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Abstract

We construct a �divide the dollar�bargaining game which formalizes Schelling�s notion
of a �qualitative commitment�. This requires a substantial capitulation cost to be incurred �
discontinuously �if and only if a player accepts a share of an asset below his pre-announced
�claim�on it, no matter how little below. The �commitment game�opens with an �announce-
ment round� in which the two players simultaneously announce their claims on the asset,
and is followed by a Rubinstein alternating-o¤ers �negotiation subgame�. We determine the
unique subgame-perfect, stationary, pure-strategy equilibrium outcome of the commitment
game and �nd it to be e¢ cient. The main feature of the model is that gains, relative to
the game without commitment, do result to the �rst-mover provided the capitulation cost is
above a certain threshold. The more the capitulation cost exceeds the threshold, the greater
is the gain. The higher the impatience level of the players, the higher the stakes need to be.

It is a pleasure to o¤er thanks to John Sutton, John Hardiman Moore, Ken Binmore and
Bernhard von Stengel for discussions, as well as to Michael Schroeder for invaluable services
as a patient reader, and to the anonymous referees for prompting a number of interesting
questions that have led to improvements to the main thrust of this paper.



1. Introduction and Main Theorem

1.1. Motivation and model speci�cation

In his celebrated �Essay on Bargaining�Schelling points to one source of bargaining power as
the �power to bind oneself �and discusses observed pre-bargaining union activities undertaken
to create a commitment tactic: �stirring up excitement and determination in the union�for the
purposes of making clear what the negotiators would not accept. In a word: spin. He argues
that �To be convincing, commitments usually have to be qualitative rather than quantitative� such
as staking or �pledging a principle�, whereupon the agent persuades his adversary �that he would
accept stalemate rather than capitulate and discredit the principle.�
This paper proposes a quantitative analysis of Schelling�s �qualitative commitment�, here trans-

lated into the bargainer sustaining a substantial enough capitulation cost if and only if his claim
on the asset under negotiation is not met. Our starting point follows the received literature, see
for example Muthoo (1999), and de�nes a version Gc� of the �divide a dollar� game. Thus in
common with other authors, we begin with a preliminary round (�round �1�) in which two
players (simultaneously) announce their commitment not to accept a share of the dollar below
their own announced �claim�on the dollar (respectively z1; z2): A subsequent penalty structure
and a resolution mechanism are required when con�icting claims arise, i.e. when claim pairs
are announced summing above the dollar ( z1 + z2 > 1): For example, Muthoo (1996) uses an
implicit negotiation mechanism with outcome characterized by the Nash Bargaining Axioms to
arrive at a resolution of the claims. Our contribution is to adopt a di¤erent approach: we allow
the bargainers to resolve claims by the use of an explicit negotiation scheme as a¤orded by the
�alternating-o¤ers�in�nite game-structure of Rubinstein (1982) and (1987). Having made their
announcements, the players are allowed to bid freely (make proposals for a division of the dol-
lar) in the ensuing negotiation subgame N (z1; z2) = Nc�(z1; z2) comprising �round 0�, �round
1�etc.1 Despite this freedom, the players are in�uenced by the e¤ect on their utilities of the
announced claims resulting from the capitulation cost (whenever incurred). The capitulation
cost is a known penalty, deducted from the pay-o¤ of a player if revoking his or her commitment.
The penalty is paid to a third party and is a function of the concession (i.e. the amount by
which an agent accepts strictly below the announced claim). We assume the penalty structure is
antecedent to the game Gc� (created by pre-bargaining activity), is known to the two players and
is beyond their control in the game Gc�.
To formalize the qualitative character of the commitment, we take the view that in accepting

a share x below the announced claim, z; the bargainer has �discredited his principle�, as staked on
z; and su¤ers the same capitulation cost no matter how small the concession z � x. We propose
interpreting capitulation cost as a �xed proportion c of the original asset under negotiation2. It
is in this sense that the penalty may be called a �xed charge, by contrast to the alternative of
a progressive charge. We assume the players�utility re�ects both the cost of making a concession

1Thus in the negotiation subgame, the players, starting with Player 1, take turns in proposing the division
of the asset into a proportion x to be awarded to the player currently bidding and a proportion 1 � x to the
opponent. The opponent may either agree the division, or refuse it, and in so doing close the current round of
bidding, becoming in turn the bidder of the new round.

