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1 Introduction

The most popular control design for distributed parameter systems (DPS) is the Linear
Quadratic Regulator (LQR) control design. These controllers are infinite-dimensional and
in practice one approximates these to obtain implementable finite-dimensional controllers.
Conditions for the effectiveness of this approach has been the subject of a number of papers
(see for example Banks and Kunisch [2], Burns et al. [4], Gibson [10], Ito [12], [13], Kappel
and Salamon [14], King [16], Opmeer et al. [20]).

Here we focus on two properties that are of importance:

P1. The gain operator is Hilbert-Schmidt.

P2. The solution to the Riccati equation is Hilbert-Schmidt or nuclear.

The aim of this paper is to summarize known sufficient conditions and to give new sufficient
conditions for P1 and P2 to hold.
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The LQR problem we consider is for the abstract linear system

d

dt
x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

}
, t ≥ 0, x(0) = x0,

where the control input1 u ∈ L2(R+;U), the state x ∈ C loc(R+;X), and output y ∈
L2(R+;Y ), and U,X, Y are Hilbert spaces. We suppose that A generates a C0-semigroup
on X, the operator2 C ∈ B(X, Y ), and (βI − A)−1B ∈ B(U,X) for some β ∈ ρ(A), the
resolvent set of the operator A.

The LQR problem is to find uopt ∈ L2(R+;U) that minimizes

J(x0, u) =

∫ ∞

0

‖y(t)‖2 + ‖u(t)‖2dt.

If B is bounded and the system is exponentially stabilizable, then there exists uopt(t) =
Kx(t), where the gain operator K is given by −B∗Q, and Q ∈ B(X) is the minimal
nonnegative solution of the Riccati equation

〈Qx1, Ax2〉 + 〈Ax1, Qx2〉 − 〈B∗Qx1, B
∗Qx2〉 + 〈Cx1, Cx2〉 = 0

for all x1, x2 ∈ Dom(A). If, in addition, U and Y are finite-dimensional, then it is easy to
show that Q is nuclear and consequently the gain operator is Hilbert-Schmidt (see Section
3). This means that K can be represented as an integral operator (see for instance Theorem
6.11 on page 139 of Weidmann [24]), which has advantages for designing practical control
laws (see the papers by King on functional gains [16], [15], [1]).

The nuclear property of Q implies the existence of finite-dimensional approximants
uopt(t) = Knx(t) that will stabilize the original system (see Curtain [6]). In the robust
LQG design presented in [8] it is sufficient that Q be Hilbert Schmidt.

In many applications the control is implemented on the boundary, in which case B is
unbounded. It is important to have conditions for P1 and P2 to hold in this case too. It
is already known that if A generates an analytic C0-semigroup and (βI −A)−γ is Hilbert-
Schmidt for some γ ∈ [0, 1), then P2 holds (see Remark 2.2.2 on page 128 of Lasiecka an
Triggiani [17]). We recall this result in Theorem 4.1 and Proposition 4.4, and use it to
obtain sufficient conditions for P1 to hold in Theorem 4.6. These results cover the classical
parabolic equations with boundary control (as we illustrate in Example 6.1).

There are, however, operators A that generate analytic semigroups, but for which
(βI − A)−γ is not Hilbert-Schmidt. If A has an accumulation point in its spectrum, then
(βI − A)−γ will never be Hilbert-Schmidt. For this class we derive alternative sufficient
conditions for P1 and P2 to hold in Theorem 4.6. In Example 6.2, these results are applied
to show that a controlled flexible beam with boundary control has properties P1 and P2.
This provides the theoretical justification for the LQG-balancing control design in Opmeer
et al. [20].

1Throughout this article, R+ denotes the set of positive real numbers.
2The notation B(H1, H2) is used to denote the space of bounded linear operators from the Hilbert space

H1 to the Hilbert space H2.
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2 Preliminaries

In this section, we recall the notions of Hilbert-Schmidt and nuclear operators, and also list
a few properties of these classes of operators that we will use in the sequel. For background
information, we refer the reader to Pietsch [22] and to Weidmann [24].

Let H1 and H2 be Hilbert spaces. An operator T ∈ B(H1, H2) is said to be Hilbert-
Schmidt if ∑

i∈I

‖Tei‖2 < +∞

for some orthonormal basis {ei}i∈I for H1. The set of Hilbert-Schmidt operators is denoted
by S2(H1, H2). Hilbert-Schmidt operators are compact, and they form a two sided ideal:

S2(H2, H3)B(H1, H2) ⊂ S2(H1, H3) and B(H2, H3)S2(H1, H2) ⊂ S2(H1, H3).

An operator T ∈ B(H1, H2) is Hilbert-Schmidt iff its adjoint T ∗ ∈ B(H∗
2 , H

∗
1) is Hilbert-

Schmidt. There are several alternative characterizations of Hilbert-Schmidt operators, and
we give one such below.

First we recall the notion of singular values of a bounded linear operator from a Hilbert
space H1 to a Hilbert space H2. For n ∈ N, the nth singular value of an operator T ∈
B(H1, H2) (denoted by σn(T )) is defined to be the distance with respect to the norm
in B(H1, H2) of T from the set of operators in B(H1, H2) of rank at most n − 1. Thus
σ1(T ) = ‖T‖, and

σ1(T ) ≥ σ2(T ) ≥ σ3(T ) ≥ · · · ≥ 0.

If T is compact, then T ∗T is compact and nonnegative, and so the nonzero spectrum of
T ∗T consists of a pure point spectrum with countably many nonnegative eigenvalues. The
square roots of these eigenvalues are then the singular values of T .

An alternative characterization of Hilbert-Schmidt operators is then the following: an
operator T ∈ B(H1, H2) is Hilbert-Schmidt iff

∑

n∈N

(σn(T ))2
< +∞.

