The Hilbert-Schmidt property of feedback operators

Ruth Curtain

Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands. E-mail:R.F.Curtain@math.rug.nl, Kalle Mikkola Helsinki University of Technology, Institute of Mathematics, Box 1100, 02015 HUT, Finland. E-mail:Kalle.Mikkola@iki.fi, Amol Sasane Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, United Kingdom. E-mail: A.J.Sasane@lse.ac.uk

CDAM Research Report CDAM-LSE-2005-15

November, 2005

1 Introduction

The most popular control design for distributed parameter systems (DPS) is the Linear Quadratic Regulator (LQR) control design. These controllers are infinite-dimensional and in practice one approximates these to obtain implementable finite-dimensional controllers. Conditions for the effectiveness of this approach has been the subject of a number of papers (see for example Banks and Kunisch [2], Burns et al. [4], Gibson [10], Ito [12], [13], Kappel and Salamon [14], King [16], Opmeer et al. [20]).

Here we focus on two properties that are of importance:

P1. The gain operator is Hilbert-Schmidt.

P2. The solution to the Riccati equation is Hilbert-Schmidt or nuclear.

The aim of this paper is to summarize known sufficient conditions and to give new sufficient conditions for P1 and P2 to hold.

The LQR problem we consider is for the abstract linear system

$$\frac{d}{dt} x(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t)$$
, $t \ge 0$, $x(0) = x_0$,

where the control input¹ $u \in L_2(\mathbb{R}_+; U)$, the state $x \in C^{\text{loc}}(\mathbb{R}_+; X)$, and output $y \in L_2(\mathbb{R}_+; Y)$, and U, X, Y are Hilbert spaces. We suppose that A generates a C_0 -semigroup on X, the operator² $C \in \mathcal{B}(X, Y)$, and $(\beta I - A)^{-1}B \in \mathcal{B}(U, X)$ for some $\beta \in \rho(A)$, the resolvent set of the operator A.

The LQR problem is to find $u_{\text{opt}} \in L_2(\mathbb{R}_+; U)$ that minimizes

$$J(x_0, u) = \int_0^\infty \|y(t)\|^2 + \|u(t)\|^2 dt.$$

If B is bounded and the system is exponentially stabilizable, then there exists $u_{opt}(t) = Kx(t)$, where the gain operator K is given by $-B^*Q$, and $Q \in \mathcal{B}(X)$ is the minimal nonnegative solution of the Riccati equation

$$\langle Qx_1, Ax_2 \rangle + \langle Ax_1, Qx_2 \rangle - \langle B^*Qx_1, B^*Qx_2 \rangle + \langle Cx_1, Cx_2 \rangle = 0$$

for all $x_1, x_2 \in \text{Dom}(A)$. If, in addition, U and Y are finite-dimensional, then it is easy to show that Q is nuclear and consequently the gain operator is Hilbert-Schmidt (see Section 3). This means that K can be represented as an integral operator (see for instance Theorem 6.11 on page 139 of Weidmann [24]), which has advantages for designing practical control laws (see the papers by King on functional gains [16], [15], [1]).

The nuclear property of Q implies the existence of finite-dimensional approximants $u_{\text{opt}}(t) = K_n x(t)$ that will stabilize the original system (see Curtain [6]). In the robust LQG design presented in [8] it is sufficient that Q be Hilbert Schmidt.

In many applications the control is implemented on the boundary, in which case B is unbounded. It is important to have conditions for P1 and P2 to hold in this case too. It is already known that if A generates an analytic C_0 -semigroup and $(\beta I - A)^{-\gamma}$ is Hilbert-Schmidt for some $\gamma \in [0, 1)$, then P2 holds (see Remark 2.2.2 on page 128 of Lasiecka an Triggiani [17]). We recall this result in Theorem 4.1 and Proposition 4.4, and use it to obtain sufficient conditions for P1 to hold in Theorem 4.6. These results cover the classical parabolic equations with boundary control (as we illustrate in Example 6.1).

There are, however, operators A that generate analytic semigroups, but for which $(\beta I - A)^{-\gamma}$ is not Hilbert-Schmidt. If A has an accumulation point in its spectrum, then $(\beta I - A)^{-\gamma}$ will never be Hilbert-Schmidt. For this class we derive alternative sufficient conditions for P1 and P2 to hold in Theorem 4.6. In Example 6.2, these results are applied to show that a controlled flexible beam with boundary control has properties P1 and P2. This provides the theoretical justification for the LQG-balancing control design in Opmeer et al. [20].

¹Throughout this article, \mathbb{R}_+ denotes the set of positive real numbers.

²The notation $\mathcal{B}(H_1, H_2)$ is used to denote the space of bounded linear operators from the Hilbert space H_1 to the Hilbert space H_2 .

2 Preliminaries

In this section, we recall the notions of Hilbert-Schmidt and nuclear operators, and also list a few properties of these classes of operators that we will use in the sequel. For background information, we refer the reader to Pietsch [22] and to Weidmann [24].

Let H_1 and H_2 be Hilbert spaces. An operator $T \in \mathcal{B}(H_1, H_2)$ is said to be Hilbert-Schmidt if

$$\sum_{i \in I} \|Te_i\|^2 < +\infty$$

for some orthonormal basis $\{e_i\}_{i \in I}$ for H_1 . The set of Hilbert-Schmidt operators is denoted by $S_2(H_1, H_2)$. Hilbert-Schmidt operators are compact, and they form a two sided ideal:

$$\mathcal{S}_2(H_2, H_3)\mathcal{B}(H_1, H_2) \subset \mathcal{S}_2(H_1, H_3)$$
 and $\mathcal{B}(H_2, H_3)\mathcal{S}_2(H_1, H_2) \subset \mathcal{S}_2(H_1, H_3)$

An operator $T \in \mathcal{B}(H_1, H_2)$ is Hilbert-Schmidt iff its adjoint $T^* \in \mathcal{B}(H_2^*, H_1^*)$ is Hilbert-Schmidt. There are several alternative characterizations of Hilbert-Schmidt operators, and we give one such below.

First we recall the notion of singular values of a bounded linear operator from a Hilbert space H_1 to a Hilbert space H_2 . For $n \in \mathbb{N}$, the *n*th singular value of an operator $T \in \mathcal{B}(H_1, H_2)$ (denoted by $\sigma_n(T)$) is defined to be the distance with respect to the norm in $\mathcal{B}(H_1, H_2)$ of T from the set of operators in $\mathcal{B}(H_1, H_2)$ of rank at most n - 1. Thus $\sigma_1(T) = ||T||$, and

$$\sigma_1(T) \ge \sigma_2(T) \ge \sigma_3(T) \ge \cdots \ge 0.$$

If T is compact, then T^*T is compact and nonnegative, and so the nonzero spectrum of T^*T consists of a pure point spectrum with countably many nonnegative eigenvalues. The square roots of these eigenvalues are then the singular values of T.

An alternative characterization of Hilbert-Schmidt operators is then the following: an operator $T \in \mathcal{B}(H_1, H_2)$ is Hilbert-Schmidt iff

$$\sum_{n\in\mathbb{N}} \left(\sigma_n(T)\right)^2 < +\infty.$$

On the other hand, if the singular values are summable, then the operator is called *nuclear*:

$$\sum_{n\in\mathbb{N}}\sigma_n(T)<+\infty.$$

The set of nuclear operators is denoted by $S_1(H_1, H_2)$. This space has the following ideal property:

$$\mathcal{S}_1(H_2, H_3)\mathcal{B}(H_1, H_2) \subset \mathcal{S}_1(H_1, H_3)$$
 and $\mathcal{B}(H_2, H_3)\mathcal{S}_1(H_1, H_2) \subset \mathcal{S}_1(H_1, H_3)$.

Clearly, every nuclear operator is Hilbert-Schmidt: $S_1(H_1, H_2) \subset S_2(H_1, H_2)$. It can also be shown that product of two Hilbert-Schmidt operators is nuclear, that is,

$$\mathcal{S}_2(H_2,H_3)\mathcal{S}_2(H_1,H_2)\subset \mathcal{S}_1(H_1,H_3).$$

The hierarchy of the classes of operators is shown below, where $\mathcal{K}(H_1, H_2)$ denotes the set of compact operators: $\mathcal{S}_1(H_1, H_2) \subset \mathcal{S}_2(H_1, H_2) \subset \mathcal{K}(H_1, H_2) \subset \mathcal{B}(H_1, H_2)$.

3 Case of bounded, finite rank input and output operators

We recall the following theorem from Curtain and Zwart [8].