2Choosing a �xed proportion, rather than a �xed (absolute) amount, may be taken to re�ect a tacit under-
standing by the two negotiating parties of the need to employ some kind of release mechanism. In Schelling�s words
this amounts either to a kind of �casuistry�for release from a public expectation of the preordained punishment
of a broken commitment, or alternatively to a kind of �rationalized re-interpretation of the original commitment�
(applicable to the terms, at the very least, of the consequent penalty).
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and the passage of time. As for the latter we assume both players apply the same time discount
factor � (with 0 < � < 1): We thus adopt a pay-o¤ structure that has the players valuing an
agreement which in �round n�of N (z1; z2) gives a proportion x of the asset to Player 1 and 1� x
to Player 2, with 0 � x � 1; by reference to their the utility which is de�ned as follows:

u1(x; n; z1) = �
nw(x; z1); u2(x; n; z2) = �

nw(1� x; z2); (1.1)

where 0 < � < 1 denotes the time discount factor, the amount by which the two players perceive
the value to have shrunk at the end of any one round, and3

w(x; z) = x� c � 1[0;z)(x); (1.2)

where 1A(x) is the indicator function of the set A. The utility of stalemate (perpetual disagree-
ment) is zero; in particular w(x; z) < 0; for x < c; so that a Player may well receive negative
pay-o¤ if o¤ered too little, and will then �rather accept stalemate�.
The utilities in the gameN (z1; z2) are time homogenous. It seems natural therefore to seek out

a subgame-perfect equilibrium supported by stationary (time homogeneous) strategies whereby
each player proposes constantly the same share to Player 1 and accepts a minimum own share
always at one and the same level, both levels being freely selected.

Figure 1. A is a subgame-perfect
equilibrium in N (z1; z2)

Now consider, for the subgame N (z1; z2), the feasible set of utility-outcome pairs of �round n�,
which we denote Fn. Reference to (1.1) and the fact that the pay-o¤ at stalemate is zero shows
that Fn = f(u1; u2) : u1; u2 � 0 and u1 = �

nw(x; z1); u2 = �
nw(1 � x; z2) � 0; for some x with

0 � x � 1g. This set, albeit not in general convex, is star-shaped to the origin. The subgame
N (z1; z2) is thus in principle amenable to a variation of the standard geometric arguments for
identifying a subgame-perfect equilibrium division arising from the play of a pair of stationary
strategies. We take a brief look at the corresponding geometry in order to observe the need for
compensatory actions.

3Thus if z1 = z2 = 0 we obtain what we term the standard Rubinstein bargaining model with u1(x; n; z1) =
�n � x; u2(x; n; z2) = �

n � (1� x):
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Figure 1 shows F1 = f(z1; z2)g [ f(t; 1� c� t) : t > z1 or t < z1� cg, where4 z1+ z2 = 1: The
set comprises three components: one point and two half-open intervals. For the (appropriately)
chosen value of z1 of this example the point A = (z1; z2) is a subgame-perfect outcome of N (z1; z2)
supported by stationary (i.e. time independent) strategies.
The geometric justi�cation is the following. The point A is proposed by Player 1. It will be

optimal for Player 2 to accept. To verify this she �rst identi�es the point B in F2 on the horizontal
through A; she is indi¤erent between A and B. But she cannot propose B in �round 2�without
some concession (or side-payment) to Player 1. Why? In the �rst place the point C vertically
below B on F3 is not even feasible for our selected value of z1, as C is at the open-end of one
of the components of F3: She must therefore slide down to the point D on F2 that is vertically
above the point of F3 nearest to C; which is the point Player 1 will propose (under the terms
of the stationary strategy) if �round 3�is reached. That point on F3 is just the �twice-delayed�
version of A; namely E = �2A on the radial line OA: Player 1 will propose E in �round 3�and this
proposal will be accepted. Thus (i) D is the contract point of F2 of least or equal u1-coordinate
to that of E; (ii) A is the contract point on F1 of least or equal u2-coordinate to D: Player 2 is
in fact better o¤ at D than at E; and at A she is better o¤ still.
We also note that when D is vertically above E (in the limit) Player 2 exhausts the simulta-

neous possibility of satisfying her own announced claim and compensating Player 1 to the level
of utility that he can obtain in �round 3�. That is, there is a natural upper bound for costs that
can be compensated.
It is clear from this analysis that �nding sub-game perfect equilibria carries intrinsic combi-

natorial complications to the standard paradigm as a result of the �sliding-down�variation. This
variation will be formalized in Section 2 in terms of Player i�s �compensated present-values�di(y);
the contract value from some appropriate division (x; 1� x) in the current round, least or equal
to the contract value from (y; 1 � y) in the subsequent round; the subgame-perfect equilibria in
N (z1; z2) (possibly as many as three) are generated from the �xed points of d2d1(:):We avoid con-
sidering complications to the geometric analysis, by favouring an algebraic approach, especially
as the claims z1; z2 themselves must be checked for mutual optimality; see section 3.3 for some
further intuitions.
As a reference point for our work we turn to the game without commitments, the simple

Rubinstein negotiation game with w(x) = x: This has a unique subgame-perfect equilibrium
outcome (which can be interpreted as a limit of terminated versions of the negotiation scheme in
analogy to Figure 1) in the form:

R(�) = (�1; �2); where �1 + �2 = 1 and �2 = ��1;

so that �1(1 + �) = 1: Consequently we have

�1 =
1

1 + �
; �2 =

�

1 + �
: (1.3)

For later comparison, we note the justi�cation of this formula from the observation that a one-
round delay switches the identity of the bidder and, apart from a time shift, the continuation
game faced by the new bidder is otherwise identical; hence pay-o¤s are necessarily transposed
and discounted by �:
The equilibrium point R(�) yields a 50:50 split in the limit when � nears 1: Hence it is

plausible in the case of a concave feasible outcome set to resolve con�icting claims by not modelling