On the other hand, if the singular values are summable, then the operator is called nuclear:
∑

n∈N

σn(T ) < +∞.

The set of nuclear operators is denoted by S1(H1, H2). This space has the following ideal
property:

S1(H2, H3)B(H1, H2) ⊂ S1(H1, H3) and B(H2, H3)S1(H1, H2) ⊂ S1(H1, H3).

Clearly, every nuclear operator is Hilbert-Schmidt: S1(H1, H2) ⊂ S2(H1, H2). It can also
be shown that product of two Hilbert-Schmidt operators is nuclear, that is,

S2(H2, H3)S2(H1, H2) ⊂ S1(H1, H3).

The hierarchy of the classes of operators is shown below, where K(H1, H2) denotes the set
of compact operators: S1(H1, H2) ⊂ S2(H1, H2) ⊂ K(H1, H2) ⊂ B(H1, H2).
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3 Case of bounded, finite rank input and output op-

erators

We recall the following theorem from Curtain and Zwart [8].

Theorem 3.1 Suppose that U,X, Y are Hilbert spaces, and that A be the infinitesimal
generator of a C0-semigroup A on X, B ∈ B(U,X), and C ∈ B(X, Y ). If (A,B) is
exponentially stabilizable, then there exists a self-adjoint, nonnegative solution Q in B(X)
such that:

1. A− BB∗Q generates an exponentially stable C0-semigroup Ã on X;

2. Q is the minimal solution of the algebraic Riccati equation

0 = 〈Ax1, Qx2〉X + 〈Qx1, Ax2〉X + 〈Cx1, Cx2〉X − 〈B∗Qx1, B
∗Qx2〉U (1)

for all x1, x2 ∈ Dom(A);

3. Q = C∗
QCQ, where CQ : X → L2(R

+;Y ⊕ U) is given by

(CQx)(t) =

[
CÃ(t)x

B∗QÃ(t)x

]
, t ≥ 0, x ∈ X. (2)

We quote the following result from Dumortier [9, Proposition 1.0.2] (see also Grabowski
[11] and Curtain and Sasane [7, Theorem 4.1]).

Theorem 3.2 Let A be the infinitesimal generator of a exponentially stable C0-semigroup
on the Hilbert space X, and C ∈ B(X,Cp). Then the observability operator C : X →
L2(R+; Cp) defined by (Cx)(t) = CA(t)x, t ≥ 0, x ∈ X, is Hilbert-Schmidt.

Using the above two results, we obtain the following easy result (see Curtain [5]):

Theorem 3.3 Suppose that A is the infinitesimal generator of a C0-semigroup A on the
Hilbert space X, B ∈ B(Cm, X), and C ∈ B(X,Cp). If (A,B) is exponentially stabilizable,
then the minimal solution of the algebraic Riccati equation (1) is nuclear. Furthermore,
B∗Q ∈ B(X,Cm) is also nuclear.

Proof: Since C ∈ B(X,Cp) and B∗Q ∈ B(X,Cm), it follows that

[
C

B∗Q

]
∈ B(X,Cp+m),

which has finite rank. The semigroup generated by A− BB∗Q is exponentially stable, by
Theorem 3.1. Applying Theorem 3.2, we obtain that the observability operator CQ : X →
L2(R+; Cp+m), defined by (2), is Hilbert-Schmidt. Consequently Q = C

∗
QCQ ∈ B(X) is

nuclear. As B∗ ∈ B(X,Cm), it follows that B∗Q is nuclear as well.
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4 Analytic case with unbounded finite rank input and

output operators

First we introduce some notation. If A is the generator of a C0-semigroup A, then its
growth bound is denoted by ωA, where the growth bound is defined as

ωA = inf
t>0

1

t
log ‖A(t)‖.

Let A be the infinitesimal generator of an analytic C0-semigroup A on the Hilbert space
X, and suppose that ω > ωA. Then for all α > 0, the fractional power of (ωI − A)−1 is
defined by setting

(ωI − A)−α =
1

Γ(α)

∫ ∞

0

tα−1e−ωt
A(t)dt ∈ B(X). (3)

Furthermore, let (ωI − A)α = ((ωI − A)−α)−1. Let Xα = Dom((ωI − A)α) = Ran((ωI −
A)−α) with the norm ‖x‖Xα

= ‖(ωI − A)αx‖X , x ∈ Dom((ωI − A)α). For α < 0, let
Xα be the completion of X with respect to the norm ‖x‖Xα

= ‖(ωI − A)αx‖X , x ∈ X.
Finally, let X0 be the Hilbert space X. Hence one obtains a chain of Hilbert spaces Xα,
parametrized by α ∈ R. If A is analytic, then A

∗ is also analytic, and for α ∈ R, we define
X∗

α = (X∗)α = (X−α)∗. These sets and their topologies (not norms) are independent of ω.
Below we list a few remarks concerning properties of analytic semigroups, which we

will use in the sequel.

R1. If A generates an exponentially stable analytic semigroup, then for each α ≥ 0, there
exist constants M < +∞ and ε > 0 such that

‖(−A)α
A(t)‖B(X) ≤M

e−εt

tα
, t ∈ R+. (4)

R2. For any ω > ωA, there exists a Θ ∈
(

π
2
, π

]
and there exists a M = M(A, ω,Θ) < ∞

such that ‖(sI −A)−1‖ ≤ M
|s−ω| for all s ∈ ΣΘ,ω := {s ∈ C | s 6= ω, |arg(s− ω)| < Θ}.

Furthermore,

‖(ωI−A)α(sI−A)−1‖B(X) ≤
M(1 + |s− ω0|α)

|s− ω0|
, (s ∈ ΣΘ,ω0

, ω > ω0 > ωA, α ∈ [0, 1]).

