
How to Search a Tree to which
Eulerian Networks are Attached

Steve Alpern
Department of Mathematics
London School of Economics

London WC2A 2AE

20 July 2005

Abstract

We call a network partly Eulerian if consists of a tree (of length a
and radius r) to which a �nite number of disjoint Eulerian networks (of
total length b) are attached, each at a single point. We show that for such
networks, a search strategy consisting equiprobably of a minimal (Chinese
Postman) covering path and its reverse path is optimal, in the sense that
it minimizes (at a + b=2 � r) the expected time to �nd a point hidden
according to the worst case distribution. This generalizes a similar result
of Dagan and Gal for search games on trees.

1 Introduction

Let G be a �nite network with arc length measure � and distance function d:
We consider two zero-sum search games originating in R. Isaacs� book [7] in
which a unit speed Searcher tries to minimize the time (payo¤) T required to
�nd a stationary (T�maximizing) Hider. The Hider simply picks a point y in
G: In the �xed-start game � (G; x) the Searcher picks a unit speed path in G
starting at the designated point x; while in the arbitrary-start game � (G) he
may start anywhere. Compactness arguments [5] [2] establish that these games
always have (minimax) values which we denote respectively as Vx = V (G; x)
and V = V (G) : While much work has been done on �xed-start search games
[5], arbitrary-start games have only very recently been studied by Dagan and
Gal [4] for the case where G is a tree. (There is also some early some early
work when G is the circle for related games where the Hider is also mobile
([9],[1]), but very di¤erent techniques are required for those games.) This paper
generalizes the work of [4] by solving arbitrary-start games when G is a partly
Eulerian network (a tree to which disjoint Eulerian circuits are attached). Our
results may be interpreted as �nding the best worst-case method to search such
a network.
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2 De�nitions

A path S in G is a continuous function from some �nite time interval [0; � ] into
G: In our games � (G) and � (G; x) the Searcher will only use unit speed paths
in G belonging respectively to the sets

S = fS : d ((S (t)) ; S (t0)) � jt� t0jg and
Sx = fS 2 S : S (0) = xg :

Such a path is called closed if S (0) = S (�) ; and called a tour if additionally
its range is G. If the Searcher chooses a path S and the Hider a point y 2 G;
then the payo¤ is the capture time T (S; y) = min ft : S (t) = yg : If T has mixed
strategies has arguments (strategies), it will be interpreted as the expected time.
Let � = � (G) denote the total length (sum of arc lengths) of G: A Chinese

Postman (CP) tour is a tour of minimum length ��; and a CP path is a covering
(range G) path of minimum length ~�:We call G Eulerian if �� = � and any tour
with length � is called an Eulerian tour. We say that G is weakly Eulerian if
it contains a �nite number of disjoint Eulerian networks which, when each is
shrunk to a point, leaves a tree.

3 Fixed-Start Games

Although we are mainly concerned with arbitrary-start search games, we will
need the following important result of Gal ([6],[2])(extending work of Reijniers
and Potters [8]) on �xed-start games, characterizing networks for which random
CP tours (CP tours traversed equally likely in either direction) are optimal for
the Searcher.

Theorem 1 (Gal) If G is weakly Eulerian then for any starting point x;
V (G; x) = ��=2: An optimal Searcher strategy is a random CP tour starting at x;
and there is an optimal Hider strategy which is uniform on every Eulerian sub-
network. Conversely, if V (G; x) = ��=2 for some x; then G is weakly Eulerian.

4 Partly Eulerian Networks

We say that G is partly Eulerian if it is the union of a tree A and a �nite
number of disjoint Eulerian networks Ei, such that each Ei intersects A in a
single point. We denote as a; b and r the length � (A) = a of the tree part
A; the length � (B) = b of the Eulerian part B = [Ei; and the radius r =
minx2Amaxy2A d (x; y) of A: The minimizing point is called the center c of A:
The numbers for �� and ~� are easily calculated as follows. (The inequality is
later shown to be an equality in Theorem 6)

Lemma 2 If G is a partly Eulerian network we have

�� = 2a+ b; and (1)

