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Abstract. Classes of irrational function classes, denoted by AS, that lie between the
extreme cases of the disk algebra A and the Hardy space H∞(D), are considered. The
corona theorem holds for AS, and the following properties are shown: AS is an integral
domain, but not a Bézout domain, AS is a Hermite ring with stable rank 1, and the Banach
algebra AS has topological stable rank 2. Consequences to the coprime factorization of
transfer functions and stabilizing controller synthesis using a factorization approach are
discussed.
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1 Introduction

In the factorization approach to control system analysis and synthesis, one starts with a
frequency domain description of the system in terms of its transfer function, and expresses
the transfer function as a ratio of two stable transfer functions. Many important control
problems can then be formulated and solved with this approach. The book by Vidyasagar
[36] is a classical reference and the recent papers by Quadrat [23], [24], [25] give a modern
comprehensive treatment of the factorization approach.

As opposed to finite-dimensional systems, the transfer functions of infinite-dimensional
systems are irrational, and there are many different useful classes of transfer functions; see
Section 7.5 from Curtain and Zwart [8]. In order to use a factorization approach for solving
control problems, we would like to factor the unstable transfer function as a ratio of transfer
functions from a certain stable subclass. In the case of infinite-dimensional systems, there
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are many different notions of internal stability: weak stability, strong stability, exponential
stability and so on. So it is natural to expect a wide range of function classes for stable
transfer functions. Among the classical Banach algebras considered for the purposes of
systems theory, we mention the disk algebra, the Callier-Desoer class (see [2]), the Hardy
space H∞(D) and the Nevanlinna class (see [7]).

In this article, we consider a family of function classes AS lying between the extremal
classes of the disk algebra A and the Hardy space H∞(D). AS consists of functions that are
analytic in the open unit disk, and bounded and continuous on the open unit disk together
with a subset S of the unit circle. Many transfer functions have this property and so it is
useful to be able to develop a factorization approach based on this class of stable transfer
functions AS. The properties that play an important role in the factorization approach
(see [36], [23], [24], [25]) are listed below, and it is known that the disk algebra A and
H∞(D) have these useful properties:

P1. The corona theorem.

P2. The Hermite property.

P3. Stable rank = 1.

P4. Topological stable rank = 2.

We prove that the properties P2, P3 and P4 also hold for the infinitely many intermediate
spaces AS, where S is an arbitrary subset of the unit circle. (The property P1 is also true
for AS, and this was already known to be true, but we give new bounds in Section 2.)

We will use the following standard notation:

D = {z ∈ C | |z| < 1} (open unit disk)

D = {z ∈ C | |z| ≤ 1} (closed unit disk)

T = {z ∈ C | |z| = 1} (unit circle).

For convenience, we work with the unit disk, but the function classes and their corre-
sponding results can be translated to the half-plane case by the usual linear fractional
transformation

µ : D → {s ∈ C | Re(s) ≥ 0} ∪ {∞}
given by

z 7→ s =
1 − z

1 + z
, (1)

that takes D to the open right half-plane C+ = {s ∈ C | Re(s) > 0}, and T to the imaginary
axis iR with the point at ∞. The map µ is one-to-one, onto, analytic in D and continuous
on D. Its inverse µ−1 is analytic in C+ and continuous on {s ∈ C | Re(s) ≥ 0} ∪ {∞}.

We now introduce the transfer function class AS.

Definition. Let S be a subset of T. Let

AS = {f : D ∪ S → C | f is analytic in D and f is continuous and bounded on D ∪ S},
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equipped with the supremum norm ‖ · ‖∞: if f ∈ AS, then

‖f‖∞ := sup
z∈D∪S

|f(z)|.

We note that if S = T, then AT is the usual disk algebra, often denoted simply by A:

A = AT = {f : D → C | f is analytic in D and f is continuous and bounded on D},
while if S = ∅, then one obtains the Hardy space with p = ∞, usually denoted by H∞(D):

A∅ = H∞(D) = {f : D → C | f is analytic and bounded in D}.
If S1, S2 are two subsets of T such that S1 ⊂ S2, then we have AS2

⊂ AS1
. In this manner,

we obtain the family of function algebras, F = {AS | S ⊂ T}, partially ordered with
respect to set inclusion. The extremes are the classical spaces:

A = AT ⊂ AS ⊂ A∅ = H∞(D).

Thus we classify transfer functions by points on the boundary of the disk1 to which there
exists a continuous extension. This is a natural thing to do, since the transfer function of
state linear systems

G(s) = C(sI − A)−1B + D, s ∈ C \ σ(A)

is continuous on the imaginary axis at all points in the resolvent set of the operator A.
The spaces AS considered here have been studied earlier from a pure mathematics point

of view in Détraz [10], [11], [12].

The Callier-Desoer class Â (0) is an important class of irrational transfer functions (see

Chapter 7 of Curtain and Zwart [8]), and it is shown in Theorem 1.1 below that Â (0) is

contained in AS. First we recall the definition of Â (0).

Definition. The Callier-Desoer class is the set of functions f : {s ∈ C | Re(s) ≥ 0} → C

such that

f(s) =

∫ +∞

0

e−stfa(t)dt +

+∞
∑

n=1

fne−stn, s ∈ C with Re(s) ≥ 0,

for some fa ∈ L1((0,∞); C) and some complex sequence (fn)n∈N such that

+∞
∑

n=1

|fn| < +∞.

The Callier-Desoer class is denoted by Â (0).

For properties of the class Â (0), see Callier and Desoer [2] or §A.7.4, pages 661-668 of
Curtain and Zwart [8].

1equivalently on the imaginary axis, when passing over to the half-plane
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Theorem 1.1 Let f ∈ Â (0) and fd : D \ {−1} → C be defined by

fd(z) = (f ◦ µ)(z), z ∈ D \ {−1}.

Then fd ∈ AT\{−1}.

Proof Analyticity in D and boundedness on D \ {−1} follow from parts c. and b.,
respectively, of Lemma A.7.47 on page 663 of Curtain and Zwart [8]. Continuity on D\{−1}
can be seen as follows. As fa ∈ L1((0,∞); C), the map

s 7→
∫ +∞

0

e−stfa(t)dt

is continuous on {s ∈ C | Re(s) ≥ 0}. Moreover, as

∣

∣

∣

∣

∣

+∞
∑

n=1

fne−stn −
N
∑

n=1

fne−stn

∣

∣

∣

∣

∣

≤
+∞
∑

n=N

|fn|,

it follows that the convergence of the partial sums is uniform. Since each finite sum is
continuous on {s ∈ C | Re(s) ≥ 0}, we obtain continuity of the limit function

s 7→
+∞
∑

n=1

fne−stn

on {s ∈ C | Re(s) ≥ 0}.
Just as with the extremal cases of the disk algebra A and the Hardy space H∞(D),

which are Banach algebras, it turns out that each function class AS is a Banach algebra,
and we prove this below, after we recall the notion of a Banach algebra.

Definitions. A complex algebra is a vector space R over C in which an associative and
distributive multiplication is defined, that is,

x(yz) = (xy)z, (x + y)z = xz + yz, x(y + z) = xy + xz

for all x, y, z ∈ R, and which is related to scalar multiplication so that

α(xy) = x(αy) = (αx)y

for all x, y ∈ R and all scalars α.
A Banach algebra is a complex algebra R which is also a Banach space under a norm

satisfying
‖xy‖ ≤ ‖x‖‖y‖

for all x, y ∈ R.
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Theorem 1.2 Let S ⊂ T. AS is a Banach algebra.