(5)

R3. For α ≥ 0, the restriction of A to Xα is an analytic semigroup, isomorphic to the
original one (using A(t)(ωI−A)α = (ωI−A)αA(t)), with generator A|Xα+1

. Similarly,
for α ≤ 0, A has a unique extension to an (isomorphic) analytic semigroup on Xα,
and we denote its generator by A|Xα+1

. In particular, ωA|Xα
is the same for each α.

R4. If we were to start from some Xβ, β ∈ R instead of X = X0, then we would
obtain the same spaces, semigroups and generators (in particular, (Xβ)α = Xβ+α,
i.e., (ω − A|Xβ+1

)−αXβ = (ω − A|X1
)−(β+α)X0).
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For properties of analytic semigroups and interpolation spaces Xα we refer the reader
to Lunardi [18], Pazy [21] or Staffans [23]).

We recall the following result (see Theorems 2.2.1 and 2.2.2 on pages 125–127 of Lasiecka
and Triggiani [17] and also §9.5 of Mikkola [19]).

Theorem 4.1 Suppose that:

A1. A is the infinitesimal generator of an analytic C0-semigroup A on a Hilbert space X.

A2. There exists αB ∈ (−1, 0] such that (ωI−A)αBB ∈ B(U,X), that is, B ∈ B(U,XαB
),

where ω > ωA and U is a Hilbert space.

A3. C ∈ B(X, Y ), where Y is a Hilbert space.

A4. (Exponential detectability) There exists L ∈ B(Y,X) such that the analytic C0-
semigroup with generator A+ LC is exponentially stable on X.

A5. (Finite cost condition) For each x0 ∈ X, there exists u ∈ L2(R+;U) such that the

mild solution x to
d

dt
x(t) = Ax(t) +Bu(t), x(0) = x0, satisfies Cx(·) ∈ L2(R+;X).

Then there exists a self-adjoint, nonnegative Q ∈ B(X) such that:

1. The operator AQ = A− BB∗Q with Dom(AQ) given by

{x ∈ Dom((ωI−A)1+αB ) | (ωI−A)1+αBx−(ωI−A)αBBB∗Qx ∈ Dom((ωI−A)−αB)}
(6)

is the infinitesimal generator of an exponentially stable, analytic C0-semigroup Ã on
X.

2. Q is the unique self-adjoint nonnegative solution of the following algebraic Riccati
equation

0 = 〈Ax1, Qx2〉X + 〈Qx1, Ax2〉X + 〈Cx1, Cx2〉X − 〈B∗Qx1, B
∗Qx2〉U (7)

for all x1, x2 ∈ Dom((ωI − A)ε), and any ε > 0.

3. Q = C∗
QCQ, where CQ ∈ B(X,L2(R+;Y ⊕ U)) is given by

(CQx)(t) =

[
CÃ(t)x

B∗QÃ(t)x

]
, t ≥ 0, x ∈ X. (8)

4. B∗Q ∈ B(X,U).

The result in Theorem 4.3 below is a consequence of the following standard result from
Weidmann [24, Theorem 6.12, p.140].
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Theorem 4.2 Let K be a bounded linear operator from a Hilbert space H into L2(R+; C).
If there exists a function k ∈ L2(R+; C) such that |(Kx)(t)| ≤ k(t)‖x‖ for almost all t ∈ R+

and all x ∈ H, then K is a Hilbert-Schmidt operator.

Theorem 4.3 Let A be the infinitesimal generator of an exponentially stable, analytic C0-
semigroup A on the Hilbert space X, and let C ∈ B(XαC

,Cp). If γ > αC − 1
2
, then the

observability operator C : Xγ → L2(R+; Cp) defined by (Cx)(t) = CA(t)x, t ≥ 0, x ∈ Xγ,
is Hilbert-Schmidt.

Proof: The result follows from an immediate application of Theorem 4.2 above; for details,
see for instance the proof of part (2) of Theorem 6 on page 1266 of [7].

We recall the following result from Lasiecka and Triggiani [17] in Remark 2.2.2 on page
128.

Proposition 4.4 Let assumptions A1 to A5 hold. Furthermore, if the operator (ωI−A)−α

is Hilbert-Schmidt on X for some α ∈ (0, 1), then the unique nonnegative solution of the
algebraic Riccati equation (7) is Hilbert-Schmidt on X.

However, as mentioned in the introduction, (ωI − A)−α being Hilbert-Schmidt is an
assumption which may not always be satisfied. For instance, this is never satisfied if
the spectrum of A has an accumulation point as in Example 6.2. This motivates the
result in Theorem 4.6 below, which gives alternative conditions that guarantee the Hilbert-
Schmidt/nuclearity properties of the solution to the Riccati equation and the gain operator.
This new result is obtained by a simple application of Theorems 4.1 and 4.3 and the
following technical result in Proposition 4.5.

Proposition 4.5 Let A be the generator of an analytic semigroup on the Banach space
X. Let ∆ ∈ B(Xα, Xβ) for some α, β ∈ R with α − β < 1. Let γ ∈ [α − 1, β + 1]. Then
the following hold.

S1. The operator3 A+ ∆ generates an analytic semigroup Ã on Xα−1.

S2. The space Xγ is invariant under Ã, and the restriction Ã|Xγ
to Xγ is an analytic

semigroup on Xγ .

S3. The generator of Ã|Xγ
is the part of A+∆ inXγ ; it equals (A+∆)|Xγ+1

if γ ∈ [α−1, β].

S4. We have (ωI − (A+ ∆))−(γ−(α−1))Xα−1 = Xγ (ω > ωA+∆).

