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Abstract

This note gives a quali�ed a¢ rmative answer to a natural question, asked by Ohlson
and motivated by some earlier work, concerning the irrelevance of dividend policy to the
calculation of equity in the context of an Ohlson style general linear accounting dynamic.
Does Dividend Irrelevance occur when discounting at a rate of interest R if and only if R
is set equal uniquely to the dominant eigenvalue of the principal submatrix? The latter
submatrix relates the accounting variables to each other in the absence of any dividend
payout. The question reduces to the assertion that the maximum eigenvalue �max of the
following �bordered diagonal matrix�266664

�1 0 0 1
0 �2 1

:::
0 0 �n 1
!1 !2 !n+1

377775 :
lies between the �rst largest and second largest among j�1j; :::; j�nj. An a¢ rmative answer
necessarily restricts the dividend policy vector (!1; :::; !n+1). The results show that an
algebraic condition equivalent to dividend irrelevance derived previously is not vacuous.
Key words: Dividend irrelevance, dominant eigenvalue, bordered diagonal matrix.

1. Introduction

Consider the following �rst-order recurrence, which we term the Ohlson accounting dynamics.

zt+1 = Azt + bdt + avt;
dt+1 = wzt + �dt + �vt;
vt+1 = + 
vt;

9=; (
)

with
0 � 
 < 1:

Here zt = (z1t ; :::; z
n
t ) 2 Rn; is called the accounting state vector, while dt and vt are reals

de�ned for t = 0; 1; 2; ::; representing respectively the dividend and the information variable (a
proxy for un-accounted value); the value of the latter is assumed to dwindle into insigni�cance
over time. The vector

!div = (w; �; �)



is the dividend policy vector. A is a real matrix of size n� n; called the reduced matrix of the
system (
). Its eigenvalues �1; �2; :::; �n are listed in order of decreasing modulus, i.e.

j�1j � j�2j � ::: � j�nj:

The augmented matrix is given by

�A = �A(w; �) =

�
A b
w �

�
;

regarded as a function of (w; �): Its eigenvalues will likewise be regarded as functions of (w; �)
and referred to as

�1; �2; :::; �n+1;

identi�ed through the condition

�i(0; :::; 0; �) = �i for i = 1; :::; n; and �n+1(0; :::; 0; �) = �: (1.1)

We will be working for the most part in an equivalent canonical setting where �A is replaced by266664
�1 0 0 �1
0 �2 �2

:::
0 0 �n �n
!1 !2 !n+1

377775 ; (1.2)

where �i = �1 for each i:
Equity, de�ned as a discounted series of dividends, is regarded here as a function of the

discount rate R; thus

P0(R; d) =
1X
t=1

R�tdt: (1.3)

We say that equity is dividend irrelevant at R if the value of P0(R; d) is unchanged as the
dividend policy vector !div changes. This amounts to requiring that P0(R; d) depends only on the
initial data: A; b; z0; d0: The dividend irrelevance question (in particular whether or not dividends
should be irrelevant to stockholders) has been a live issue since Modigliani and Miller (1961).
See, for example, Dybvig and Zender (1991). The current quest for dividend irrelevance comes
from the general possibility of restating equity in terms of an identically discounted alternative
series based on accounting numbers, as �rst pointed out by Preinreich (1936). If (
) models the
evolution of the �rm and zt models its observable accounting numbers, interest focuses on whether
valuations are possible at time t = 0; based on the accounting numbers alone, that is to say in
the absence of access to the currently unobservable information !div. See Proposition 2 below.
In earlier work, Ostaszewski (2003), generalizing from a one-dimensional result of Ohlson

(2003) to the n-dimensional setting given above, has shown that if dividend irrelevance occurs at
R; then R is an eigenvalue of A; and has also derived a necessary and su¢ cient condition that
dividend irrelevance occur at R in terms which make the given vector b; the vector of dividend
signi�cance coe¢ cients, depend on A in a speci�ed way. That result was derived under what is
a convergence assumption, namely thatR exceeds in modulus the eigenvalues of the augmented
matrix �A (which control the growth rates of the accounting state variables), a requirement for
securing convergence of the equity series (1.3). Further so-called �implicit assumptions�required
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in particular that the augmented matrix and the reduced matrix have eigenvalues distinct. This
was read as an acceptable �genericity�assumption, since accounting systems must be stable under
the small perturbations which would cause eigenvalues to become distinct.
This paper inter alia identi�es circumstances under which dividend irrelevance does indeed

occur at an eigenvalue of A and so shows that the earlier derived equivalence is non vacuous.

2. Conjecture and Results

Professor Jim Ohlson asks the natural questions: are there circumstances such that dividend
irrelevance occurs i¤ R takes the value of the dominant eigenvalue (the largest in modulus) of
the reduced matrix A. Asymptotic considerations warrant this conjecture, since for generic initial
conditions, and for large t the dominant eigenvalue growth of �A dwarfs into insigni�cance the other
state components, both in the accounting state vector and in the dividend, (provided of course
that the dividend policy vector gives the dominant growth component a non-zero coe¢ cient).
Asymptotic considerations thus turn the multi-dimensional system apparently into an essentially
one-dimensional one to which Ohlson�s Principle (in dimension one) might apply; that is to say,
assuming dividend and dominant state variable are inter-linked, dividend irrelevance occurs if
and only if R takes a unique value, that value being equal to the eigenvalue of A corresponding
to the dominant state. (Of course in the long run observation of the dividend sequence permits
the inference of the dividend policy vector.)
In this note we o¤er an answer for small !div based on algebraic considerations, some complex

analysis (including an inessential reference to Marden�s �Mean-Value Theorem for polynomials�),
and graphical analysis. These complement a standard text-book analysis based on Gerschgorin�s
circle theorem � see for instance Noble(1969).
Unsurprisingly, the eigenvalues of �A may be located arbitrarily, but only if no restrictions

are placed on the dividend policy (w; �): However, Ohlson�s question implicitly assumes the
convergence assumption as a boundedness assumption on the eigenvalues of �A. It transpires (see
Proposition 3) that the dividend policy vector is restricted by this assumption to the interior of
an appropriate polytope.
Conditions may be placed on the vector b such that when ! = (w; �) lies in an open region of

parameter space, it is the case that the dominant eigenvalue of the augmented matrix lies between
the �rst largest and the second largest eigenvalue of the reduced matrix. This is the substance of
Theorem 1 stated below and deduced at the end of this section.
Theorem 1 (An Eigenvalue Dominance Theorem). Suppose that A has real eigenvalues.

