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Abstract

Joel E. Cohen (1981) conjectured that any stochastic matrix P = fpi;jg could
be represented by some circle rotation f in the following sense: For some par-
tition fSig of the circle into sets consisting of �nite unions of arcs, we have (*)
pi;j = � (f (Si) \ Sj) =� (Si), where � denotes arc length. In this paper we show
how cycle decomposition techniques originally used (Alpern, 1983) to establish
Cohen�s conjecture can be extended to give a short simple proof of the Coding
Theorem, that any mixing (that is, PN > 0 for some N) stochastic matrix P
can be represented (in the sense of * but with Si merely measurable) by any
aperiodic measure preserving bijection (automorphism) of a Lesbesgue proba-
bility space. Representations by pointwise and setwise periodic automorphisms
are also established. While this paper is largely expository, all the proofs, and
some of the results, are new.
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1 Introduction

An automorphism of a Lebesgue probability space (X; �; �) is a bimeasurable
bijection f : X ! X which preserves the measure �: If S = fSigni=1 is a non-
trivial (all � (Si) > 0) measurable partition of X; we can generate a stochastic
matrix P = fpi;jgni;j=1 by the de�nition

pi;j =
� (f (Si) \ Sj)

� (Si)
; i; j = 1; : : : ; n: (1)

Since the partition S is non-trivial, the matrix P has a positive invariant
(stationary) distribution v = (v1; : : : ; vn) = (� (S1) ; : : : ; � (Sn)) ; and hence (by
de�nition) is recurrent. If (1) holds, we say that the stochastic matrix P is
represented by the automorphism f: Equivalently, we can say that the mass-
�ow matrix R = fri;jgni;j=1 associated with P; v by ri;j = vi pi;j is represented
by f; S if

ri;j = � (f (Si) \ Sj) ; i; j = 1; : : : ; n: (2)

(R is a mass-�ow matrix if its entries are non-negative and sum to 1 and for all

k = 1; : : : ; n;
nP
i=1

ri;k =
nP
j=1

rk;j :)

Joel E. Cohen [7] proposed representing a stochastic matrix P by a rotation
rott (x) = x+ t (mod 1) of the �circle�[0,1), using partitions S in which each set
Si is a �nite union of arcs (intervals). He called a solution f; S of (1) of this type
a rotational representation of P: Cohen showed that such representations always
exist for 2 � 2 irreducible stochastic matrices and conjectured that this result
could be extended to n�n matrices. The subsequent results of Alpern [3], Haigh
[9], Rodrigues del Tio and Valsero Blanco [20], and Kalpazidou [11][12][15],
established and extended Cohen�s conjecture in various ways. The purpose of
this paper is to show that the cycle decomposition techniques used in [3] to
establish Cohen�s conjecture, together with the multitower constructions of [1]
[3], can be modi�ed to give short elementary proofs of results on representations
by automorphisms of various types, including the well known Coding Theorem
(Theorem 9). The cycle decompositions we use (the Lemmas of this paper) all
are established by very elementary algorithms. We believe that further results
can be obtained in this area using our multitower construction and the deeper
cycle decomposition theorems for Markov chains presented in [13].

2 De�nitions

The main results presented in this paper link a given stochastic matrix P with
an automorphism and partition f; S of a measure space. So we need to provide
some elementary de�nitions regarding on the one hand, automorphisms and
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partitions into towers and multitowers; and on the other hand, decompositions
of stochastic or mass-�ow matrices into circuits, cycles and tours.