S5. If 0 ∈ [α − 1, β + 1] (so that Ã|X is an analytic semigroup on X) and if we let X̃δ

(δ ∈ R) be the analogues of the spaces Xδ with A replaced by the part of A + ∆ in

X, then X̃δ = Xδ for all δ ∈ [α− 1, β + 1].

3By A + ∆ we refer to A|Xα
+ ∆.
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(The part of A+∆ in Xγ has the domain {x ∈ Xα∩Xγ | (A+∆)x ∈ Xγ}, by definition.

By X̃γ = Xγ we mean that the vector spaces and topologies coincide (so that the norms

are equivalent). Naturally, in S4 we refer to (3) with Ã in place of A and Xα−1 in place of
X.)

The proof of Proposition 4.5 is given in Section 5.

Theorem 4.6 Under the assumptions A1 to A5 from Theorem 4.1, with U = Cm and
Y = Cp, the following hold:

1. The self-adjoint nonnegative solution of the algebraic Riccati equation (7) is a nuclear
operator from Xγ to (Xγ)

∗ for all γ > − 1
2
.

2. If αB > −1
2
, then B∗Q is a Hilbert-Schmidt operator from Xγ to Cm for all γ > − 1

2
.

Proof: ¿From Theorem 4.1, we know that the semigroup Ã is analytic and exponentially

stable. Furthermore,

[
C

B∗Q

]
∈ B(X,Cp+m). Since BB∗Q ∈ L(X,XαB

) with −αB < 1,

using Proposition 4.5 above, it follows that the interpolation spaces corresponding to the
semigroup Ã are the same topological spaces as the ones corresponding to A. By Theorem
4.3 and (8) above, it follows that CQ ∈ B(Xγ, L2(R+; Cp+m)) is Hilbert-Schmidt for all
γ > −1

2
. Consequently, Q = C∗

QCQ ∈ B(Xγ , (Xγ)
∗) is nuclear for all γ > − 1

2
.

We have CQ ∈ B(Xγ , L2(R+; Cp+m)) is Hilbert-Schmidt for all γ > − 1
2
. So B∗Q =

B∗C∗
QCQ will also be Hilbert-Schmidt from Xγ to Cm if B∗C∗

Q ∈ B(L2(R+; Cp+m),Cm),
that is, if CQB ∈ B(Cm, L2(R+; Cp+m)). Now

CQB =

[
C

B∗Q

]
Ã(t)B

and

∫ ∞

0

‖CQB‖2dt =

∫ ∞

0

∥∥∥∥
[

C

B∗Q

]
Ã(t)B

∥∥∥∥
2

dt

≤
∥∥∥∥
[

C

B∗Q

]∥∥∥∥
2 ∫ ∞

0

‖(−A+BB∗Q)−αB Ã(t)‖2‖(−A +BB∗Q)αBB‖2dt

≤ (constant) ·
∫ ∞

0

e−εt

t−2αB
dt, (using (4))

where C, B∗Q and (ωI−A)αBB are all bounded, and Ã is an exponentially stable analytic
semigroup. So it follows that CQB is bounded provided that αB > −1

2
.

In other words, under the assumptions A1 to A5, the solution to the Riccati equation is
always nuclear for all γ > − 1

2
(P2 holds). If in addition, the input operator B is sufficiently

smooth (αB > −1
2
), then the gain operator B∗Q is Hilbert-Schmidt (P1 holds).
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5 Proof of Proposition 4.5

In this section we prove Proposition 4.5. We shall use freely the fact that R1-R4 and that
the facts above them (except the sentence on adjoints) hold also when X is a Banach space.

Proposition 4.5 and its proof were sketched in Lemma 9.4.2 of Mikkola [19] and in
somewhat more detail in Theorem 3.10.11 of Staffans [23]. Because the result appears
to be new, and it is the key to our new results on properties P1 and P2, we include an
expanded proof below. We start with some auxiliary results.

Lemma 5.1 Let A and Ã be C0-semigroups on Banach spaces X and X̃ with generators
A and Ã, respectively, and let X ⊂ X̃ continuously.

1. If A ⊂ Ã (that is, if Ã|Dom(A) = A), then A = Ã|X .

2. If A = Ã|X , then A is the part of Ã in X, that is, Dom(A) = {x ∈ Dom(Ã)∩X | Ax ∈
X} and A ⊂ Ã.

Proof: 1. Take α > ωA, ω eA, and observe that (αI − A)−1 = (αI − Ã)−1|X . Then with

Aα := α2(αI − A)−1 − αI and Ãα := α2(αI − Ã)−1 − αI,

we have Aα = Ãα|X , and etAα = (et eAα)|X , and so A(t) = lim
α→+∞

etAα = Ã(t)|X (see Theorem

3.7.3 of [23]).

2. This follows from Theorem 3.14.14 of [23].

Lemma 5.2 Let X, Y and Z be Banach spaces. If X ⊂ Z continuously, Y ⊂ Z continu-
ously and X ⊂ Y , then X ⊂ Y continuously.

Proof: This is a simple consequence of the closed-graph theorem.

The following is well known (see for example, [19, Lemma A.4.4]):

Proposition 5.3 If A generates a strongly continuous semigroup on a Banach space X
and ω > ωA, then there exists M <∞ such that for all real λ ≥ ω,

‖λ(λI − A)−1‖B(X) ≤M and ‖(λI − A)−1‖B(X,Dom(A)) ≤M. (9)

Now we are ready to prove Proposition 4.5; we start from a special case:

Lemma 5.4 Proposition 4.5 holds under the additional restrictions α = 1, β > 0, γ, δ ∈
[0, 1].

Proof of Lemma 5.4: By the assumption, ∆ ∈ B(X1, Xβ). Without loss of generality,
we assume that β ≤ 1: indeed, if ∆ ∈ B(X1, Xβ) with β > 1, then ∆ ∈ B(X1, X1).
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1◦ In this step we prove S1 and make a few additional remarks.