In the canonical setting (1.2) we have as follows.
(i) If sign[�1] = �1 and sign[�i] = +1 for i = 2; :::; n; then the open set

f! : �A has real distinct roots and �2 < �1(!) < �1g;

is non-empty and intersects the set

f! : !1 > 0; :::; !n+1 > 0g:

Moreover the eigenvalue �2 is, for small !; increasing in !: Under these circumstances dividend
irrelevance holds uniquely at R = �1:
(ii) More generally the open set

f! : �A has real distinct roots and �2 < �1(!) < �1g;
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is non-empty and intersects the set

f! : �1!1 < 0; �2!2 > 0; :::; �n!n > 0g;

and again under these circumstances dividend irrelevance holds uniquely at R = �1:
Remark. We see therefore that for an appropriate vector b there is a region of parameter

space for which the eigenvalues of the augmented matrix �A remain in modulus strictly bounded
by the dominant eigenvalue of A (the one of maximum modulus). Note the re-emergence of the
side conditions �1!1 < 0 analogous to the condition !12!21 < 0 in Ohlson�s Theorem.
We are able to provide some information about the extent of the subspace (see the formula

(2.7) of section 2.2) where we obtain when �1 < 0 the upper bound on positive !1of

1

4
(�1 � �)2 + f!2�2 + :::g;

for the case �2!2 > 0: Moreover, calculations of section 2.2 appear to imply that even if !1
rises above this bound the two roots of the characetristic polynomial of �A which are forced into
coincidence move towards the boundary of the disc j�j < j�1j in the complex �-plane. By contrast
we �nd for !1�1 < 0 and !2�2 < 0 the top two roots of the augmented matrix �A both approach
�2 from opposite sides; this again is in keeping with the expectation that dividend irrelevance
occurs only at the dominant root �1:

Our results link to recent work concerned with the real spectral radius of a matrix, see Hin-
richsen, D., Kelb,B, (1994), which investigates by how much a matrix may be perturbed without
moving its spectrum out of a given open set in the complex plane. In the cited work the open set
of concern is usually either the unit disc or the open left half-plane in connection with stability
issues. Our interest however focuses additionally on the open set described by the annulus de�ned
by the �rst and second largest eigenvalues of A, as de�ned above, to which weand wewhereas We
note that there is a well-established Sturmian algorithm for counting the number of zeros of a
polynomial in the unit disc in the complex plane (see Marden (1949), section 42, p. 148), and
therefore in principle the Ohlson question is resolvable for a given policy vector !div by reference
to the number of zeros in the unit circle of the two polynomials

� �A(�=j�1j); � �A(�=j�2j):

Speci�cally the �rst should have n + 1 zeros and the second no more than n: The Schur-Cohn
criterion might perhaps also be invoked to count the number of roots in the unit disc of

a0 + a1z + :::+ amz
m

and we recall that this requires counting the number of sign changes in the determinantal sequence
f�0;�1; :::;�mg de�ned by

�0 = 1;�1 =

���� a0 a3
a3 a0

���� ;

�2 =

��������
a0 0 a3 a2
a1 a0 0 a3
a3 0 a0 a1
a2 a3 0 a0

�������� ;�3 =

������������

a0 0 0 a3 a2 a1
a1 a0 0 0 a3 a2
a2 a1 a0 0 0 a3
a3 0 0 a0 a1 a2
a2 a3 0 0 a0 a1
a1 a2 a3 0 0 a0

������������
;

etc. provided that no roots are located on the unit disc and that these determinants are non-zero.
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2.1. Preliminaries

Our analysis is based on two results embodied in Proposition 1 and in the equivalences given in
Proposition 2. The arbitrary placement of the zeros, the substance of Proposition 3, is also a
consequence of Proposition 2.
Proposition 1 (Under the assumption of distinct eigenvalues). For the canonical form

of the dynamics, after diagonalization of the reduced matrix, the dividend signi�cance coe¢ cients,
denoted �i; are all non-zero and hence we may assume for each i � n that

�i = +1 or � 1, if preferred.

For any i � n dividend irrelevance occurs at R = �i provided

R > maxf�i : i = 1; :::; n+ 1g; (2.1)

in which case we have

d0 + P0(R; d) = �
RZi0
�i

:

The proof is given in section 3.
Remark 1. Apparently, if the eigenvalues of �A are bounded below the radius of any other

eigenvalue of A the Propositions permits dividend irrelevance to occur at several rates of return.
We will show below that subject to (2.1) such an anomalous behaviour is de�nitely excluded when
!1 6= 0 and also !j 6= 0 for some 1 < j � n:
Remark 2. In principle we might want to allow �i = �1; to pick up a restriction in the

directional sense of a re-scaling of accounting variables (if appropriate); it transpires from the
next Proposition that the sign of �i can be absorbed by !i and the choice of sign is only a matter
of convenience. The right-hand side perforce does not refer to the eigenvalues �i despite the fact
that these control the growth rates of the canonical accounting variables.
The following algebraic equivalences lie at the heart of all our arguments.
Proposition 2 (Inverse relations). Put �n+1 = � = !n+1:The following equations are all

equivalent.
� �A(�; !1; :::; !n+1) = 0; (2.2)

n+1Y
i=1

(�� �i) = !1�1

nY
i=2

(�� �i) + !2�2

nY
i6=2

(�� �i) + :::+ !n�n

nY
i6=n

(�� �i); (2.3)