2.1 Automorphisms and multitowers

An automorphism f is said to be aperiodic if �
��
x : fkx = x for some k > 1

	�
=

0: It is called pointwise h-periodic if fh is the identity. It is called setwise h-
periodic if there is a set B of measure 1=h such that f l (B) are pairwise disjoint
for l = 0; : : : ; h� 1; in which case fh (B) must be B:
Let � = (�1; �2; : : : ; ) be a denumerable probability distribution, and let

K� denote the set of coordinates k for which �k > 0: A �-multitower for an
automorphism f : X ! X is a family of base sets Bk; k 2 K�; such that for
each k in K� the column Tk = Bk [ f (Bk) [ � � � [ fk�1Bk consists of disjoint
sets of total measure � (Tk) = �k , and the Tk partition X: Except for the �nal
section, we will be concerned with the case where K� has a maximum L; and
write � = (�1; �2; : : : ; �L) : If for every k 2 K�; f

k is the identity on Bk; we
will call the multitower periodic. If for some h; �h = 1; then we call the �-
multitower an h-tower. Multitowers can be visualized as in Figure 1, with the
sets f l (Bk) drawn as intervals, with f l+1 (Bk) drawn directly above f l (Bk) :
In this �gure, any point x not in the top ([k2K�

fk�1 (Bk)) of the multitower
moves to the point directly above it. Points in the top move to the bottom
([k2K�Bk) of the multitower - but we cannot in general say where. However if
the tower is periodic, then a point on the top moves to the point directly below
it in the bottom.

Figure 1: Multitower with � = (1=15; 6=15; 0; 8=15)

If f is setwise h�periodic then it follows from the de�nition that there is an
h-tower for f: If f is pointwise h-periodic it is setwise periodic [10, Lemma
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1], and the h-tower must be periodic. If f is aperiodic, the existence of a
��multitower is given by the following result of [1]. Short and elegant proofs
of this �nite version of the multitower theorem are given in [18] and [8]. We
will show that this result is in fact su¢ cient to prove the Coding Theorem,
which had previously been thought to require results dependent on the In�nite
Multitower Theorem (see Section 7).

Theorem 1 ((Finite) Multitower Theorem) If � = (�1; �2; : : : ; �L) is a
�nite probability distribution with K� relatively prime, then any aperiodic auto-
morphism f of a Lebesgue probability space (X;�; �) has a �-multitower.

For example, any aperiodic automorphism has a (1=13; 4=13; 0; 8=13)-multitower,
because the set f1; 2; 4g is relatively prime.

2.2 Flows and circuits

Given a mass-�ow matrix R, we de�ne a circuit c = [c1; c2; : : : ; cl] as a circular
list of states ct 2 f1; : : : ; ng with rct;ct+1 > 0; t = 1; : : : ; l � 1; and rcl;c1 > 0:
If the elements ct are distinct we call c a cycle; if the ct include all the states
1; : : : ; n; we call c a tour. For any circuit c; de�ne the associated circuit matrix
C = ĉ to be the mass-�ow matrix de�ned by setting ri;j to be the number of
times that j follows i in c (counting the transition clc1) divided by the length
of c: For example, if c = [1; 2; 2; 1; 1; 1; 1] ; then

C = ĉ =
1

7

�
4 1
1 1

�
: (3)

If c is a cycle (tour) we call ĉ a cycle (tour) matrix. If c is a circuit of length
l; then l � ĉ is an integer matrix. If circuits c1 and c2 have a state in common
and respective lengths l1 and l2, and �1 and �2 are positive integers, we de�ne
�1c

1 + �2c
2 to be any circuit which starts at a common state, follows c1 for �1

circuits and then c2 for �2 circuits. Note that the circuit matrix corresponding
to �1c

1 + �2c
2 is given by

�1l1
�1l1 + �2l2

bc1 + �2l2
�1l1 + �2l2

bc2: (4)

It is possible that di¤erent circuits de�ne the same circuit matrix, but this will
not cause any problems. Although it is more convenient for us to use matrix
notation, the concepts are more easily visualized in terms of a network �ow,
where the (directed) �ow from node i to node j is ri;j ; and circuits, cycles, and
tours have the usual combinatorial interpretation.