~� � 2a+ b� 2r: (2)
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Proof. The equality holds because doubling all the arcs of A gives a network
having all nodes of even degree (so �� � 2a+ b), and furthermore any tour of G
must traverse every arc of A at least twice (because every non-leaf node of A
is a cut point), so �� � 2a+ b. To obtain the inequality, let x and y be distinct
nodes of A at distance r from the center c of the tree A: Let G� be the network
of total length 2a� 2r+ b in which every arc of G is doubled, except those in B
or those on the simple path in A of length 2r from x to y: Then all nodes of G�

except x and y have degree 2, so there is an Eulerian path from x to y in G�:
This path has length 2a� 2r + b and may be interpreted as a covering path of
G: Hence ~� � 2a+ b� 2r
A random CP path is an equiprobable randomization of a CP path S and

its reverse CP path S0 (t) = S (~�� t) (going from S (� = ~�) to S (0)): If a point
x 2 G is found by S at time tx; then it is found by S0 no later than ~� � tx;
hence a random CP path �nds every point of G in average time no more than
~�=2: Since this is a mixed strategy in � (G) ; we have

V (G) � ~�=2: (3)

We say that G is simply searchable if V (G) = ~�=2; in which case a random CP
path is an optimal strategy in � (G) : We show that a partly Eulerian network
is simply searchable, generalizing a similar result of Dagan and Gal [4] for trees.

5 Lower bounds on V (G)

The following result is implicit in the Dagan-Gal proof that a tree is simply
searchable.

Lemma 3 Let G be any network. If h is an optimal hider mixed strategy in
� (G; y) and S is a pure search strategy with S (0) = x; then
T (S; h) � Vy � d (x; y) : Consequently for all x; y 2 G we have jVx � Vyj �
d (x; y) :

Proof. Let S0 denote the pure search strategy with S0 (0) = y; which begins by
going directly to x and then follows S: Since S0 reaches any point of G at most
time d (x; y) later than S does, we have

Vy � T (S0; h) � d (x; y) + T (S; h) ; or
T (S; h) � Vy � d (x; y) :

Since this is true for all S with S (0) = x; we have

Vx � Vy � d (x; y) ; and so by symmetry jVx � Vyj � d (x; y) :
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Lemma 4 Let G = A [ B be a partly Eulerian network with tree part A and
Eulerian part B: Let h be a mixed hider strategy (probability measure) on G
which is uniform (possibly with di¤erent densities) on each component Ei of
the Eulerian part B of G: Then there is a pure search strategy which is optimal
against h and starts in A:

Proof. Suppose S is an optimal strategy against h with S (0) =2 A: (Optimal
strategies against h exist by the usual compactness argument, and if they all
start in A we are done). Let E1 � B be the Eulerian component in which the
search strategy S begins, and let e denote its attachment point to A: We show
that there is another optimal search strategy Ŝ against h which starts at e:
Let C = (G� E1) [ feg be the complement of the interior of E1: We may

break up the search S into a search piece S1 in E1 followed by a search piece
S2 in C; a search piece S3 in E1; and so on, ending either in E1 or C: Let ti
denote the time the i�th search ends (at e; except possibly for the last search
Sk): Let pi denote the probability that the hider will be found in the i�th search,
let Li = ti � ti�1 (t0 � 0) denote length of the i�th search, �i its density and
let ci denote the o¤set of the center of mass of the i�th search piece from its
starting time. That is, if F (t) is the probability that S �nds the hider by time
t; we have

pi = F (ti)� F (ti�1) ;
Li = ti � ti�1 (t0 � 0);

ci =
1

pi

Z ti

ti�1

(t � ti�1) dF (t)

�i = pi=Li:

In these terms we can calculate the expected time w to �nd the hider as

w = T (S; h) = p1c1 + p2 (L1 + c2) + p3 (L1 + L2 + c3) + � � � : (4)

Note that except for S1 and Sk; all the search pieces Si start and end at the node
e; and so could be interchanged to still describe a valid search path. Observe
that if we modify the search S to a search Ŝ which is the same as S except that
Si and Si+1 are interchanged (some i between 2 and k � 2; we get

T (S; h)� T
�
Ŝ; h

�
= (pi (ti�1 + ci) + pi+1 (ti + ci+1))

� (pi+1 (ti�1 + ci+1) + pi (ti�1 + Li+1 + ci))
= Lipi+1 � Li+1pi; or

T (S; h) � T
�
Ŝ; h

�
if and only if �i � �i+1:

So transposing the order between an earlier lower density search and a (5)

later higher density search cannot increase the expected capture time.
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Consequently, the optimality of S implies that higher density search pieces are
carried out before lower density ones. Thus

�2 � �3 � � � � � �k�2 � �k�1: (6)