Theorem 3.1 Suppose that U, X, Y are Hilbert spaces, and that A be the infinitesimal generator of a C_0 -semigroup \mathfrak{A} on X, $B \in \mathcal{B}(U, X)$, and $C \in \mathcal{B}(X, Y)$. If (A, B) is exponentially stabilizable, then there exists a self-adjoint, nonnegative solution Q in $\mathcal{B}(X)$ such that:

- 1. $A BB^*Q$ generates an exponentially stable C_0 -semigroup \mathfrak{A} on X;
- 2. Q is the minimal solution of the algebraic Riccati equation

$$0 = \langle Ax_1, Qx_2 \rangle_X + \langle Qx_1, Ax_2 \rangle_X + \langle Cx_1, Cx_2 \rangle_X - \langle B^*Qx_1, B^*Qx_2 \rangle_U$$
(1)

for all $x_1, x_2 \in \text{Dom}(A)$;

3. $Q = \mathfrak{C}_Q^* \mathfrak{C}_Q$, where $\mathfrak{C}_Q : X \to L_2(\mathbb{R}^+; Y \oplus U)$ is given by

$$(\mathfrak{C}_Q x)(t) = \begin{bmatrix} C\widetilde{\mathfrak{A}}(t)x\\ B^*Q\widetilde{\mathfrak{A}}(t)x \end{bmatrix}, \quad t \ge 0, \quad x \in X.$$
(2)

We quote the following result from Dumortier [9, Proposition 1.0.2] (see also Grabowski [11] and Curtain and Sasane [7, Theorem 4.1]).

Theorem 3.2 Let A be the infinitesimal generator of a exponentially stable C_0 -semigroup on the Hilbert space X, and $C \in \mathcal{B}(X, \mathbb{C}^p)$. Then the observability operator $\mathfrak{C} : X \to L_2(\mathbb{R}_+; \mathbb{C}^p)$ defined by $(\mathfrak{C}x)(t) = C\mathfrak{A}(t)x, t \geq 0, x \in X$, is Hilbert-Schmidt.

Using the above two results, we obtain the following easy result (see Curtain [5]):

Theorem 3.3 Suppose that A is the infinitesimal generator of a C_0 -semigroup \mathfrak{A} on the Hilbert space $X, B \in \mathcal{B}(\mathbb{C}^m, X)$, and $C \in \mathcal{B}(X, \mathbb{C}^p)$. If (A, B) is exponentially stabilizable, then the minimal solution of the algebraic Riccati equation (1) is nuclear. Furthermore, $B^*Q \in \mathcal{B}(X, \mathbb{C}^m)$ is also nuclear.

Proof: Since $C \in \mathcal{B}(X, \mathbb{C}^p)$ and $B^*Q \in \mathcal{B}(X, \mathbb{C}^m)$, it follows that $\begin{bmatrix} C \\ B^*Q \end{bmatrix} \in \mathcal{B}(X, \mathbb{C}^{p+m})$, which has finite rank. The semigroup generated by $A - BB^*Q$ is exponentially stable, by Theorem 3.1. Applying Theorem 3.2, we obtain that the observability operator $\mathfrak{C}_Q : X \to L_2(\mathbb{R}_+; \mathbb{C}^{p+m})$, defined by (2), is Hilbert-Schmidt. Consequently $Q = \mathfrak{C}_Q^*\mathfrak{C}_Q \in \mathcal{B}(X)$ is nuclear. As $B^* \in \mathcal{B}(X, \mathbb{C}^m)$, it follows that B^*Q is nuclear as well.

4 Analytic case with unbounded finite rank input and output operators

First we introduce some notation. If A is the generator of a C_0 -semigroup \mathfrak{A} , then its growth bound is denoted by ω_A , where the growth bound is defined as

$$\omega_A = \inf_{t>0} \frac{1}{t} \log \|\mathfrak{A}(t)\|$$

Let A be the infinitesimal generator of an analytic C_0 -semigroup \mathfrak{A} on the Hilbert space X, and suppose that $\omega > \omega_A$. Then for all $\alpha > 0$, the fractional power of $(\omega I - A)^{-1}$ is defined by setting

$$(\omega I - A)^{-\alpha} = \frac{1}{\Gamma(\alpha)} \int_0^\infty t^{\alpha - 1} e^{-\omega t} \mathfrak{A}(t) dt \in \mathcal{B}(X).$$
(3)

Furthermore, let $(\omega I - A)^{\alpha} = ((\omega I - A)^{-\alpha})^{-1}$. Let $X_{\alpha} = \text{Dom}((\omega I - A)^{\alpha}) = \text{Ran}((\omega I - A)^{-\alpha})^{-\alpha})$ with the norm $||x||_{X_{\alpha}} = ||(\omega I - A)^{\alpha}x||_{X}$, $x \in \text{Dom}((\omega I - A)^{\alpha})$. For $\alpha < 0$, let X_{α} be the completion of X with respect to the norm $||x||_{X_{\alpha}} = ||(\omega I - A)^{\alpha}x||_{X}$, $x \in X$. Finally, let X_{0} be the Hilbert space X. Hence one obtains a chain of Hilbert spaces X_{α} , parametrized by $\alpha \in \mathbb{R}$. If \mathfrak{A} is analytic, then \mathfrak{A}^{*} is also analytic, and for $\alpha \in \mathbb{R}$, we define $X_{\alpha}^{*} = (X^{*})_{\alpha} = (X_{-\alpha})^{*}$. These sets and their topologies (not norms) are independent of ω .

Below we list a few remarks concerning properties of analytic semigroups, which we will use in the sequel.

R1. If A generates an exponentially stable analytic semigroup, then for each $\alpha \ge 0$, there exist constants $M < +\infty$ and $\epsilon > 0$ such that

$$\|(-A)^{\alpha}\mathfrak{A}(t)\|_{\mathcal{B}(X)} \le M \frac{e^{-\epsilon t}}{t^{\alpha}}, \quad t \in \mathbb{R}_+.$$
 (4)

R2. For any $\omega > \omega_A$, there exists a $\Theta \in \left(\frac{\pi}{2}, \pi\right]$ and there exists a $M = M(A, \omega, \Theta) < \infty$ such that $||(sI - A)^{-1}|| \le \frac{M}{|s - \omega|}$ for all $s \in \Sigma_{\Theta, \omega} := \{s \in \mathbb{C} \mid s \neq \omega, |\arg(s - \omega)| < \Theta\}$. Furthermore,

$$\|(\omega I - A)^{\alpha} (sI - A)^{-1}\|_{\mathcal{B}(X)} \le \frac{M(1 + |s - \omega_0|^{\alpha})}{|s - \omega_0|}, \quad (s \in \Sigma_{\Theta, \omega_0}, \ \omega > \omega_0 > \omega_A, \ \alpha \in [0, 1])$$
(5)

- **R3.** For $\alpha \geq 0$, the restriction of \mathfrak{A} to X_{α} is an analytic semigroup, isomorphic to the original one (using $\mathfrak{A}(t)(\omega I A)^{\alpha} = (\omega I A)^{\alpha}\mathfrak{A}(t))$, with generator $A|_{X_{\alpha+1}}$. Similarly, for $\alpha \leq 0$, \mathfrak{A} has a unique extension to an (isomorphic) analytic semigroup on X_{α} , and we denote its generator by $A|_{X_{\alpha+1}}$. In particular, $\omega_{A|_{X_{\alpha}}}$ is the same for each α .
- **R4.** If we were to start from some X_{β} , $\beta \in \mathbb{R}$ instead of $X = X_0$, then we would obtain the same spaces, semigroups and generators (in particular, $(X_{\beta})_{\alpha} = X_{\beta+\alpha}$, i.e., $(\omega - A|_{X_{\beta+1}})^{-\alpha}X_{\beta} = (\omega - A|_{X_1})^{-(\beta+\alpha)}X_0$).

For properties of analytic semigroups and interpolation spaces X_{α} we refer the reader to Lunardi [18], Pazy [21] or Staffans [23]).

We recall the following result (see Theorems 2.2.1 and 2.2.2 on pages 125–127 of Lasiecka and Triggiani [17] and also §9.5 of Mikkola [19]).