!1�1 + !2�2 + :::+ !n�n = (�� �j)(�� �) +

nX
i6=j

!i�i(�j � �i)

�� �i
; for j � n (2.4)

� = �� !1�1
�� �1

� !2�2
�� �2

� :::� !n�n
�� �n

; i.e. for j = n+ 1: (2.5)

In particular with j = 1 we obtain the equivalent equation

�!1�1 = �(�� �1)(�� �) + f!2�2 + ::g � !2�2(�1 � �2)

�� �2
� :::

Each of the above identities enables a di¤erent analytic approach. Proof is o¤ered in section
4.
Our �rst conclusion regards the potentially arbitrary placement of the zeros of (2.2).
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Proposition 3 (Zero placement). In the canonical setting of Proposition 1, for an appro-
priate choice of ! the characteristic polynomial

� �A(�; !) = j�I � �A(!)j

may take the form
�n+1 � c0�

n + c2�
n�1 + :::+ (�1)n+1cn;

for arbitrary choice of real coe¢ cients c0; :::; cn:The transformation (c0; :::; cn)! (!1; :::; !n+1) is
a¢ ne invertible. The roots �1; :::; �n+1 of the characteristic polynomial may therefore be located
at will, subject only to the inclusion, for each selected complex root, of its conjugate.
This result is proved in section 5 and indicates that in principle the region of parameter space

in which the boundedness assumption holds may be obtained as the transform of the set of vectors
(c0; :::; cn) satisfying a criterion derived from Cauchy�s Theorem, namely

jc0j+ jc1jj�1j+ :::+ jcnjj�1jn < j�1jn:

Since the set of vectors (c0; :::; cn) so described is the interior of a polytope, the corresponding
region in parameter space is therefore likewise seen to be the interior of a polytope. Let us term
this the Cauchy polytope.
Evidently (0; :::; 0; �) is on the boundary of the Cauchy polytope, since then

� �A(�; !) = (�� �1)::(�� �n)(�� �):

The situation with general placement of eigenvalues alters if � is a positive real, and lies
below the eigenvalues of A: The formula (2.5) con�nes the non-real eigenvalues �i to an in�nite
strip, while the formula (2.3) allows us to con�ne all the eigenvalues still further when ! is itself
bounded. The formula (2.4) o¤ers a graphical approach to the analysis of the real root location.
Proposition 4 (Strip and two circles theorem). Suppose that � � �n < ::: < �1 that

!1 6= 0 and that
�1!1; :::; �n!n � 0:

(i) All the non-real roots of the characteristic equation (2.2) lie in the in�nite strip of the
complex �-plane given by

� � Re(�) � �1:

(ii) Let " be arbitrary but positive. Let K(") be the real interval [� � �; �1 + �] expanded so
that

� � � =
(� + �1)�

p
(�1 � �)2 + 4"

2
; �1 + � =

(� + �1) +
p
(�1 � �)2 + 4"

2

If
!1 + :::+ !n � "; �1!1; :::; �n!n � 0;

then all the roots of (2.2) lie in the star-shaped region S(K;�=(n + 1)) comprising two circles
subtending angles of �=(n+ 1) on K:
Remark 1. Taken together parts (i) and (ii) may operate simultaneously. These results

should however be taken together with Gerschgorin�s Circle Theorem which implies immediately
that the eigenvalues lie in the union of the discs in the complex �-plane given by j� � �ij � j!ij
and by j���j � j!1j+ ::j!nj: Thus the eigenvalues are bounded not only to the above mentioned
vertical strip, but also to a horizontal strip of width 2maxfj!jj : j � ng around the real axis.
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Remark 2. It is obvious that for !2 = :: = !n = 0 and with j!1j � " that the real roots of
(2.2) lie in K(") by continuity. Gerschgorin�s Circle Theorem limits the real roots to the slightly
larger interval [� � "; �1 + "]: Thus the two circle result is merely a sharpening of the bounds.
Remark 3. If �n < �; less elegant improvements can be made so that K extends only as far

as �1 on the left.
We can state, ahead of the proof of the proposition, our theorem on eigenvalue location.
Theorem 2 (Eigenvalue bounds). Suppose that � � �n < ::: < �1 and that

j!1j; :::; j!nj � ":

Non-real eigenvalues lie in the rectangle bounded by 
 = �; � = �1; � = �":Real eigenvalues lie in
the interval K("):
The theorem follows from the Proposition - see Figure 1. The two circle result gives useful

bounds only for the real roots.

Figure 1. Vertical strip and two-circle
bounds. Horizontal bound implied by

Gerschgorin�s Theorem.

Proof of Proposition 4. For part (i) we argue as follows. Suppose that !i�i � 0 and � � �n:
Suppose z satis�es

z � � =
!1�1
z � �1

+
!2�2
z � �2

+ :::+
!n�n
z � �n

;

If z is to the right strictly of �1 then we may also assume that z has positive imaginary part
(otherwise switch to the conjugate root �z). The argument of z��j is for each j therefore positive
and that of 1=(z � �j) therefore negative, i.e. has negative imaginary part. The right-hand side
therefore sums to a complex number with negative imaginary part. However, z � � has positive
imaginary part.
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If z is to the left of � we may suppose it has negative imaginary part. The argument of �j � z
is for each j therefore positive, as also for �� z: Now apply the previous reasoning to the identity

� � z =
!1�1
�1 � z

+
!2�2
�2 � z

+ :::+
!n�n
�n � z

:

For part (ii), let "j be arbitrary real for j = 1; :::n: We will apply Marden�s �Mean-Value
Theorem for polynomials�(Marden, p.23) to the polynomials hj for j = 1; :::; n and the polynomial
f(z) as de�ned by

f(z) =

n+1Y
i=1

(z � �i); hj(z) = "j

nY
j 6=2

(z � �i):