3 Rotational Representations of 2� 2 matrices
Let R be the mass �ow matrix corresponding to a 2 � 2 stochastic matrix P
with positive invariant distribution vector (v1; v2) ; v1 � v2: Observe that the
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four entries of R are determined by any one of them, say r1;1; which cannot
exceed v1: (Also note that r1;2 = r2;1:) Let S1 be any interval (or arc) of length
v1; and note that � (rott (S1) \ S1) = v1 � t = r1;1 for t = r1;1 � v1: Hence any
such 2 � 2 stochastic matrix has a rotational representation with the interval
partition

n
S1; ~S1

o
: This argument of Cohen ([7]) is essentially an application

of the Intermediate Value Theorem to the real function � (rott (S1) \ S1) which
takes values v1 and 0 for t equal to 0 and 1=2; and hence takes on any interme-
diate value r1;1: For this reason Cohen�s argument does not generalize to higher
dimensional matrices.
We now give another proof for the 2�2 case which does generalize to higher

dimensions. Take t = 1=2 and write the pointwise 2�periodic rotation f =
rot1=2 as a periodic 2-tower of based on the interval B2 = [0; 1=2): Then partition
B2 into three intervals B2;k; k = 1; 2; 3; of respective lengths r1;1=2; r2;2=2; and
r1;2 = r2;1: De�ne S1 to be the union of the disjoint intervals B2;1; f (B2;1) ; and
B2;3; that is, the intervals labeled 1 in Figure 2. For visual clarity, we have put
a space between the three columns of the tower corresponding to the labellings,
and taken r1;1 = 1=6; r2;2 = 1=3, r1;2 = r2;1 = 1=4; � (S1) = v1 = 5=12;
� (S2) = 7=12: The action of f is to take any point x to the point either directly
above or below it.

Figure 2: A labeled periodic 2-tower for f = rot1=2

Essentially what we have done here is to write R as a convex combination of
cycle matrices based on the cycles c1 = [1] ; c2 = [2] ; and c3 = [1; 2] : (Recall
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that r1;2 = r2;1:)�
r1;1 r1;2
r2;1 r2;2

�
= r1;1

�
1 0
0 0

�
+ r2;2

�
0 0
0 1

�
+ (r1;2 + r2;1)

�
0 1=2
1=2 0

�
= r1;1c[1] + r2;2c[2] + (r1;2 + r2;1) d[1; 2]
= �1 bc1 + �2 bc2 + �3 bc3

We then choose a common multiple m of all the cycle lengths (in this case
any multiple of 2); take t = 1=m and label a periodic m�tower for f = rott
according to the cycles, repeating each cycle of length l exactly m=l times. The
distribution of the measures � (f (Si) \ Sj) in each column k (above Bk) is bck;
so the distribution on the whole circle is R:
Using Cohen�s construction one can specify in advance (as one) the number

of intervals in each partition element Si; whereas in this construction one can
specify in advance the angle of rotation (as 1=m for any even m): In fact we
can take f = rotd=m for any lowest term fraction d=m where m is even, taking
an m-tower over Bm = [0; 1=m] for the pointwise m�periodic automorphism f;
and labeling the column over Bk;m by m=lk copies of the cycle ck; where lk is
the length of ck:

4 Rotational or pointwise periodic representa-
tions of n� n matrices

In this section �x a stochastic n � n matrix P; with positive invariant distrib-
ution v and associated mass-�ow matrix R: We follow [3] to show how it can
be rotationally represented. Then we observe that this technique works for
any pointwise m�periodic automorphism with appropriate m:We illustrate our
method, using the particular example

�P =

0@ 1=2 1=4 1=4
1=2 0 1=2
1=2 1=2 0

1A ; (5)

�v = (1=2; 1=4; 1=4) ;

�R =

0@ 1=4 1=8 1=8
1=8 0 1=8
1=8 1=8 0

1A :
We can write �R as a convex combination of four cycle matrices bck as follows:

�R =
1

4
d[1; 2] + 1

4
d[2; 3] + 1

4
d[3; 1] + 1

4
c[1]:

Let h be any integer multiple of these cycle lengths (in this example, any even
number). In our illustrations we take h = 6: Let f = rotd=h, where d=h is in
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lowest terms, and consider the h�tower for f over the interval B6 = [0; 1=6):
See the left side of Figure 3. Assume that, as for �R; we can write