Theorem 4.1 Suppose that:

- A1. A is the infinitesimal generator of an analytic C_0 -semigroup \mathfrak{A} on a Hilbert space X.
- A2. There exists $\alpha_B \in (-1, 0]$ such that $(\omega I A)^{\alpha_B} B \in \mathcal{B}(U, X)$, that is, $B \in \mathcal{B}(U, X_{\alpha_B})$, where $\omega > \omega_A$ and U is a Hilbert space.
- A3. $C \in \mathcal{B}(X, Y)$, where Y is a Hilbert space.
- A4. (Exponential detectability) There exists $L \in \mathcal{B}(Y, X)$ such that the analytic C_0 semigroup with generator A + LC is exponentially stable on X.
- A5. (Finite cost condition) For each $x_0 \in X$, there exists $u \in L_2(\mathbb{R}_+; U)$ such that the mild solution x to $\frac{d}{dt}x(t) = Ax(t) + Bu(t)$, $x(0) = x_0$, satisfies $Cx(\cdot) \in L_2(\mathbb{R}_+; X)$.

Then there exists a self-adjoint, nonnegative $Q \in \mathcal{B}(X)$ such that:

1. The operator $A_Q = A - BB^*Q$ with $Dom(A_Q)$ given by

$$\{x \in \operatorname{Dom}((\omega I - A)^{1 + \alpha_B}) \mid (\omega I - A)^{1 + \alpha_B} x - (\omega I - A)^{\alpha_B} BB^* Qx \in \operatorname{Dom}((\omega I - A)^{-\alpha_B})\}$$

is the infinitesimal generator of an exponentially stable, analytic C_0 -semigroup $\widetilde{\mathfrak{A}}$ on X.

2. Q is the unique self-adjoint nonnegative solution of the following algebraic Riccati equation

$$0 = \langle Ax_1, Qx_2 \rangle_X + \langle Qx_1, Ax_2 \rangle_X + \langle Cx_1, Cx_2 \rangle_X - \langle B^*Qx_1, B^*Qx_2 \rangle_U$$
(7)

for all $x_1, x_2 \in \text{Dom}((\omega I - A)^{\epsilon})$, and any $\epsilon > 0$.

3. $Q = \mathfrak{C}_Q^* \mathfrak{C}_Q$, where $\mathfrak{C}_Q \in \mathcal{B}(X, L_2(\mathbb{R}_+; Y \oplus U))$ is given by

$$(\mathfrak{C}_Q x)(t) = \begin{bmatrix} C \widetilde{\mathfrak{A}}(t) x\\ B^* Q \widetilde{\mathfrak{A}}(t) x \end{bmatrix}, \quad t \ge 0, \quad x \in X.$$
(8)

4. $B^*Q \in \mathcal{B}(X, U)$.

The result in Theorem 4.3 below is a consequence of the following standard result from Weidmann [24, Theorem 6.12, p.140].

Theorem 4.2 Let K be a bounded linear operator from a Hilbert space H into $L_2(\mathbb{R}_+;\mathbb{C})$. If there exists a function $k \in L_2(\mathbb{R}_+;\mathbb{C})$ such that $|(Kx)(t)| \leq k(t)||x||$ for almost all $t \in \mathbb{R}_+$ and all $x \in H$, then K is a Hilbert-Schmidt operator.

Theorem 4.3 Let A be the infinitesimal generator of an exponentially stable, analytic C_0 semigroup \mathfrak{A} on the Hilbert space X, and let $C \in \mathcal{B}(X_{\alpha_C}, \mathbb{C}^p)$. If $\gamma > \alpha_C - \frac{1}{2}$, then the
observability operator $\mathfrak{C} : X_{\gamma} \to L_2(\mathbb{R}_+; \mathbb{C}^p)$ defined by $(\mathfrak{C}x)(t) = C\mathfrak{A}(t)x, t \ge 0, x \in X_{\gamma}$,
is Hilbert-Schmidt.

Proof: The result follows from an immediate application of Theorem 4.2 above; for details, see for instance the proof of part (2) of Theorem 6 on page 1266 of [7].

We recall the following result from Lasiecka and Triggiani [17] in Remark 2.2.2 on page 128.

Proposition 4.4 Let assumptions A1 to A5 hold. Furthermore, if the operator $(\omega I - A)^{-\alpha}$ is Hilbert-Schmidt on X for some $\alpha \in (0, 1)$, then the unique nonnegative solution of the algebraic Riccati equation (7) is Hilbert-Schmidt on X.

However, as mentioned in the introduction, $(\omega I - A)^{-\alpha}$ being Hilbert-Schmidt is an assumption which may not always be satisfied. For instance, this is never satisfied if the spectrum of A has an accumulation point as in Example 6.2. This motivates the result in Theorem 4.6 below, which gives alternative conditions that guarantee the Hilbert-Schmidt/nuclearity properties of the solution to the Riccati equation and the gain operator. This new result is obtained by a simple application of Theorems 4.1 and 4.3 and the following technical result in Proposition 4.5.

Proposition 4.5 Let A be the generator of an analytic semigroup on the Banach space X. Let $\Delta \in \mathcal{B}(X_{\alpha}, X_{\beta})$ for some $\alpha, \beta \in \mathbb{R}$ with $\alpha - \beta < 1$. Let $\gamma \in [\alpha - 1, \beta + 1]$. Then the following hold.

- S1. The operator³ $A + \Delta$ generates an analytic semigroup $\widetilde{\mathfrak{A}}$ on $X_{\alpha-1}$.
- S2. The space X_{γ} is invariant under $\widetilde{\mathfrak{A}}$, and the restriction $\widetilde{\mathfrak{A}}|_{X_{\gamma}}$ to X_{γ} is an analytic semigroup on X_{γ} .
- S3. The generator of $\widetilde{\mathfrak{A}}|_{X_{\gamma}}$ is the part of $A+\Delta$ in X_{γ} ; it equals $(A+\Delta)|_{X_{\gamma+1}}$ if $\gamma \in [\alpha-1,\beta]$.
- S4. We have $(\omega I (A + \Delta))^{-(\gamma (\alpha 1))} X_{\alpha 1} = X_{\gamma} (\omega > \omega_{A + \Delta}).$
- S5. If $0 \in [\alpha 1, \beta + 1]$ (so that $\widetilde{\mathfrak{A}}|_X$ is an analytic semigroup on X) and if we let \widetilde{X}_{δ} $(\delta \in \mathbb{R})$ be the analogues of the spaces X_{δ} with A replaced by the part of $A + \Delta$ in X, then $\widetilde{X}_{\delta} = X_{\delta}$ for all $\delta \in [\alpha - 1, \beta + 1]$.

³By $A + \Delta$ we refer to $A|_{X_{\alpha}} + \Delta$.

(The part of $A + \Delta$ in X_{γ} has the domain $\{x \in X_{\alpha} \cap X_{\gamma} \mid (A + \Delta)x \in X_{\gamma}\}$, by definition. By $\widetilde{X}_{\gamma} = X_{\gamma}$ we mean that the vector spaces and topologies coincide (so that the norms are equivalent). Naturally, in S4 we refer to (3) with $\widetilde{\mathfrak{A}}$ in place of \mathfrak{A} and $X_{\alpha-1}$ in place of X.)

The proof of Proposition 4.5 is given in Section 5.

Theorem 4.6 Under the assumptions A1 to A5 from Theorem 4.1, with $U = \mathbb{C}^m$ and $Y = \mathbb{C}^p$, the following hold:

- 1. The self-adjoint nonnegative solution of the algebraic Riccati equation (7) is a nuclear operator from X_{γ} to $(X_{\gamma})^*$ for all $\gamma > -\frac{1}{2}$.
- 2. If $\alpha_B > -\frac{1}{2}$, then B^*Q is a Hilbert-Schmidt operator from X_{γ} to \mathbb{C}^m for all $\gamma > -\frac{1}{2}$.

Proof: ¿From Theorem 4.1, we know that the semigroup \mathfrak{A} is analytic and exponentially stable. Furthermore, $\begin{bmatrix} C \\ B^*Q \end{bmatrix} \in \mathcal{B}(X, \mathbb{C}^{p+m})$. Since $BB^*Q \in \mathcal{L}(X, X_{\alpha_B})$ with $-\alpha_B < 1$, using Proposition 4.5 above, it follows that the interpolation spaces corresponding to the semigroup $\widetilde{\mathfrak{A}}$ are the same topological spaces as the ones corresponding to \mathfrak{A} . By Theorem 4.3 and (8) above, it follows that $\mathfrak{C}_Q \in \mathcal{B}(X_{\gamma}, L_2(\mathbb{R}_+; \mathbb{C}^{p+m}))$ is Hilbert-Schmidt for all $\gamma > -\frac{1}{2}$. Consequently, $Q = \mathfrak{C}_Q^* \mathfrak{C}_Q \in \mathcal{B}(X_{\gamma}, (X_{\gamma})^*)$ is nuclear for all $\gamma > -\frac{1}{2}$.