We must, however, �rst �nd for each j the location of the roots of the equation f(z) = hj(z):
The roots are of course z = �k for k 6= j taken together with the two real roots of

(z � �)(z � �j) = "j;

which are to the left of � and the right of �j. The exact and approximative formulas are

u�j =
(� + �j)�

p
(�j � �)2 + 4"j
2

= � � "j
4(�j � �)

; �j +
"j

4(�j � �)
;

and require that

�1
4
(�j � �)2 � "j:

Thus the roots of all the equations lie in the interval K = (u�1 ; u
+
1 ): By Marden�s Theorem in the

special case of real positive scalars mj summing to unity, the roots of

f(z) =
X

mjhj(z);

lie in the star-shaped region S(K; �=(n+1)):Thus if we take "j = " small and mj" = �j!j so that

�1!1 + :::+ �n!n = "; with �1!1; :::; �n!n � 0:

then indeed
P
mj = 1 and all the roots of (2.2) lie in the said star-shaped region.

In fact one may take "1 = " small and m1"1 = �1!1 and "j = � = minf�j � �j+1 : for j > 1g
m mj� = �j!j > 0 leading to the restriction

1 = m1 + :::+mn =
�1!1
"1

+
1

�
(�2!2 + :::)

i.e.
!1 +

"

�
(�2!2 + :::+ �n!n) = "; �1!1; :::; �n!n � 0:

Remark. The above analysis so far does not yet exclude the possibility of all eigenvalues
being located to the left of �2:We next o¤er a graphical analysis of the real root locations in the
following subsection which shows that at least one root has to be to the right of �1 when !1 6= 0
and !j 6= 0 for some j > 1:
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2.2. Graphical analysis

The purpose of this subsection is to show that under suitable restrictions one can guarantee
the existence of a real eigenvalue in the range (�2; �1):Speci�cally we show that if �1 = �1 and
�2 = ::: = +1 there is a real eigenvalue in the range �2; �1 for all small enough positive !1.
Interest naturally focuses on !1as the link coe¢ cient with the dominant state vector. Treating

!1 as a free variable, with the remaining dividend policy coe¢ cient �xed we use (2.4) to study
the map �! !1 and its local inverses. We have

�!1�1 = �(�� �1)(�� �) + f!2�2 + ::g � !2�2(�1 � �2)

�� �2
� :::; (2.6)

so that the graph of !1 against � has (n � 1) vertical asymptotes from right to left at � =
�2; �3; :::�n all of which are manifestly simple poles. The asymptotes break up the leading inverted-
U-shaped quadratic (if �1 < 0) into n connected components corresponding to the intervals
(�1; �n); (�n; �n�1); :::; (�n;+1). The equation

@!1
@�

= 0;

is equivalent to an n degree polynomial equation with n solutions (taking into account multiplic-
ity), some of which may be conjugate complex roots. Thus we may expect up to n stationary
points in the graph.
In the interval (�i+1; �i) the component has either an even, or an odd, number of stationary

points depending on whether the sign of !i+1�i+1!i�i is +1 or �1: In view of the behaviour of
the leading quadratic term not all the components may be monotone (possess a zero number of
stationary points!). Thus at least one component is non-monotonic.
The components may be interpreted as graphs/loci of the eigenvalues �i(!1): More precisely,

the di¤erentiable local inverses of the mapping � ! !1 are the graphs of �i(!1): That is to say,
each non-monotonic component must be �rst partitioned into monotone parts on either side of
its stationary points. The labelling of these inverses from right to left respects the cyclic order
on the set f1; :::; ng and also one at least of the identi�cations

lim
�%�i

!1(�) = �i; lim
�&�i

!1(�) = �i:

The latter may require the point at in�nity on the asymptote � = �i to be considered as the
intersection of consecutive loci.
Note further for � = �1 we obtain zero on the right-hand side of (2.6) and so � = �1 is a root,

of the expression on the right, i.e. �1(0) = �1. (This is consistent with the matrixM��I having
a �rst column with zeros in all but the last row.)
Since �1(0) = �1; the asymptotic features of the graph ensure that for all, small enough,

positive !1 the eigenvalue �1(!1) is in the range (�2; �1) as we now demonstrate.
With our assumption that �1 = �1 and �2 = �3 = ::: = +1; we can arrange for �1(!1) to be

large and positive in the vicinity to the right of �1 by taking !2 < 0: With !2 < 0 the domain of
�1 is in�nite so that

lim
!1!1

�1(!1) = �2:

Thus the largest real eigenvalue of �1 remains above �2: See Figure 2a. Of course for small
enough !1the remaining roots �i(!1); even if complex, remain in an open vertical complex strip
including the closed real interval [�; �2]:
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We can similarly arrange for �1(!1) to be large and negative in the vicinity to the right of �1
by taking !2 > 0: In view of the behaviour of the graph for large � > �1 this implies the existence
of two roots in (�1; �2) under these circumstances. With !2 > 0 the domain of �1 is bounded,
say by !1 � !�1 = !�1(!2; :::; !n+1) it is the case that

lim
!1&!�1

�1(!1) = lim
!1%!�1

�2(!1):

See Figure 2b. As the eigenvalue �1 remains above �2 dividend irrelevance can occur only at �1:
An upper bound for !�1 is provided by the maximum value of the quadratic term

�(�� �1)(�� �) + f!2�2 + ::g

obtained by evaluation at � = 1
2
(�1 + �):namely:

1

4
(�1 � �)2 + f!2�2 + :::g: (2.7)

This gives �; the coe¢ cient at the previous date�s dividend, a signi�cant bounding role.
Note that in both scenarios the locus of �1 is decreasing, as !1 increases from zero.
Graphs of !1(�) are illustrated in Figure 2 for the case n = 2 ; the graphs of !2(�);not shown,

inevitably corroborate this picture.