R = �1 bc1 + � � �+ �k bck + � � �+ �KccK (6)

as a convex combination of cycle matrices. Divide the h-tower into k columns
with relative distribution �; where the �k are the coe¢ cients. That is, the
interval bases Bh;k; k = 1; : : : ;K have lengths � (Bh;k) = �k=h: Then label
the k�th column of the h-tower (the one with base Bh;k), from the bottom up,
with repetitions of the cycle ck: This process, analogous to that in the previous
section, is illustrated on the right side of Figure 3. The action of f in the tower
is to move every point x to the point directly above it; if there is no such point
( i.e. if x is in the top level) then f (x) is the point on the bottom level below
x:

Figure 3: A periodic 6-tower over B6 = [0; 1=6) - split into four labeled columns

Setting Si to be the union of all column levels labeled i gives the required
representation (2). So all that remains is to establish that a cycle decomposition
like (6) can always be found. This was done in [3] by observing that the mass-
�ow matrices form a convex compact subset of Euclidean n2 space, and that
the cycle matrices are its extreme points (also a combinatorial algorithm for the
decomposition is given).

Lemma 2 Every mass-�ow matrix R is a convex combination of cycle matrices.

Together with the labeling algorithm described above, this gives the positive
answer to Cohen�s conjecture obtained in [3].

Theorem 3 Every �nite recurrent stochastic matrix can be represented by a
circle rotation via a partition into sets consisting of �nite unions of intervals.
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By analyzing the proof, we can give a su¢ cient condition for P to be repre-
sentable by a given rotation f:

Theorem 4 Let P be an n�n stochastic matrix with an invariant distribution
v: Let f = rotd=h be the circle rotation by d=h, where h is a common multiple
of all the cycle lengths in P (e.g. n!) and d=h is in lowest form. Then P can be
represented by f via a partition fSigni=1 consisting of �nite unions of intervals,
with (� (S1) ; : : : ; � (Sn)) = v:

Suppose that f is not a circle rotation, but merely some other automorphism
of some space (X;�; �) which is pointwise h�periodic. As observed in Section
2, there is a periodic h-tower for f , based on some periodic set Bh which has
analogous properties to the set [0; 1=h) for the rotation. The proof is identical
to that for the rotation rotd=h; except we can no longer assert that each Si is a
union of intervals. So we have simply,

Corollary 5 Let P be an n�n recurrent stochastic matrix, and let f be point-
wise h-periodic automorphism of (X;�; �) : If h is a common multiple of all
cycle lengths of P; then P can be represented by f:

5 Representations by setwise periodic automor-
phisms

Suppose now that, unlike Corollary 5, the automorphism f no longer has point-
wise period h, but merely setwise period h: Can we still represent P by f?
Setwise periodicity for f means there is a measurable set Bh which forms the
base of an h-tower for f: So given a cycle decomposition (6) for the associated
mass-�ow matrix R; we can still partition Bh into subsets Bh;k and label the
column levels fq (Bh;k) as before: So for our example �P ; �R; given in (5) we can
still obtain the labeled tower of Figure 3 - but it will no longer be a periodic
tower. That is, for a point x at the top of the tower, we can no longer specify
the bottom level containing f (x) : For example if x is in the top left column
level f5 (B6;1) ; it will still be labeled 1; but we cannot determine from the �gure
the label of f (x) : It might be 1 or 3: So the transitions � (f (Si) \ (Sj)) will no
longer necessarily match those in the cycle matrices. The main observation is
that this problem (not knowing the label of f (x) when x is in the top of the
tower) disappears if the labeling has all the base levels given a common label.
Since we can start the cycles at any state (e.g. [3,1] is the same as [1,3]) all we
need is that the cycles in the decomposition (6) all contain some common state,
which we can use to label the entire bottom Bh of the tower.
For example, if the setwise period is 6; we can decompose the mass-�ow

matrix �R into three cycles, all containing the state 1; as follows.

�R =
1

2
c[1] + 1

4
d[1; 2; 3] + 1

4
d[1; 3; 2]: (7)

7



We can then label the (non periodic) f�tower of height 6 by partitioning the
base B6 into three sets with relative distribution (1=2; 1=4; 1=4) and labeling
them as in Figure 4.