Proof The completeness can be shown as follows. Let (fn)n∈N be a Cauchy sequence.
Then for each z ∈ D∪ S, the sequence (f(z))n∈N is a Cauchy sequence in C, and so by the
completeness of C, it has a limit, say f(z). These pointwise limits give rise to a complex
valued function f defined on D ∪ S. We claim that f belongs to AS. Clearly f is the
uniform limit of the fn’s on D ∪ S. As the uniform limit of analytic functions is analytic,
it follows that f is analytic in D. Continuity and boundedness in D ∪ S follow from the
fact that the set of bounded continuous functions from a topological space X (in our case
D ∪ S) to C with the supremum norm is a Banach space; see for instance, Example 1 on
page 32 and the Remark on page 55 of Yosida [37].

AS is commutative, and has 1AS
as the identity element, where 1AS

denotes the constant
function taking value 1 everywhere on D ∪ S. It satisfies ‖1AS

‖∞ = 1.
We now give examples to show that these Banach algebras AS arise quite naturally

when considering transfer functions of infinite-dimensional linear systems.

Example. (Pure delay) Delay differential equations can be viewed as infinite-dimensional
systems (see Section 2.4 of Curtain and Zwart [8]), and they have irrational transfer func-
tions that are quotients of polynomials in s and e−stn with tn’s being the positive delays.
The simplest example is provided by the pure delay system, namely:

y(t) = u(t − 1), t ≥ 0,

which has the transfer function G(s) = e−s. The composition of G with the map µ defined
by (1), gives the function Gd : D \ {−1} → C given by

Gd(z) = exp

(

z − 1

z + 1

)

, z ∈ D \ {−1}.

We note that the map Gd belongs to AS, where S = T \ {−1}. Indeed, Gd is analytic in
D since s 7→ e−s is entire, and the boundedness of Gd follows from the fact that

|e−s| = e−Re(s) ≤ 1 for all s ∈ C with Re(s) ≥ 0.

Also, as ω 7→ e−iω does not have limits at ±∞, it follows that Gd 6∈ A = AT. Of course,
Gd ∈ H∞(D), but this class seems too large for the case under consideration. So we arrive
quite naturally at the class

AT\{−1} = {f : D\{−1} → C | f is analytic in D and continuous and bounded on D\{−1}}.

♦

In control design, the concept of stability chosen for consideration depends on the
application at hand. Hence the properties demanded from the class of stable transfer
functions depends on the type of systems being considered.
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The following example shows that the classes AS might be particularly useful when
considering systems that have generators A that are not exponentially stable, but are stable
only in some weaker sense. Indeed, it is typical that the spectrum of A has accumulation
points on the extended imaginary axis when A is strongly stable, and so one can expect a
loss of continuity at these points on the extended imaginary axis for the transfer function.

Example. Let `2(N) denote the Hilbert space of square summable sequences, and let the
standard orthonormal basis for `2(N) be denoted by {en | n ∈ N}. Consider the system

dx

dt
(t) = A0x(t) + Bu(t)

y(t) = B∗x(t)

on `2(N), where A0 : D(A0) (⊂ `2(N)) → `2(N) is the operator given by

A0 =























0 1
−1 0

0 2
−2 0

0 3
−3 0

. . .























, (2)

with

D(A0) =

{

x ∈ `2(N)

∣

∣

∣

∣

∣

∞
∑

n=1

(

|n〈x, e2n−1〉|2 + |n〈x, e2n〉|2
)

< ∞
}

, (3)

and B : C → `2(N) is the bounded linear operator given by

B =
1

2























1
0
1
2

0
1
3

0
...























. (4)

The following result was shown in Curtain and Sasane [5].

Theorem 1.3 Let A0 be given by (2) and (3), and B be given by (4). Then the following
hold:

1. A0 is a Riesz spectral operator with the eigenvalues ±ni, n ∈ N, and the corresponding
(orthogonal) Riesz basis of eigenvectors 1√

2
(en ± ien+1),
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2. A0 is the infinitesimal generator of a strongly continuous contraction semigroup on
`2(N),

3. A0 has compact resolvent,

4. (A0, B) is approximately controllable, and (A∗
0, B

∗) is approximately observable,

5. A0 − BB∗ and A∗
0 − BB∗ generate strongly stable semigroups on `2(N),

6. the state linear system given by the triple (A0 − BB∗, B, B∗) has a Hankel operator
that is bounded, but not compact.

From Hartman’s theorem (see for instance Corollary 4.10 on page 46 of Partington [22]),
we see that the transfer function G(s) = B∗(sI − A0 + BB∗)−1B cannot be continuous at
infinity. Hence the corresponding function on the disk, namely Gd = G ◦ µ, where µ is
given by (1), does not belong to the disk algebra A. As ‖BB∗‖ ≤ 1

4
, from Theorem 3.6 on

page 209 of Kato [16], it follows that

σ(A0 − BB∗) ⊂
⋃

m∈Z

{

s ∈ C

∣

∣

∣

∣

|s − mi| ≤ 1

4

}

.

Thus if µ denotes the map given by (1), then with

S :=
⋃

m∈Z

µ−1

{

s ∈ C

∣

∣

∣

∣

∣

∣

∣

∣

s −
(

m +
1

2

)

i

∣

∣

∣

∣

<
1

4

}

,

we have that Gd ∈ AS. ♦

Example. Consider a well-posed linear system Σ with the generating operators A, B,
C and transfer function G, such that 0 ∈ C \ σ(A). For the theory of well-posed linear
systems, we refer the reader to Staffans [31]. The reciprocal system of the well-posed linear
system Σ, introduced by Curtain (see for example [3]), is the well-posed linear system with
the bounded generating operators A−1, A−1B, −CA−1, G(0) and transfer function

G−(s) = G(0) − CA−1
(

sI − A−1
)−1

A−1B = G

(

1

s

)

.

Reciprocal systems are useful in the analysis of control systems, since the operators A−1,
A−1B, −CA−1, G(0) are all bounded: indeed, one can pass from the original system to
its reciprocal, solve the transformed control problem for it, and then return back to the
original system (see for example, [4], [6], [21]).

We note that G− is bounded and analytic in the open right half-plane C+ and continuous
(and even analytic) in a neighbourhood 0. Hence the corresponding function Gd

− on the
unit disk belongs to the space AS, where S is a suitably small arc around the point {1}. ♦

The properties P1, P2, P3, P4 are proved in Sections 2, 3, 4, 5, respectively. Appli-
cations of these properties to coprime factorization and stabilization are given in Section
6.
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2 The corona theorem

In Section 6 we will give a test for coprimeness of a matrix pair (N, D) in Theorem 6.1.
This test for coprimeness is obtained by using a necessary and sufficient condition for the
Bézout identity to hold in the algebra AS, which is given in Theorem 2.4, called the corona
theorem for AS.

The first part of Theorem 2.4, that is, the statement in Theorem 2.4 up to (17), is
not new, and can be found in Theorem 2 of Détraz [12], and for closed subsets S of T,
it was shown in the Corollary on page 514 of Stray [32]. Nevertheless, for the sake of
completeness, a proof of Theorem 2.4 is given here, using Carleson’s corona theorem and
an approximation result. This proof was given by Rosay [29]. We also show the existence
of solutions with bounds (see (19) and the remark following Theorem 2.4).

Theorem 2.4 is a generalization of Carleson’s corona theorem for H∞(D), and the proof
of Theorem 2.4 given here uses the full strength of Carleson’s theorem. So we do not obtain
a new proof of the Carleson corona theorem when S = T!

The classical Carleson’s corona theorem is the following, and for a simplified proof of
this theorem, we refer the reader to Narasimhan and Nievergelt [19].