4If x 6= z1we have u1(x; 1) + u2(x; 1) equal to 1� c � [1[0;z1)(x) + 1[0;z1)(1� x)]; i.e. to 1� c:
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negotiation, and imposing instead an axiomatic solution. Such an approach, as Muthoo (1996)
shows, favours a 50:50 split in equilibrium �ceteris paribus, i.e. when both players have identical
linear capitulation costs. The paper remains apparently silent on the second issue raised by
Schelling: can one impart a special role to a �qualitative commitment�. Prima facie, this silence
seems to be due to the very approach adopted in Muthoo�s paper, by virtue of modelling with
continuous penalties. Hence the present paper asks by way of a discontinuity hypothesis: do
qualitative commitment tactics overturn the equitable outcome, say in the face of large enough,
identical, capitulation costs?
Our answer to this second question of Schelling is in the a¢ rmative. More precisely, relying

on the medium of an explicit negotiation structure, we can con�rm his tenet by demonstrating
a qualitative shift away from the standard �almost �fty:�fty�outcome. Such are, metaphorically
speaking, the wages of spin.
The �rst main contribution of this paper is to show that, under an explicit negotiation scheme,

there is necessarily a unique equilibrium division (arising from stationary strategies), so that by
implication, as Muthoo (1996) points out, this uniqueness o¤ers a �theory of strategic bargaining�.
The second main contribution is to show how, in the model, the size of the capitulation cost a¤ects
the equilibrium outcome and leads to a division veering well away (when � nears unity) from the
�almost 50:50�equilibrium division R(�) of the negotiation game without commitment.
In the model of the current paper con�icting claims are avoided at equilibrium; but, this need

not hold in all models and we refer readers concerned with impasses to Crawford (1982).

1.2. Statement and discussion of main results

This section states and puts into perspective the main results of the paper, unfolding them in four
stages. The �rst is that a unique equilibrium outcome arising from stationary strategies exists,
despite the discontinuities in utility. The precise result is this.
Theorem 1 (Uniqueness and Existence Theorem). For 2

3
< � < 1 and 0 < c � �C(�);

the game Gc� of Section 1.1 possesses a unique outcome division S(c; �) = (x; 1 � x) that is
supported by a pure-strategy, subgame-perfect, Nash equilibrium, according to which subsequently
to the announcement round, Players 1 and 2 play the stationary strategies �1xy;�

2
yx with y = �x+c:

Uniqueness is proved in Section 4 and existence in Section 5. We should explain that the
upper bound placed on c; de�ned as follows

�C(�) :=
1� �
2� � ;

which we refer to as the �limit of capitulation cost�, is akin to a self-�nancing condition, ensuring
that players are always able to retain an acceptable payo¤ while o¤ering compensation (with
which to entice the opponent away from a contract one round later, to a contract of equal or
better value to the opponent one round earlier). Compare Figure 1. The limit of capitulation
cost, �C(�); remains bounded by 1

4
for 2

3
< � < 1.

In the statement above �1xy; �
2
yx; for any real 0 � x; y � 1; denote the standard stationary

strategies in a Rubinstein alternating o¤ers game, as recalled below. The equilibrium existence
is not accidental (see section 6).
De�nition. In the negotiation subgame N (z1; z2), let �1xy denote the stationary strategy

for Player 1 according to which his play is: propose a division (x; 1� x) and accept an own share
at or above y in all rounds, and let �2yx be the counterpart strategy for Player 2 in which she
plays: always propose (y; 1� y) and accept a proposal (t; 1� t) with t at or below x:
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The play of (�1xy;�
2
yx) thus results in an outcome (x; 1� x) agreed in the �rst round of of the

negotiation subgame.

The second main �nding of the paper is that at a subgame-perfect Nash equilibrium of the
commitment game there is a regime switch in the stationary strategies of the equilibrium outcome
S(c; �). This switch compares the capitulation cost c to a regime switching function L(�) which
is de�ned by

L(�) =:
(1� �)2

1 + (1� �)2 ;

and which satis�es L(�) < 1
2
(1� �). The second result is this.

Theorem 2 (Division Characterization Theorem). In the setting of Theorem 1 the
unique division S(c; �) depends on the regime switching value L(�) as follows:

i) S(c; �) = (�1; �2); if 0 � c � L(�) (low charge);
ii) S(c; �) = (ẑ; 1� ẑ); if L(�) < c � �C(�) (high charge).

