding

monomial m. This is not satisfied by any x ∈ N, and so will not have been removed from h by the

standard DNF learning algorithm. So h(y) = 1, which is a contradiction, and the result follows.

So the hypothesis produced by the standard Dn,k learning algorithm classifies a new example as 1

unless it absolutely has to classify it as 0 for consistency, which implies that the hypothesis produced

by the standard Dn,k learning algorithm will sometimes classify an example as positive when it would

be better to classify it as negative, or simply to say “don’t know”. We present a new algorithm which

attempts to produce a more reasonable hypothesis.

Algorithm 6.2 Dn,k Learning Algorithm including Confidence Measure

Suppose A is of size s and the examples are of length n.

Suppose we know that the underlying function F is in Dn,k for some k

Generate functions di where each one is the disjunction of all monomials of length exactly i, for i = 1, . . . ,k

Set the initial hypothesis h to be the identically 0 function.

for each y ∈ A

if y is a positive example then

for each monomial m in h

if m(y) = 1 add 1 to the prevalence count for m.

end for

for j = 1, . . . ,k

for each monomial m in d j

if m(y) = 1 then move m to h and set the prevalence count of m to 1.

end for
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end for

else (y must be a negative example)

for each monomial m in h

if m(y) = 1 remove m from h

end for

for j = 1, . . . ,k

for each monomial m in d j

if m(y) = 1 remove m from d j

end for

end for

end if

end for

output h as our hypothesis.

Lemma 6.3 The hypothesis h is consistent

Proof. We proceed by induction. h is consistent after 0 iterations of the main for loop. Suppose

h is consistent after n ≥ 0 iterations. At iteration n+1 we either:

a) process a negative example. We remove all monomials in h and the di that give 1 on the negative

example. h and the di are clearly still consistent on previously seen negative examples since removing

monomials from a DNF cannot change the classification given to an example from type 0 to type 1.

For any previously seen positive example p, h will contain the set M of all monomials of length ≤ k

that are true on that positive example and on no negative examples. h will classify p as a positive

example unless all elements of M are removed. But then s(p,A−) ≥ k, which by Lemma 5.1 means

that p must be a negative example, which is a contradiction. So h(p) = 1 as desired.

b) process a positive example. We move any monomials in the di that satisfy the example to h. h is

clearly still consistent on all previously seen positive examples, since adding monomials to a DNF

cannot change the classification given to an example from type 1 to type 0. Suppose h gives 1 for

a previously seen negative example. Any monomials that were in h before processing this positive

example give 0 on all previous negative examples, by inductive assumption. So one of the monomials

that we moved to h at this step must give 1 on a previous negative example. But we know that the

di give 0 on all previously seen negative examples, by construction. This contradiction shows that h

must be consistent on previously seen negative examples, which completes the proof.

So h is consistent, which means that in the PAC framework, h will be a probably approximately

correct hypothesis, given a large enough training sample. It is also memoryless online. Further, we

can recover the hypothesis that would have been generated by the standard Dn,k learning algorithm; it

is just the disjunction of h with all the di.
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The running time of the algorithm is O(snk), since the main loop repeats s = |A| times, and each

iteration through the loop involves evaluating all the remaining monomials once. To see that each

iteration takes O(nk) time, recall that the number of monomials of length at most k is bounded above

by ∑ j=1,...,k

(2n
j

)

, which is less than (2n)k = O(nk). This is the same running time as the standard Dn,k

learning algorithm.

However, this algorithm gives us more than a potentially PAC hypothesis. Suppose we have a

hypothesis h and a new example z. There are 3 possible cases:

1. h(z) = 1. In this case some of the positional substrings in z have only previously been seen in

positive examples, which suggests that z is also a positive example. But if we are cautious, we may

wish the algorithm to output “don’t know” if the prevalence count p(z,h,A) is low, or even to classify

z as a negative example. Experimental evidence in Section 7 suggests that when p is less than 10

or about 5 percent of the sample, we should certainly classify z as “don’t know” at best, and indeed

the hypothesis is often improved if we remove low prevalence monomials from it altogether (which

would classify z as type 0). However, the hypothesis would no longer necessarily be consistent.

2. h(z) = 0 and di = 0 ∀i. Let hd be the disjunction of h with all the di (i.e. the hypothesis gen-

erated by the standard Dn,k learning algorithm). Then hd(z) = 0. Lemma 5.1 implies that z must be a

negative example.

3. h(z) = 0 and di = 1 for some i. Consider any monomial in di that is satisfied by z. It cannot

correspond to a positional substring from any negative example, as that would have been removed by

the algorithm. Similarly it cannot correspond to a positional substring appearing only in a positive

example, as it would then be in h (which would mean that h(z) = 1). So it must represent a positional

substring which does not appear in any member of the training sample. To put it another way, z is at

most (i−1)-similar to the training sample. When i is small, we should say “don’t know” as we have

no evidence either way. For i large, we might feel justified in supposing that z is a negative example.

So we can post-process the classification given by the hypothesis to any new example by applying

two confidence parameters: a minimum prevalence count, below which a new example cannot be

classified as type 1, and a minimum similarity, below which a new example cannot be classified as

type 0. The exact values of these confidence parameters will vary depending on the trade off we are

willing to make between not classifying an example at all (i.e. “don’t know”) and the risk that our

classification will be wrong. We consider the use of prevalence count in Section 7.
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6.1 An Example Using the Algorithm

Consider a simplified medical diagnosis agent. This agent will be designed to diagnose a single dis-

ease (call it ‘bronchitis’) and will only consider 4 symptoms:

1. Cough

2. Fever

3. Headache

4. Positive Chest X-Ray

We suppose that the actual diagnostic rule for bronchitis is: Cough AND Fever AND NOT(Positive

Chest X-Ray); for the sake of this example assume that a Positive Chest X-Ray indicates some more

serious disease. Whether or not the patient has a Headache is irrelevant to the diagnosis.