Theorem 2.1 (Carleson) Let f1, . . . , fn ∈ H∞(D). There exists a δ > 0 such that

∀z ∈ D,

n
∑

i=1

|fi(z)| ≥ δ, (5)

iff there exist g1, . . . , gn ∈ H∞(D) such that

∀z ∈ D,

n
∑

i=1

fi(z)gi(z) = 1. (6)

Furthermore, there exists a constant C∅(n, δ) such that if f1, . . . , fn ∈ H∞(D) satisfy (5),
and for all i ∈ {1, . . . , n},

∀z ∈ D, |fi(z)| ≤ 1, (7)

then there exist g1, . . . , gn ∈ H∞(D) satisfying (6) with the bounds

∀z ∈ D, |gi(z)| ≤ C∅(n, δ), (8)

for all i ∈ {1, . . . , n}.

This theorem also happens to be true with the disk algebra A instead of H∞(D).
A nonconstructive proof (relying on Zorn’s lemma) using elementary theory of Banach
algebras can be found in Rudin [30] (see Theorem 18.18 on page 365), which gives the
result below without statement following (10) about the existence of a universal constant.
Theorem 2.4 below, applied to the case S = T, also yields the existence of such a universal
constant, and hence we get solutions satisfying the estimates given in (12).
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Theorem 2.2 Let f1, . . . , fn ∈ A. There exists a δ > 0 such that

∀z ∈ D,

n
∑

i=1

|fi(z)| ≥ δ, (9)

iff there exist g1, . . . , gn ∈ A such that

∀z ∈ D,

n
∑

i=1

fi(z)gi(z) = 1. (10)

Furthermore, there exists a constant CT(n, δ) such that if f1, . . . , fn ∈ A satisfy (9), and
for all i ∈ {1, . . . , n},

∀z ∈ D, |fi(z)| ≤ 1, (11)

then there exist g1, . . . , gn ∈ A satisfying (10) with the bounds

∀z ∈ D, |gi(z)| ≤ CT(n, δ), (12)

for all i ∈ {1, . . . , n}.

Theorem 2.4 gives the same results as the above two cases, in the more general case
when S is between the two extreme cases: ∅ ⊂ S ⊂ T. This can be proved using Carleson’s
corona theorem for H∞(D) and the following approximation result.

Lemma 2.3 Let S ⊂ T. If f1, . . . , fn ∈ AS, then given any ε1 > 0 and any ε2 > 0, there
exists an open connected set Ω containing D ∪ S (which depends on ε1 and ε2 in general),
and there exist analytic functions f e

i : Ω → C, i ∈ {1, . . . , n} such that

∀z ∈ D ∪ S, ∀i ∈ {1, . . . , n}, |fi(z) − f e
i (z)| < ε1, and (13)

∀z ∈ Ω \ D, ∃z∗ ∈ S such that ∀i ∈ {1, . . . , n}, |f e
i (z) − f e

i (z∗)| < ε2. (14)

Proof Let i ∈ {1, . . . , n}. From the result in Corollary 1.3 on page 38 of Davie et al. [9],
it follows that there exists an open set Ω′

i containing D ∪ S, and an analytic f e
i : Ω′

i → C

such that
∀z ∈ D, |fi(z) − f e

i (z)| < ε1. (15)

Let

Ω′ =

n
⋂

i=1

Ω′
i,

and replace f e
i ’s by their restrictions to Ω′. By using the continuity of fi on D ∪ S, and

also that of f e
i , (15) yields (13).

Let i ∈ {1, . . . , n}. For each z∗ ∈ S, there exists an ri
z∗

> 0 such that the open ball
with center z∗ and radius ri

z∗
is contained in Ω′, that is, B(z∗, ri

z∗
) ⊂ Ω′, and moreover,

∀z ∈ B(z∗, r
i
z∗

), |f e
i (z) − f e

i (z∗)| < ε2.
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Define rz∗ = min{r1
z∗

, . . . , rn
z∗
}, and let

Ω = D ∪
(

⋃

z∗∈S

B(z∗, rz∗)

)

.

Then Ω is an open connected set containing D ∪ S, and the restriction of f e
i ’s to Ω satisfy

(13) and (14).

The following result is the corona theorem for the algebra AS.

Theorem 2.4 Let S ⊂ T and suppose that f1, . . . , fn ∈ AS. There exists a δ > 0 such
that

∀z ∈ D ∪ S,

n
∑

i=1

|fi(z)| ≥ δ, (16)

iff there exist g1, . . . , gn ∈ AS such that

∀z ∈ D ∪ S,

n
∑

i=1

fi(z)gi(z) = 1. (17)

Furthermore, there exists a constant CS(n, δ) such that if f1, . . . , fn ∈ AS satisfy (16), and
for all i ∈ {1, . . . , n},

∀z ∈ D ∪ S, |fi(z)| ≤ 1, (18)

then there exist g1, . . . , gn ∈ AS satisfying (17) with the bounds

∀z ∈ D ∪ S, |gi(z)| ≤ CS(n, δ), (19)

for all i ∈ {1, . . . , n}.

Proof The necessity of the condition (16) for (17) to hold is obvious, since

1 =

∣

∣

∣

∣

∣

n
∑

i=1

fi(z)gi(z)

∣

∣

∣

∣

∣

≤ max{‖g1‖∞, . . . , ‖gn‖∞}
n
∑

i=1

|fi(z)|,

and we prove the sufficiency below.
Assume that (18) holds, as this can always be ensured by multiplication by a suitable

constant (and replacing the δ). The proof is long, and so we have divided it into a sequence
of steps.

Step 1. Let

ε = min

{

1

2nMδC∅
(

n, δ
4
Mδ

) ,
δ

2n

}

, (20)

where C∅(·, ·) denotes a universal constant in Carleson’s Theorem 2.1 above, and

Mδ =
1

δ
4n

+ δ
2n

+ 1
.
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Then from Lemma 2.3, there exists an open connected neighbourhood Ω of D ∪ S and
analytic functions f e

i : Ω → C, i ∈ {1, . . . , n}, such that

∀z ∈ D ∪ S, ∀i ∈ {1, . . . , n}, |fi(z) − f e
i (z)| < ε, and (21)

∀z ∈ Ω \ D, ∃z∗ ∈ S such that ∀i ∈ {1, . . . , n}, |f e
i (z) − f e

i (z∗)| <
δ

4n
. (22)

Then for all z ∈ D ∪ S,
n
∑

i=1

|f e
i (z)| =

n
∑

i=1

|fi(z) − (fi(z) − f e
i (z))|

≥
n
∑

i=1

(|fi(z)| − |fi(z) − f e
i (z)|)

≥ δ − n · δ

2n
(using (16), (21) and (20))

=
δ

2
(23)

>
δ

4
. (24)

Furthermore, for z ∈ Ω \ D, we have
n
∑

i=1

|f e
i (z)| =

n
∑

i=1

|f e
i (z∗) − (f e

i (z∗) − f e
i (z))| (where z∗ is as in (22))

≥
n
∑

i=1

(|f e
i (z∗)| − |f e

i (z∗) − f e
i (z)|)

≥ δ

2
− n · δ

4n
(using (23) and (22))

=
δ

4
. (25)

From (24) and (25), we obtain

∀z ∈ Ω,

n
∑

i=1

|f e
i (z)| ≥ δ

4
. (26)

Step 2. For all z ∈ D ∪ S,

|f e
i (z)| ≤ |f e

i (z) − fi(z)| + |fi(z)|
< ε + 1

≤ δ

2n
+ 1 (27)

<
δ

4n
+

δ

2n
+ 1

=
1

Mδ

.
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Furthermore, for all z ∈ Ω \ D,

|f e
i (z)| ≤ |f e

i (z) − f e
i (z∗)| + |f e

i (z∗)| (where z∗ is as in (22))

<
δ

4n
+

δ

2n
+ 1 (using (22) and (27))

=
1

Mδ

.