By Propositions 2.4.1(ii) (and 2.1.4(i)) and 2.2.15 of Lunardi [18], A+∆ with domain

Dom(A+ ∆) := Dom(A) generates an analytic semigroup Ã on X. Hence X̃1 = X1,
and by Lemma 5.2, the norms are equivalent. Obviously, A + ∆ equals the part of
A+ ∆ in X0.

We also have Xδ ⊂ X̃γ when 1 ≥ δ > γ ≥ 0, and this can be seen as follows.

For δ = 1 or γ = 0 this holds because X1 = X̃1 ⊂ X̃γ and Xδ ⊂ X = X̃0. If
1 > δ > γ > 0, then this follows from Propositions 2.2.15 and 1.2.3 of [18] (Xδ ⊂
(X,X1)δ,∞ ⊂ (X,X1)γ,1 ⊂ X̃γ).

2◦ In this step we show that (ωI − A− ∆)−γ ∈ B(X,Xγ) for γ ∈ [0, 1].

The case γ = 0 is trivial and the case γ = 1 follows from 1◦, and so we assume that
γ ∈ (0, 1). Fix some ω > max{ωA, ωA+∆}. Then

(sI − A)−1(I + ∆(sI − A− ∆)−1) = (sI − A− ∆)−1, s ∈ ρ(A) ∩ ρ(A+ ∆), (10)

and so from (6.4) of [21] (or Lemma 3.9.9 of Staffans [23]), it follows that

(ωI−A−∆)−γ−(ωI−A)−γ =
sin(πγ)

π

∫ ∞

0

s−γ((ω + s)I − A)−1∆((ω + s)I − A− ∆)−1

︸ ︷︷ ︸
F (s):=

ds.

(11)
But for s ≥ 0 we have ‖∆((ω+ s)I −A−∆)−1‖B(X,Xβ) ≤Mω (apply Proposition 5.3

to A+ ∆ and recall that X̃1 = X1 and ∆ ∈ B(X1, Xβ)), and so

‖((ω + s)I − A)−1∆((ω + s)I − A− ∆)−1‖B(X,Xβ+1) ≤M ′
ω.

Thus, the

∫ 1

0

F (s)ds part of the integral in (11) converges in B(X,Xβ+1), hence in

B(X,Xγ). Therefore, we only need to show that

∫ ∞

1

‖(ωI−A)γF (s)‖B(X) ds <∞ in

order to establish that

∫ ∞

1

F (s) ds ∈ B(X,Xγ) and hence (ωI−A−∆)−γ ∈ B(X,Xγ).

But this follows by using the estimate (5), choosing any ω0 ∈ (ωA, ω):

∫ ∞

1

s−γM(1 + |s+ ω − ω0|γ−β)

|s+ ω − ω0|
ds <∞.

Here we have used the fact that

(ωI − A)γ((ω + s)I − A)−1(ωI − A)−β = (ωI − A)γ−β((ω + s)I − A)−1,

by Lemma 3.9.7(ii) of Staffans [23].
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3◦ In this step we prove S4 and S5, i.e., we show that Xγ = X̃γ for γ ∈ [0, 1].

By 2◦ we already know that X̃γ = (ωI − A− ∆)−γX̃ = (ωI − A− ∆)−γX ⊂ Xγ .

By 1◦, Ã := (A+∆)|X1
generates an analytic semigroup onX. ¿From 1◦ it also follows

that X̃1 = X1 and Xβ ⊂ X̃β/2, and since all the embeddings here are continuous by

Lemma 5.2, we conclude that −∆ ∈ B(X̃1, X̃β/2). Now apply 2◦ to Ã and −∆ to

observe that (ωI − A)−γ ∈ B(X̃, X̃γ), and so Xγ = (ωI − A)−γX ⊂ X̃γ .

By Lemma 5.2, the topologies also coincide.

4◦ By 3◦ and R3, S2 holds.

5◦ By S2 and Lemma 5.1.2, the generator Rγ = (A+ ∆)| eXγ+1
of Ã|Xγ

equals the part of

(A+ ∆)|X1
in Xγ. If γ ≤ β, then Rγ = (A+ ∆)|Xγ+1

: indeed, then we have

Dom(Rγ) = {x ∈ X1 ∩Xγ | (A + ∆)x ∈ Xγ} = {x ∈ X1 | Ax ∈ Xγ}
= {x ∈ X1 | (λI − A)x ∈ Xγ} (λ ∈ ρ(A))
= X1 ∩Xγ+1 = Xγ+1.

(12)

This completes the proof.

Proof of Proposition 4.5: We only need to prove S1, S2 and S4, because then S3 then
follows from S2 (and S1) as in the proof of Lemma 5.4, and S4 implies S5, by the property
R4.

We have divided the proof into several steps below.

1◦ In this step we show that S1, S2 and S4 hold under the restriction that γ ∈ [α−1, α].
We shall apply Lemma 5.4 to the spaceXα−1. Indeed, set Z := Xα−1, β

′ := β−(α−1).
Naturally, we define the interpolation spaces Zδ (δ ∈ R), with respect to A = A|Z .
By R4, we have Zt = Xα−1+t (t ∈ R) and hence ∆ ∈ B(Z1, Zβ′).

Therefore, Lemma 5.4 applied to Z implies that S1 holds and that the spaces Zt (t ∈
[0, 1]) (that is, Xδ (δ ∈ [α − 1, α])) are invariant under Ã|Z = Ã etc., hence S2 and
S4 hold.

(Note that, since S1 is independent of γ, in the other steps below we only need to
establish S2 and S4.)