Here

�1 = �1(c; �) := (1� c) � �1; �2 = �2(c; �) = 1� �1; ẑ = ẑ(c; �) := �1 + (1� �)
� c
L
� 1
�
�1;

where (�1; �2) was de�ned by (1.3), so that in case (i) Player 2 receives above �2:

Remarks. 1. It follows from the formula for ẑ that ẑ(L(�); �) = �2(L(�); �); i.e. the strategy
switch from (i) to (ii) is continuous.
2. It is interesting that R(�) = (�1; �2) does not �gure as an equilibrium division when c > 0:

Player 2 may announce z2 = �2 and thereby hold Player 1 down to an outcome of �1: However,
�2 is not her best reply announcement to his announcement z1 = �1:
3. Our �ndings support and quantify some common-sense expectations. The outcome is

e¢ cient. The amount which Player 1 receives rises with c; albeit after an initial fall (see Figure
2), eventually rising above �1: Thus a �rst-mover advantage occurs in the bargaining subgame
(gain over R(�); the standard outcome of section 1.1), but only when c is above a certain threshold
value, determined below in (1.6). The more the capitulation cost c exceeds the threshold, the
greater is this gain. By contrast, it transpires that low penalty costs move the standard division
unfavourably for the �rst-mover of the bargaining subgame. It would therefore be interesting to
study �rst-mover advantage/disadvantage e¤ects of unequal penalties.
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Figure 2. Pay-o¤ to Player 1
against c : �1 declining

(red-�ne) to a regime switch
to ẑ (green-thick) which is
rising and eventually above
�1 (blue-dashed). (Here

� = 0:7)

Figure 3. Pay-o¤ to Player 1
against � : �1 (red-�ne)

decreases to 0.5
(blue-dashed); ẑ( �C(�))

(green-thick) increases to
unity.

4. We have the explicit formulas:

�1 =
1�c
1+�
; �2 =

c+�
1+�
;

ẑ = �
1+�

+ c � (1��)+�
2

1��2 ; 1� ẑ = (1�c)(1��)�c�2
1��2 .

)
(1.4)

5. Note that in the range (i) �1 > �2: By (1.4) we have �2 = ��1 + c: This last equation
may be read as saying that in case (i) a one-round delay switching the identity of the proposer
is accompanied by the new proposer facing an outcome equal to the discounted outcome of the
original proposer reimbursed for the capitulation cost. Compare this to the analogous remark
following equation (1.3) and to the identi�cation of compensations in Figure 1. By contrast, in
(ii) since

1� ẑ = �ẑ + c� (1� �)
�

c

L(�)
� 1
�
; (1.5)

a one-round delay switches the identity of the proposer and yields, as outcome to the new pro-
poser, the discounted outcome of the predecessor, adjusted by a falling compensation from the
predecessor. The compensation eventually reverses direction to one in favour of the predecessor.
See also below Remark 2 to Theorem 3, and Remark 4 to Theorem 4.
6. The payo¤ �2 to Player 2 in case (i) may be presented as the convex combination

�2 = c+ (1� c) � �2

(of �2 and unity) and is thus clearly better than �2.
7. We comment that the term c=(1 + �) arising in (i) represents a compensation shouldered

by Player 1. Interpreted as the series c(1 � � + �2 � :::); it is seen to be the limiting present
value of a stream of compensations incorporated into a back-stepping argument, appropriate to
a terminated version of the subgame.
8. The piecewise linear form of S(c; �) is a consequence of the a¢ ne structure of what we

call the compensated present-value function, see (1.8) below, though it is not obvious how many
�pieces�there might be.
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The two possible divisions of Theorem 2 are identi�ed in the course of proving �uniqueness�
in Section 4. The existence proof of Section 5 veri�es that in the two complementary c ranges
equilibrium conditions are satis�ed in respect of possible supporting announcement strategies.
This coupled with a calculation based on (1.4) that ẑ(c; �) � �1(c; �) i¤ c � L(�) completes a
proof of Theorem 2, since Player 1 chooses whichever is the larger own share available to him at
an SPNE in N (z1; z2):
Our third result describes the announcement structure in equilibrium; note the inclusion of a

symmetric announcement (�2; �2) for c � L(�):
Theorem 3 (Announcement Characterization Theorem). In the setting of Theorem 2,

the �rst round announcements (z1; z2) that are supported by a subgame-perfect Nash equilibrium
of the commitment game Gc� are determined as follows:

i) (z1; z2) = (t; �2) ; for �2 � t � �1; if 0 � c � L(�) (low charge);
ii) (z1; z2) = (ẑ; 1� ẑ); if L(�) < c � �C(�) (high charge).

The announcement characterization is proved in the course of the existence proof of Section
5.

Remarks 1. Recall that �2 < �1 for c < L(�); in fact for c < (1� �)=2: Thus at the subgame-
perfect equilibrium both players�claims are satis�ed (possibly Player 1 receives in excess of his
claim).
2. Note that in the case (i) of the Theorem 3 when the announcement is (�1; �2) the claim z2

agrees with y = �z1 + c. By contrast, in (ii) z2 < y = �z1 + c; since as noted in (1.5) the claim
z2 = 1� ẑ falls progressively below y = �ẑ + c as the capitulation cost rises. See also Remark 4
to Theorem 4 below.