Suppose the agent uses the algorithm above. How does its hypothesis change during the learning

process, as it sees new examples (i.e. patients)?

The first patient has Cough AND Fever AND Positive X-Ray AND NOT (Headache). The agent

is told that he does not have bronchitis. It does not modify its basic hypothesis h, which remains at

the identically 0 function, but does remove those monomials that give 1 on this patient from the d i

functions. So for example d1 is now Headache OR NOT (Cough) OR NOT (Fever) OR NOT (Positive

X-Ray), reflecting the fact that the agent has not yet seen any patients with these symptoms.

The second patient has Cough AND Fever AND Headache AND NOT (Positive X-Ray). She

does have bronchitis. The agent adds all possible combinations of symptoms from this patient to its

hypothesis. The hypothesis is now:

(Cough AND Fever AND Headache)

OR (Cough AND Fever AND NOT Positive X-Ray)

OR (Cough AND Fever AND Headache AND NOT Positive X-Ray)

OR (Cough AND Headache and NOT Positive X-Ray)

OR (Fever AND Headache and NOT Positive X-Ray)

OR (Headache AND NOT Positive X-Ray)

OR (Cough AND Headache)

OR (Cough AND NOT Positive X-Ray)

OR (Fever AND Headache)

OR (Fever AND NOT Positive X-Ray)

OR Headache

OR (NOT Positive X-Ray).

Note that it does not include, for example, the set of symptoms Cough OR Fever OR (Cough AND

Fever), since this set was excluded by the previous negative example.

The third patient has Cough AND Headache AND NOT(Fever) AND NOT(Positive X-Ray). He
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does not have bronchitis. The agent removes all monomials in its hypothesis that give 1 on this

patient, and does the same for the di functions. The hypothesis is now:

(Cough AND Fever AND Headache)

OR (Cough AND Fever AND NOT Positive X-Ray)

OR (Cough AND Fever AND Headache AND NOT Positive X-Ray)

OR (Fever AND Headache and NOT Positive X-Ray)

OR (Fever AND NOT Positive X-Ray)

OR (Fever AND Headache).

The fourth patient has a Cough AND NOT(Fever) AND NOT(Headache) AND NOT(Positive X-

Ray). He does not have bronchitis. The hypothesis is unchanged, but any monomials in the d i func-

tions that give 1 on this patient would be removed.

We now consider that our agent is fully trained, and present it with two new patients for it to

classify.

The first new patient has Fever AND Positive X-Ray AND NOT(Headache) AND NOT(Cough).

The hypothesis would correctly classify this patient as not having bronchitis. If the agent post-

processes the hypothesis by refusing to diagnose any patient with a previously unseen symptom

(equivalent to refusing to classify any new example with similarity 0 to the training sample), it would

reply “don’t know”, since it has never seen a patient without a Cough. Note that the hypothesis from

the standard Dn,k learning algorithm would diagnose bronchitis in this patient.

The second new patient has Cough AND Fever AND NOT(Headache) AND NOT (Positive X-Ray).

The agent correctly classifies this patient as having bronchitis, provided that it is not concerned with

the prevalence count. If the agent post-processes the hypothesis by refusing to diagnose based on a

set of symptoms until it has seen that set of symptoms in at least N > 1 patients in the training sample,

it would say “don’t know” for this patient (and indeed would be unwilling to classify any patient as

having bronchitis until we have given it some more training examples that it is told have bronchitis).

We will see in Section 7 that refusing to classify based on low prevalence monomials is often the

correct strategy, even if it is not in this particular case.

7 Experimental Results with Confidence Measures

We now present the results of a number of experiments using the confidence measures and algorithms

presented in this paper. The algorithms were implemented in C], a language similar to Java and C++,

using the free open source SharpDevelop environment (Kruger et al. (2000)). Veal (2005b) has used

this code to develop a learning application, and full source code for that application, which includes

the algorithms presented in this paper, can be found on his website.

The experiments use the following standard datasets from the Machine Learning Database at UCI
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(Hettich et al. 1998):

1. A dataset based on a study of breast cancer patients at the University of Wisconsin. This dataset

(which we refer to as Breast Cancer Wisconsin, or BCW) is known to be relatively easy to

produce good hypotheses for. Patients in the study are classified into two types, corresponding

to the type of their disease: benign or malignant. The hypothesis generated by our algorithm

attempts to classify them based on their symptoms and the results of various medical tests.

2. A dataset based on a study of the incidence of diabetes among the Pima Indians. This dataset

(which we refer to as Pima Indian Diabetes, or PID) is known to be difficult to produce good

hypotheses for. Patients are classified as either having diabetes or not. As for the BCW dataset,

the hypothesis generated by our algorithm attempts to classify the patients based on their symp-

toms and the results of various medical tests.

3. A dataset based on the study of radar reflections from the ionosphere. We include this dataset

(which we refer to as Ionosphere) to broaden our experimental data beyond medical datasets,

which similarity might be expected to be particularly useful for. The dataset includes two

types of radar observations of particles in the ionosphere, classified as “good” (there was radar

reflection) or “bad”.

4. A dataset based on voting records from the US Congress. We include this dataset (which

we refer to as Voting) for two reasons: to further reduce any bias towards medical datasets,

and because this dataset is already binarized (voting records are naturally binary since a voter

is either for or against a proposal). This means that we can avoid the binarization step and

assess the learning algorithm in isolation. Each element in this dataset represents a single

Congressman/ Congresswoman. The aim is to determine the party that each one belongs to,

based on their voting record. This dataset is known to be easy to produce good hypotheses for.