We have $\mathfrak{C}_Q \in \mathcal{B}(X_\gamma, L_2(\mathbb{R}_+; \mathbb{C}^{p+m}))$ is Hilbert-Schmidt for all $\gamma > -\frac{1}{2}$. So $B^*Q = B^*\mathfrak{C}_Q^*\mathfrak{C}_Q$ will also be Hilbert-Schmidt from X_γ to \mathbb{C}^m if $B^*\mathfrak{C}_Q^* \in \mathcal{B}(L_2(\mathbb{R}_+; \mathbb{C}^{p+m}), \mathbb{C}^m)$, that is, if $\mathfrak{C}_Q B \in \mathcal{B}(\mathbb{C}^m, L_2(\mathbb{R}_+; \mathbb{C}^{p+m}))$. Now

$$\mathfrak{C}_Q B = \left[\begin{array}{c} C \\ B^* Q \end{array} \right] \widetilde{\mathfrak{A}}(t) B$$

and

$$\begin{split} \int_{0}^{\infty} \|\mathfrak{C}_{Q}B\|^{2} dt &= \int_{0}^{\infty} \left\| \begin{bmatrix} C \\ B^{*}Q \end{bmatrix} \widetilde{\mathfrak{A}}(t)B \right\|^{2} dt \\ &\leq \left\| \begin{bmatrix} C \\ B^{*}Q \end{bmatrix} \right\|^{2} \int_{0}^{\infty} \|(-A+BB^{*}Q)^{-\alpha_{B}}\widetilde{\mathfrak{A}}(t)\|^{2} \|(-A+BB^{*}Q)^{\alpha_{B}}B\|^{2} dt \\ &\leq (\text{constant}) \cdot \int_{0}^{\infty} \frac{e^{-\epsilon t}}{t^{-2\alpha_{B}}} dt, \quad (\text{using } (4)) \end{split}$$

where C, B^*Q and $(\omega I - A)^{\alpha_B}B$ are all bounded, and \mathfrak{A} is an exponentially stable analytic semigroup. So it follows that $\mathfrak{C}_Q B$ is bounded provided that $\alpha_B > -\frac{1}{2}$.

In other words, under the assumptions A1 to A5, the solution to the Riccati equation is always nuclear for all $\gamma > -\frac{1}{2}$ (P2 holds). If in addition, the input operator B is sufficiently smooth $(\alpha_B > -\frac{1}{2})$, then the gain operator B^*Q is Hilbert-Schmidt (P1 holds).

5 Proof of Proposition 4.5

In this section we prove Proposition 4.5. We shall use freely the fact that R1-R4 and that the facts above them (except the sentence on adjoints) hold also when X is a Banach space.

Proposition 4.5 and its proof were sketched in Lemma 9.4.2 of Mikkola [19] and in somewhat more detail in Theorem 3.10.11 of Staffans [23]. Because the result appears to be new, and it is the key to our new results on properties P1 and P2, we include an expanded proof below. We start with some auxiliary results.

Lemma 5.1 Let \mathfrak{A} and $\widetilde{\mathfrak{A}}$ be C_0 -semigroups on Banach spaces X and \widetilde{X} with generators A and \widetilde{A} , respectively, and let $X \subset \widetilde{X}$ continuously.

- 1. If $A \subset \widetilde{A}$ (that is, if $\widetilde{A}|_{\text{Dom}(A)} = A$), then $\mathfrak{A} = \widetilde{\mathfrak{A}}|_X$.
- 2. If $\mathfrak{A} = \widetilde{\mathfrak{A}}|_X$, then A is the part of \widetilde{A} in X, that is, $\operatorname{Dom}(A) = \{x \in \operatorname{Dom}(\widetilde{A}) \cap X \mid Ax \in X\}$ and $A \subset \widetilde{A}$.

Proof: 1. Take $\alpha > \omega_A, \omega_{\widetilde{A}}$, and observe that $(\alpha I - A)^{-1} = (\alpha I - \widetilde{A})^{-1}|_X$. Then with

$$A_{\alpha} := \alpha^2 (\alpha I - A)^{-1} - \alpha I$$
 and $\widetilde{A}_{\alpha} := \alpha^2 (\alpha I - \widetilde{A})^{-1} - \alpha I$,

we have $A_{\alpha} = \widetilde{A}_{\alpha}|_X$, and $e^{tA_{\alpha}} = (e^{t\widetilde{A}_{\alpha}})|_X$, and so $\mathfrak{A}(t) = \lim_{\alpha \to +\infty} e^{tA_{\alpha}} = \widetilde{\mathfrak{A}}(t)|_X$ (see Theorem 3.7.3 of [23]).

2. This follows from Theorem 3.14.14 of [23].

Lemma 5.2 Let X, Y and Z be Banach spaces. If $X \subset Z$ continuously, $Y \subset Z$ continuously and $X \subset Y$, then $X \subset Y$ continuously.

Proof: This is a simple consequence of the closed-graph theorem.

The following is well known (see for example, [19, Lemma A.4.4]):

Proposition 5.3 If A generates a strongly continuous semigroup on a Banach space X and $\omega > \omega_A$, then there exists $M < \infty$ such that for all real $\lambda \ge \omega$,

$$\|\lambda(\lambda I - A)^{-1}\|_{\mathcal{B}(X)} \le M \quad and \quad \|(\lambda I - A)^{-1}\|_{\mathcal{B}(X, \operatorname{Dom}(A))} \le M.$$
(9)

Now we are ready to prove Proposition 4.5; we start from a special case:

Lemma 5.4 Proposition 4.5 holds under the additional restrictions $\alpha = 1, \beta > 0, \gamma, \delta \in [0, 1]$.

Proof of Lemma 5.4: By the assumption, $\Delta \in \mathcal{B}(X_1, X_\beta)$. Without loss of generality, we assume that $\beta \leq 1$: indeed, if $\Delta \in \mathcal{B}(X_1, X_\beta)$ with $\beta > 1$, then $\Delta \in \mathcal{B}(X_1, X_1)$.

 $\underline{1}^{\circ}$ In this step we prove S1 and make a few additional remarks.

By Propositions 2.4.1(ii) (and 2.1.4(i)) and 2.2.15 of Lunardi [18], $A + \Delta$ with domain $\text{Dom}(A + \Delta) := \text{Dom}(A)$ generates an analytic semigroup $\widetilde{\mathfrak{A}}$ on X. Hence $\widetilde{X}_1 = X_1$, and by Lemma 5.2, the norms are equivalent. Obviously, $A + \Delta$ equals the part of $A + \Delta$ in X_0 .

We also have $X_{\delta} \subset \widetilde{X}_{\gamma}$ when $1 \geq \delta > \gamma \geq 0$, and this can be seen as follows. For $\delta = 1$ or $\gamma = 0$ this holds because $X_1 = \widetilde{X}_1 \subset \widetilde{X}_{\gamma}$ and $X_{\delta} \subset X = \widetilde{X}_0$. If $1 > \delta > \gamma > 0$, then this follows from Propositions 2.2.15 and 1.2.3 of [18] $(X_{\delta} \subset (X, X_1)_{\delta,\infty} \subset (X, X_1)_{\gamma,1} \subset \widetilde{X}_{\gamma})$.

<u>2</u>° In this step we show that $(\omega I - A - \Delta)^{-\gamma} \in \mathcal{B}(X, X_{\gamma})$ for $\gamma \in [0, 1]$.