2◦ Let k ∈ {0, 1, 2, . . .} and α + k < β (skip this step if no such k exists). In this step
we assume that S1, S2 and S4 hold under the restriction that γ ∈ [α− 1, α+ k] and
show that then they hold under the restriction that γ ∈ [α+ k, α + k + 1].

By the assumption (mainly S4) and R2, ωRα+k
= ωRα−1

= ωA+∆, where Rδ stands

for the generator of Ã|Xα+k
.

Set Z := Xα+k, β
′ := β − (α+ k) to have Zt = Xα+k+t (t ∈ R) and ∆ ∈ B(Z−k, Zβ′),

hence ∆ ∈ B(Z1, Zβ′). Now Lemma 5.4 applied to Z implies that S2 holds (because
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Ã|Xγ
= (Ã|Xα+k

)|Xγ
) and that (ω−Rα+k)

−(γ−(α+k))Xα+k = (ω−Rα+k)
−(γ−(α+k))Z =

Zγ−(α+k) = Xγ . Combine this with R4 (with Xα−1 in place of X and Ã in place of
A) and with the assumption that S4 holds with α+ k in place of γ, to conclude that
S4 holds (for the current γ).

3◦ If S1, S2 and S4 hold when γ ∈ [α − 1, β], then they hold also when γ ∈ [β, β + 1).
Indeed, this can be shown as in 2◦ (with r in place of α + k) by setting Z := Xr,
β ′ := β − r, where r := max{γ − 1, α − 1}, because r ∈ [α − 1, β), ∆ ∈ B(Z1, Zβ′)
and β ′ > 0.

4◦ By induction, from the above we conclude that S1–S5 hold for γ, δ ∈ [α − 1, β + 1)
and that it only remains to establish S2 and S4 in the case that γ = β + 1. For this
purpose, we first need an auxiliary result, 4.1◦.

4.1◦ In this auxiliary step we only assume that ∆ ∈ B(Xα, X), α < 1, β = 0, γ = 1
and we only prove certain results needed in 4.2◦ to complete the proof.

By Proposition 2.2.15 and 2.4.1(i) of Lunardi [18], (A + ∆)|X1
is sectorial and

generates an analytic semigroup on X (if α < 0, use the fact that then ∆ ∈
B(X0, X)). By Lemma 5.1.1, that semigroup equals the restriction Ã|X of Ã =

Ã|Xα−1
to X. (By 1◦, Ã exists.)

Therefore, X1 is invariant under Ã|X , hence also under Ã, and Ã|X1
is analytic.

Moreover, (ω − S)−1X = X1 (ω > ωS), where R := (A + ∆)|X1
.

4.2◦ Set Z := Xβ, so that Zt = Xβ+t (t ∈ R) and apply 4.1◦ with ∆ ∈ B(Zα−β, Z)
(note that Zα−β−1 = Xα−1). It follows that S2 holds and that (ω − (A +
∆)|Xβ+1

)−1Xβ = Xβ+1 (ω > ωS), where S := (A + ∆)|Xβ+1
. Combine this with

R4 and the already proved case of S4 to obtain S4 for γ = β + 1, as in 2◦ (for
ω > max{ωA+∆, ωS}, but then ωA+∆ = ωS, by R3).

This completes the proof.

6 Examples

Example 6.1. (Classical Parabolic equations on X = L2(Ω).) In Lasiecka and Triggiani
[17], the following example was considered. Given a smooth bounded domain Ω ∈ RN , let
A be the realization in L2(Ω) of an elliptic operator of order 2d, subject to appropriate
boundary conditions (see Chapter 3, Appendix 3A of [17]). A generates a strongly con-
tinuous analytic semigroup on L2(Ω), and also Dom(A∗) ⊂ H2m(Ω) (Sobolev space). The
following result was obtained in [17] (see pages 128-129): Q is Hilbert-Schmidt on X if
4d > N .

On the other hand, when U = Cm, applying Theorem 4.6 we obtain that the operator
Q is nuclear, and hence it is also Hilbert-Schmidt (for all N and d).
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Using the result mentioned above from [17], it can also be shown that if (ωI −A)−α is
Hilbert-Schmidt on X for some α ∈ (0, 1) the gain operator B∗Q is Hilbert-Schmidt from
X to C

m if 1 + αB ≥ α > N
4d

.
On the other hand, in the case when U = Cm, the result in Theorem 4.6 says that

the gain operator B∗Q is Hilbert-Schmidt from Xγ to Cm for all γ > − 1
2

provided that
αB > −1

2
. ♦

Example 6.2. (Model of a damped flexible beam.) In Bontsema [3], several models of
flexible beams were considered. They were based on one-dimensional Euler-Bernoulli beam
equations with free ends and various types of damping structures. Here we consider the
so-called viscous damping model, with an external free force and an external moment M(t)
acting at the center of the beam. (See Figure 1.) The equations describing the displacement

PSfrag replacements

−1 1
M(t)

F (t)w(x, t)

0

0 x

Figure 1: Flexible beam.

w are given by:

ρa∂2w
∂t2

(x, t) + E∗I ∂5w
∂t∂x4 (x, t) + EI ∂4w

∂x4 (x, t) = 0, x ∈ [−1, 1] \ {0},
EI ∂3w

∂x3 (0+, t) − EI ∂3w
∂x3 (0−, t) + E∗I ∂4w

∂t∂x3 (0+, t) − E∗I ∂4w
∂t∂x3 (0−, t) = F (t),

−EI ∂2w
∂x2 (0+, t) + EI ∂2w

∂x2 (0−, t) − E∗I ∂3w
∂t∂x2 (0+, t) + E∗I ∂3w

∂t∂x2 (0−, t) = M(t),
∂2w
∂x2 (−1, t) = 0, ∂2w

∂x2 (1, t) = 0, ∂3w
∂x3 (−1, t) = 0, ∂3w

∂x3 (1, t) = 0,

where

w(x, t) denotes the vertical displacement of the beam at position x and at time t,

a denotes the cross sectional area of the beam,

p denotes the mass density of the beam,

E denotes the Young’s modulus of elasticity,

E∗ denotes a constant reflecting the stress-strain relation in the beam,

I denotes the moment of inertia o f the beam per cross section,

F denotes the external force acting at the center of the beam,

M denotes the external moment acting at the center of the beam.