Figure 2a. Graph of !1(�1) with
�1 = �1; �2 = +1; !2 < 0:

Figure 2b. Graph of !1(�1) with
�1 = �1; �2 = +1; !2 > 0:

We conclude this section by illustrating the e¤ect of the coe¢ cient � on the three eigenvalues
in the case !1 = !1 = :1: In the range � < �2 we see that the root �1 decreasing and �2 increasing
as � increases; �3 is increasing for all �; as might be expected, with �2. Intuitively speaking, the
push away from the origin created by the two increasing roots �2 and �3 causes the location of
the coincident root �1 = �2 to execute a jump up to a new coincidence location above �1; by
way of a continuous root locus in the complex �-plane (see the Remark on bifurcation in the next
section). The push can in fact be physically interpreted. The partial fraction expansion terms
may be regarded as modelling an electric charge placed at the pole and acting according to an
inverse distance law (see Marden (1949), page 7). Thus for � large enough for both �2 and �1
to have been re-located above �1, we see the locus of �1 resume its downward path towards the
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origin (but tending only as far as the barrier �1), while �2 resumes its upward path away from
the origin. The locus dynamics are investigated more properly in the next section.

Figure 3. Graph of !3(�1) with
�1 = �1; �2 = +1; !1; !2 > 0:

2.3. Di¤erential properties of eigenvalues: some bifurcation analysis

The purpose of this section is to show brie�y how to analyse the root locus in the �-plane. We
conduct a partial analysis mostly concentrated on the dynamics of the dominant eigenvalue as !1
changes (with the remaining policy parameters are �xed) with a view to completing the proof of
the dominance theorem in the next section. Our starting point is the following proposition which
follows from (2.3) by implicit di¤erentiation.
Proposition 5. (Under the assumption of distinct eigenvalues). In the canonical

setting of Proposition 1, let the dividend policy vector be represented by ! = (!1; :::; !n+1) with
!n+1 = �: The eigenvalues �i of the augmented matrix �A regarded here, together with �A; as
functions of ! = (!1; :::; !n+1); satisfy the following di¤erential properties. For 1 � i � n + 1
and for 1 � j � n it is the case that

@�i
@!j

= ��j(�1 � �i)(�2 � �i):::(�j�1 � �i)(�j+1 � �i):::(�n � �i)

(�1 � �i)(�2 � �i):::(�i�1 � �i)(�i+1 � �i):::(�n+1 � �i)
; (2.8)

and for j = n+ 1 it is the case that

@�i
@!n+1

=
(�1 � �i)(�2 � �i):::(�n � �i)

(�1 � �i)(�2 � �i):::(�i�1 � �i)(�i+1 � �i):::(�n+1 � �i)
: (2.9)

Proof. We begin by observing a simple consequence of the identity

�M(�) = (�1 � �)(�2 � �):::(�n+1 � �):

We have

�0M(�) =
d

d�
�M(�) = �(�2 � �):::(�n+1 � �)� (�1 � �)(�3 � �):::(�n+1 � �)� :::

so that
�0M(�i) = �

Y
j 6=i

(�j � �i);
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and in particular
�0M(�1) = �

Y
j>1

(�j � �1):

Speci�cally, we have when
! = !0 := (0; :::; 0; �);

that
�0M(�1) = �(�2 � �1):::(�n � �1)(!n+1 � �1):

Now we apply implicit di¤erentiation to the identity

�M(�i(!); !) = 0:

That is to say we have

@�1
@!j

= � @�

@!j
�
�
@�

@�

�
�=�1

=
@�

@!j
�
Y
i>1

(�i � �1);

except at the critical points ! de�ned byY
i>1

(�i(!)� �1(!)) = 0;

e.g. where the locus of �1(!) crosses �2(!):The result of the Proposition now follows directly
from (2.3).
Remark. For the assumption of distinct roots to hold we must manifestly disregard the non-

generic critical points which are those points ! where any two of the functions �i agree in value;
of particular importance to us are points ! where �1(!) may cease to be the largest eigenvalue
(ranking according to modulus), as for instance when it agrees in value with �2(!). The �rst
formula when j = 1 is to be read as

@�1
@!1

= � �1(�2 � �1):::(�n � �1)

(�2 � �1):::(�n � �1)(�n+1 � �1)
;

and note that, at ! = !0 := (0; :::; 0; �); we have, by (1.1), �n+1 = � and for i = 1; :::; n

�i = �i;

as well as
@�1
@!1

=
�1

(�1 � �)
; (2.10)

and
@�1
@!j

= 0; for j > 1:

The equation (2.10) implies that the choice of a � value close to �1 will accelerate the growth
rate �1 of the leading canonical variable Z1 relative to the �rst dividend policy coe¢ cient.
Technical point. In the arguments that follow, it is important to realize that when the roots

�i and �i+1 are complex conjugates then for real �1 the following signature property is satis�ed

sign[(�i � �1)(�i+1 � �1)] = +1;

12



just as though �i and �i+1 were real and both below �1. (Since the quadratic has no real roots,
it is here positive de�nite.)
Corollary 1 (Bifurcation behaviour near �1 = �2) Assume the eigenvalues of Aare real

and distinct and that for j = 3; :::; n that �j is real and satis�es �j+1 < �j < �j:For small enough
positive increments in !1 it is the case that at any bifurcation point the conjugate complex roots
�1 and �2 move closer to the origin if �1 > 0, and away from the origin if �1 < 0.
Remark. The corollary thus con�rms the intuition expressed in connection with Figure 3.

where we alluded to the push away from the origin with �1 < 0:
Proof. Suppose that �1 = �2 occurs at some point !1 = !�1: If now !1 = !�1 + �! with

�! > 0 write, with � real,

�1 = �+ i"; �2 = �� i";

(�j � �1) = �je
i�j ; (�j+1 � �1) = �0je

i�j ;

where i denotes
p
�1 for the purposes of this paragraph only. Thus, since �j < �0j; for �! small

enough we shall have
�j > �j;

so that
�je

i�j

�0je
i�j
=
�j
�0j
exp[i(�j � �j)]

and hence that

��1
�!