Figure 4: Labeling of a 6�tower for f with base in S1:

But notice that we didn�t really need cycles in our previous constructions-
circuits would have been just as good. With this relaxation, we can indeed get
a decomposition of R into circuits with a common state. In fact we do this by
getting the circuits to all contain all states, that is, to be tours (in fact with
common lengths). But for a tour to exist, the matrix R (or P ) must of course
be irreducible. Thus to code R onto the Bh tower for f; it will su¢ ce to have a
the following decomposition result.

Lemma 6 Every mass-�ow matrix R corresponding to an irreducible stochastic
matrix P is a convex combination of tour matrices with a common length.

Proof. Since R is irreducible, there exists a tour c0 of some length l0: Let
C0 = bc0 be the corresponding tour matrix. Observe that for any su¢ ciently
small rational number p=q < 1; the matrix

q

q � p

�
R� p

q
C0
�

(8)
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has all positive entries and therefore is a mass-�ow matrix. Hence by Lemma
2, there is a probability K�vector � and cycle matrices Ck of length lk with

q

q � p

�
R� p

q
C0
�
= �1C

1 + � � �+ �KCK ; or

q

q � p
R =

p

(q � p)C
0 + �1C

1 + � � �+ �KCK ; or

R =
q � p
q

�
p

(q � p)C
0 + �1C

1 + � � �+ �KCK
�

Since �1 + � � �+ �K = 1; we may rewrite this as

R =
q � p
q

�
�1

�
pC0

(q � p) + C
1

�
+ � � �+ �K

�
pC0

(q � p) + C
K

��
; or (9)

R = �1

�
p

q
C0 +

(q � p)
q

C1
�
+ � � �+ �K

�
p

q
C0 +

(q � p)
q

CK
�
: (10)

The result will now follow if we can show that the mass-�ow matrices

Mk =
p

q
C0 +

(q � p)
q

Ck = btk
are tour matrices corresponding to tours tk of some common length s:
Let s be any common multiple of the circuit lengths l0; : : : ; lK and de�ne

the integers sj = s=lj ; j = 0; : : : ;K: Then the tour tk = ps0 � c0 + (q � p) sk � ck

has length qs and by (4) its associated tour matrix btk is given by
btk =

p s0 l0
p s0 l0 + (q � p) sk lk

C0 +
(q � p) sk lk

p s0 l0 + (q � p) sk lk
Ck

=
ps

qs
C0 +

(q � p) s
qs

Ck =Mk; as claimed.

If we apply this algorithm to the mass-�ow matrix �R of (5) we don�t get the
decomposition (7) but the following: Take p=q = 3=8 and C0 = d[1; 2; 3]: Then
we have, taking s = 3; the following decomposition of �R :

�R� 3
8
d[1; 2; 3] =

0@ 2=8 1=8 1=8
1=8 0 1=8
1=8 1=8 0

1A� 3
8

0@ 0 1=3 0
0 0 1=3
1=3 0 0

1A =

0@ 2=8 0 1=8
1=8 0 0
0 1=8 0

1A ;
8

5

�
�R� 3

8
d[1; 2; 3]� =

1

5

0@ 2 0 1
1 0 0
0 1 0

1A =
2

5
c[1] + 3

5
d[1; 3; 2]; or

�R =
5

8

�
3

5
d[1; 2; 3] + �2

5
c[1] + 3

5
d[1; 3; 2]��

=
2

5
� (1=24)

0@ 15 3 0
0 0 3
3 0 0

1A+ 3
5
� (1=24)

0@ 0 3 5
5 0 3
3 5 0

1A
9



The two tours are

3 [1; 2; 3] + 15 [1] = [1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 3; 1; 2; 3; 1; 2; 3] ;

3 [1; 2; 3] + 5 [1; 3; 2] = [1; 3; 2; 1; 3; 2; 1; 3; 2; 1; 3; 2; 1; 3; 2; 1; 2; 3; 1; 2; 3; 1; 2; 3] ;

where the common length qs = 8 � 3 = 24:
Now we know that we can label the f -tower of height h over the periodic set