The case $\gamma = 0$ is trivial and the case $\gamma = 1$ follows from 1°, and so we assume that $\gamma \in (0, 1)$. Fix some $\omega > \max\{\omega_A, \omega_{A+\Delta}\}$. Then

$$(sI - A)^{-1}(I + \Delta(sI - A - \Delta)^{-1}) = (sI - A - \Delta)^{-1}, \quad s \in \rho(A) \cap \rho(A + \Delta),$$
(10)

and so from (6.4) of [21] (or Lemma 3.9.9 of Staffans [23]), it follows that

$$(\omega I - A - \Delta)^{-\gamma} - (\omega I - A)^{-\gamma} = \frac{\sin(\pi\gamma)}{\pi} \int_0^\infty \underbrace{s^{-\gamma}((\omega + s)I - A)^{-1}\Delta((\omega + s)I - A - \Delta)^{-1}}_{F(s):=} ds$$

But for $s \ge 0$ we have $\|\Delta((\omega + s)I - A - \Delta)^{-1}\|_{\mathcal{B}(X,X_{\beta})} \le M_{\omega}$ (apply Proposition 5.3 to $A + \Delta$ and recall that $\widetilde{X}_1 = X_1$ and $\Delta \in \mathcal{B}(X_1, X_{\beta})$), and so

$$\|((\omega+s)I - A)^{-1}\Delta((\omega+s)I - A - \Delta)^{-1}\|_{\mathcal{B}(X,X_{\beta+1})} \le M'_{\omega}.$$

Thus, the $\int_0^1 F(s)ds$ part of the integral in (11) converges in $\mathcal{B}(X, X_{\beta+1})$, hence in $\mathcal{B}(X, X_{\gamma})$. Therefore, we only need to show that $\int_1^\infty ||(\omega I - A)^{\gamma} F(s)||_{\mathcal{B}(X)} ds < \infty$ in order to establish that $\int_1^\infty F(s) ds \in \mathcal{B}(X, X_{\gamma})$ and hence $(\omega I - A - \Delta)^{-\gamma} \in \mathcal{B}(X, X_{\gamma})$. But this follows by using the estimate (5), choosing any $\omega_0 \in (\omega_A, \omega)$:

$$\int_{1}^{\infty} s^{-\gamma} \frac{M(1+|s+\omega-\omega_0|^{\gamma-\beta})}{|s+\omega-\omega_0|} ds < \infty.$$

Here we have used the fact that

$$(\omega I - A)^{\gamma} ((\omega + s)I - A)^{-1} (\omega I - A)^{-\beta} = (\omega I - A)^{\gamma - \beta} ((\omega + s)I - A)^{-1},$$

by Lemma 3.9.7(ii) of Staffans [23].

<u>3</u>° In this step we prove S4 and S5, i.e., we show that $X_{\gamma} = \widetilde{X}_{\gamma}$ for $\gamma \in [0, 1]$. By 2° we already know that $\widetilde{X}_{\gamma} = (\omega I - A - \Delta)^{-\gamma} \widetilde{X} = (\omega I - A - \Delta)^{-\gamma} X \subset X_{\gamma}$. By 1°, $\widetilde{A} := (A + \Delta)|_{X_1}$ generates an analytic semigroup on X. ¿From 1° it also follows that $\widetilde{X}_1 = X_1$ and $X_{\beta} \subset \widetilde{X}_{\beta/2}$, and since all the embeddings here are continuous by Lemma 5.2, we conclude that $-\Delta \in \mathcal{B}(\widetilde{X}_1, \widetilde{X}_{\beta/2})$. Now apply 2° to \widetilde{A} and $-\Delta$ to observe that $(\omega I - A)^{-\gamma} \in \mathcal{B}(\widetilde{X}, \widetilde{X}_{\gamma})$, and so $X_{\gamma} = (\omega I - A)^{-\gamma} X \subset \widetilde{X}_{\gamma}$.

By Lemma 5.2, the topologies also coincide.

- $\underline{4}^{\circ}$ By 3° and R3, S2 holds.
- <u>5</u>° By S2 and Lemma 5.1.2, the generator $R_{\gamma} = (A + \Delta)|_{\widetilde{X}_{\gamma+1}}$ of $\mathfrak{A}|_{X_{\gamma}}$ equals the part of $(A + \Delta)|_{X_1}$ in X_{γ} . If $\gamma \leq \beta$, then $R_{\gamma} = (A + \Delta)|_{X_{\gamma+1}}$: indeed, then we have

$$Dom(R_{\gamma}) = \{x \in X_1 \cap X_{\gamma} \mid (A + \Delta)x \in X_{\gamma}\} = \{x \in X_1 \mid Ax \in X_{\gamma}\}$$

$$= \{x \in X_1 \mid (\lambda I - A)x \in X_{\gamma}\} \quad (\lambda \in \rho(A))$$

$$= X_1 \cap X_{\gamma+1} = X_{\gamma+1}.$$
(12)

This completes the proof.

Proof of Proposition 4.5: We only need to prove S1, S2 and S4, because then S3 then follows from S2 (and S1) as in the proof of Lemma 5.4, and S4 implies S5, by the property R4.

We have divided the proof into several steps below.

<u>1</u>° In this step we show that S1, S2 and S4 hold under the restriction that $\gamma \in [\alpha - 1, \alpha]$. We shall apply Lemma 5.4 to the space $X_{\alpha-1}$. Indeed, set $Z := X_{\alpha-1}, \beta' := \beta - (\alpha - 1)$. Naturally, we define the interpolation spaces Z_{δ} ($\delta \in \mathbb{R}$), with respect to $\mathfrak{A} = \mathfrak{A}|_{Z}$. By R4, we have $Z_t = X_{\alpha-1+t}$ ($t \in \mathbb{R}$) and hence $\Delta \in \mathcal{B}(Z_1, Z_{\beta'})$.

Therefore, Lemma 5.4 applied to Z implies that S1 holds and that the spaces Z_t ($t \in [0,1]$) (that is, X_{δ} ($\delta \in [\alpha - 1, \alpha]$)) are invariant under $\widetilde{\mathfrak{A}}|_Z = \widetilde{\mathfrak{A}}$ etc., hence S2 and S4 hold.

(Note that, since S1 is independent of γ , in the other steps below we only need to establish S2 and S4.)

<u>2</u>° Let $k \in \{0, 1, 2, ...\}$ and $\alpha + k < \beta$ (skip this step if no such k exists). In this step we assume that S1, S2 and S4 hold under the restriction that $\gamma \in [\alpha - 1, \alpha + k]$ and show that then they hold under the restriction that $\gamma \in [\alpha + k, \alpha + k + 1]$.

By the assumption (mainly S4) and R2, $\omega_{R_{\alpha+k}} = \omega_{R_{\alpha-1}} = \omega_{A+\Delta}$, where R_{δ} stands for the generator of $\widetilde{\mathfrak{A}}|_{X_{\alpha+k}}$.

Set $Z := X_{\alpha+k}, \beta' := \beta - (\alpha + k)$ to have $Z_t = X_{\alpha+k+t}$ $(t \in \mathbb{R})$ and $\Delta \in \mathcal{B}(Z_{-k}, Z_{\beta'})$, hence $\Delta \in \mathcal{B}(Z_1, Z_{\beta'})$. Now Lemma 5.4 applied to Z implies that S2 holds (because $\widetilde{\mathfrak{A}}|_{X_{\gamma}} = (\widetilde{\mathfrak{A}}|_{X_{\alpha+k}})|_{X_{\gamma}})$ and that $(\omega - R_{\alpha+k})^{-(\gamma - (\alpha+k))}X_{\alpha+k} = (\omega - R_{\alpha+k})^{-(\gamma - (\alpha+k))}Z = Z_{\gamma - (\alpha+k)} = X_{\gamma}$. Combine this with R4 (with $X_{\alpha-1}$ in place of X and $\widetilde{\mathfrak{A}}$ in place of \mathfrak{A}) and with the assumption that S4 holds with $\alpha + k$ in place of γ , to conclude that S4 holds (for the current γ).

- <u>3</u>° If S1, S2 and S4 hold when $\gamma \in [\alpha 1, \beta]$, then they hold also when $\gamma \in [\beta, \beta + 1)$. Indeed, this can be shown as in 2° (with r in place of $\alpha + k$) by setting $Z := X_r$, $\beta' := \beta - r$, where $r := \max\{\gamma - 1, \alpha - 1\}$, because $r \in [\alpha - 1, \beta)$, $\Delta \in \mathcal{B}(Z_1, Z_{\beta'})$ and $\beta' > 0$.
- <u>4</u>° By induction, from the above we conclude that S1–S5 hold for $\gamma, \delta \in [\alpha 1, \beta + 1)$ and that it only remains to establish S2 and S4 in the case that $\gamma = \beta + 1$. For this purpose, we first need an auxiliary result, 4.1°.
 - <u>4.1</u>° In this auxiliary step we only assume that $\Delta \in \mathcal{B}(X_{\alpha}, X)$, $\alpha < 1$, $\beta = 0$, $\gamma = 1$ and we only prove certain results needed in 4.2° to complete the proof. By Proposition 2.2.15 and 2.4.1(i) of Lunardi [18], $(A + \Delta)|_{X_1}$ is sectorial and generates an analytic semigroup on X (if $\alpha < 0$, use the fact that then $\Delta \in \mathcal{B}(X_0, X)$). By Lemma 5.1.1, that semigroup equals the restriction $\widetilde{\mathfrak{A}}|_X$ of $\widetilde{\mathfrak{A}} = \widetilde{\mathfrak{A}}|_{X_{\alpha-1}}$ to X. (By 1°, $\widetilde{\mathfrak{A}}$ exists.)