= � 1

2"i

�2e
i�2

�02e
i�2
� ::: � �ne

i�n

�0ne
i�n

=
1

2"

�2
�02
� ::: � �n

�0n
exp[i(

�

2
+  )];

where  is small and positive. That is, the remaining ratios pull ��1 in the same direction. In
conclusion, the conjugate complex roots �1and �2 move closer to the origin.
Remark (Bifurcation behaviour elsewhere) Assuming that the �rst repeated root is

elsewhere than at the dominant position, one may attempt to repeat the argument at the other
locations to observe a tug of war between those ratios below the coincidence location pulling one
way and those above it pulling the other way. (We have noted the electric force �eld interpreta-
tion.)Who wins this tug of war is determined by the geometric considerations and so we discover
that there will be a critical point �;a water-shed, such that to the right of � the complex roots
move towards the origin, whereas to the left they move away from the origin.
Corollary 2. Suppose all the eigenvalues �i are real and positive and at some ! it is the case

that �1 is the maximal eigenvector (in modulus) and is real, and further that

�3 < �1 < �1:

Then we have as follows.
(i)

sign[@�1=@!1] = sign[�1]sign[(�1 � �2)];

sign[@�1=@!2] = �sign[�2];

(iii) For i = 3; :::; n we have

sign[@�1=@!i] = �sign[�i]sign[(�1 � �2)];

13



Finally
sign[@�1=@!n+1] = �1:

Proof of Corollary 2. Let i � 3: We compute that

sign[(�2 � �1)(�3 � �1):::(�n+1 � �1)] = (�1)n;
sign[(�1 � �1)(�3 � �1):::(�n � �1)] = (�1)n�2;

sign[(�1 � �1)(�2 � �1):::(�i�1 � �1)(�i+1 � �1):::(�n � �1)] = (�1)(n�3)sign[(�2 � �1)]

= (�1)(n�4)sign[(�1 � �2)]

Corollary 3. Suppose all the eigenvalues of A are real and positive. For all ! small enough
so that

j�n+1j < ::: < j�2j < �1;

and so that �i is real with
�i+1 < �i < �i�1;

it is the case for each i with �i real that

sign[@�i=@!i] = sign[�i];

sign[@�i=@!j] = sign[�i]sign[(�i � �i)]sign[(�i � �j)]; for i 6= j � n;

sign[@�i=@!n+1] = sign[(�i � �i)];

where i > 1: In particular, as long as �2 < �1;we have

sign[@�2=@!1] = �sign[�1]sign[(�2 � �2)] , sign[@�2=@!2] = sign[�2];

sign[@�2=@!j] = sign[�j]sign[(�2 � �2)] for 3 � j � n;

sign[@�2=@!n+1] = sign[(�2 � �2)]:

Proof of Corollary 3. Recalling that for i � n we have

@�i
@!i

= � �i(�1 � �i)(�2 � �i):::(�i�1 � �i)(�i+1 � �i):::(�n � �i)

(�1 � �i)(�2 � �i):::(�i�1 � �i)(�i+1 � �i):::(�n+1 � �i)
;

we compute that

sign[(�1 � �i)(�2 � �i):::(�i�1 � �i)(�i+1 � �i):::(�n+1 � �i)] = (�1)n�(i�1) = (�1)(n+1�i);
sign[(�1 � �i)(�2 � �i):::(�i�1 � �i)(�i+1 � �i):::(�n � �i)] = (�1)(n�1)�(i�1) = (�1)(n�i);

and so

= (�1)(n�i)sign[(�i � �i)]

= sign[(�1 � �i)(�2 � �i):::(�i�1 � �i)(�i � �i)(�i+1 � �i):::(�n � �i)]

= sign[(�j � �i)]sign[(�1 � �i)(�2 � �i):::(�j�1 � �i)(�j+1 � �i):::(�n � �i)]
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2.4. The dominance theorem

We may nor put together the analysis of the last sections to deduce our main result concerning
the existence of a dominant eigenvalue.
Proof of Theorem. We consider the �rst part of the theorem only, as the more general

result follows by a restatement of the same argument. By selecting the sign of �1 as (�1) and of
�i for i > 1 as (+1) we can arrange, given (2.10), for the eigenvalue function �1(!) identi�ed by
the condition �1(!0) = �1 to be decreasing as a function of ! in the region

f! : !1 > 0; :::; !n+1 > 0g;

and so to remain below �1: We have, however, to ensure that �1(!) remains the maximal root.
Recall that !0 = (0; :::; 0; �):Since the remaining eigenvalues �i = �i(!0) are below �1 we may,
by appeal to continuity, ensure that the eigenvalues functions �2(!); :::; �n+1(!) of �A(!) also lie
strictly below �1 and that moreover �2(!) < �1(!):
Remark. By Corollary 3 it is possible that, following a path in parameter space, the locus

of �2 intersects that of �1. Note, however, that if upon intersection at !� we were thereafter to
have �1(!0) < �2(!

0) with !0 in�nitesimally close to !�; then provided the remaining eigenvalues
remain below �1(!

�);the signs of all the derivatives @�1=@!j and of all the derivatives @�2=@!j
would switch, i.e. both loci would turn around, a contradiction. Thus, subject to the assumption
about the remaining eigenvalues, this implies that in fact !� is at the boundary of that region in
policy parameter space where �1 and �2 are both real. Moreover according to (2.8) the graph has
in�nite slope at !�:We illustrate this point in the following simple example with n = 1; �1 = 1
and j�j < 1:
Example. For �1 = �1;let

�A =

�
1 �1
!1 �

�
:

The characteristic polynomial is �2 � (1 + �)�+ (� + !1): Here

d�1
d!