Bh with all of the base set Bh having a common label. Thus the same arguments
as before allow us to represent P by h: In particular

Theorem 7 Let P be an n�n irreducible stochastic matrix. Let l0 be the length
of a minimal tour, let r be a minimum nonzero entry of the associated mass-
�ow matrix R; and let q be any integer with ql0 >

n

r
: Let f be a setwise periodic

automorphism of a Lebesgue probability with period h: If h is an integer multiple
of q l0 lcm [2; : : : ; n] then P can be represented by f:

Proof. In the proof of Lemma 6, let p = 1 and take M0 to correspond to a
tour c0 of minimum length l0. It is easy to see that this implies that no state
appears in the tour c0 more than n times and consequently that no entry c0i;j of
the integer matrix l0M0 can exceed n: So if ql0 > n=r; we have

ri;j �
ci;j
ql0

> r � n

(n=r)
= 0;

implying that this condition indeed makes q �su¢ ciently large�in the sense of
the proof of Lemma 6. Next take s in the proof of the previous Lemma to
be l0 � lcm [2; : : : ; n] : This ensures that all the tours tk have length qs = q l0
lcm [2; : : : ; n], so the corollary holds if m is equal to this length. If for some
integer u we have m = u q l0 lcm [2; : : : ; n] ; then simply replace the tk in the
cycle decomposition by their u�fold repetitions.

6 Representations by aperiodic automorphisms.

If we want to represent a matrix P by an aperiodic automorphism, we must
obtain the multitower to label by the multitower theorem. However, the circuit
decomposition given by Lemma 6 has all the circuit lengths equal. To apply
the multitower theorem, it will be necessary to have a decomposition in which
the circuit lengths are relatively prime. This is not always possible, even for
irreducible matrices. For example, if we have

P =

�
0 1
1 0

�
; R =

�
0 1=2
1=2 0

�
;

then all R�circuits have even length. To avoid this we require that P be a
mixing matrix, that is, Pm has all positive entries, for some m (and all larger
m). A matrix is mixing if and only if it is irreducible and aperiodic. In the
example we are using, the matrices �P and �R; are indeed mixing (take m = 2).
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The decomposition of �R given in (7) already has cycle lengths of 1; 3; 3, which
are relatively prime. So if f : X ! X is any aperiodic automorphism, we set � =
(1=4; 0; 3=4) and apply the multitower theorem to obtain sets B1 and B3 with
� (B1) = 1=4 and 3� (B3) = 3=4; such that the four sets B1; B3; f (B3) ; f2 (B3)
partition the underlying space X: We then partition B3 into two sets B3;1 and
B3;2 of measure 1=4 each, and label the towers over B1; B3;1; and B3;2 according
to the cycles [1] ; [1; 2; 3] ; [1; 3; 2] ; as in Figure 6.

Figure 5: A (1=4; 0; 3=4) multitower for f; labeled to represent �R

This represents �P by any given aperiodic automorphism f: To show that this
can be accomplished for any mixing matrix P; we must establish the following.

Lemma 8 Let R be the mass-�ow matrix corresponding to a mixing stochastic
matrix P: Then R is a convex combination of circuit matrices of relatively prime
lengths and with a common state.

Proof. Fix any state, say i = 1: Since P is mixing, we have pm1;1 > 0 and
pm+11;1 > 0: Hence there are circuits of length m and m+ 1 containing the state
1. Hence there are circuit matrices M�1 and M0 of respective lengths m and
m + 1; which both contain the state 1 (this means that the sum of entries in
their �rst row is positive). For su¢ ciently small scalars ��1 and �0; the matrix

R� ��1M�1 � �0M0

has all positive entries, and hence

1

1� ��1 � �0
�
R� ��1M�1 � �0M0

�
is a mass �ow matrix. Hence by Lemma 2, we have

1

1� ��1 � �0
�
R� ��1M�1 � �0M0

�
= �1M

1 + � � �+ �KMK ;

where (�1; : : : ; �K) is a probability vector and M1; : : : ;MK are tour matrices
(in particular they contain the state 1). Hence we have

R = ��1M
�1+�0M

0+
�
�1 (1� ��1 � �0)M1 + � � �+ �K (1� ��1 � �0)MK

�
:
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Since the K+2 matrices on the right hand side all contain the state 1 and their
lengths include m and m+ 1; we are done.