We first removed any examples in the datasets which had missing input values (i.e. the value of

some input was not given for that example). We then transformed the numeric inputs into binary ones

using the process outlined in Section 3 (except for the Voting dataset), then took each dataset and

partitioned it at random into four subsets. We removed one subset (call it the test set) and used the

other three subsets as a training sample for our learning algorithm (Algorithm 6.2 on page 24). We

then applied the generated hypothesis to the test set and for each example in that subset, compared

the classification given by the hypothesis with the true classification. We repeated this process for

each of the four subsets. At the end of this process, which is known as 4-fold cross validation, each

item x in the dataset had been in the test set exactly once, and we had a classification for it based on

a hypothesis generated by our algorithm. Clearly this process could be generalised to p-fold cross
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validation by partitioning into p subsets. We repeated this process 10 times, with a different random

partitioning each time, and took the average accuracy of the hypotheses generated.

7.1 Does High Confidence Imply High Accuracy?

We looked at whether the fact that an example is “like” the training sample, in the sense of any of

the confidence measures given above, implied that our hypothesis was more likely to be correct for

that example than for other examples which were less “like” the training sample. To do this, we

calculated, for each example y in each test set:

1. the similarity to the corresponding training sample A i.e. s(y,A);

2. the degree to which the item is flanked by A, i.e. F(y,A);

3. the Hamming distance from y to A i.e. d(y,A);

4. for an example classified as type 1 by the algorithm, the maximum prevalence count of any

monomials that the example satisfies, i.e. p(y,h,A).

We then group the items by similarity, flanking distance, Hamming distance and prevalence, and

compute the accuracy of the hypothesis for each group. Accuracy is defined as the percentage of

items in each group correctly classified by our hypothesis. For example, we look at the accuracy on

all items y such that s(y,A) ≥ 5 and the accuracy for those items such that F(y,A) ≤ 3. We also do

pairwise comparisons; for example, we look at all items y such that both d(y,A) ≤ 2 and s(y,A) ≥ 5.

In the tables of results in this section, the numbers in brackets show the number of examples in

each group. The percentage figures are the accuracy of the generated hypotheses on examples in that

group.

7.1.1 Wisconsin Breast Cancer Dataset

We start with probably the easiest dataset, the University of Wisconsin Breast Cancer study. We

manipulate it as above, and find a support set with 12 binary inputs. We look for a hypothesis in D12,5.

Recall that the output of the algorithm includes the similarity functions (called d i) for similarity i ≤ 5.

Table 1 shows the accuracy on the test set as a whole, and accuracy on subsets of the test set with

flanking distance and/ or similarity constrained (note that the category ALL includes all items within

the dataset, even items that are not flanked by A, or have low similarity to A). The improvement

in accuracy for high similarity and close flanking is strikingly visible when shown graphically (see

Figure 2).
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Flanking/ Similarity ALL s(y,A) ≥ 4 s(y,A) ≥ 5 s(y,A) ≥ 6
ALL (680) 94.9% (670) 95.4% (620) 97.6% (584) 99.3%

F(y,A) ≤ 5 (679) 94.9% (670) 95.4% (620) 97.6% (584) 99.3%
F(y,A) ≤ 4 (674) 95.1% (667) 95.5% (619) 97.6% (584) 99.3%
F(y,A) ≤ 3 (656) 95.4% (652) 95.7% (615) 97.7% (581) 99.3%
F(y,A) ≤ 2 (624) 97.1% (621) 97.2% (604) 98.3% (576) 99.5%

Table 1: Wisconsin Breast Cancer Data: Accuracy vs Similarity and Flanking Distance

ALL <= 5 <= 4 <= 3 <= 2

ALL

>= 4

>= 5
>= 6

90%

91%
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Accuracy using D(n,k) learning algorithm on Wisconsin Breast Cancer 
data

Figure 2: Wisconsin Breast Cancer Data: Accuracy vs. Similarity and Flanking Distance
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Flanking/ Hamming distance ALL d(y,A) ≤ 2 d(y,A) ≤ 1 d(y,A) = 0
ALL (680) 94.9% (679) 94.9% (662) 95.3% (566) 100.0%

F(y,A) ≤ 5 (679) 94.9% (679) 95.3% (662) 95.3% (566) 100.0%
F(y,A) ≤ 4 (674) 95.1% (674) 95.4% (660) 95.4% (566) 100.0%
F(y,A) ≤ 3 (656) 95.4% (656) 95.4% (656) 95.4% (563) 100.0%
F(y,A) ≤ 2 (624) 97.1% (624) 97.1% (624) 97.1% (560) 100.0%

Table 2: Wisconsin Breast Cancer Data: Accuracy vs Hamming Distance and Flanking Distance

We can also look at how accuracy changes when we impose restrictions on the Hamming distance

of the new examples from the training sample, and on the flanking distance. This is shown in Table 2

on page 32 and Figure 3.

Figure 3: Wisconsin Breast Cancer Data: Accuracy vs. Hamming Distance and Flanking Distance
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Accuracy using D(n,k) learning algorithm on Wisconsin Breast Cancer data

Interestingly, the hypothesis is 100% accurate on any new example which is at Hamming distance

0 from the training sample (i.e. identical to an example in the training sample). In other words, the

hypothesis is consistent, which implies that the BCW data is consistent with a hypothesis in D12,5.

We will see later that this is not the case for the more difficult PID dataset.

Finally, we consider the usefulness of the prevalence count. Recall that each monomial m i in the

output hypothesis h is true on a certain number of positive examples in the training sample (and no

negative examples). A new example x which is classified as a positive example must satisfy at least

one of these monomials. Take the monomial with the highest prevalence count that is satisfied, and

as in Section 4.2, call this the maximum positive prevalence of x on A, p(x,h,A). Now graph the

accuracy of our hypothesis h on x against the maximum positive prevalence of x. Figure 4 on page

33 shows that, as expected, classification based on a low prevalence count is unreliable (in the figure,

the column labelled q covers all values of maximum positive prevalence between q and q + 9). We

note that for a maximum positive prevalence below 50, the hypothesis is no better than chance, which
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Wisconsin Breast Cancer data
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Figure 4: Wisconsin Breast Cancer Data: Accuracy vs. Prevalence Count

suggests that “don’t know” would be an appropriate response from it. Above that level, increasing

prevalence appears to make little difference to the accuracy.