Therefore, X_1 is invariant under $\widetilde{\mathfrak{A}}|_X$, hence also under $\widetilde{\mathfrak{A}}$, and $\widetilde{\mathfrak{A}}|_{X_1}$ is analytic. Moreover, $(\omega - S)^{-1}X = X_1$ ($\omega > \omega_S$), where $R := (A + \Delta)|_{X_1}$.

<u>4.2</u>° Set $Z := X_{\beta}$, so that $Z_t = X_{\beta+t}$ $(t \in \mathbb{R})$ and apply 4.1° with $\Delta \in \mathcal{B}(Z_{\alpha-\beta}, Z)$ (note that $Z_{\alpha-\beta-1} = X_{\alpha-1}$). It follows that S2 holds and that $(\omega - (A + \Delta)|_{X_{\beta+1}})^{-1}X_{\beta} = X_{\beta+1}$ $(\omega > \omega_S)$, where $S := (A + \Delta)|_{X_{\beta+1}}$. Combine this with R4 and the already proved case of S4 to obtain S4 for $\gamma = \beta + 1$, as in 2° (for $\omega > \max\{\omega_{A+\Delta}, \omega_S\}$, but then $\omega_{A+\Delta} = \omega_S$, by R3).

This completes the proof.

6 Examples

Example 6.1. (Classical Parabolic equations on $X = L_2(\Omega)$.) In Lasiecka and Triggiani [17], the following example was considered. Given a smooth bounded domain $\Omega \in \mathbb{R}^N$, let A be the realization in $L_2(\Omega)$ of an elliptic operator of order 2d, subject to appropriate boundary conditions (see Chapter 3, Appendix 3A of [17]). A generates a strongly continuous analytic semigroup on $L_2(\Omega)$, and also $\text{Dom}(A^*) \subset H^{2m}(\Omega)$ (Sobolev space). The following result was obtained in [17] (see pages 128-129): Q is Hilbert-Schmidt on X if 4d > N.

On the other hand, when $U = \mathbb{C}^m$, applying Theorem 4.6 we obtain that the operator Q is nuclear, and hence it is also Hilbert-Schmidt (for all N and d).

Using the result mentioned above from [17], it can also be shown that if $(\omega I - A)^{-\alpha}$ is Hilbert-Schmidt on X for some $\alpha \in (0, 1)$ the gain operator B^*Q is Hilbert-Schmidt from X to \mathbb{C}^m if $1 + \alpha_B \ge \alpha > \frac{N}{4d}$.

On the other hand, in the case when $U = \mathbb{C}^m$, the result in Theorem 4.6 says that the gain operator B^*Q is Hilbert-Schmidt from X_{γ} to \mathbb{C}^m for all $\gamma > -\frac{1}{2}$ provided that $\alpha_B > -\frac{1}{2}$.

Example 6.2. (Model of a damped flexible beam.) In Bontsema [3], several models of flexible beams were considered. They were based on one-dimensional Euler-Bernoulli beam equations with free ends and various types of damping structures. Here we consider the so-called Sife guse fragments odel, with an external free force and an external moment M(t) acting at the center of the beam. (See Figure 1.) The equations describing the displacement

Figure 1: Flexible beam.

w are given by:

$$\begin{split} \rho a \frac{\partial^2 w}{\partial t^2}(x,t) &+ E^* I \frac{\partial^5 w}{\partial t \partial x^4}(x,t) + E I \frac{\partial^4 w}{\partial x^4}(x,t) = 0, \quad x \in [-1,1] \setminus \{0\}, \\ E I \frac{\partial^3 w}{\partial x^3}(0+,t) &- E I \frac{\partial^3 w}{\partial x^3}(0-,t) + E^* I \frac{\partial^4 w}{\partial t \partial x^3}(0+,t) - E^* I \frac{\partial^4 w}{\partial t \partial x^3}(0-,t) = F(t), \\ - E I \frac{\partial^2 w}{\partial x^2}(0+,t) + E I \frac{\partial^2 w}{\partial x^2}(0-,t) - E^* I \frac{\partial^3 w}{\partial t \partial x^2}(0+,t) + E^* I \frac{\partial^3 w}{\partial t \partial x^2}(0-,t) = M(t), \\ \frac{\partial^2 w}{\partial x^2}(-1,t) = 0, \quad \frac{\partial^2 w}{\partial x^2}(1,t) = 0, \quad \frac{\partial^3 w}{\partial x^3}(-1,t) = 0, \quad \frac{\partial^3 w}{\partial x^3}(1,t) = 0, \end{split}$$

where

w(x,t) denotes the vertical displacement of the beam at position x and at time t,

a denotes the cross sectional area of the beam,

- p denotes the mass density of the beam,
- E denotes the Young's modulus of elasticity,
- E^* denotes a constant reflecting the stress-strain relation in the beam,
- *I* denotes the moment of inertia of the beam per cross section,
- F denotes the external force acting at the center of the beam,
- M denotes the external moment acting at the center of the beam.

The external force F and the moment M are taken as the two inputs: $u_1(t) = F(t)$, $u_2(t) = M(t)$, and the measurements of the displacement and the angle of rotation at the center of the beam are taken as the two outputs: $y_1(t) = w(0,t)$, $y_2(t) = \frac{\partial w}{\partial x}(0,t)$. This

model can be thought of as an idealization of a very large flexible space structure with a central hub at x = 0, where the actuators and sensors are located. Let $\alpha_1 := \frac{E^*I}{\rho a}$ and $\alpha_2 := \frac{EI}{\rho a}$, and introduce the operator A_0 , defined as follows: $A_0 = \frac{d^4}{dx^4}$, with

$$Dom(A_0) = \left\{ f \in L_2(-1,1) \mid \frac{df}{dx}, \frac{d^2f}{dx^2}, \frac{d^3f}{dx^3} \text{ are absolutely continuous, } \frac{d^4f}{dx^4} \in L_2(-1,1), \text{ and } \right\}$$

As shown in [3], A_0 is densely defined, self-adjoint and positive. We introduce the Hilbert space $X = \text{Dom}(A_0^{\frac{1}{2}}) \oplus L_2(-1, 1)$, with the inner product defined as follows:

$$\left\langle \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right], \left[\begin{array}{c} y_1 \\ y_2 \end{array} \right] \right\rangle_X = \langle x_1, y_1 \rangle_{L_2} + \alpha_2 \langle A_0^{\frac{1}{2}} x_1, A_0^{\frac{1}{2}} y_1 \rangle_{L_2} + \langle x_2, y_2 \rangle_{L_2}.$$

By introducing the state vector $x(t) = \begin{bmatrix} w(\cdot, t) \\ \frac{\partial w}{\partial t}(\cdot, t) \end{bmatrix}$, the uncontrolled beam equation can be formulated as an abstract differential equation on X: $\frac{d}{dt}x(t) = Ax(t)$, where

$$A\begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} x_2\\ -\alpha_2 A_0\left(x_1 + \frac{\alpha_1}{\alpha_2}x_2\right) \end{bmatrix}, \operatorname{Dom}(A) = \left\{ \begin{bmatrix} x_1\\ x_2 \end{bmatrix} \in X \middle| \begin{array}{c} x_2 \in \operatorname{Dom}(A_0^{\frac{1}{2}}), \\ x_1 + \frac{\alpha_1}{\alpha_2}x_2 \in \operatorname{Dom}(A_0) \end{array} \right\}.$$

A is a Riesz spectral operator and it generates a strongly continuous semigroup on X (see [3]).

Spectrum of A. The spectrum of the operator A is $\sigma(A) = \sigma_c(A) \cup \sigma_p(A)$, where

$$\sigma_c(A) = \left\{ -\frac{\alpha_2}{\alpha_1} \right\}, \ \sigma_p(A) = \left\{ \lambda_m \mid m \in \mathbb{Z} \setminus \{0\} \right\}, \ \lambda_{\pm 1, \pm 2} = 0, \ \lambda_{\pm n} = \frac{-\alpha_1 \mu_n^4 \pm \sqrt{\alpha_1^2 \mu_n^2 - 4\alpha_2 \mu_n^4}}{2}, \ n \ge 3,$$

where μ_n s are the real, positive solutions of $(\sinh \mu_n)(\cos \mu_n) + (-1)^n(\cosh \mu_n)(\sin \mu_n) = 0$. The point spectrum of the operator A lies on a circle with center $\left(-\frac{\alpha_2}{\alpha_1},0\right)$ and radius $\frac{\alpha_2}{\alpha_1}$, or it lies on the real line, with limit points $-\infty$ and $-\frac{\alpha_2}{\alpha_1}$.