Hence for all z ∈ Ω,
|Mδf

e
i (z)| ≤ 1. (28)

Step 3. By the Riemann mapping theorem (see for instance Theorem 14.8 on page 283 of
Rudin [30]), there exists a one-to-one analytic map ϕ from Ω onto D. Thus ϕ−1 : D → Ω
is also analytic. For each i ∈ {1, . . . , n}, the maps Mδf

e
i ◦ ϕ−1 ∈ H∞(D) and moreover,

from (26) and (28) we obtain

∀z ∈ D,

n
∑

i=1

|(Mδf
e
i ◦ ϕ−1)(z)| ≥ δ

4
Mδ,

and
∀z ∈ D, |(Mδf

e
i ◦ ϕ−1)(z)| ≤ 1.

Thus by Carleson’s corona theorem (Theorem 2.1), it follows that there exist g̃1, . . . , g̃n ∈
H∞(D) such that

∀z ∈ D,

n
∑

i=1

(Mδf
e
i ◦ ϕ−1)(z)g̃i(z) = 1,

and moreover we can choose the g̃i’s such that

∀z ∈ D, |g̃i(z)| ≤ C∅

(

n,
δ

4
Mδ

)

,

for all i ∈ {1, . . . , n}. Now define

ge
i = Mδg̃i ◦ ϕ, i ∈ {1, . . . , n}.

Then we have that each ge
i is analytic in Ω, and

∀z ∈ Ω,

n
∑

i=1

f e
i (z)ge

i (z) = 1 and |ge
i (z)| ≤ MδC∅

(

n,
δ

4
Mδ

)

. (29)

Step 4. Let h : D ∪ S → C be defined by

h(z) =
n
∑

i=1

fi(z)ge
i (z), z ∈ D ∪ S. (30)
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Then h ∈ AS. Furthermore, for all D ∪ S,

|h(z)| =

∣

∣

∣

∣

∣

n
∑

i=1

fi(z)ge
i (z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 −
n
∑

i=1

(f e
i (z) − fi(z))ge

i (z)

∣

∣

∣

∣

∣

≥ 1 −
∣

∣

∣

∣

∣

n
∑

i=1

(f e
i (z) − fi(z))ge

i (z)

∣

∣

∣

∣

∣

≥ 1 −
n
∑

i=1

|f e
i (z) − fi(z)||ge

i (z)|

≥ 1 − n · 1

2nMδC∅
(

n, δ
4
Mδ

) · MδC∅

(

n,
δ

4
Mδ

)

(using (21), (20) and (29))

=
1

2
. (31)

Now define gi : D ∪ S → C, i ∈ {1, . . . , n} by

gi(z) =
ge

i (z)

h(z)
, z ∈ D ∪ S.

Then the gi’s belong to AS, and from (30) we obtain

∀z ∈ D ∪ S,

n
∑

i=1

fi(z)gi(z) = 1.

Moreover, for all i ∈ {1, . . . , n},

∀z ∈ D ∪ S, |gi(z)| ≤ 2MδC∅

(

n,
δ

4
Mδ

)

=: CS(n, δ). (32)

This completes the proof of the theorem.

Remark. In Garnett [14] (see page 327), the following bound was given for the universal
constant C∅(n, δ) in (8):

C∅(n, δ) ≤ C ·
(

n
3

2

δ2
+

n2

δ4

)

. (33)

In Theorem 2.4, for CS(n, δ) in (19), the following bound was obtained (see (32) in the
proof):

CS(n, δ) ≤ C ′ ·
(

n
3

2

(

3

n
+

4

δ

)2

+ n2

(

3

n
+

4

δ

)4
)

. (34)

For a fixed n, the right hand sides of (33) and (34) are of the same order in δ for δ ↓ 0.

Before we derive consequences of Theorem 2.4, we recall the following terminology from
the elementary theory of Banach algebras.
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Definitions. Let R be a commutative Banach algebra with identity 1R. A complex
homomorphism is a nonzero homomorphism ϕ : R → C such that

ϕ(x + y) = ϕ(x) + ϕ(y), ϕ(αx) = αϕ(x), ϕ(xy) = ϕ(x)ϕ(y)

for all x, y ∈ R and all scalars α. It can be verified that for every complex homomorphism
ϕ, there holds that ϕ(1R) = 1, and that ϕ is a continuous linear functional with norm at
most equal to 1:

‖ϕ‖ = sup
‖x‖≤1

|ϕ(x)| ≤ 1.

Let M(R) denote the set of complex homomorphisms of R. Then M(R) is a subset of
R∗, the set of all bounded linear functionals from R to C, and in fact it is contained in
the unit ball of R∗. R∗ can be equipped with the weak-star topology. Recall that a set
G ⊂ R∗ is open in the weak-star topology iff for every g ∈ G, there are finitely many points
x1, . . . , xn ∈ X and positive reals ε1, . . . , εn such that

n
⋂

i=1

{f ∈ R∗ | |f(xi) − g(xi)| < εi} ⊂ G.

M(R) equipped with the induced weak-star topology from R∗ is a topological space, and
this topology on M(R) is called the Gelfand topology.

A subset I of R is called an ideal if I is a subspace of R (as a vector space), and xy ∈ I

for all x ∈ R and y ∈ I. A maximal ideal is a proper ideal (that is, 6= R) which is not
contained in any larger proper ideal.

There is a one-to-one correspondence between homomorphisms of R onto C and max-
imal ideals M in R. The correspondence is defined by M = ker(ϕ). Owing to this
correspondence, the set M(R) of all complex homomorphisms of R is called the space of
maximal ideals of R.

With each element x ∈ R, we associate a complex-valued function x̂ on M(R) as follows:

x̂(ϕ) = ϕ(x), ϕ ∈ M(R).

x̂ is called the Gelfand transform of x.

We now recall the following known result.

Lemma 2.5 Let R be a commutative complex Banach algebra with identity 1R and let
M(R) be the space of maximal ideals of R, and let M0 ⊂ M(R). Then the following are
equivalent:

1. M0 is dense (in the Gelfand topology) in M(R).

2. Let x1, . . . , xn ∈ R. There exist y1, . . . , yn ∈ R such that x1y1 + · · · + xnyn = 1R iff
there exists a δ > 0 such that for all ϕ ∈ M0, |x̂1(ϕ)| + · · · + |x̂n(ϕ)| ≥ δ.

14



3. Let Λ ∈ Rn×m. Then there is a V ∈ Rm×n such that V Λ = I iff there exists a δ > 0
such that for all ϕ ∈ M0, Λ̂(ϕ)∗Λ̂(ϕ) ≥ δI.

Proof This is precisely Lemma 4.1.4 on page 124 of Mikkola [18], and the details can be
found in Lemmas 28 and 34 on pages 339-340 of Vidyasagar [36], and pages 201-203 of
Duren [13].

In 2 and 3, we can also write ‘if’ instead of ‘iff’, as the converse can be shown to be
true for any M0 ⊂ M(R).

Let S ⊂ T. Then for each z0 ∈ D ∪ S, the evaluation map f 7→ f(z0) is a complex
homomorphism from AS onto C. With this identification of the set D ∪ S as a subset of
M(AS), we now obtain the following theorem.

Corollary 2.6 Let S ⊂ T.

1. D ∪ S is dense (in the Gelfand topology) in M(AS).

2. Let Λ ∈ An×m
S . Then there is a V ∈ Am×n

S such that V Λ = I iff there exists a δ > 0
such that for all z ∈ D ∪ S, Λ(z)∗Λ(z) ≥ δI.

Proof This follows from Theorem 2.4 and Lemma 2.5.

