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Abstract

We call a network partly Eulerian if consists of a tree (of length a
and radius r) to which a finite number of disjoint Eulerian networks (of
total length b) are attached, each at a single point. We show that for such
networks, a search strategy consisting equiprobably of a minimal (Chinese
Postman) covering path and its reverse path is optimal, in the sense that
it minimizes (at a + b/2 — r) the expected time to find a point hidden
according to the worst case distribution. This generalizes a similar result
of Dagan and Gal for search games on trees.

1 Introduction

Let G be a finite network with arc length measure A and distance function d.
We consider two zero-sum search games originating in R. Isaacs’ book [7] in
which a unit speed Searcher tries to minimize the time (payoff) T required to
find a stationary (T'—maximizing) Hider. The Hider simply picks a point y in
G. In the fized-start game I' (G, ) the Searcher picks a unit speed path in G
starting at the designated point z, while in the arbitrary-start game I' (G) he
may start anywhere. Compactness arguments [5] [2] establish that these games
always have (minimax) values which we denote respectively as V, = V (G, x)
and V = V (G). While much work has been done on fixed-start search games
[5], arbitrary-start games have only very recently been studied by Dagan and
Gal [4] for the case where G is a tree. (There is also some early some early
work when G is the circle for related games where the Hider is also mobile
([9],[1]), but very different techniques are required for those games.) This paper
generalizes the work of [4] by solving arbitrary-start games when G is a partly
Eulerian network (a tree to which disjoint Eulerian circuits are attached). Our
results may be interpreted as finding the best worst-case method to search such
a network.



2 Definitions

A path S in G is a continuous function from some finite time interval [0, 7] into
G. In our games I' (G) and T' (G, z) the Searcher will only use unit speed paths
in G belonging respectively to the sets

N {S:d((S(t),S() <[t—t|} and
S, = {Se€8:8(0)=x}.

Such a path is called closed if S (0) = S (7), and called a tour if additionally
its range is G. If the Searcher chooses a path S and the Hider a point y € G,
then the payoff is the capture time 7' (S,y) = min {¢ : S (t) = y}. If T has mixed
strategies has arguments (strategies), it will be interpreted as the ezpected time.

Let p = A (G) denote the total length (sum of arc lengths) of G. A Chinese
Postman (CP) tour is a tour of minimum length fi, and a CP path is a covering
(range G) path of minimum length ji. We call G Eulerian if i = y and any tour
with length p is called an Eulerian tour. We say that G is weakly Fulerian if
it contains a finite number of disjoint Eulerian networks which, when each is
shrunk to a point, leaves a tree.

3 Fixed-Start Games

Although we are mainly concerned with arbitrary-start search games, we will
need the following important result of Gal ([6],[2])(extending work of Reijniers
and Potters [8]) on fixed-start games, characterizing networks for which random
CP tours (CP tours traversed equally likely in either direction) are optimal for
the Searcher.

Theorem 1 (Gal) If G is weakly Eulerian then for any starting point x,

V (G, x) = /2. An optimal Searcher strategy is a random CP tour starting at x,
and there is an optimal Hider strategy which is uniform on every Eulerian sub-
network. Conversely, if V (G,z) = [i/2 for some x, then G is weakly Eulerian.

4 Partly Eulerian Networks

We say that G is partly Fulerian if it is the union of a tree A and a finite
number of disjoint Eulerian networks E;, such that each E; intersects A in a
single point. We denote as a, b and r the length A (A) = a of the tree part
A, the length A\ (B) = b of the Eulerian part B = UE;, and the radius r =
minge 4 maxyea d (x,y) of A. The minimizing point is called the center ¢ of A.
The numbers for i and [ are easily calculated as follows. (The inequality is
later shown to be an equality in Theorem 6)

Lemma 2 If G is a partly Eulerian network we have
= 2a+b, and (1)
< 2a+b-—2r. (2)

= =I



Proof. The equality holds because doubling all the arcs of A gives a network
having all nodes of even degree (so i < 2a + b), and furthermore any tour of G
must traverse every arc of A at least twice (because every non-leaf node of A
is a cut point), so i > 2a + b. To obtain the inequality, let  and y be distinct
nodes of A at distance r from the center ¢ of the tree A. Let G* be the network
of total length 2a — 2r + b in which every arc of G is doubled, except those in B
or those on the simple path in A of length 2r from x to y. Then all nodes of G*
except = and y have degree 2, so there is an Eulerian path from z to y in G*.
This path has length 2a — 2r + b and may be interpreted as a covering path of
G. Hence i <2a+b—2r m