7.1.2 Pima Indian Diabetes Dataset

Now consider the Pima Indian Diabetes (PID) dataset. When binarized, the dataset has 16 inputs per

example, and we look for a hypothesis in D16,5. The accuracy of this hypothesis for given similarity

and flanking distance is shown in Table 3 on page 34 and in Figure 5 on page 35. We also show the

accuracy of the hypotheses for given similarity and Hamming distance in Table 4 on page 34 and

Figure 6 on page 35. Note that the accuracy on new examples which are at (Hamming) distance 0

from the training sample (i.e. identical to examples in the training sample) is 98.6%. Recall that our

learning algorithm is consistent, and so (Definition 2.8 on page 5) given a consistent training sample it

will produce a consistent hypothesis. Since the hypothesis here is not consistent, the PID data must be

inconsistent with a hypothesis in D16,5 (compare the BCW data, which appears to be consistent with

a hypothesis in D12,5). We also note that the hypothesis contains a number of monomials with low

prevalence, which means that the hypothesis tends to classify too many examples as type 1. Recall

that in our learning algorithm we introduced a confidence parameter which related to the prevalence

count. If we post-process the algorithm output using this confidence parameter by assuming that any

classification as type 1 based on a monomial with prevalence less than 5 is incorrect, and classify the

example as 0 instead, overall accuracy jumps to 75.2% (vs. 66.1% “uncorrected”). This compares

well with the best classification accuracy on the PID data by known learning algorithms. Note that

all examples are still classified; we could if we were more cautious assume that any classification

based on a monomial with prevalence less than 5 should be changed to “don’t know”. However, in

considering prevalence count, we find that there is no monomial which is true on more than 20 of the
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Flanking/ Similarity ALL s(y,A) ≥ 3 s(y,A) ≥ 4 s(y,A) ≥ 5 s(y,A) ≥ 6
ALL (392) 66.1% (392) 66.0% (373) 66.4% (292) 72.3% (182) 84.0%

F(y,A) ≤ 6 (392) 66.1% (391) 66.0% (373) 66.4% (292) 72.3% (182) 84.0%
F(y,A) ≤ 5 (386) 66.5% (386) 66.5% (370) 66.4% (292) 72.3% (182) 84.0%
F(y,A) ≤ 4 (369) 67.2% (369) 67.1% (358) 67.0% (289) 72.5% (181) 84.0%
F(y,A) ≤ 3 (320) 70.2% (320) 70.1% (312) 70.0% (264) 74.1% (174) 84.3%
F(y,A) ≤ 2 (233) 74.2% (233) 74.2% (231) 74.4% (210) 77.1% (157) 84.5%

Table 3: Pima Indian Diabetes Data: Accuracy vs Similarity and Flanking Distance

Hamming/ Similarity ALL s(y,A) ≥ 3 s(y,A) ≥ 4 s(y,A) ≥ 5 s(y,A) ≥ 6
ALL (392) 66.1% (392) 66.0% (373) 66.4% (292) 72.3% (182) 84.0%

d(y,A) ≤ 2 (387) 66.5% (387) 66.5% (371) 66.5% (292) 72.3% (182) 84.0%
d(y,A) ≤ 1 (329) 70.6% (329) 70.6% (320) 70.5% (270) 74.6% (179) 84.8%
d(y,A) = 0 (102) 98.6% (102) 98.6% (102) 98.6% (102) 98.6% (102) 98.6%

Table 4: Pima Indian Diabetes Data: Accuracy vs Similarity and Hamming Distance

130 positive examples in the dataset (about 15%), so we cannot say that any one example classified as

a positive example by the hypothesis is supported by a monomial of substantially higher prevalence

than the other. The situation was quite different for the BCW dataset; the hypothesis for that dataset

contained monomials which were true on over half the 239 positive examples (and by assumption,

none of the negative examples). These high prevalence count monomials presumably represent broad

underlying structure in the data, which our algorithm has not found in the PID dataset. This agrees

well with the work in Hammer & Bonates (2005), where the maximum prevalence (as opposed to

prevalence count) of a monomial true only on positive examples was 54.2% for the BCW dataset, but

only 16.3% for the PID dataset (they used a slightly more sophisticated binarization algorithm, so the

results may not agree exactly).

7.1.3 Ionosphere Dataset

We now turn to non-medical data, specifically the Ionosphere data mentioned above. This data relates

to radar investigation of particles in the ionosphere; the results of each investigation are classified in

the dataset as “good” or “bad”.

We ran the same experiments using this dataset as for the BCW and PID datasets, and the results

are shown below. Figure 7 on page 35 and Table 5 on page 36 show the accuracy of the hypotheses

against similarity and flanking distance. Note that restricting the hypotheses to those examples that

are closely flanked and very similar to the training sample gives high accuracy, but as for the other

datasets we cannot say that in all cases s(x,A) > s(y,A) means that we should be more confident about

the classification of example x than that of y.
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Figure 6: Pima Indian Diabetes Data: Accuracy vs. Similarity and Hamming distance
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Flanking/ Similarity ALL s(y,A) ≥ 4 s(y,A) ≥ 5 s(y,A) ≥ 6
ALL (348) 73.9% (343) 74.8% (282) 85.2% (209) 94.6%

F(y,A) ≤ 6 (348) 73.9% (343) 74.8% (282) 85.2% (209) 94.6%
F(y,A) ≤ 5 (345) 74.4% (340) 75.2% (282) 85.2% (209) 94.6%
F(y,A) ≤ 4 (331) 76.6% (329) 77.1% (280) 85.3% (208) 94.6%
F(y,A) ≤ 3 (299) 81.8% (299) 82.1% (269) 86.6% (207) 94.5%
F(y,A) ≤ 2 (241) 88.2% (241) 88.2% (233) 89.6% (194) 94.4%