The external force F and the moment M are taken as the two inputs: u1(t) = F (t),
u2(t) = M(t), and the measurements of the displacement and the angle of rotation at the
center of the beam are taken as the two outputs: y1(t) = w(0, t), y2(t) = ∂w

∂x
(0, t). This
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model can be thought of as an idealization of a very large flexible space structure with
a central hub at x = 0, where the actuators and sensors are located. Let α1 := E∗I

ρa
and

α2 := EI
ρa

, and introduce the operator A0, defined as follows: A0 = d4

dx4 , with

Dom(A0) =

{
f ∈ L2(−1, 1)

∣∣∣∣∣
df
dx
, d2f

dx2 ,
d3f
dx3 are absolutely continuous, d4f

dx4 ∈ L2(−1, 1), and
d2f
dx2 (−1) = 0, d2f

dx2 (1) = 0, d3f
dx3 (−1) = 0, d3f

dx3 (1) = 0

}
.

As shown in [3], A0 is densely defined, self-adjoint and positive. We introduce the Hilbert

space X = Dom(A
1

2

0 ) ⊕ L2(−1, 1), with the inner product defined as follows:

〈[
x1

x2

]
,

[
y1

y2

]〉

X

= 〈x1, y1〉L2
+ α2〈A

1

2

0 x1, A
1

2

0 y1〉L2
+ 〈x2, y2〉L2

.

By introducing the state vector x(t) =

[
w(·, t)
∂w
∂t

(·, t)

]
, the uncontrolled beam equation can

be formulated as an abstract differential equation on X: d
dt
x(t) = Ax(t), where

A

[
x1

x2

]
=

[
x2

−α2A0

(
x1 + α1

α2
x2

)
]
,Dom(A) =

{[
x1

x2

]
∈ X

∣∣∣∣∣
x2 ∈ Dom(A

1

2

0 ),
x1 + α1

α2
x2 ∈ Dom(A0)

}
.

A is a Riesz spectral operator and it generates a strongly continuous semigroup on X (see
[3]).

Spectrum of A. The spectrum of the operator A is σ(A) = σc(A) ∪ σp(A), where

σc(A)=

{
−α2

α1

}
, σp(A)={λm | m ∈ Z\{0}}, λ±1,±2 =0, λ±n =

−α1µ
4
n ±

√
α2

1µ
2
n − 4α2µ4

n

2
, n ≥ 3,

where µns are the real, positive solutions of (sinh µn)(cosµn)+ (−1)n(coshµn)(sinµn) = 0.

The point spectrum of the operator A lies on a circle with center
(
−α2

α1
, 0

)
and radius α2

α1
,

or it lies on the real line, with limit points −∞ and −α2

α1
.

Eigenvectors. The eigenvalue 0 of the operator A has algebraic multiplicity 4, with two
eigenvectors and two generalized eigenvectors given respectively by

ϕ1 =

[
v1

0

]
, ϕ−1 =

[
v2

0

]
, ϕ2 =

[
0
v1

]
, ϕ−2 =

[
0
v2

]
,

where v1(x) = 1√
2

and v2(x) =
√

3
2
x. the eigenvectors of A corresponding to the eigenvalues

λn, λ−n for n ≥ 3 are given as follows:

ϕn = ηn

[
vn

λnvn

]
, ϕ−n = η−n

[
vn

λ−nvn

]
,
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where

vn(x) =
cosh µn + cosµn√

(coshµn)2 + (cos µn)2

(
cos(µnx) + cosµn

cosh(µnx) − cos(µnx)

coshµn + cosµnx

)
for odd n,

vn(x) =
sinh µn + sinµn√

(sinhµn)2 − (sin µn)2

(
sin(µnx) + sin µn

sinh(µnx) − sin(µnx)

sinh µn + sinµnx

)
for even n,

and η±n = 1√
1+α2µ4

n+|λ±n|2
.

The eigenvalue 0 of the operator A∗ has eigenvectors f1 = ϕ1, f−1 = ϕ−1, and two
generalized eigenvectors f2 = ϕ2, f−2 = ϕ−2. The eigenvectors fn of A∗ corresponding to
the eigenvalue λn for |n| ≥ 3 are given as follows:

fn =

[
vn

−1+α2µ4
n

α2µ4
n
λnvn

]
, f−n =

[
vn

−1+α2µ4
n

α2µ4
n
λ−nvn

]
.

ψn, ψ−n are defined by ψn = 1
〈fn,ϕn〉X fn, |n| ≥ 1. For4 m,n ∈ Z \ {0}, 〈ψm, ϕn〉 = δmn, and

so (ψm)m∈Z\{0} is a biorthogonal sequence to (ϕn)n∈Z\{0}.