Our �nal main result, a corollary of Theorem 2, identi�es how signi�cantly the equilibrium
outcome S(c; �) characterized by Theorem 2 may move away from the standard Rubinstein equi-
librium R(�) = (�1; �2) of section 1.1. To formulate our result we need to de�ne the threshold
value H(�) by:

H(�) :=
(1� �)2

� + (1� �)2 ; (1.6)

and now the qualitative shift can be quanti�ed as follows.
Theorem 4 (Comparison Theorem). For 2

3
< � < 1; it is the case that ẑ(c; �) is

increasing in c on the interval [0; �C(�)] and satis�es

ẑ(c; �) = �1 + (1� �)
�

c

H(�)
� 1
�
� �1; so that ẑ(c; �) > �1 i¤ c > H(�):

Thus at the limit of capitulation cost �C(�) the payo¤ to the �rst-mover is given by

ẑ( �C(�); �) =
1

2� � =
�C(�)

1� � ;

and this, as a function of �; increases from 1
2
to unity.

Example. When � = 0:7 we have �C = 0:23 and ẑ = :77 whereas �1 = 0:588:

The proof of Theorem 4 is a routine deduction and is omitted.
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Remarks. 1. Note that although the capitulation cost at its upper bound, i.e. for c = �C(�);
has a very signi�cant qualitative impact on the equilibrium, it itself remains limited being, as
noted earlier, less than 0.25 of the asset, and in fact is vanishingly small, as � nears unity.
2. Note that for 0 < � < 1 the threshold value H(�) lies above the regime switching value

L(�) and is likewise decreasing with �: Moreover it is the case that

1

2
H(�) < L(�) < H(�) <

1

2
(1� �) < �C(�) <

1

4
: (1.7)

3. Since H(�) decreases from unity to zero, compare Figure 3, lower values of � (re�ecting
higher impatience on the part of the players) correspond to a higher threshold value; so the higher
the impatience level of the players, the higher the stakes need to be (as measured by the threshold
value).
4. We note in addition to the identity (1.5) we also have

1� ẑ = �ẑ � (1� �)
�

c

H(�)
� 1
�
;

so, as noted above, the outcome to Player 2 not only falls progressively as the capitulation cost
rises, but in fact for c > H(�) we have z2 < �z1. This means that after a one-period delay
the compensation, accompanying the switch in identity of the new proposer, actually reverses
direction in the compensation �ow which is now in favour of the predecessor.
Proof strategy. Our main results are established in Sections 4 and 5 after some preparatory

work. We outline the main ideas of the proof of the theorem and its corollary. A critical device
of the Rubinstein bargaining model is to bring forward in time the value of a share x of the asset,
if o¤ered to a Player later, by substitution of an earlier o¤er y of a share at least equivalent in
utility (to that Player) taking into account the time-discount factor. Our argument necessarily
hinges on the form of this kind of present-value calculation in the context of a penalty, and on the
need to consider a �penalty compensation�to induce acceptance of a share below the announced
claim z. As a consequence of interpreting penalty as loss of a �xed proportion of the asset under
negotiation, the assumed identical penalty structure gives rise to two time-homogeneous com-
pensated present-value functions derived from one common function y = f(x; z); attributing
value to a share x of asset accepted one round later, where the function f(x; z) is de�ned in a
piecewise a¢ ne format, depending on the announced claim z; as follows:

f(x; z) = fi(x; z) = aix+ bi(z) (1.8)

for x in intervals of the form ui(z) � x < vi(z); for i = 1; :::; n: It is monotone in x: Thus once
(z1; z2) has been announced the players have individual present-value functions de�ned from f as
follows:

d1(x) = f(x; z1); d2(x) = 1� f(1� x; z2): (1.9)

The possible stationary strategy pairs (�1xy;�
2
yx) in the subgame N (z1; z2) which follows the

announcement (z1; z2) are determined by the �xed points of F (x) = d2(d1(x)): However, there
may be several �xed points (actually as many as three such), each o¤ering a di¤erent allocation
x to the �rst-mover in N (z1; z2). Thus to �nd the subgame-perfect Nash equilibrium involves
identifying the largest �xed-point x(z1; z2), since that is Player 1�s optimal choice of x in the
subgame. This largest �xed-point may be regarded as de�ning the payo¤ pair for a commitment
game G 0c� starting from the �round 0�simultaneous announcement (z1; z2); and ending on a �rst
round agreement with payo¤ (w(x(z1; z2); z1); w(1 � x(z1; z2); z2)). The argument now turns on
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�nding an announcement (z1; z2) which gives a Nash equilibrium in G 0c�. It turns out that in a
subgame-perfect Nash equilibrium of Gc� one will have z1 = x(z1; z2) and that y = d1(x) = �x+ c:
The details are worked out in Section 4, but for an intuitive grasp consult Section 3.3.
The proof of the Theorem investigates �xed-points by comparing cases. A large enough value

for � ensures that a multitude of parameters, dependent only on c and �; associated with the
equilibrium divisions, obey unchanging comparative inequalities when c; � vary (see the Lemmas
in Section 3). Exploiting this �comparison-persistence� one can also investigate the model by
computer simulation without loss in generality.
Organization of the paper. In Section 2 we derive the compensated present-value functions