=
1

(1 + � � 2�1)
=

�b1
(�2 � �1)

;

since �1 + �2 = 1 + �: The roots are real for !1 � 1
4
[(1 + �)2 � 4�] = 1

4
(1� �)2 = !�1(�); and we

have �1 = 1
2

�
1 + � +

p
(1� �)2 � 4!1

�
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Figure 4. For �xed � the root locus of �1(!1) (in
red) and �2(!1)(in green).

decreasing down to �1 = 1
2
(1+�) as !1increases, and analogously �2 = 1

2

�
1 + � �

p
(1� �)2 � 4!1

�
increasing up to �2 = 1

2
(1 + �):We note that as the roots become complex the real part stays

constant at (1+�)=2; i.e. the root locus bifurcates and the conjugate roots move orthogonally to
the real axis; there being no poles in this simple case there is no �push�on the real part, neither
away nor towards the origin.

3. Obtaining dividend irrelevance

In this section we prove the results in Proposition 1. Without loss of generality we may take
v0 = 0 and so ignore and hence suppress the variable vt: (See earlier work).
After a change of accounting state variables from zt to, say Zt; the system becomes�

Zt+1
dt+1

�
=M

�
Zt
dt

�
;

where

M =

266664
�1 0 0 �b1
0 �2 �b2

:::
0 0 �n �bn
!1 !2 !n+1

377775
is the new augmented matrix (with the same eigenvalues as the original augmented matrix �A)
and where �1; :::; �n are the eigenvectors of A assumed presented in decreasing modulus size (with
j�1j largest).
Evidently the characteristic polynomial

�M(�) = �M(�; !) = �M(�; !1; :::; !n; !n+1) = jM � �Ij

is the same as � �A(�). We assume its eigenvalues be �1; :::; �n+1 have distinct modulus.
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The force of our implicit assumptions on the dividend signi�cance coe¢ cients is that
they are all non-zero: �bi 6= 0 for all i: For otherwise the eigenvalues of the augmented matrix
would include all the eigenvalues of the reduced matrix. (To see this expand the characteristic
determinant by the i-th row).
Henceforth we assume the canonical variables have been re-scaled by �bi and we may therefore

take for the canonical dividend signi�cance coe¢ cients the symbol �i with the additional
stipulation that

j�1j = 1 for i = 1; ::; n:
As a �rst step we note the consequence for dividend irrelevance of the non-zero dividend

signi�cance coe¢ cients. Writing Z = (:::; Zi; :::) we have for each i that for some coe¢ cient
l1; ::; ln+1 it is the case that

dt =
X

lj�
t
j:

Now the equation
Zit+1 = �iZ

i
t + �i

X
lj�

t
j

with the solution also given by the eigenvalues of the augmented matrix in the format

Zit =
X

Lj�
t
j;

must satisfy X
Lj�

t
j(�j � �i) = �i

X
lj�

t
j

for all t:Hence

Lj =
�ilj

�j � �i
:

We thus have, assuming R > j�jj for all j; that the dividend series converges, and

P0(R; d) =
1X
t=1

R�tdt =
X
j

1

R� �j
lj�j

=
1

�i

X
j

�j � �i
R� �j

Lj�j:

Consequently, if R = �i is permitted then

P0(R; d) = �
1

�i

X
j

Lj�j = �
Zi1
�1
= ��iZ

i
0 + �id0
�1

= ��iZ
i
0

�1
+ d0

indeed depends only on the initial data.
We recall the basis of this calculation is the identity

P0(R; d) =

1X
t=1

R�tdt =

1X
t=1

R�t
X
j

lj�
t
j

=
X
j

lj

1X
t=1

R�t�tj

=
X
j

lj
�j=R

1� �j=R
=
X
j

1

R� �j
lj�j
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We will thus obtain dividend irrelevance at R = �i provided all the eigenvalues �j are in
modulus less than R: This is only likely to be the case when R = �1 is the eigenvalue of maximum
modulus.

4. Derivation of equivalences

We begin by expanding by the bottom row

jM � �Ij =

����������
�1 � � 0 0 �1
0 �2 � � �2

:::
0 0 �n � � �n
!1 !2 �n+1 � �

����������
n+1

= 0

to obtain

(�1)n!1D1(�)� :::� !nDn(�) +
n+1Y
i=1

(�i � �) = 0;

or

(�1)n!1D1(�) + (�1)n�1!2D2(�):::� !nDn(�) = (�1)(�1)n+1
n+1Y
i=1

(�� �i);

where

D1(�) =

��������
0 0 0 �1

�2 � � 0 �2
:::
0 �n � � �n

��������
n

= (�1)n�1�1
nY
i=2

(�i � �)

= �1

nY
i=2

(�� �i):

Similarly

D2(�) =

����������
�1 � � 0 0 �1
0 0 0 �2

�3 � �

0 0 �n � � �n

����������
n

= (�1)n�2�2
nY
i6=2

(�i � �)

= ��2
nY
i6=2

(�� �i)
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This yields the equation

!1�1

nY
i=2

(�� �i) + !2�2

nY
i6=2

(�� �i) + :::+ !n�n

nY
i6=n

(�� �i) =
n+1Y
i=1

(�� �i);

Dividing by
nY
i6=j

(�� �i) we obtain

(�� �j)(�� �) = !j�j +
X
i6=j

!i�i
�� �j
�� �i

= !j�j +
X
i6=j

!i�i

�
1� �j � �i

�� �i

�
or

!1�1 + !2�2 + ::: = (�� �j)(�� �) +

nX
i6=j

!i�i(�j � �i)

�� �i
;

as required.