A random CP path is an equiprobable randomization of a CP path S and
its reverse CP path S’ (t) = S (i — t) (going from S (7 = f1) to S (0)). If a point
x € G is found by S at time t,, then it is found by S’ no later than i — ¢,
hence a random CP path finds every point of G in average time no more than
/2. Since this is a mixed strategy in I" (G), we have

V(G) < /2. 3)

We say that G is simply searchable if V (G) = [1/2, in which case a random CP
path is an optimal strategy in I' (G). We show that a partly Eulerian network
is simply searchable, generalizing a similar result of Dagan and Gal [4] for trees.

5 Lower bounds on V (G)

The following result is implicit in the Dagan-Gal proof that a tree is simply
searchable.

Lemma 3 Let G be any network. If h is an optimal hider mized strategy in
I'(G,y) and S is a pure search strategy with S (0) = x, then

T(S,h) >V, —d(z,y). Consequently for all z,y € G we have |V, — V| <
d(z,y).

Proof. Let S’ denote the pure search strategy with S’ (0) = y, which begins by
going directly to z and then follows S. Since S’ reaches any point of G' at most
time d (z,y) later than S does, we have

V, < T(S h)<d(z,y)+T(Sh), or
T(S,h) > V,—d(z,y).

Since this is true for all S with S (0) = z, we have

Ve >V, —d(z,y), and so by symmetry |V, —V,| <d(z,y).



Lemma 4 Let G = AU B be a partly Fulerian network with tree part A and
Eulerian part B. Let h be a mized hider strategy (probability measure) on G
which is uniform (possibly with different densities) on each component E; of
the Eulerian part B of G. Then there is a pure search strategy which is optimal
against h and starts in A.

Proof. Suppose S is an optimal strategy against h with S (0) ¢ A. (Optimal
strategies against h exist by the usual compactness argument, and if they all
start in A we are done). Let Ey C B be the Eulerian component in which the
search strategy S begins, and let e denote its attachment point to A. We show
that there is another optimal search strategy S against h which starts at e.

Let C' = (G — E1) U {e} be the complement of the interior of E;. We may
break up the search S into a search piece S' in E; followed by a search piece
S? in C, a search piece S® in E, and so on, ending either in E; or C. Let t;
denote the time the i’th search ends (at e, except possibly for the last search
S*). Let p; denote the probability that the hider will be found in the i’th search,
let L; =t; —t;—1 (to = 0) denote length of the ’th search, p; its density and
let ¢; denote the offset of the center of mass of the i’th search piece from its
starting time. That is, if F' (¢) is the probability that S finds the hider by time
t, we have

pi = F(t;)—F(ti-1),

Li = ti—ti_1 (to=0),
1 b

o = 7/ (t —ti 1) dF (1)
Pi Je;_y

pi = pi/Li
In these terms we can calculate the expected time w to find the hider as
w=T(S,h)=pic1+pa(L1+c2)+ps (L1 +Lat+c3)+---. (4)

Note that except for S' and S*, all the search pieces S* start and end at the node
e, and so could be interchanged to still describe a valid search path. Observe
that if we modify the search S to a search S which is the same as S except that
St and ST are interchanged (some i between 2 and k — 2, we get

(pi (tic1 +¢i) + pig1 (ts + cip1))

— (Pig1 (tic1 + cig1) + i (tic1 + Liv1 + 1))
Lipi+1 — Litapi,or

T(S,h) < T (§,h> if and only if p; > p; ;.

T (S, h) —T(S‘,h)

So transposing the order between an earlier lower density search and a  (5)

later higher density search cannot increase the expected capture time.



Consequently, the optimality of S implies that higher density search pieces are
carried out before lower density ones. Thus

Py 2 P32 2 Pr_g 2 Pr_1- (6)

This optimality condition for alternating search problems is essentially that of
Proposition 3 of Alpern and Howard [3].