di(x; zi) of the two players and give conditions in the Veri�cation Theorem for the �xed points
of the composition value-function F (x) = d2(d1(x)) to generate a subgame-perfect equilibrium
in N (z1; z2). In Section 3.1 we identify �xed points of F (x) as functions of (z1; z2); as these
generate stationary strategies in the subgame, we intuitively interpret in 3.2 which from among
these are likely to yield the equilibria of the commitment game. In 3.4 we compare various
relevant parameters. In Section 4, using these comparisons, we narrow the search for equilibrium
outcomes down to two. In Section 5 we verify that these two are indeed equilibrium divisions
in complementary cost-ranges. A discussion of the justi�ability of stationary equilibria in this
distinctive context of discontinuity is o¤ered in the concluding Section 6.

2. Preliminaries

In this section we de�ne the compensated present-value functions di(x; zi); we prove a veri�ca-
tion condition for the corresponding �xed-points to generate subgame-perfect equilibria, then
we compute the present-value functions for the case of our commitment game, and validate the
veri�cation condition.
The functions di(x; zi) are de�ned by

u1(d1(x); n) = inf
y
fu1(y; n) � u1(x; n+ 1)g; (n = 0; 1; :::); (2.1)

u2(d2(x); n) = sup
y
fu2(y; n) � u2(x; n+ 1)g; (n = 0; 1; :::):

Thus if y = d1(x; z1); then y is the least such that

w(y; z1) � �w(x; z1);

where w is de�ned by (1.2); similarly, if y = d2(x; z2); then y is the greatest such that w(1�y; z2) �
�w(1� x; z2): In the standard Rubinstein game without commitments, where w(x) = x; we have
of course that d1(x) = �x and d2(x) = 1� �(1� x): More generally, de�ne

f(x; z) = d1(x; z);

then, since the subgame starting with Player 2�s proposal is identical to the original negotiation
subgame up to player transposition, we have (1.9).
These de�nitions enable us now to gives su¢ cient conditions for the stationary strategy pair

(�1xy;�
2
yx) of Section 1.2 to constitute a subgame-perfect Nash equilibrium.

Proposition 2.1 (Veri�cation Theorem). Let x; y satisfy

y = d1(x); x = d2(y); (2.2)
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and assume d1(d1(x)) � x and d2(d2(y)) � 1�y: Then the pair (�1xy;�2yx) constitutes a subgame-
perfect Nash equilibrium with outcome (x; 1 � x). In these circumstances a �xed point of the
function F (x) = d2(d1(x)) generates such an equilibrium.
Proof. In any round if Player 1 is the bidder and bids for more than x, then according to � yx

Player 2 refuses. In the next round agreement gives Player 1 at most y; the compensated present
value of which is d1(y) = d1(d1(x)) � x; he therefore will not gain from delaying agreement.
On the other hand, if Player 2 is the bidder and awards herself more than 1 � y (o¤ering the
opponent less than y), then according to �1xy Player 1 refuses, so she can expect at best x in the
next round, whose compensated present value to her is d2(x) = d2(d2(y)) � 1� y: Thus Player 2
cannot improve her pay-o¤ by deviating from the stationary bid and delaying agreement.�
To compute f(x; z) = d1(x; z); a more general approach is helpful. The utility w(x) = u1(x; 0)

takes the form
wi(x) = Aix+Bi when ki � x < li for i = 1; 2:

Indeed, by (1.2) we have

w1(x) = x� c; for 0 � x < z; w2(x) = x; for z � x � 1:

Thus the range of w excludes [z� c; z): Hence the contract o¤ering x �tomorrow�with ki � x < li
is �today�worth to Player 1 y if, for some i and j

wj(y) = �wi(x); (2.3)

however, if �wi lies in [z � c; z), the least inducement y making the Player prefer acceptance one
round earlier is y = z: Solving the equation (2.3) when

Ajkj +Bj � �(Aix+Bi) < Ajlj +Bj

we obtain the formula

yij =
�(Aix+Bi)�Bj

Aj
; (2.4)

for x with max
�
Ajkj +Bj � �Bi

�Ai
; ki

�
� x < min

�
li;
Ajlj +Bj � �Bi

�Ai

�
:

We can now compute f(x; z) = d1(x; z):

Proposition 2.2. For the �xed-charge penalty regime, assuming c < 1 � � and c � z � 1;
we have, for 0 � x � 1; that f(x; z) = fi(x; z); where :

f1(x; z) = �x+ c(1� �); if x < z;
f2(x; z) = �x+ c; if z � x < (z � c)=�;
f3(x; z) = z; if maxfz; (z � c)=�g � x < z=�;
f4(x; z) = �x; if z=� � x < 1:

Comments. A direct interpretation of these formulas bears on the type of equilibrium that
may be achieved. See section 3.2.