Dividing by
nY
i=1

(�� �i) we obtain

�� � =
!1�1
�� �1

+
!2�2
�� �2

+ :::+
!n�n
�� �n

:

5. Invertible parametrization and Zero placement

This section is devoted to a proof of Proposition 3. Let us write

�A(�) = j�I � Aj =
nX
s=0

(�1)sas�n�s =
nY
i=1

(�� �i)

so that
as =

X
j1<:::<js

�j1 :::�js

and so
a0 = 1; a1 = �1 + :::+ �n; ::: an = �1:::�n:

Hence

n+1Y
i=1

(�� �i) = (�� �)

"
nX
s=0

(�1)sas�n�s
#

= �n+1 � (a1 + �a0)�
n + :::+ (�1)s[as+1 + �as]�

n�s + :::+ (�1)n+1�an:

As a �rst step we compute that
�2 + :::+ �n = a1 � �1

and that X
1<u<v

�u�v =
X
u<v

�u�v � �1
X
1<v

�v =
X
u<v

�u�v � �1(
X
v

�v � �1)

= a1 � �1(a1 � �) = a2 � a1�1 + �21:
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Similarly, X
1<u<v<w

�u�v�w =
X
u<v<w

�u�v�w � �1
X
1<v<w

�v�w

= a3 � �1[a2 � a1�1 + �21]

= a3 � a2�1 + a1�
2
1 � �31

The pattern is now clear, and we shall show by induction thatX
1<j1<:::<js

�j1 :::�js = as � as�1�1 + �21as�2 + :::+ (�1)sa0�s1:

Indeed X
j1<:::<js

�j1 :::�js =
X

j1<:::<js

�j1 :::�js � �1
X

1<j2<:::<js

�j2 :::�js

= as � �1(as�1 + :::+ (�1)s�1�s�11 )

= as � as�1�1 + �21as�2 + :::+ (�1)sa0�s1:

Note that
an � an�1�1 + �21an�2 + :::+ (�1)na0�n1 = 0;

so
�2:::�n = ��11 an = an�1 � �1an�2 + :::+ (�1)n�1�n�11 :

Our next step is to observe that the coe¢ cients in the polynomial on the right-hand side of
identity (2.3) may be expanded as follows

D(�) = !1�1

nY
i6=1

(�� �i) + !2�2

nY
i6=2

(�� �i) + :::+ !n�n

nY
i6=n

(�� �i)

= (!1�1 + !2�2 + :::+ !n�n)�
n�1 � (!1�1[�2 + :::] + :::)�n�2

+(!1�1[�2�3 + :::] + :::)�n�3 +

:::+ (�1)s(!1�1�as(1) + :::)�n�s + ::+ (�1)n�1[
nX
j=1

!j�j

nY
i6=j

�i];

where
�as(i) =

X
j1<:::<js
jk 6=i

�j1 ::�js

i.e. the summation refers to the omission of i from any of the components j1:::js:Note also that

nY
i6=j

�i =
an
�j
:

We now consider for any constants cs the identity

n+1Y
i=1

(�� �i)� f!1�1
nY
i6=1

(�� �i) + !2�2

nY
i6=2

(�� �i) + :::+ !n�n

nY
i6=n

(�� �i)g

= �n+1 � c0�
n + c2�

n�1 + :::+ cn:
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Comparing sides we obtain

c0 = (a1 + �a0);

c1 = a2 + �a1 � (!1�1 + !2�2 + :::+ !n�n);

c2 = a3 + �a2 � (!1�1�1 + :::)

:::

cn = an+1 + �an �
�
!1�1�

�1
1 + :::

�
:

Now given any c0 we select �; so that
� = c0 � a1:

As for the remaining equations we have:

c1 � a2 � �a1 = !1�1 + !2�2 + :::+ !n�n;

c2 � a3 � �a2 = !1�1(a1 � �1) + :::;

c3 � a4 � �a3 = !1�1(a2 � s1�1 + �21) +

:::

cn � an+1 � �an = !1�1(an�1 � an�2�1 + (�1)n�1a0�n�11 ) + :::;

where an+1 = 0; i.e.

N

2664
�1!1
�2!2
:::
�n!n

3775 =
2664

c1 � a2 � �a1
c2 � a3 � �a2

cn � an+1 � �an

3775 :
Here the coe¢ cient matrix N is given as follows.

N =

266664
1 1

a1 � �1 a1 � �n
a2 � a1�1 + �21 ::: a2 � a1�n + �2n

::: :::
an�1 � �1an�2 + :::+ (�1)n�1�n�11 an�1 � �1an�2 + :::+ (�1)n�1�n�11

377775 :
Its determinant is equal, up to a possible sign change, to the van-der-Monde determinant V (�1; :::; �n):
HenceN is non-singular and the equation may be solved for any given vector (c1; :::; cn):To see this
note that N may be reduced to the alternant matrix A(0; :::; n�1) in the variables (��1); :::(��n)����������

1 1 ::: 1
a1 � �1 a1 � �2 ::: a1 � �n

a2 � a1�1 + �21
:::

an�1 � �1an�2 + :::+ (�1)n�1�n�11 an�1 � �nan�2 + :::+ (�1)n�1�n�1n

����������
=

����������
1 1 ::: 1
��1 ��2 ::: ��n
�21 �2n
:::

(��1)n�1 (��n)n�1

����������
= V (��1; :::;��n):
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(taking a1times the �rst row, a1times the second row and so on).
It is now easy to �nd the inverse transformation by applying the elementary row operations

just used to the original matrix equation. This leads to the following result. Putting gi =
ci � ai+1 � �aithe original equations:

N

2664
�1!1
�2!2
:::
�n!n

3775 =
266664
g1
g2

gn

377775
now transform to

V

2664
�1!1
�2!2
:::
�n!n

3775 =
266664
h1
h2

hn

377775
where

h1 = g1;

h2 = g2 � a1h1;

h3 = g3 � a2h1 + a1h2;

:::

hn = gn � an�1h1 + an�2h2 � :::� a1hn�1:

Note that with the sign adjustment h h0n = (�1)nhn . Thus with a0 = 1we have2664
�1!1
�2!2
:::
�n!n

3775 = V �1

266664
h1
h2

hn

377775 ;
where the inverse V �1is given by (see Klinger,A.,(1967)) the matrix with ijentry

(�1)i+j �an�i(j)
j�1Y
l=1

(�j � �l)

nY
k=j+1

(�k � �j)

:

where the elementary symmetric function �as(j) was de�ned above (sum over the s-fold product
ommitting the variable �j).
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