Theorem 9 Let P = fpi;jgni;j=1 be a mixing stochastic matrix and let f : X !
X be an aperiodic automorphism of a Lebesgue probability space (X;�; �) : Then
there is a non-trivial measurable partition X = S1[S2[� � �[Sn of X such that

pi;j =
� (f (Si) \ Sj)

� (Si)
; for all i; j = 1; : : : ; n:

Proof. Let R be the mass-�ow matrix associated with P and, using Lemma 3,
write it as

R = �1M
1 + �2M

2 + � � �+ �KMK ;

where all the Mk contain the state 1 and their lengths are relatively prime.
De�ne a �nite probability vector � = (�1; : : : ; �L) by �i =

P
k:length(Mk)=i

�k;

so that by the previous sentence the i with �i > 0 are relatively prime, and
L is the largest such i: Let Bi denote the base sets given by the multitower
theorem applied to f and �: IfMk corresponds to a circuit ck of length i; de�ne
Bi;k � Bi to be a partition of Bi with � (Bi;k) = �k=�i; and attach the label
ckh�1 to the set f

h (Bi;k) : As usual, set Si to be the union of all sets in the
multitower partition which are labeled with i:
It is interesting to note that the logical structure of this section, where the

Coding Theorem is obtained as a corollary of the Finite Multitower Theorem,
is exactly the reverse of that of [1]. In that paper, the Coding Theorem was
proved �rst, by a detailed limiting argument, and then the Finite Multitower
Theorem was obtained as an easy consequence.

7 Representing in�nite stochastic matrices

This paper is primarily concerned with demonstrating how �nite cycle decom-
positions and the �nite version (Theorem 1) of the multitower theorem can
be combined to represent �nite stochastic matrices by various types of auto-
morphisms. However if we use the (harder) in�nite version of the multitower
theorem [2], where the word �nite in the hypotheses of Theorem 1 is replaced by
denumerable, then we can fairly easily obtain the in�nite version of the Coding
Theorem. (An irreducible matrix is said to be aperiodic if the set of return
times to a given state are relatively prime.)

Theorem 10 Let P = fpi;jg1i;j=1 be an irreducible aperiodic stochastic ma-
trix with a positive invariant distribution (so that P is what is called positive-
recurrent). Let f : X ! X be an aperiodic automorphism of a Lebesgue proba-
bility space (X;�; �) : Then there is a partition S = fSig1i=1 of X such that

pi;j =
� (f (Si) \ Sj)

� (Si)
; for all i; j = 1; : : : ;1:

12



The same method of coding towers gives an easy proof of this result, if we
use the in�nite version of the multitower theorem. Fix any state, say state 1;
and let w1; : : : ; wM be all the circuits of length k containing the state 1 exactly
once (other states may be repeated). De�ne k�k to be the probability that the
�rst return time to state 1 in the Markov chain determined by P is k: Using
the (in�nite) multitower theorem, let Bk be the bases of the multitower, with
� (Bk) = �k: Partition Bk into m sets Bk;m; m = 1; : : : ;M , according to the
relative probabilities of the circuits w1; : : : ; wM in the Markov chain. Then
label the k column levels above the base Bk;m with the states in the circuit wm;
starting with a 1 at the bottom. Setting Si to be the union of all the column
levels labelled i gives the required transition probabilities pi;j : In fact, for any
sequence i1; i2; : : : ; iL in which il 6= 1; for all 1 < l � L; we have

v (i1) pi1;i2 pi2;i3 � � � piL�1iL = �
�
fL�1 (Si1) \ � � � \ f

�
SiL�1

�
\ SiL

�
:

The details can be found in [6]. For related work on rotational representations
of stochastic matrices, see [14].
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