Spectral decomposition. A is a Riesz spectral operator with the spectral decomposition

Ax = 〈x, ψ2〉ϕ1 + 〈x, ψ−2〉ϕ−1 +
∞∑

n=3

〈x, ψn〉ϕn +
∞∑

n=3

〈x, ψ−n〉ϕ−n,

for x in Dom(A) =




x ∈ X

∣∣∣∣∣∣

∑

n∈Z\{0}
|λn|2|〈x, ψn〉|2 < +∞




 . The resolvent of A is given

by

(sI − A)−1x =
1

s
〈x, ψ1〉ϕ1 +

1

s2
〈x, ψ2〉ϕ1 +

1

s
〈x, ψ2〉ϕ2

+
1

s
〈x, ψ−1〉ϕ−1 +

1

s2
〈x, ψ−2〉ϕ−1 +

1

s
〈x, ψ−2〉ϕ−2

+

∞∑

n=3

1

s− λn
〈x, ψn〉ϕn +

∞∑

n=3

1

s− λ−n
〈x, ψ−n〉ϕ−n, (13)

for all s ∈ ρ(A). The open right half plane C+ = {s ∈ C | Re(s) > 0} is contained in ρ(A)
and ωA = 0. From (13), we obtain that there exists M < +∞ such that for all s ∈ C with

Re(s) > 1, ‖(sI − A)−1‖ ≤ M supn∈Z\{0}
1

|s−λn| . If Θ ∈
[
0, π

2

)
is such that sin Θ =

α2
α1

1+
α2
α1

,

then we have ‖(sI−A)−1‖ ≤
M

cos Θ

|s−1| for all s ∈ C with Re(s) > 1. So A generates an analytic

4If m, n ∈ Z\, then δmn = 0 if m 6= n, and 1 if m = n.
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semigroup on X. The semigroup is given as follows:

A(t)x = 〈x, ψ1〉ϕ1 + t〈x, ψ2〉ϕ1 + 〈x, ψ2〉ϕ2

+〈x, ψ−1〉ϕ−1 + t〈x, ψ−2〉ϕ−1 + 〈x, ψ−2〉ϕ−2

+
∞∑

n=3

eλnt〈x, ψn〉ϕn +
∞∑

n=3

eλ−nt〈x, ψn〉ϕn.

In Proposition 4.4 (the result quoted from [17]), the following condition is given for Q to
be a Hilbert-Schmidt operator on X: (ωI − A)−α is Hilbert-Schmidt on X, α ∈ (0, 1),
ω > ωA.

We show that for our present example, this condition is never met. By using properties
of analytic semigroups (for instance, Lemma 9.4.2.l of Mikkola [19]), it follows that for
ω > ωA and α ∈ (0, 1),

(ωI − A)−αx =
1

ωα
〈x, ψ1〉ϕ1 +

α

ωα+1
〈x, ψ2〉ϕ1 +

1

ωα
〈x, ψ2〉ϕ2

+
1

ωα
〈x, ψ−1〉ϕ−1 +

1

ωα+1
〈x, ψ−2〉ϕ−1 +

1

ωα
〈x, ψ−2〉ϕ−2

+

∞∑

n=3

1

(ω − λn)α
〈x, ψn〉ϕn +

∞∑

n=3

1

(ω − λ−n)α
〈x, ψ−n〉ϕ−n.

If (ωI−A)−α is Hilbert-Schmidt, then since (ϕn)n≥3 is an orthonormal sequence, it follows

that

∞∑

n=3

‖(ωI − A)−αϕn‖2 < +∞, and in particular,

lim
n→∞

‖(ωI − A)−αϕn‖ = 0, that is, lim
n→∞

|(ω − λn)
α| = +∞. (14)

But for positive n, µn = O(n), and so |λn| = O(1). Consequently, |(ω− λn)α| = O(1), and
so (14) does not hold. So (ωI − A)−α is not Hilbert-Schmidt.

Finally, we show that our main Theorem 4.6 does apply in this case. First we introduce
the input and output operators B and C below.

B and C. The output operator C ∈ B(X,C2) is defined as follows: C

[
x1

x2

]
=

[
x1(0)
x′1(0)

]
.

Formally, we can think of the input operator as the following distribution operator:

B

[
u1

u2

]
=

1

ρa

[
0 0
δ0 −δ′0

] [
u1

u2

]
,

where δ0 denotes the Dirac distribution with support in 0, and δ′0 is its derivative. The
dual of B is given by

B∗
[
x1

x2

]
=

1

ρa

[
x1(0)
x′1(0)

]
.
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To see that B ∈ B(C2, XαB
) with appropriate αB, we use Bu =

∑

n∈Z\{0}
〈u, bn〉C2ϕn, with

bn = B∗ψn, where

b−1 =

[
0
0

]
, b−2 = 1

ρa

[
v2(0)
v′2(0)

]
, b1 =

[
0
0

]
, b2 = 1

ρa

[
v1(0)
v′1(0)

]
,

bn = −λn

ρa〈fn,ϕn〉X

(
1+α2µ4

n

α2µ4
n

) [
vn(0)
v′n(0)

]
, n ≥ 3, b−n = −λ−n

ρa〈f−n,ϕ−n〉X

(
1+α2µ4

n

α2µ4
n

) [
vn(0)
v′n(0)

]
, n ≥ 3.

We have the following estimates for large positive values of n: |λn| = O(1) and |λ−n| =
O(n4), and this yields the following estimates for bn:

‖bn‖C2 =





O( 1
n2 ), n > 0, n odd,

O( 1
n
), n > 0, n even,

O(1), n < 0, n odd,
O(n), n < 0, n even.

Using the above, it can be seen that (I − A)αBB ∈ B(C2, X) for αB < −3
8
. Hence

assumptions A1, A2, A3 from Theorem 4.6 hold. In Bontsema [3], it was shown that the
pair (A,C) is exponentially detectable if α2

α1
> 0, and so it follows that A4 is also satisfied.

Hence under the finite cost condition, Theorem 4.6 applies, and we obtain that Q ∈
S1(Xγ, (Xγ)

∗) for all γ > − 1
2
. In particular, with γ = 0, we obtain that Q ∈ B(X) is

nuclear. Furthermore, B∗Q is a Hilbert-Schmidt operator from Xγ to Cm for all γ > − 1
2
.

This provides the theoretical justification for the LQG control design in [20]. ♦
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