Note that 1 in the above Corollary 2.6 says that the corona2
M(AS) \ D ∪ S is empty.

In Section 6, we will apply the result given in item 2 of Corollary 2.6 in order to
characterize matrix coprime pairs in AS.

3 The Hermite property

In Section 6, we will consider unstable transfer functions that can be expressed as a quotient
of two elements from AS. We first prove here that AS is an integral domain, so that we
can consider its field of fractions.

Definition. An integral domain is a commutative ring with an identity element, such that
the product of two nonzero elements is nonzero: that is, if x, y ∈ R and xy = 0, then x = 0
or y = 0.

Theorem 3.1 Let S ⊂ T. AS is an integral domain.

Proof Let f, g ∈ AS and f(z)g(z) = 0 for all z ∈ D ∪ S. If f 6≡ 0, then there exists a
z0 ∈ D∪S such that f(z0) 6= 0. As f is continuous, it follows that there exists a r > 0 such
that for all z ∈ B(z0, r) ∩ (D ∪ S), f(z) 6= 0. It follows that for all z ∈ B(z0, r) ∩ (D ∪ S),
g(z) = 0, and so by the corollary on page 209 of Rudin [30], it follows that for all z ∈ D,
g(z) = 0. As g is continuous in D ∪ S, it follows that g ≡ 0.

2This terminology is motivated by the fact that the word ‘corona’ is used to describe a ring of light

seen around the sun during an eclipse.
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In Section 6, we will show that not every transfer function obtained as a ratio of elements
of AS has a coprime factorization in AS. We will prove this claim by using the result in
Theorem 3.2 below, which says that AS is not a Bézout domain.

Definition. R is said to be a Bézout domain if every finitely generated ideal in R is
principal.

The fact that AS is a Bézout domain is unlike the situation with the ring H(D) of
analytic functions (see Theorem 15.15 of Rudin [30]), but is similar to the extremal cases
of A∅ = H∞(D) (see von Renteln [26]) and of AT = A (see Vidyasagar et al. [35]).

Theorem 3.2 Let S ⊂ T. AS is not a Bézout domain.

Proof In Logemann [17], it was shown that if R is subring of H∞(C+) that contains the
Laplace transform of functions in L1((0,∞); C), then R contains a finitely generated ideal
which is not principal. (In fact, on page 249 of [17], an explicit construction of such a
finitely generated, non-principal ideal is given in terms of Blaschke products.) The disk
algebra A contains the Laplace transforms of integrable functions (see §A.6.2 on page 636
of Curtain and Zwart [8]), and A ⊂ AS. Consequently, AS contains finitely generated
ideals that are not principal. Hence AS is not a Bézout domain.

In Section 6, we will show that Theorem 3.2 has the consequence that not every transfer
function has a coprime factorization. However, we will also show that if a transfer function
does have a right (or left) coprime factorization then it also has a left (respectively, right)
coprime factorization. This is a consequence of Theorem 3.4, which we prove next. We
begin by giving a few preliminaries.

Definitions. Let R be a ring. A square matrix U ∈ Rm×m is said to be unimodular if it is
invertible in Rm×m. Let X ∈ Rm×n with m < n. X is said to be complementable if there
exists a unimodular matrix U ∈ Rn×n that contains X as a submatrix. A row

[

x1 . . . xn

]

∈ R1×n

is called a unimodular row if the ideal generated by x1, . . . , xn is equal to the ring R. A
ring R is called Hermite if every unimodular row is complementable.

Let S ⊂ T. If f1, . . . , fn ∈ AS, and

f :=
[

f1 . . . fn

]

,

then

‖f‖∞ := sup
z∈D∪S

(

n
∑

i=1

|fi(z)|2
)

1

2

.

If P ∈ A
p×m
S , then

‖P‖∞ = sup
z∈D∪S

‖P (z)‖L (Cm,Cp), (35)
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The case m = p is of particular interest. Indeed, Am×m
S equipped with the norm ‖ · ‖∞ is

a Banach algebra with the unit I. The set of invertible elements in Am×m
S is denoted by

G (Am×m
S ).

In order to prove Theorem 3.4, we will need the following key result.

Theorem 3.3 If f1, . . . , fn ∈ H∞(D) and there exists a δ > 0 such that

∀z ∈ D,

n
∑

i=1

|fi(z)| ≥ δ, (36)

then

∃Λ =

[

f

F

]

∈ G (H∞(D)n×n), where f =
[

f1 . . . fn

]

, and F ∈ H∞(D)(n−1)×n. (37)

Furthermore, if g1, . . . , gn ∈ H∞(D) are such that

∀z ∈ D,

n
∑

i=1

fi(z)gi(z) = 1,

then Λ satisfying (37) can be chosen such that ‖Λ−1‖∞ ≤ ‖g‖∞(1 + ‖f‖∞) + 1, where
g :=

[

g1 . . . gn

]

.

Proof By Carleson’s corona theorem, we know that under the condition (36), there exist
g1, . . . , gn in H∞(D) such that

∀z ∈ D,

n
∑

i=1

fi(z)gi(z) = 1.

Then the result follows from Tolokonnikov’s lemma (see for example, Appendix 3, §10 on
page 293 of Nikol’skĭı [20]).

We are now ready to prove the following theorem. This result was known in the
case of A∅ = H∞(D) (this follows from Tolokonnikov’s lemma; see §10 in Appendix 3 of
Nikol’skĭı [20]), and also in the case of the disk algebra A = AT (see Corollary 71 and
Example 72 on pages 346-347 of Vidyasagar [36]).

Theorem 3.4 Let S ⊂ T. AS is a Hermite ring.

Proof Let f1, . . . , fn ∈ AS be such that the ideal generated by f1, . . . , fn is the full ring
AS. Then there exists a δ > 0 such that

∀z ∈ D ∪ S,

n
∑

i=1

|fi(z)| ≥ δ > 0.
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Without loss of generality, we can also assume that

∀z ∈ D ∪ S,

(

n
∑

i=1

|fi(z)|2
)

1

2

≤ 1

2
.

(Indeed, the fi’s and δ can be scaled without altering the hypothesis that the ideal gener-
ated by f1, . . . , fn is the full ring AS.)

Let

ε1 = min

{

δ

2n
,

1

2M(δ, n)
,

1

4
√

n

}

and ε2 = min

{

δ

4n
,

1

4
√

n

}

,

where

M(δ, n) = 2
√

nC∅

(

n,
δ

4

)

+ 1.

Then from Lemma 2.3, there exists an open connected neighbourhood Ω of D ∪ S and
analytic functions f e

i : Ω → C, i ∈ {1, . . . , n}, such that

∀z ∈ D ∪ S, ∀i ∈ {1, . . . , n}, |fi(z) − f e
i (z)| < ε1, and (38)

∀z ∈ Ω \ D, ∃z∗ ∈ S such that ∀i ∈ {1, . . . , n}, |f e
i (z) − f e

i (z∗)| < ε2. (39)

Then for all z ∈ D ∪ S,

n
∑

i=1

|f e
i (z)| =

n
∑

i=1

|fi(z) − (fi(z) − f e
i (z))|

≥
n
∑

i=1

(|fi(z)| − |fi(z) − f e
i (z)|)

> δ − n · δ

2n

=
δ

2

>
δ

4
,

and for all z ∈ Ω \ D, we have

n
∑

i=1

|f e
i (z)| =

n
∑

i=1

|f e
i (z∗) − (f e

i (z∗) − f e
i (z))| (where z∗ is as in (39))

≥
n
∑

i=1

(|f e
i (z∗)| − |f e

i (z∗) − f e
i (z)|)

>
δ

2
− n · δ

4n

=
δ

4
.
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Consequently,

∀z ∈ Ω,

n
∑

i=1

|f e
i (z)| >

δ

4
> 0. (40)