Table 5: Ionosphere Data: Accuracy vs Similarity and Flanking Distance

Interestingly, when we consider the accuracy of the hypothesis against prevalence count (as we

did for the BCW dataset earlier - see Figure 4 on page 33) a similar picture emerges, in that for a

prevalence count above 50, the hypothesis is very accurate; see Figure 8 on page 36. Note that in

both cases we are looking for a hypothesis in D12,5. This merits further investigation to see if some

theoretical or empirical rule can be derived which would give a bound on the minimum prevalence

count to use for classification, given the size of the dataset, the size of the example space (i.e. the

value of n in {0,1}n) and the maximum number of literals in any monomial in the hypothesis.
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Figure 8: Ionosphere Data: Accuracy vs. Prevalence Count

7.1.4 Voting Records Dataset

Finally, consider the Voting Records dataset. We ran the same experiments using this dataset as for

the BCW, PID and Ionosphere datasets, with the exception that there was no need to binarize the

data. There are 16 binary inputs, and we look for a hypothesis in D16,5, as for the PID data. The

results are shown in Table 6 on page 37 and Figure 9 on page 37. Increasing similarity and close

flanking are good measures of confidence, but require us to only classify a small part of the dataset.
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Flanking/ Similarity ALL s(y,A) ≥ 3 s(y,A) ≥ 4 s(y,A) ≥ 5 s(y,A) ≥ 6
ALL (232) 70.9% (228) 71.4% (189) 77.1% (128) 91.1% (100) 99.0%

F(y,A) ≤ 6 (213) 74.8% (211) 75.0% (185) 78.3% (127) 91.1% (100) 99.0%
F(y,A) ≤ 5 (194) 78.8% (192) 79.0% (176 80.7% (127) 91.1% (100) 99.0%
F(y,A) ≤ 4 (176) 83.1% (175) 83.0% (166) 84.0% (126) 92.0% (100) 99.0%
F(y,A) ≤ 3 (154) 88.6% (153) 88.5% (148) 88.6% (123) 93.3% (100) 99.0%
F(y,A) ≤ 2 (125) 94.3% (125) 94.3% (123) 94.2% (115) 94.9% (98) 99.3%

Table 6: Voting Data: Accuracy vs Similarity and Flanking Distance

The overall classification accuracy is however disappointing, as other algorithms are known to be

able to classify this dataset with well over 90% accuracy. This appears to be at least in part due to the

large number of inputs, some of which are unnecessary. We can find, using part of our binarization

algorithm, a support set of size 8. If we then re-analyse the data, the accuracy does improve to over

90%. Again, prevalence count appears to play an important role; the highest prevalence monomial

in the hypothesis gives a classification about as accurate as the hypothesis as a whole. Appendix B

shows that the monomial makes good intuitive sense as a rule when translated into what it actually

represents in the data.

ALL <= 6 <= 5 <= 4 <= 3 <= 2

ALL

>= 3
>= 4

>= 5
>= 6

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Accuracy

Flanking distance

Similarity

Hypotheses generated using D(n,k) learning algorithm on voting 
records dataset

Figure 9: Voting Data: Accuracy vs. Similarity and Flanking Distance

7.2 Comparison of Different Convexification Hierarchies

In Section 4.3, we described a number of different convexification hierarchies. A full analysis of

the hierarchies is a paper in itself, and beyond the scope of this paper, but we present here some

experimental results on the single application convexification hierarchy in particular. We use two of

the standard datasets previously mentioned, the Wisconsin Breast Cancer dataset and the Ionosphere

dataset, and investigate the number of elements (or points) of {0,1}n found by applying a single k-
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convexification to the base training sample A, for k = 2,3, . . . ,n (and at that number as a fraction of

the size of all possible examples, i.e. of {0,1}n). For both BCW data and the Ionosphere data, n = 12,

which means that there are 212 = 4096 possible points. Each slice of the pie chart in Figure 10 on

page 39 represents the number of points that are between two elements x,y ∈ A where d(x,y) = k

and are not between any two elements of A distance less than k apart. The labels on the slices give

the number of points in the slice. For example, the slice “6 convex, 737” shows that there are 737

points in {0,1}n that are between two elements x,y ∈ A where d(x,y) = 6 and are not between any

two elements of A distance less than 6 apart.

Note that since k-convexification adds all points between elements of A distance at most k apart, a

k-convexification would add all the elements represented by the slices 2,3, . . . ,k. Also, that all points

in {0,1}12 are between some pair of elements of A. Finally, the size of the base sample (the number

of elements in A) is given here as 154, but in earlier sections the value 680 was given. The difference

is due to the fact that for many of the examples in the BCW dataset, there are several others with the

same binary inputs, and which therefore correspond to the same element of {0,1}12 . The figure of

154 represents the number of distinct elements of {0,1}12 in the dataset.

Now consider the ionosphere dataset. We are again working in {0,1}12, and the convexification

hierarchy looks not dissimilar, as shown in Figure 11 on page 39; again all the points in {0,1}12 are

flanked by elements of the dataset.

We also ran some experimental tests on the iterated convexification hierarchy, but as noted above,

it turns out to be uninteresting for BCW (and indeed for PID and the Ionosphere data as well). The set

of examples that is the result of applying iterated 2-convexification to the datasets is either the whole

of {0,1}n or very nearly so, and C
∗
i (A) = {0,1}n,∀i ≥ 3. This makes it impossible to distinguish ex-

amples on the basis of where they fit in the C
∗
i (A) hierarchy. Simple experiments with the increasing

convexification hierarchy suggests that it is less discriminating than single application convexification,

but more so than iterated convexification. It is however very time consuming to compute.