Note that c=(1� �) < c+ �: Thus if z < c+ �; case 2 arises i¤ z < (z� c)=�; i¤ c=(1� �) < z:
Note that if �z + c < z; then the present value of a future claim z falls below the current
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claim even after compensation. Evidently c=(1 � �) < 1: If case 2 arises, then case 3 occurs for
(z � c)=� � x < z=�: Also if 1 � z � c+ �; then cases 3 and 4 do not arise; but if z < c+ � and
case 2 fails, then case 3 occurs for z � x < z=�:
Proof of Proposition 2.2. The equation (2.3) fails i¤ �w2 falls in the interval [z� c; z) and

this occurs i¤ x � z (so that x 2 dom(w2) ) and z � c � �x < z: To see this consider the graph
of w, or note that for 0 � x < z we have �w1(x) = �(z � c) < z � c < z. Thus indeed f3 = z; as
shown, since z is the least inducement to an acceptance leaving the player no worse o¤ than in
the next round. The remaining cases are routine applications of (2.4).�
We �nally verify that the conditions of Proposition 2.1 hold.
Proposition 2.3. For the �xed-charge penalty regime, d1(d1(x) � x holds for x � c; and

hence d2(d2(y)) � 1� y holds for y � 1� c:
Proof. We recall that d1(x) = f(x; z1) and d2(x) = 1 � f(1 � x; z2): Fix z > 0: Note that

f1(0; z) = c(1 � �) < c: The increasing function f(x; z)has either one �xed point only at x = c
when c=(1 � �) < z, or otherwise it has one �xed point at x = c; and a second �xed point at
x = z; and none others: In the �rst case we have for x > c thatc < f(x; z) < x; and so

f(f(x; z); z) � f(x; z) < x:

In the second case, for c � x � z; we have c � f(x; z) < x � z; so f(f(x; z); z) < x; also for
z � x we have z � f(x; z) � x; hence

f(f(x; z); z) � x:

It follows from f(x; z) � x that f(1� y; z) � 1� y provided 1� y > c; so that d2(y) = 1� f(1�
y; z) � y provided y < 1�c: Consequently, since f is increasing, f(1�f(1�y; z); z) � f(y; z) � y
and so d2(d2(y)) = 1� f(1� f(1� y; z)) � 1� y:�

3. Fixed points of F (x), interpretation, and comparisons

In the previous section Propositions 2.1 and 2.3 reduced the task of �nding subgame-perfect Nash
equilibria of N (z1; z2) to computing the �xed points of

F (x) = d2(d1(x)): (3.1)

In this section we tabulate these �xed points, interpret some of them as likely equilibrium candi-
dates, and then rank all the �xed points by size.

3.1. Tabulation

We begin by identifying an algorithm for computing the �xed points of (3.1), noting that impor-
tantly they fall into three distinct types. Then we tabulate the computed �xed points and o¤er
an example graph.
De�nition and algorithm. Recalling the notation of Proposition 2.2 that f(x; z) = fi(x; z) =

aix+ bi(z) when ui(z) � x < vi(z); de�ne the functions

xij(z1; z2) =
1� ai � bi(z2) + aibj(z1)

1� aiaj
: (3.2)

This formula validly provides all the �xed points of F provided ui(z2) � 1� d1(xij) < vi(z2) and
uj(z1) � xij < vj(z1): The conditions on xij require to be rewritten as inequalities to be satis�ed
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by z1 and z2: The algorithmic output is tabulated below, but the routine calculations are omitted.
Evidently, the formula (3.2) solves explicitly the �xed-point equation:

x = d2(d1(x)) = 1� fi(1� fj(x; z1); z2) = (1� ai � bi(z2) + aibj(z1)) + aiajx:

Fixed-point types. Equation (3.2) indicates three types of �xed points, as follows. (a) Nine
�xed points with value independent of the claims z1 or z2; correspond to i 6= 3 and j 6= 3 (cf.
Proposition 2.2). (b) Three depending on z1 alone which correspond to i 6= 3 and j = 3. (c) Four
with value xij = 1� z2 corresponding to i = 3. The nine �constants�are compared in a lemma to
follow.
In the table xij refers ambiguously to the function de�ned by (3.2) and to its value. Reference

is made to ẑ = ẑ(c; �); to � = �2 = 1 � x22; (with the x22 shown below) as de�ned by (1.4) and
to the additional parameters:

� =
1� c� �
1� � ; � =

c+ � � �2

1� �2
= 1� x24:

Table 3.1

Case j = 1
x41 =

1+c�
1+�

x41 < z1 z2 � �x22
x31 = 1� z2 1� z2 < z1 �x22 � z2 � ẑ
x21 = 1� ẑ 1� ẑ < z1 ẑ � z2 � x12
x11 =

1�c+c�
1+�

x11 < z1 x11 < z2

Note that �x22 < x11 < x41 < x12 and that �x22 < ẑ < x12: It is signi�cant that the z2 range
of case 11 is half-open.