Furthermore for all z ∈ D ∪ S,

|f e
i (z)| ≤ |fi(z)| + |f e

i (z) − fi(z)| ≤ |fi(z)| + ε1 < |fi(z)| + ε1 + ε2, (41)

and so for all z ∈ D ∪ S,

(

n
∑

i=1

|f e
i (z)|2

)
1

2

≤
(

n
∑

i=1

|fi(z)|2
)

1

2

+ (ε1 + ε2)
√

n

≤ sup
z∈D∪S

(

n
∑

i=1

|fi(z)|2
)

1

2

+ (ε1 + ε2)
√

n

≤ 1

2
+ (ε1 + ε2)

√
n. (42)

On the other hand, if z ∈ Ω \ D, and if z∗ is as in (39), then

|f e
i (z)| ≤ |fi(z∗)| + |fi(z∗) − f e

i (z∗)| + |f e
i (z∗) − f e

i (z)| ≤ |fi(z∗)| + ε1 + ε2, (43)

and so for all z ∈ Ω \ D,

(

n
∑

i=1

|f e
i (z)|2

)
1

2

≤
(

n
∑

i=1

|fi(z∗)|2
)

1

2

+ (ε1 + ε2)
√

n

≤ sup
z∈D∪S

(

n
∑

i=1

|fi(z)|2
)

1

2

+ (ε1 + ε2)
√

n

≤ 1

2
+ (ε1 + ε2)

√
n. (44)

From (42) and (44), it follows that

sup
z∈Ω

(

n
∑

i=1

|f e
i (z)|2

)
1

2

≤ 1

2
+ (ε1 + ε2)

√
n ≤ 1

2
+

(

1

4
√

n
+

1

4
√

n

)√
n ≤ 1. (45)

By the Riemann mapping theorem, there exists a one-to-one analytic map ϕ from Ω onto
D. For each i ∈ {1, . . . , n}, the maps f e

i ◦ ϕ−1 ∈ H∞(D) satisfy

∀z ∈ D,

n
∑

i=1

|(f e
i ◦ ϕ−1)(z)| >

δ

4
> 0 (using (40)), and

∀z ∈ D, |(f e
i ◦ ϕ−1)(z)| ≤ sup

z∈Ω

(

n
∑

i=1

|f e
i (z)|2

)
1

2

≤ 1 (using (45)).
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So by Carleson’s corona theorem, it follows that there exist g1, . . . , gn ∈ H∞(D) such that

∀z ∈ D,

n
∑

i=1

(f e
i ◦ ϕ−1)(z)gi(z) = 1,

and for each i ∈ {1, . . . , n},

∀z ∈ D, |gi(z)| ≤ C∅

(

n,
δ

4

)

.

Let
f e :=

[

f e
1 . . . f e

n

]

.

By Theorem 3.3, there exists Λ ∈ G (H∞(D)n×n) such that

Λ =

[

f e ◦ ϕ−1

F

]

,

where F ∈ H∞(D)(n−1)×n, and if

g :=
[

g1 . . . gn

]

,

then

‖Λ−1‖∞ ≤ ‖g‖∞(1 + ‖f e ◦ ϕ−1‖∞) + 1

<
√

nC∅

(

n,
δ

4

)

(1 + 1) + 1 = M(δ, n).

For z ∈ D, Λ(z)Λ−1(z) = I, and so

∀z ∈ Ω,

[

f e(z)
(F ◦ ϕ)(z)

]

(Λ−1 ◦ ϕ)(z) = I.

In particular,

∀z ∈ D ∪ S,

[

f(z)
(F ◦ ϕ)(z)

]

(Λ−1 ◦ ϕ)(z) = I −
[

f(z) − f e(z)
(F ◦ ϕ)(z)

]

(Λ−1 ◦ ϕ)(z).

As
∥

∥

∥

∥

[

f − f e

F ◦ ϕ

]

(Λ−1 ◦ ϕ)

∥

∥

∥

∥

∞
≤
∥

∥

∥

∥

[

f − f e

F ◦ ϕ

]
∥

∥

∥

∥

∞
‖Λ−1 ◦ ϕ‖∞ ≤ ε1M(δ, n) ≤ 1

2
,

it follows that (see for example, Theorem 18.3 on page 357 of Rudin [30])

I −
[

f − f e

F ◦ ϕ

]

(Λ−1 ◦ ϕ) ∈ G (An×n
S ).
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We have

F ◦ ϕ ∈ A
(n−1)×n

S and (Λ−1 ◦ ϕ)

(

I −
[

f − f e

F ◦ ϕ

]

(Λ−1 ◦ ϕ)

)

∈ G (An×n
S ),

and for all z ∈ D ∪ S,

[

f(z)
(F ◦ ϕ)(z)

]

(Λ−1 ◦ ϕ)(z)

(

I −
[

f(z) − f e(z)
(F ◦ ϕ)(z)

]

(Λ−1 ◦ ϕ)(z)

)

= I.

This completes the proof of this theorem.

In Section 6, we use this Hermite property of AS to show that if an unstable transfer
function has either a left or a right coprime factorization, then it has both.

4 Stable rank

In this section we prove that just as with A and H∞(D), the stable rank of each AS equals
1. In Section 6, we will apply this result to conclude that stabilizability is equivalent to
strong stabilizability for transfer functions that are obtained as a ratio of elements from
AS. This means that if a plant is stabilizable (which means that there exists a controller,
possibly unstable, that stabilizes the closed loop interconnection), then in fact it can be
stabilized by a stable controller.

We begin by recalling the definition of stable rank.

Definitions. Let n ∈ N. Then the set of unimodular rows in R1×n is denoted by Un(R).
A row

[

a1 . . . an+1

]

∈ Un+1(R)

is said to be stable if there exists a row

[

b1 . . . bn

]

∈ R1×n

such that
[

a1 + an+1b1 . . . an + an+1bn

]

∈ Un(R).

If there exists an n ∈ N such that every vector of Un+1(R) is stable, then the stable rank
of R, is the smallest n ∈ N such that every vector of Un+1(R) is stable.

If there does not exist an n ∈ N such that every vector of Un+1(R) is stable, then the
stable rank of R, is defined to be +∞.

It turns out that the stable rank of H∞(D) is equal to 1, and this was shown in Theorem
1 on page 131 of Treil [34]:

Theorem 4.1 (Treil) Let f1, f2 ∈ H∞(D). If there exists a δ > 0 such that

∀z ∈ D, |f1(z)| + |f2(z)| ≥ δ,
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and
∀z ∈ D, |f1(z)| ≤ 1 and |f2(z)| ≤ 1,

then there exists a g ∈ H∞(D) such that h := f1 + f2g ∈ G (H∞(D)), and moreover

∀z ∈ D, |g(z)| ≤ D∅(δ) and |h−1(z)| ≤ D∅(δ),

where D∅(δ) denotes a constant depending only on δ.

Also, the stable rank of the disc algebra is equal to 1, and this was proved in Theorem
1 of Jones et al. [15]. We prove below that in fact the stable rank of each AS is equal to 1.

Theorem 4.2 Let S ⊂ T. The stable rank of AS is equal to 1.

Proof Let
[

f1 f2

]

∈ A1×2
S

be a unimodular row. Without loss of generality, we may assume that

∀z ∈ D ∪ S, |f1(z)| ≤ 1

2
and |f2(z)| ≤ 1

2
.

Then there exists a δ > 0 such that for all z ∈ D ∪ S, |f1(z)| + |f2(z)| ≥ δ. Let

ε1 = min

{

δ

4
,
1

4
,

1

2
(

1 + D∅
(

δ
2

))2

}

and ε2 = min

{

δ

4
,
1

4

}

.