The next part of the proof can be interpreted as a new problem, better for
the searcher, in which he can always search the remainder of E; according to
the density ¢ (the density of the measure h on E;) whenever he arrives at e,
without retracing any parts of F7 he has already searched. Observe that for all
searches S? in Fj (that is, i odd) we have

Li > pi/6, and

Hence if @ represents the sum (4) with L; replaced byL; = p;/d and c¢; by
¢; = p;/26 and hence ¢; = § for all odd 4, we have

w="T(S) <T (S h) <w.

We call the shortened searches of Ey, searches S, for odd i. Of course we don’t
know if the search pattern S, with these distributions of capture times, can be
realized by a continuous unit speed path in G.

In the sum for w, all the odd numbered densities p; will be equal to p;/L; = 9,
and the even numbered ones are unchanged, p; = p;, ¢ even. So the density
sequence in the sum for w will look like

Jap276ap476ap676a"'7pk (lfk is even), or (7)
8,02,0, 04,0, Pgs 0y - -y Pra_1,0 (if k is odd). (8)

The modification of S to S left the searches of C' unchanged while making
the searches of F; maximally efficient, and did not change the order of the
searches. We next modify S to a search S by changing the order of the search
pieces,without increasing the expected meeting time, using the observation (5).
Note that the densities py; are decreasing because of (6) so we can make trans-
positions of adjacent searches which do not increase the resulting expected cap-
ture time sum w, and put all the searches in E; in a consecutive sequence. For
example, if § lies between pg and p,, the sequence S given by

% 64 St &3 ..., Gkl g6 o8 . gk (if k is even)
with density sequence
p27p476,576a"'5ap67p8ap103"'

has an expected capture time no larger than that of S, that is

T(S,h) <T(S,h) <T(S,h).



We now show that the search procedure S can be carried out by a unit speed
path in G. This requires us to establish that the total duration of the searches
in F; is exactly the length of F4, since E; is Eulerian, and can be searched in
a time equal to its length by a tour starting and ending at e.

By construction, the length of time spent by S in exploring Fj is

- = 1
L1—|—L3+~--:g(pl—l—pg—i—...):)\(El), as required

Thus all the search pieces in S, including in particular the first one (which is
either S? or an Eulerian tour of F; starting at e), start at e;. m

Lemma 5 If G is partly Eulerian, then
V(G)>p/2—r=a+b/2—r, (9)
where r is the radius of the tree part A of G.

Proof. Since a partly Eulerian network is weakly Eulerian, Theorem 1 implies
that for any z € G we have
V. (G) = /2

Let h be an optimal hider mixed strategy for the game T' (G, ¢), where c is the
center of the tree part A of G. Let S be a pure search strategy starting at some
point x € G which is an optimal reply to h. By the previous Lemma we may
assume that = € A. Since h is also a valid hiding strategy for the arbitrary-start
game I' (G), we have by Lemma 3 with y = ¢,

V(G) > T(S.h) > Ve (G) - d(2,0) > /2 —d(w,¢) > i/2 = . (10)

6 Simplicity of partly Eulerian networks
We can now establish our main result.

Theorem 6 A partly Fulerian network G is simply searchable. In particular,
if G based on a tree A of length a, center c, and radius r, to which are attached
disjoint Fulerian networks of total length b, then

V(G)=f/2=a+b/2—r

Furthermore, an equiprobable mizture of any CP path with its reverse path is an
optimal searcher mixed strategy. An optimal hider strategy for the game I’ (G, ¢)
is also optimal for the hider in T (G).



Proof. By (9), (2) and (3), we have
a+b/2—r<V(G)<p/2<a+b/2—r.

Since the leftmost and rightmost constants are the same, all the inequalities
must be equalities and we have

V(G)=p/2=a+b/2 -,

and the rest follows from the definitions. (Note that this argument also estab-
lishes that (2) holds as an equality.) =

Corollary 7 Let G be a network of total length p.
1. If G is a tree of radius r, then V (G) = p — .
2. If G is Eulerian, then V (G) = /2.

Proof. In the first case b = 0 and pu = a. In the second case a = 7 = 0 and
w=>=o m

Part 1 is due to Dagan and Gal [4]. Part 2 is easy to establish directly from
the definitions.
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