7.3 Similarity as a Means of Prediction

We discussed the use of confidence measures as a means of predicting the classification of a new

example in Section 5.1, and saw that for target functions which could be represented by DNFs with a

small number of monomials, each with only a small number of literals in it, we could use similarity

to the positive (and negative) examples in the training sample to predict the classification of a new

example. We now present experimental results that show the results of using the similarity of a new

example to the existing examples in this way.

The training sample A is split into the set of positive examples A+ and the set of negative examples

A−. For each element x in the corresponding training set, we computed both s(x,A+) and s(x,A−),

and the difference between them s(x,A+)− s(x,A−). Call this the similarity classification. We then
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Figure 12: Wisconsin Breast Cancer Data: Similarity Classification
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Figure 13: Ionosphere Data: Similarity Classification

looked at the ratio of true examples with each similarity classification to the number of all examples

with that classification. Figure 12 on page 40 and Figure 13 on page 40 show that examples with a

high similarity classification (i.e. that are much more similar to A+ than to A−) are much more likely

to be positive examples.

7.4 Convexity as a Means of Prediction

In an analogous way to the use of similarity for prediction in the previous section, we now consider

whether examples that are more closely flanked by positive examples than negative examples are

themselves more likely to be positive examples.

We split each training sample A into the set of positive examples A+ and the set of negative ex-
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Wisconsin Breast Cancer data - Flanking Classification
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Figure 14: Wisconsin Breast Cancer Data: Flanking Classification
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Figure 15: Ionosphere Data: Flanking Classification

amples A−. For each element x in the corresponding training set, we computed the flanking distances

F(x,A+),F(x,A−). We then calculated the difference between the two flanking distances (call this the

flanking classification) as FC(x) = F(x,A−)−F(x,A+). Recall that low flanking distance implies that

an example is “close” to the corresponding sample, and so this flanking classification will be large

and positive if x is closely flanked by the positive examples and not closely flanked by the negative

examples. It will be large and negative if x is closely flanked by the negative examples and not closely

flanked by the positive examples. We then looked at the ratio of true examples with each flanking

classification to the number of all examples with that classification. Figure 14 on page 41 and Figure

15 on page 41 clearly show that in general, as FC(x) increases, the example is much more likely to

be a positive example, as expected.
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8 Conclusions

The four methods of estimating confidence outlined in this paper are all quite different, and their

degree of usefulness varies by dataset and in particular by the type of the target function t that we

are trying to learn. There is no single measure of how much an element x is “like” A, and indeed

the fact that x can be “like” A in one way and unlike A in another suggests that there are likely to be

other useful confidence measures, measuring different aspects of the relationship between x and A, in

addition to the measures discussed here.

If we can assume that the target function is of a particular type, we can choose one of the measures

as particularly appropriate. For example, where t can be represented as a DNF with a small number

of literals in each term (≤ k, say), and a small number of terms (≤ d, say), similarity is particularly

useful, for the reasons outlined in Section 5.1. On the other hand, when t is a k-convex function, as

discussed by Ekin et al. (1998), flanking distance is likely to prove more useful. In fact in both these

cases, given a simple enough function t and enough data, we can sometimes be 100% confident in

our classification.

Unfortunately, none of the measures outlined in this paper allow us to say in all cases that the

fact that an example x is more “like” our training sample A, as defined by the measure, than another

example y, means that the classification of x by our hypothesis h is more likely to be accurate than

the classification of y by h; indeed Veal’s work shows that in some cases similarity can be misleading.

This is not a particularly surprising conclusion in view of our reluctance to make any probabilis-

tic assumptions about the distribution of the examples; we saw in Section 2.2 that with this type of

assumption, one can make quite strong statements about the appropriate degree of confidence in a

hypothesis. In the absence of such assumptions, we might better call our confidence measures ‘confi-

dence heuristics’ - they suggest that classification is more likely to be accurate on some examples than

others, but do not guarantee it. On the positive side, while the theoretical support for the confidence

measures is not as strong as might be desired, the experimental results presented here suggest that for

every confidence measure discussed, we could almost always attach a higher degree of confidence to

the classification of a example x with a very high value for the measure than to the classification of

another example with a very low value for the measure. Further, in almost all cases, if x has a higher

value for the measure than y does, the expected accuracy of the classification of x will be at least as

high as that of y.

We note that given a training sample A ⊆ {0,1}n, split into positive examples A+ and negative

examples A−, how much a new example x ∈ {0,1}n is “like” A+ and A− is often of more interest than

how much it is “like” A as a whole.

A number of interesting areas for further work are suggested below.
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8.1 Further Work

8.1.1 Errors in Input Data

Apart from the work on outliers, this paper assumes that we are dealing with data sets that are error-

free. When considering real data sets this is an unrealistic assumption and an obvious question is how

learning in general, and confidence measures in particular, are affected by errors in the input data.

It is possible to PAC learn from noisy data (i.e. data with errors), as shown by for example Kearns

(1998). But Algorithm 6.2 on page 24 will not work correctly on noisy data without modification.

Recall that the hypothesis produced by this algorithm is the disjunction of a number of monomials

M = {mi}, each of which has been seen in some positive examples - and no negative examples - in

a training sample A for a target function t. If each example represents a patient, each monomial in

the hypothesis can be thought of as representing a group of symptoms (a “syndrome”) that indicates

the presence of the disease in question. But what if the training sample contains an example which

satisfies some monomial m j ∈ M, but is wrongly classified as a negative example? The learning

algorithm will remove m j from h, even though it may be true on a very large number of positive

examples. We propose the following modification, which it would be interesting to study further,

based on work by Boros et al. (1996).

Consider any monomial m. We can construct two subsets X +,X− ⊆ A, where X+ = {x ∈ A :

m(x) = 1, t(x) = 1} (the positive examples in A that satisfy m) and X− = {x ∈ A : m(x) = 1, t(x) = 0}

(the negative examples in A that satisfy m). Now there are four possible cases:

1. X+ = X− = /0. There are no elements of A that satisfy m. In this case, m should not be in the

hypothesis (indeed it is clearly in one of the similarity functions di defined in Algorithm 6.2 on

page 24).