Eigenvectors. The eigenvalue 0 of the operator A has algebraic multiplicity 4, with two eigenvectors and two generalized eigenvectors given respectively by

$$\varphi_1 = \begin{bmatrix} v_1 \\ 0 \end{bmatrix}, \quad \varphi_{-1} = \begin{bmatrix} v_2 \\ 0 \end{bmatrix}, \quad \varphi_2 = \begin{bmatrix} 0 \\ v_1 \end{bmatrix}, \quad \varphi_{-2} = \begin{bmatrix} 0 \\ v_2 \end{bmatrix},$$

where $v_1(x) = \frac{1}{\sqrt{2}}$ and $v_2(x) = \sqrt{\frac{3}{2}}x$. the eigenvectors of A corresponding to the eigenvalues λ_n, λ_{-n} for $n \ge 3$ are given as follows:

$$\varphi_n = \eta_n \begin{bmatrix} v_n \\ \lambda_n v_n \end{bmatrix}, \quad \varphi_{-n} = \eta_{-n} \begin{bmatrix} v_n \\ \lambda_{-n} v_n \end{bmatrix},$$

where

$$v_n(x) = \frac{\cosh \mu_n + \cos \mu_n}{\sqrt{(\cosh \mu_n)^2 + (\cos \mu_n)^2}} \left(\cos(\mu_n x) + \cos \mu_n \frac{\cosh(\mu_n x) - \cos(\mu_n x)}{\cosh \mu_n + \cos \mu_n x} \right) \text{ for odd } n,$$

$$v_n(x) = \frac{\sinh \mu_n + \sin \mu_n}{\sqrt{(\sinh \mu_n)^2 - (\sin \mu_n)^2}} \left(\sin(\mu_n x) + \sin \mu_n \frac{\sinh(\mu_n x) - \sin(\mu_n x)}{\sinh \mu_n + \sin \mu_n x} \right) \text{ for even } n,$$

and $\eta_{\pm n} = \frac{1}{\sqrt{1 + \alpha_2 \mu_n^4 + |\lambda_{\pm n}|^2}}$. The eigenvalue 0 of the operator A^* has eigenvectors $f_1 = \varphi_1, f_{-1} = \varphi_{-1}$, and two generalized eigenvectors $f_2 = \varphi_2$, $f_{-2} = \varphi_{-2}$. The eigenvectors f_n of A^* corresponding to the eigenvalue $\overline{\lambda}_n$ for $|n| \ge 3$ are given as follows:

$$f_n = \begin{bmatrix} v_n \\ -\frac{1+\alpha_2\mu_n^4}{\alpha_2\mu_n^4}\overline{\lambda}_n v_n \end{bmatrix}, \quad f_{-n} = \begin{bmatrix} v_n \\ -\frac{1+\alpha_2\mu_n^4}{\alpha_2\mu_n^4}\overline{\lambda}_{-n}v_n \end{bmatrix}$$

 ψ_n, ψ_{-n} are defined by $\psi_n = \frac{1}{\langle f_n, \varphi_n \rangle_X} f_n, |n| \ge 1$. For $m, n \in \mathbb{Z} \setminus \{0\}, \langle \psi_m, \varphi_n \rangle = \delta_{mn}$, and so $(\psi_m)_{m \in \mathbb{Z} \setminus \{0\}}$ is a biorthogonal sequence to $(\varphi_n)_{n \in \mathbb{Z} \setminus \{0\}}$.

Spectral decomposition. A is a Riesz spectral operator with the spectral decomposition

$$Ax = \langle x, \psi_2 \rangle \varphi_1 + \langle x, \psi_{-2} \rangle \varphi_{-1} + \sum_{n=3}^{\infty} \langle x, \psi_n \rangle \varphi_n + \sum_{n=3}^{\infty} \langle x, \psi_{-n} \rangle \varphi_{-n},$$

for x in Dom(A) =
$$\left\{ x \in X \ \left| \ \sum_{n \in \mathbb{Z} \setminus \{0\}} |\lambda_n|^2 | \langle x, \psi_n \rangle |^2 < +\infty \right\}.$$
 The resolvent of A is given by

$$(sI - A)^{-1}x = \frac{1}{s} \langle x, \psi_1 \rangle \varphi_1 + \frac{1}{s^2} \langle x, \psi_2 \rangle \varphi_1 + \frac{1}{s} \langle x, \psi_2 \rangle \varphi_2 + \frac{1}{s} \langle x, \psi_{-1} \rangle \varphi_{-1} + \frac{1}{s^2} \langle x, \psi_{-2} \rangle \varphi_{-1} + \frac{1}{s} \langle x, \psi_{-2} \rangle \varphi_{-2} + \sum_{n=3}^{\infty} \frac{1}{s - \lambda_n} \langle x, \psi_n \rangle \varphi_n + \sum_{n=3}^{\infty} \frac{1}{s - \lambda_{-n}} \langle x, \psi_{-n} \rangle \varphi_{-n},$$
(13)

for all $s \in \rho(A)$. The open right half plane $\mathbb{C}_+ = \{s \in \mathbb{C} \mid \operatorname{Re}(s) > 0\}$ is contained in $\rho(A)$ and $\omega_A = 0$. From (13), we obtain that there exists $M < +\infty$ such that for all $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1, \|(sI - A)^{-1}\| \le M \sup_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{|s - \lambda_n|}. \text{ If } \Theta \in \left[0, \frac{\pi}{2}\right) \text{ is such that } \sin \Theta = \frac{\frac{\alpha_2}{\alpha_1}}{1 + \frac{\alpha_2}{\alpha_1}}.$ then we have $||(sI-A)^{-1}|| \leq \frac{\frac{M}{\cos\Theta}}{|s-1|}$ for all $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$. So A generates an analytic

⁴If $m, n \in \mathbb{Z}$, then $\delta_{mn} = 0$ if $m \neq n$, and 1 if m = n.

semigroup on X. The semigroup is given as follows:

$$\mathfrak{A}(t)x = \langle x, \psi_1 \rangle \varphi_1 + t \langle x, \psi_2 \rangle \varphi_1 + \langle x, \psi_2 \rangle \varphi_2 + \langle x, \psi_{-1} \rangle \varphi_{-1} + t \langle x, \psi_{-2} \rangle \varphi_{-1} + \langle x, \psi_{-2} \rangle \varphi_{-2} + \sum_{n=3}^{\infty} e^{\lambda_n t} \langle x, \psi_n \rangle \varphi_n + \sum_{n=3}^{\infty} e^{\lambda_{-n} t} \langle x, \psi_n \rangle \varphi_n.$$

In Proposition 4.4 (the result quoted from [17]), the following condition is given for Q to be a Hilbert-Schmidt operator on X: $(\omega I - A)^{-\alpha}$ is Hilbert-Schmidt on $X, \alpha \in (0, 1), \omega > \omega_A$.

We show that for our present example, this condition is never met. By using properties of analytic semigroups (for instance, Lemma 9.4.2.1 of Mikkola [19]), it follows that for $\omega > \omega_A$ and $\alpha \in (0, 1)$,

$$(\omega I - A)^{-\alpha} x = \frac{1}{\omega^{\alpha}} \langle x, \psi_1 \rangle \varphi_1 + \frac{\alpha}{\omega^{\alpha+1}} \langle x, \psi_2 \rangle \varphi_1 + \frac{1}{\omega^{\alpha}} \langle x, \psi_2 \rangle \varphi_2 + \frac{1}{\omega^{\alpha}} \langle x, \psi_{-1} \rangle \varphi_{-1} + \frac{1}{\omega^{\alpha+1}} \langle x, \psi_{-2} \rangle \varphi_{-1} + \frac{1}{\omega^{\alpha}} \langle x, \psi_{-2} \rangle \varphi_{-2} + \sum_{n=3}^{\infty} \frac{1}{(\omega - \lambda_n)^{\alpha}} \langle x, \psi_n \rangle \varphi_n + \sum_{n=3}^{\infty} \frac{1}{(\omega - \lambda_{-n})^{\alpha}} \langle x, \psi_{-n} \rangle \varphi_{-n}.$$

If $(\omega I - A)^{-\alpha}$ is Hilbert-Schmidt, then since $(\varphi_n)_{n\geq 3}$ is an orthonormal sequence, it follows that $\sum_{n=3}^{\infty} \|(\omega I - A)^{-\alpha}\varphi_n\|^2 < +\infty$, and in particular,

$$\lim_{n \to \infty} \|(\omega I - A)^{-\alpha} \varphi_n\| = 0, \text{ that is, } \lim_{n \to \infty} |(\omega - \lambda_n)^{\alpha}| = +\infty.$$
(14)

But for positive $n, \mu_n = O(n)$, and so $|\lambda_n| = O(1)$. Consequently, $|(\omega - \lambda_n)^{\alpha}| = O(1)$, and so (14) does not hold. So $(\omega I - A)^{-\alpha}$ is not Hilbert-Schmidt.