This optimality condition for alternating search problems is essentially that of
Proposition 3 of Alpern and Howard [3].
The next part of the proof can be interpreted as a new problem, better for

the searcher, in which he can always search the remainder of E1 according to
the density � (the density of the measure h on E1) whenever he arrives at e;
without retracing any parts of E1 he has already searched. Observe that for all
searches Si in E1 (that is, i odd) we have

Li � pi=�; and

ci � pi=2�:

Hence if �w represents the sum (4) with Li replaced by�Li = pi=� and ci by
�ci = pi=2� and hence ��i = � for all odd i; we have

�w = T
�
�S
�
� T (S; h) � w:

We call the shortened searches of E1; searches �Si, for odd i: Of course we don�t
know if the search pattern �S; with these distributions of capture times, can be
realized by a continuous unit speed path in G:
In the sum for �w; all the odd numbered densities ��i will be equal to pi=Li = �;

and the even numbered ones are unchanged, ��0i = �i; i even. So the density
sequence in the sum for �w will look like

�; �2; �; �4; �; �6; �; : : : ; �k (if k is even), or (7)

�; �2; �; �4; �; �6; �; : : : ; �k�1; � (if k is odd). (8)

The modi�cation of S to �S left the searches of C unchanged while making
the searches of E1 maximally e¢ cient, and did not change the order of the
searches. We next modify �S to a search Ŝ by changing the order of the search
pieces,without increasing the expected meeting time, using the observation (5).
Note that the densities �2j are decreasing because of (6) so we can make trans-
positions of adjacent searches which do not increase the resulting expected cap-
ture time sum ŵ; and put all the searches in E1 in a consecutive sequence. For
example, if � lies between �6 and �4; the sequence Ŝ given by

S2; S4;
z }| {
�S1; �S3; : : : ; �Sk�1; S6; S8; : : : ; Sk (if k is even)

with density sequence

�2; �4; �; �; �; : : : �; �6; �8; �10; : : :

has an expected capture time no larger than that of �S; that is

T
�
Ŝ; h

�
� T

�
�S; h

�
� T (S; h) :
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We now show that the search procedure Ŝ can be carried out by a unit speed
path in G: This requires us to establish that the total duration of the searches
in E1 is exactly the length of E1; since E1 is Eulerian, and can be searched in
a time equal to its length by a tour starting and ending at e:
By construction, the length of time spent by Ŝ in exploring E1 is

�L1 + �L3 + � � � =
1

�
(p1 + p2 + : : : ) = � (E1) ; as required

Thus all the search pieces in Ŝ; including in particular the �rst one (which is
either S2 or an Eulerian tour of E1 starting at e), start at e1:

Lemma 5 If G is partly Eulerian, then

V (G) � ��=2� r = a+ b=2� r; (9)

where r is the radius of the tree part A of G:

Proof. Since a partly Eulerian network is weakly Eulerian, Theorem 1 implies
that for any z 2 G we have

Vz (G) = ��=2:

Let h be an optimal hider mixed strategy for the game � (G; c) ; where c is the
center of the tree part A of G. Let S be a pure search strategy starting at some
point x 2 G which is an optimal reply to h: By the previous Lemma we may
assume that x 2 A: Since h is also a valid hiding strategy for the arbitrary-start
game � (G) ; we have by Lemma 3 with y = c;

V (G) � T (S; h) � Vc (G)� d (x; c) � ��=2� d (x; c) � ��=2� r: (10)

6 Simplicity of partly Eulerian networks

We can now establish our main result.

Theorem 6 A partly Eulerian network G is simply searchable. In particular,
if G based on a tree A of length a; center c; and radius r; to which are attached
disjoint Eulerian networks of total length b; then

V (G) = ~�=2 = a+ b=2� r:

Furthermore, an equiprobable mixture of any CP path with its reverse path is an
optimal searcher mixed strategy. An optimal hider strategy for the game � (G; c)
is also optimal for the hider in � (G) :
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Proof. By (9), (2) and (3), we have

a+ b=2� r � V (G) � ~�=2 � a+ b=2� r:

Since the leftmost and rightmost constants are the same, all the inequalities
must be equalities and we have

V (G) = ~�=2 = a+ b=2� r;

and the rest follows from the de�nitions. (Note that this argument also estab-
lishes that (2) holds as an equality.)

Corollary 7 Let G be a network of total length �:

1. If G is a tree of radius r, then V (G) = �� r:

2. If G is Eulerian, then V (G) = �=2:

Proof. In the �rst case b = 0 and � = a: In the second case a = r = 0 and
� = b:
Part 1 is due to Dagan and Gal [4]. Part 2 is easy to establish directly from

the de�nitions.
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