2. X+ 6= /0,X− = /0. m is satisfied only by positive examples in A. It should appear in the hypoth-

esis, as indeed it would with the unmodified algorithm.

3. X+ = /0,X− 6= /0. m is satisfied only by negative examples in A. It should not appear in the

output hypothesis or the di functions (again this is the same as the unmodified algorithm).

4. X+ 6= /0,X− 6= /0. m is satisfied by both positive and negative examples in A. Boros et al.

suggest that m is assumed to represent a positional substring that should lead to an example

being classified as positive if |X−|
|X+| ≤ τ , for some τ . They note that τ is a “problem dependent

parameter” and suggest, based on experimental evidence, that τ should be between 0 and 0.2.

This deals with the output hypothesis. But how should one calculate similarity with noisy data?

Most work on noise in data distinguishes two types of noise: errors in the classification of an example

(called “classification noise”) and errors in the inputs or attributes for an item, called “attribute noise”.
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If an example has the first type of noise, it will be shown in the training sample as being of type Y

whereas it is actually of type Z 6= Y . If it has the second type of noise, some of the attributes of the

example will be wrong (for example, if an example represents a patient, the patient might be shown

in the dataset as male when she is actually female, or wrongly shown as not having a certain symptom

when she does in fact have it). While we have in this paper often considered similarity to the positive

and negative examples in a dataset separately, the most basic use of similarity does not depend on

the classification of elements of the training sample, which means that classification noise would

have no effect. However, since the presence of attribute noise will change the positional substrings

present in each example, and therefore potentially those present in the dataset as a whole, this type

of noise is clearly more of a problem for calculating similarity. At present, a dataset is classified as

containing any given positional substring s, for the purposes of calculating similarity, if there is at

least one element of the dataset which contains s. One obvious method, by analogy with the method

presented above for the output hypothesis, would be to require at least a certain percentage α > 0 of

the dataset to contain s before we were willing to classify it as present. The obvious question is “what

is a reasonable value of α?”. We leave this as a question for further study, except to note that any

rigorous derivation is likely to involve some probabilistic assumptions about the relative frequency of

attribute values.

8.1.2 Confidence Measures for Other Types of Boolean Function

There are many different types of Boolean function that have been studied in the literature, including

l-term k-DNFs, k-convex functions, threshold functions and Horn clauses (Horn (1951)). Similarity

and convexity seem particularly suited to estimating confidence when the target function is an l-term

k-DNF, or a k-convex function respectively. Are there confidence measures that would be well suited

for the other classes?

8.1.3 Relationship between k-convex Functions and l-term j-DNFs

We considered earlier two classes of Boolean functions, k-convex functions Φ(n,k) and l-term j-

DNFs (written Dl
n, j). What is the degree of overlap between the two classes of function? Let us be

more specific. Suppose we have a function f ∈ Φ(n,k). Can we find bounds j0, l0 ∈ Z
+ such that

f ∈ Dl
n, j∀ j ≥ j0, l ≥ l0? Further work is needed here, although Ekin et al. (1998) did show that where

k > n
2 −1, we can write f as a DNF with at most 2(k+1)

2(k+1)−n terms, which gives us a bound for l when k

is large.
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8.1.4 Prevalence Count and Structure

High prevalence count does seem to correlate with high accuracy, but we have not explored this in

detail. The experimental results suggest that there is a threshold prevalence count (call this γ) above

which classification is accurate, and below which it is not. Is this simply an artifact of the particular

datasets used? Is there some way to calculate or at least bound γ for each dataset, ideally based only

on the size of the dataset and the number of inputs? Hammer & Bonates (2005) do discuss what they

call “strong positive patterns”, which correspond to high prevalence monomials, but do not attempt

to quantify “strong”. It may be that the assumption that examples are presented based on a fixed but

unknown probability distribution is needed to be able to say anything meaningful here.

8.1.5 Outliers

In Section 5.2 we looked at using similarity to classify certain elements of the dataset as outliers.

Experimental results were disappointing; does this mean that similarity is not useful for identifying

outliers? Further work is needed on the theoretical justification for using similarity in this way. The

use of convexity to identify possible outliers would also be worth investigating.

8.1.6 Use of Confidence Measures with other Learning Algorithms

This paper has considered a variety of confidence measures, but only used one learning algorithm

(Algorithm 6.2 on page 24). Are the confidence measures presented here useful in conjunction with

other algorithms? Anthony, Hammer, Subasi and Subasi (in preparation) have investigated using

similarity with a range of learning algorithms available as part of the WEKA package (Witten &

Frank 2005), and the results appear to be similar to the results obtained with the learning algorithm

presented in this paper.

8.1.7 k-convex Hulls

In Section 4.3.1 we conjectured that a sufficient condition for the convex hull of a set A to be the whole

of {0,1}n is that ∀i = 1, . . . ,n we can find x+,x− ∈ A such that x+
i = 1 and x−i = 0, with d(x+,x−)≤ k,

and that n ≤ β (k) for some unknown function β . We know it is true in the trivial case k = n. Is this

true for k < n? If so, what is the function β? Are there simpler conditions we could use?
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pointing out that the complement of an l-term DNF can be written as a DNF with at most l literals in
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A Counterexample for k-convex Hulls

We present a set of points in {0,1}20 such that for i = 1, . . . ,20 we can find x+
i ,x−i with bit i of x+

i = 1

and bit i of x−i = 0, and d(x+
i ,x−i ) ≤ 2, but where the 2-convex hull of the points is not the whole of

{0,1}20 . For each j = 1, . . . ,20 take points p2 j−1 and p2 j. They are distance 1 apart. Form the convex

hull of each pair and then the disjunction of all those convex hulls. As can be verified, this gives the