Finally, we show that our main Theorem 4.6 does apply in this case. First we introduce the input and output operators B and C below.

B and *C*. The output operator $C \in \mathcal{B}(X, \mathbb{C}^2)$ is defined as follows: $C\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1(0) \\ x'_1(0) \end{bmatrix}$. Formally, we can think of the input operator as the following distribution operator:

$$B\left[\begin{array}{c} u_1\\ u_2 \end{array}\right] = \frac{1}{\rho a} \left[\begin{array}{c} 0 & 0\\ \delta_0 & -\delta_0' \end{array}\right] \left[\begin{array}{c} u_1\\ u_2 \end{array}\right],$$

where δ_0 denotes the Dirac distribution with support in 0, and δ'_0 is its derivative. The dual of B is given by

$$B^* \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \frac{1}{\rho a} \left[\begin{array}{c} x_1(0) \\ x_1'(0) \end{array} \right].$$

To see that $B \in \mathcal{B}(\mathbb{C}^2, X_{\alpha_B})$ with appropriate α_B , we use $Bu = \sum_{n \in \mathbb{Z} \setminus \{0\}} \langle u, b_n \rangle_{\mathbb{C}^2} \varphi_n$, with $b_n = B^* \psi_n$, where

$$b_{-1} = \begin{bmatrix} 0\\0 \end{bmatrix}, \ b_{-2} = \frac{1}{\rho a} \begin{bmatrix} v_2(0)\\v'_2(0) \end{bmatrix}, \ b_1 = \begin{bmatrix} 0\\0 \end{bmatrix}, \ b_2 = \frac{1}{\rho a} \begin{bmatrix} v_1(0)\\v'_1(0) \end{bmatrix},$$
$$b_n = \frac{-\overline{\lambda}_n}{\rho a \langle f_n, \varphi_n \rangle_X} \left(\frac{1+\alpha_2 \mu_n^4}{\alpha_2 \mu_n^4}\right) \begin{bmatrix} v_n(0)\\v'_n(0) \end{bmatrix}, \ n \ge 3, \quad b_{-n} = \frac{-\overline{\lambda}_{-n}}{\rho a \langle f_{-n}, \varphi_{-n} \rangle_X} \left(\frac{1+\alpha_2 \mu_n^4}{\alpha_2 \mu_n^4}\right) \begin{bmatrix} v_n(0)\\v'_n(0) \end{bmatrix}, \ n \ge 3$$

We have the following estimates for large positive values of n: $|\lambda_n| = O(1)$ and $|\lambda_{-n}| = O(n^4)$, and this yields the following estimates for b_n :

$$||b_n||_{\mathbb{C}^2} = \begin{cases} O(\frac{1}{n^2}), & n > 0, & n \text{ odd,} \\ O(\frac{1}{n}), & n > 0, & n \text{ even,} \\ O(1), & n < 0, & n \text{ odd,} \\ O(n), & n < 0, & n \text{ even.} \end{cases}$$

Using the above, it can be seen that $(I - A)^{\alpha_B}B \in \mathcal{B}(\mathbb{C}^2, X)$ for $\alpha_B < -\frac{3}{8}$. Hence assumptions A1, A2, A3 from Theorem 4.6 hold. In Bontsema [3], it was shown that the pair (A, C) is exponentially detectable if $\frac{\alpha_2}{\alpha_1} > 0$, and so it follows that A4 is also satisfied. Hence under the finite cost condition, Theorem 4.6 applies, and we obtain that $Q \in$

Hence under the finite cost condition, Theorem 4.6 applies, and we obtain that $Q \in S_1(X_{\gamma}, (X_{\gamma})^*)$ for all $\gamma > -\frac{1}{2}$. In particular, with $\gamma = 0$, we obtain that $Q \in \mathcal{B}(X)$ is nuclear. Furthermore, B^*Q is a Hilbert-Schmidt operator from X_{γ} to \mathbb{C}^m for all $\gamma > -\frac{1}{2}$. This provides the theoretical justification for the LQG control design in [20].

Acknowledgements. The authors would like to thank Professors Philippe Clément, Jan Prüss and Olof Staffans for useful discussions.

References

- J.A. Atwell and B.B. King. Reduced order controllers for spatially distributed systems via proper orthogonal decomposition. SIAM Journal on Scientific Computation, 26:128-151, 2004.
- [2] H.T. Banks and K. Kunisch. The linear regulator problem for parabolic systems. SIAM Journal on Control and Optimization, 22:684-698, 1984.
- [3] J. Bontsema. *Dynamic Stabilization of Large Flexible Space Structures*. Ph.D. thesis, University of Groningen, The Netherlands, 1989.
- [4] J.A. Burns, K. Ito and G. Propst. On non-convergence of adjoint semigroups for control systems with delays. SIAM Journal on Control and Optimization, 26:1442-1454, 1988.

- [5] R.F. Curtain. On model reduction for control design for distributed parameter systems. In Research Directions in Distributed Parameter Systems, R. Smith and M. Demetriou, editors, pages 95-121. SIAM, 2003.
- [6] R.F. Curtain. A robust LQG-controller design for DPS. Submitted to CDC 2005.
- [7] R.F. Curtain and A.J. Sasane. Compactness and nuclearity of the Hankel operator and internal stability of infinite-dimensional state linear systems. *International Journal of Control*, 74: 1260-1270, no. 12, 2001.
- [8] R.F. Curtain and H.J. Zwart. An Introduction to Infinite-Dimensional Linear Systems Theory. Springer, 1995.
- [9] L. Dumortier. Partially stabilizing linear-quadratic optimal control for stabilizable semigroup systems. Ph.D. thesis, Facultes Universitaires Notre-Dame De La Paix, 1998.
- [10] J.S. Gibson. Linear-quadratic optimal control of hereditary differential systems: Infinite-dimensional Riccati equations and numerical approximations. SIAM Journal on Control and Optimization, 21:95-139, 1983.
- [11] P. Grabowski. On the spectral-Lyapunov approach to parametric optimization of distributed-parameter systems. IMA Journal of Mathematical Control and Information, 7:317-338, 1990.
- [12] K. Ito. Strong convergence and convergence rates of approximate solutions for algebraic Riccati equations in Hilbert spaces. In F. Kappel, K. Kunisch, and W. Schappacher, editors, *Distributed Parameter Systems*, pages 151-166. Springer, 1987.
- [13] K. Ito. Finite-dimensional compensators for infinite-dimensional systems via Galerkintype approximation. SIAM Journal on Control and Optimization, 28:1251-1269, 1990.
- [14] F. Kappel and D. Salamon. An approximation theorem for the algebraic Riccati equation. SIAM Journal on Control and Optimization, 28:1136-1147, 1990.
- [15] B.B. King. Existence of functional gains for parabolic control systems. In Computation and control, IV, pages 203–217, Progress in Systems and Control Theory, volume 20. Birkhäuser, 1995.
- [16] B.B. King. Representation of feedback operators for parabolic control problems. Proceedings of the American Mathematical Society, 128:1339-1346, 2000.
- [17] I. Lasiecka and R. Triggiani. Control Theory for Partial Differential Equations: Continuous and Approximation Theories I. Abstract Parabolic Systems. Encyclopedia of Mathematics and its Applications, 74, Cambridge University Press, Cambridge, 2000.

- [18] A. Lunardi. Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, 1995.
- [19] K.M. Mikkola. Infinite Dimensional Linear Systems, Optimal Control and Riccati Equations. Ph.D. thesis, Helsinki University of Technology, Finland, 2002. Available at http://www.math.hut.fi/reports.
- [20] M.R. Opmeer, F.W. Wubs and S. van Mourik. Model reduction for controller design for infinite-dimensional systems: theory and an example. To appear in *Proceedings of* the 44th IEEE Conference on Decision and Control, Seville, Spain, December 2005.
- [21] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, 1983.
- [22] A. Pietsch. Operator Ideals. North-Holland, 1980.
- [23] O.J. Staffans. Well-Posed Linear Systems. Cambridge University Press, 2005.
- [24] J. Weidmann. Linear operators in Hilbert Spaces. Springer-Verlag, 1980.