Proceeding as in the proof of Theorem 3.4, using Lemma 2.3, we obtain the existence of
an open connected set Ω containing D∪ S and analytic functions f e

1 , f e
2 defined on Ω that

satisfy

∀z ∈ D ∪ S, |f1(z) − f e
1 (z)| < ε1 and |f2(z) − f e

2(z)| < ε1,

∀z ∈ Ω \ D, ∃z∗ ∈ S such that |f e
1(z) − f e

1(z∗)| < ε2 and |f e
2(z) − f e

2(z∗)| < ε2,

∀z ∈ Ω, |f ε
1(z)| + |f ε

2(z)| >
δ

4
(see (40))

∀z ∈ Ω, |f e
1(z)| ≤ 1 and |f e

2(z)| ≤ 1, (see (41) and (43)).

If ϕ : Ω → D denotes a one-to-one analytic map from Ω onto D, then from Treil’s theorem
(Theorem 4.1), it follows that there exists a g ∈ H∞(D) such that

h := f e
1 ◦ϕ−1 +(f e

2 ◦ϕ−1) ·g ∈ G (H∞(D)), with |g(z)| ≤ D∅

(

δ

4

)

and |h−1(z)| ≤ D∅

(

δ

4

)

.

So for all z ∈ D,

|h(z)| ≤ |(f e
1 ◦ ϕ−1)(z)| + |(f e

2 ◦ ϕ−1)(z)||g(z)| ≤ 1 + D∅

(

δ

4

)

.
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For all z ∈ Ω, (f e
1(z) + f e

2(z)(g ◦ ϕ)(z))(h ◦ ϕ)(z) = 1. In particular, for all z ∈ D ∪ S,

(f1(z)+f2(z)(g◦ϕ)(z))(h◦ϕ)(z) = 1−((f e
1(z)−f1(z))+(f e

2 (z)−f2(z))(g◦ϕ)(z))(h◦ϕ)(z) =: Φ(z).

For all z ∈ D ∪ S,

|Φ(z)| = |1 − ((f e
1(z) − f1(z)) + (f e

2(z) − f2(z))(g ◦ ϕ)(z))(h ◦ ϕ)(z)| ≥ 1−ε1

(

1 + D∅

(

δ

4

))2

≥ 1

2
.

Hence Φ ∈ G (AS), and so f1 + f2 · (g ◦ ϕ) ∈ G (AS). As g ◦ ϕ ∈ AS, this completes the
proof.

5 Topological stable rank

In this section we prove that just as with A and H∞(D), the topological stable rank of each
AS is equal to 2. In Section 6, we will apply this theorem to show that every unstabilizable
plant is as close as we want to a stabilizable plant.

First we recall the notion of topological stable rank.

Definition. Let R be a Banach algebra. If there exists an n ∈ N such that Un(R) is dense
in R1×n in the product topology, then the topological stable rank of R is the smallest n ∈ N

such that Un(R) is dense in R1×n.
If there does not exist an n ∈ N such that Un(R) is dense in R1×n in the product

topology, then the topological stable rank of R is defined to be +∞.

We recall the following two known results.

Theorem 5.1 The topological stable rank of H∞(D) is equal to 2.

Proof This was shown in Suárez [33].

Theorem 5.2 The following hold:

1. The topological stable rank of A is equal to 2.

2. G (A) = {0} ∪ {f ∈ A | Z (f) ⊂ T}, where the notation Z (f) is used to denote the
set of zeros of f ∈ A: Z (f) = {z ∈ D | f(z) = 0}.

Proof Item 1 was established in Rieffel [27]. The claim in item 2, giving the characteri-
zation of G (A), was shown in the example on page 154 following the proof of Proposition
1 in Robertson [28].

Using the Theorems 5.1 and 5.2 above, we prove that the topological stable rank of AS

is equal to 2, for arbitrary S ⊂ T.
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Theorem 5.3 Let S ⊂ T. The topological stable rank of AS is equal to 2.

Proof Let
[

f1 f2

]

∈ A1×2
S .

Let ε > 0. Using Lemma 2.3, we obtain the existence of an open connected set Ω containing
D ∪ S and analytic functions f e

1 , f e
2 defined on Ω that satisfy

∀z ∈ D ∪ S, |f1(z) − f e
1 (z)| <

ε

2
and |f2(z) − f e

2(z)| <
ε

2
.

Let ϕ : Ω → D denote a one-to-one analytic map from Ω onto D. Then

[

f e
1 ◦ ϕ−1 f e

2 ◦ ϕ−1
]

∈ H∞(D)1×2,

and since the topological stable rank of H∞(D) is equal to 2, it follows that there exist
g1, g2 in H∞(D) such that

[

g1 g2

]

∈ U2(H
∞(D)),

and

∀z ∈ D, |(f e
1 ◦ ϕ−1)(z) − g1(z)| <

ε

2
and |(f e

2 ◦ ϕ−1)(z) − g2(z)| <
ε

2
.

As
[

g1 g2

]

∈ U2(H
∞(D)),

it follows that there exists a δ > 0 such that

∀z ∈ D, |g1(z)| + |g2(z)| ≥ δ.

Hence
∀z ∈ D ∪ S, |(g1 ◦ ϕ)(z)| + |(g2 ◦ ϕ)(z)| ≥ δ > 0,

and by Theorem 2.4, it follows that

[

g1 ◦ ϕ g2 ◦ ϕ
]

∈ U2(AS).

Moreover,

∀z ∈ D ∪ S, |f1(z) − (g1 ◦ ϕ)(z)| < ε and |f2(z) − (g2 ◦ ϕ)(z)| < ε.

So it follows that the topological stable rank of AS is at most equal to 2.
Next we show that the topological stable rank cannot be 1, that is, G (AS) is not dense

in AS. In order to do this, we first mention that since the topological stable rank of A is
equal to 2, G (A) is not dense in A. Indeed from item 2 in Theorem 5.2 above, it follows
that if f ∈ A is not identically zero, and has a zero in D, then f does not lie in the closure
of G (A). Consequently, the polynomial function p in A, defined by

p(z) = z, z ∈ D,
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does not belong to G (A). Clearly p ∈ AS. We now prove that p 6∈ G (AS). Assume, on the
contrary, that p ∈ G (AS), then there exists a sequence (fn)n∈N in G (AS) that converges to
p uniformly on D ∪ S. Let r ∈ (0, 1), and define q(z) = rz, z ∈ D, and for each n ∈ N,

gn(z) = fn(rz), z ∈ D.

Then q and the gn’s all belong to A and the sequence (gn)n∈N converges to q in A. As the
fn’s belong to G (AS), from item 2 of Corollary 2.6, it follows that for each n ∈ N, there
exists a δn > 0 such that

∀z ∈ D ∪ S, |fn(z)| ≥ δn.

Consequently
∀z ∈ D, |gn(z)| ≥ δn > 0,

and by again from item 2 of Corollary 2.6 (now with S = T!), it follows that gn ∈ G (A).
But q is not identically zero, and q(0) = 0. This contradicts the fact that any nonzero
element of A having a zero in D does not belong to G (A). This completes the proof.

6 Coprime factorization and stabilization

Finally, in this section we proceed to give consequences for systems theory of the results
established in the previous sections. The outline is as follows.

1. Using the corona theorem for AS, we give an necessary and sufficient condition for a
matrix pair to be right coprime.

2. We consider unstable transfer functions which we write as a ratio of elements from AS.
Not all such unstable transfer functions will have a coprime factorization. However,
using the Hermite property of AS we get the fact that a transfer function has a
doubly coprime factorization iff it has a right (or a left) coprime factorization. Thus,
using the result from Vidyasagar [36], we get a parameterization of all stabilizing
controllers, analogous to the famous Youla parameterization.