DNF below. Since each pair of terms in the DNF conflicts in at least 3 literals, this DNF represents a

2-convex function and so will not be changed by further applications of 2-convexification.

u1u2u3u4u5u6u7u8u9u10u11u12u13u14u15u16u17u18u19

∨u1u2u3u4u5u6u7u8u9u10u11u12u13u14u15u16u17u18u20

∨u1u2u3u4u5u6u7u8u9u10u11u12u13u14u15u16u17u19u20

∨u1u2u3u4u5u6u7u8u9u10u11u12u13u14u15u16u18u19u20

∨u1u2u3u4u5u6u7u8u9u10u11u12u13u14u15u17u18u19u20

∨u1u2u3u4u5u6u7u8u9u10u11u12u13u14u16u17u18u19u20

∨u1u2u3u4u5u6u7u8u9u10u11u12u13u15u16u17u18u19u20

∨u1u2u3u4u5u6u7u8u9u10u11u12u13u15u16u17u18u19u20

∨u1u2u3u4u5u6u7u8u9u10u11u13u14u15u16u17u18u19u20

∨u1u2u3u4u5u6u7u8u9u10u12u13u14u15u16u17u18u19u20

∨u1u2u3u4u5u6u7u8u9u11u12u13u14u15u16u17u18u19u20

∨u1u2u3u4u5u6u7u8u10u11u12u13u14u15u16u17u18u19u20

∨u1u2u3u4u5u6u7u9u10u11u12u13u14u15u16u17u18u19u20

∨u1u2u3u4u5u6u8u9u10u11u12u13u14u15u16u17u18u19u20

∨u1u2u3u4u5u7u8u9u10u11u12u13u14u15u16u17u18u19u20

∨u1u2u3u4u6u7u8u9u10u11u12u13u14u15u16u17u18u19u20

∨u1u2u3u5u6u7u8u9u10u11u12u13u14u15u16u17u18u19u20

∨u1u2u4u5u6u7u8u9u10u11u12u13u14u15u16u17u18u19u20

∨u1u3u4u5u6u7u8u9u10u11u12u13u14u15u16u17u18u19u20

∨u2u3u4u5u6u7u8u9u10u11u12u13u14u15u16u17u18u19u20

The set of points {pi} is:
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p1 (11111111111111111110) p2 (11111111111111111111)

p3 (00011111111111111101) p4 (00011111111111111111)

p5 (11100011111111111011) p6 (11100011111111111111)

p7 (11111100011111110111) p8 (11111100011111110111)

p9 (11111111100011101111) p10 (11111111100011111111)

p11 (11111111111100001111) p12 (11111111111100101111)

p13 (11111011111110110001) p14 (11111011111111110001)

p15 (11111111111001101100) p16 (11111111111011101100)

p17 (11111111111011000011) p18 (11111111111111000011)

p19 (01101111110101001111) p20 (01101111111101001111)

p21 (10111111101110100111) p22 (10111111111110100111)

p23 (11001101011111111111) p24 (11001101111111111111)

p25 (11101110001111111111) p26 (11101111001111111111)

p27 (11110101110101111111) p28 (11110111110101111111)

p29 (11111001101110111111) p30 (11111101101110111111)

p31 (11110001111011111111) p32 (11111001111011111111)

p33 (11101110111101110111) p34 (11111110111101110111)

p35 (01011111001110111111) p36 (01111111001110111111)

p37 (10111111110111111001) p38 (11111111110111111001)

p39 (01101011111011011111) p40 (11101011111011011111)
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B Explanation of Key Monomial in Hypotheses on Voting Records

In Section 7.1.4 we found that a single monomial of length 2 (u4u11) was satisfied by 83% of positive

examples and no negative examples in the Voting Records dataset. We investigate here what this

monomial actually means when we relate it back to what the dataset represents.

The dataset shows how each member of the U.S. House of Representatives voted in the 16 key

votes identified by the 1984 Congressional Quarterly Almanac. Each member of the House of Rep-

resentatives is either a member of the Republican party or of the Democratic Party. Our aim was

to find a hypothesis which accurately predicted the party of a member based on their voting record;

arbitrarily, we classify Republicans as type 1 and Democrats as type 0.

The hypothesis h generated by Algorithm 6.2 on page 24 for the Voting Records dataset was

the disjunction of several monomials, including u4u11 which we will call m. Monomial m would

be satisfied by example x if the person represented by x had voted “yes” in vote 4 and “no” in vote

11. Vote number 4 was to extend a pay freeze for physicians (medical doctors). Republicans almost

all voted “yes”, with Democrats strongly against. Vote number 11 was on funding for research into

synthetic fuel (substitutes for crude oil). The motion was that funding should be reduced by a certain

amount; a vote against this motion was generally taken as a desire to reduce funding by even more.

Most (although by no means all) Republicans voted “no”, while Democrats mostly voted “yes”. What

m implies (and this can easily be verified by looking at the dataset) is that anyone who voted for a

physician pay freeze and against a relatively small reduction in funding for research into synthetic

fuels must be a Republican. By checking the dataset, we can see that 83% of Republicans voted in

this way.

We can also ask what the accuracy of m is on the dataset as a whole. If we take our hypothesis

hm to be “IF X voted FOR motion 4 AND AGAINST motion 11 THEN X is a Republican ELSE X

is a Democrat”, we find that it has an accuracy of 92.2%. The accuracy is higher than the percentage

of Republicans whose voting patterns match the rule because the dataset contains more Democrats

than Republicans, and if X is a Democrat the rule will always classify them correctly. Recall that the

unmodified h had an accuracy in the region of 70%, and that to achieve accuracy of above 90% we

had to either disregard low prevalence monomials or to remove some of the unnecessary inputs. This

shows the importance of the prevalence count as a measure of confidence.
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