3. Using the fact that the stable rank of AS is equal to 1, we prove that plants which
are stabilizable are in fact strongly stabilizable, that is, the stabilizing controller can
be chosen to be stable.

4. Finally, we use the property that the topological stable rank of AS is 2 to show that
any transfer function is as close as we like to a transfer function that is stabilizable.

We begin by applying the result given in 2 of Corollary 2.6 in order to characterize
matrix coprime pairs in AS.

Definitions. Let S ⊂ T. Matrices with entries in AS will be denoted by Mat(AS). If
N, D ∈ Mat(AS), then the pair (N, D) is called right coprime (with respect to AS) if there
exist X, Y ∈ Mat(AS) such that the matrix Bézout identity holds:

XN + Y D = I.
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A left coprime pair of matrices is defined analogously.

The following result gives a test for coprimeness of a matrix pair.

Theorem 6.1 Let S ⊂ T. Let N ∈ A
m×p
S and D ∈ A

p×p
S . The pair (N, D) is right coprime

iff there exits a δ > 0 such that

∀z ∈ D ∪ S, N(z)∗N(z) + D(z)∗D(z) ≥ δI.

Proof This follows from Corollary 2.6 (see also Lemma 34 on page 340 of Vidyasagar
[36]).

We now consider unstable transfer functions that can be expressed as a quotient of two
elements from AS. Having shown that AS is an integral domain in Theorem 3.1, we can
consider its field of fractions. We recall this notion below.

Definitions. If R is an integral domain, then a fraction is a symbol N
D

, where N, D ∈ R

and D 6= 0. Define the relation ∼ on the set of all fractions as follows:

N1

D1
∼ N2

D2
if N1D2 = N2D1.

The relation ∼ is an equivalence relation on the set of all fractions. The equivalence class
of N

D
is denoted by

[

N
D

]

. The field of fractions, denoted by F(R), is the set

F(R) =

{[

N

D

]
∣

∣

∣

∣

N, D ∈ R and D 6= 0

}

,

of equivalence classes of the relation ∼, with addition and multiplication defined as follows:

[

N1

D1

]

+

[

N2

D2

]

=

[

N1D2 + N2D1

D1D2

]

and

[

N1

D1

] [

N2

D2

]

=

[

N1N2

D1D2

]

.

F(R) is then a field with these operations. Let S ⊂ T. Matrices with entries in F(AS) will
be denoted by Mat(F(AS)).

If P ∈ Mat(F(AS)), then P is said to have a right coprime factorization if there exists a
pair (N, D) with N, D ∈ Mat(AS) such that D is a square matrix, det(D) 6= 0, P = ND−1,
and (N, D) is right coprime. A left coprime factorization is defined analogously. A transfer
function having a right coprime factorization and a left coprime factorization is said to
have a doubly coprime factorization.

Using the result from Theorem 3.2 which says that AS is not a Bézout domain, we
obtain the following result, which says that not every element from F(AS) possesses a
coprime factorization.

Corollary 6.2 Let S ⊂ T. There exist P ∈ F(AS) that do not have a coprime factoriza-
tion.
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Proof This is a consequence of Lemma 7 on page 332 of Vidyasagar [36] and Theorem
3.2.

Thus, given an arbitrary P ∈ Mat(F(AS)), the existence of a right coprime factorization
for P is not automatic. However, if P does have a right coprime factorization, then all right
coprime factorizations of P can be characterized, and we give this characterization in the
next result. A similar characterization can also be obtained for left coprime factorizations.

Theorem 6.3 Let S ⊂ T. If P ∈ Mat(F(AS)) has a right coprime factorization (N, D),
then (N ′, D′) is a right coprime factorization of P iff there exists a unimodular matrix U

such that N ′ = NU and D′ = DU .

Proof This follows from Lemma 2 on page 331 of Vidyasagar [36].

Coprime factorization plays an important role in stabilizing a plant using a factorization
approach, where by ‘stabilization’, we mean the following.

Definitions. Let S ⊂ T. Let P, C ∈ Mat(F(AS)). The pair (P, C) is said to be stable if

H (P, C) =

[

(I + PC)−1 −P (I + PC)−1

C(I + PC)−1 (I + PC)−1

]

(46)

is well defined, and belongs to Mat(AS). We define

S (P ) = {C ∈ Mat(F(AS)) | (P, C) is a stable pair}.

P ∈ F(AS)p×m is said to be stabilizable if S (P ) 6= ∅.
PSfrag replacements

u1

u2

e1

e2

P

C

+

+

+

+

Figure 1: Closed loop interconnection of the plant P and the controller C.

As shown in Figure 1, H (P, C) in (46) is the transfer function of

[

u1

u2

]

7→
[

e1

e2

]

.

The stabilization problem for a plant is solved completely once a transfer function has a
doubly coprime factorization.
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Theorem 6.4 Let S ⊂ T. Let P ∈ Mat(F(AS)) have a right coprime factorization
(Nr, Dr) and a left coprime factorization (Dl, Nl). Let Xr, Yr, Xl, Yl ∈ Mat(AS) be such
that

XrNr + YrDr = I and NlXl + DlYl = I.

Then

S (P ) = {(Yr − QNl)
−1(Xr + QDl) | Q ∈ Mat(AS) and det(Yr − QNl) 6= 0}

= {(Xl + DrQ)(Yl − NrQ)−1 | Q ∈ Mat(AS) and det(Yl − NrQ) 6= 0}.

Proof This follows from Theorem 12 on page 364 of Vidyasagar [36].

We know that not every P ∈ Mat(F(AS)) has a coprime factorization. Thus in light
of Theorem 6.4, the natural question then arises: if P has a right (or a left) coprime
factorization, then does it have a left (respectively right) coprime factorization? It turns
out that P ∈ Mat(F(AS)) has one iff it has the other, which we prove below in Corollary
6.5. This is a consequence of Theorem 3.4.

Corollary 6.5 Let S ⊂ T and suppose that P ∈ Mat(F(AS)). Then:

1. If P has a right coprime factorization, then P has a left coprime factorization.

2. If P has a left coprime factorization, then P has a right coprime factorization.

Proof This follows from Theorem 3.4 and Theorem 66 on page 347 of Vidyasagar [36].

Thus the above result says that if P possesses either a left or a right coprime factoriza-
tion, then it possesses a doubly coprime factorization.

Next, using the fact that the stable rank of AS is equal to 1, we show the equivalence
of stabilizability and strong stabilizability.

Definition. Let S ⊂ T. P ∈ F(AS)p×m is said to be strongly stabilizable if S (P )∩A
m×p
S 6=

∅.

We have the following result.

Theorem 6.6 Let S ⊂ T and suppose that P ∈ Mat(F(AS)). The following are equivalent:

1. P is stabilizable.

2. P is strongly stabilizable.

Proof This follows from Corollary 6.6 on page 2280 of Quadrat [25] and Theorem 4.2.

Finally, using the fact that the topological stable rank of AS is equal to 2, we show that
every unstabilizable SISO plant defined by a transfer function P ∈ F(AS) is as ‘close’ as
we want to a stabilizable plant, in the following sense.
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Theorem 6.7 Let S ⊂ T and suppose that P = N
D

∈ F(AS), with N, D ∈ AS and D 6= 0.
Given any ε > 0, there exist Nε ∈ AS and Dε ∈ AS \ {0} such that

‖N − Nε‖∞ < ε and ‖D − Dε‖∞ < ε,

and moreover (Nε, Dε) are coprime.

Proof This follows from Proposition 7.4 on page 2281 of Quadrat [25] and Theorem 5.3.
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1969.
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