Case j = 2
x42 =

1��+c�
1��2 � � z1 � x42 z2 � �x24

x32 = 1� z2 c+ �(1� z2) � z1 � 1� z2 �x24 � z2 � � and z2 � x24
x22 =

1�c
1+�

� � z1 � 1� � �2 = � � z2 � 1� � = �1
x12 =

1�c��+2c�
1��2 ẑ � z1 � x12 1� ẑ < z2

Notes: (i) � � � i¤ c � 1
2
(1 � �); (ii) 1 � ẑ � �; (iii) 1 � ẑ < 1 � � and �x24 < � and

ẑ < x12 < x42: It is signi�cant that the z2 range of case 12 is half-open.

Case j = 3
x43 = (1� �) + �z1 �x44 � z1 � � z2 � �(1� z1)

x33 = 1� z2
�(1� z2) < z1 � c+ �(1� z2)

and z1 + z2 � 1
�(1� z1) � z2 � c+ �(1� z1)

x23 = �z1 + (1� � � c)
�x24 � z1 � � = 1� x22
and z1 � � = 1�c��

1��
c+ �(1� z1) � z2 � 1� z1

x13 = (1� c)(1� �) + �z1 �x22 � z1 � ẑ 1� z1 < z2

Notes: (i) �x24 < �x22 < �x44 < ẑ < �; (ii) Case 23 holds i¤ z1 < � and if z1 = � we have
c + �(1 � z1) = �; (iii) Case 33 fails unless �x24 � z1 � �. It is signi�cant that the z2 range of
case 13 is half-open.
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Case j = 4
x44 =

1
1+�

z1 � �x44 z2 � �x44
x34 = 1� z2 z1 � �(1� z2) �x44 � z2 � �
x24 =

1�c��
1��2 z1 � �x24 � � z2 � x42

x14 =
1�c
1+�

z1 � �x22 z2 > x41

Note: �x24 < �x22 < �x44 < ẑ < � < x41 < x42:

3.2. Example graph

We close this section with an example graph showing �xed-points for a �xed z1 against z2 vary-
ing. Player 2 seeks to minimize Player 1�s proposed division so identi�es the least value on the
descending graph of the payo¤ to Player 1 1� z1 not lying under any horizontal line.
In Figures 4a and 4b below note the presence on an �elbow�at z2 = ẑ where 31 and 21 are

contiguous. In 4a cases represented from left to right: 43,41,32,31,21,11,12 so that the opti-
mal reply is z2 = x11:(Note the three �xed points.) In 4b cases represented from left to right:
43,33,32,31,21,11,13=12, so that the optimal reply is z2 = 1� ẑ:

Figure 4a. Fixed-points xij(�; z2)
as functions of z2:

Figure 4b. Fixed-points
xij(ẑ; z2) as functions of

z2:

3.3. Interpretation

A propos Proposition 2.2 case 2, the two equilibria of the Theorem satisfy

1� � < ẑ i¤ c < �C(�); and 1� � < x22 i¤ c <
1

2
(1� �): (3.3)

We now o¤er an intuitive argument, which needs proper substantiation. (A rigorous treatment
is taken up in section 4.) Invoking the Coase Principle, see Coase (1960), we make the simplifying
assumption that in equilibrium both players aim to make demands that can be, and are, met by
the opponent. We will eventually see that this need not hold in relation to all announcements in
equilibrium; compare also Crawford (1982), and Anderlini and Felli (1998). Our assumption needs
to be coupled to the �Principle of Indi¤erence�according to which, in equilibrium, the responding
player in any subgame of N (z1; z2) is either indi¤erent to a one-round delay, or prefers not to
delay.
The simplest scenario is when the delay requires each player to compensate the shrinking of

the asset with a side payment of c. Working back from the �rst-mover�s satis�ed claim z1, a
one-round delay in meeting the claim z1 yields an uncompensated value �z1 < z1; so to induce an
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acceptance the bidder o¤ers compensation by c, and hence might o¤er �z1+ c: If �z1+ c < z1; this
is advantageous for the bidder, permitting her in that intermediate round to keep more asset and
still satisfy the counter-party. This suggests an equilibrium of type 22 based on y = �z1 + c =
d1(z1). (Here z1 > c=(1 � �) = 1 � �; so this agrees with case 2 of Proposition 2.2). This is in
keeping with the ideas expressed in connection with (1.3) in that an e¢ cient subgame-perfect
equilibrium division could plausibly be of the form (�; �� + c). This yields �(1 + �) + c = 1; so
that �1 = (1� c)=(1 + �):
The preceding argument holds only provided the compensation is not too large. It is possible

(for large c) that a payment of c leads to over-compensation, in the sense that �z1 + c > z1: In
this circumstance the only option to the bidder is again to meet the claim z1 in the current round,
and this corresponds to case 3 of the Proposition 2.2 where d1(z1) = z1.
On the above argument (repeated mutatis mutandis for Player 2) any equilibrium must be

covered by one of the cases 22,23,32,33. Case 22 yields the equilibrium of Theorem 2 referred to
under (i)5. The pay-o¤ in case 23 is increasing in z1 up to x22 (see section 4.1), so is unlikely
as an equilibrium value; the other two cases yield pay-o¤ z2 to Player 2 provided no other cases
dominate this pay-o¤. Comparison of the �easier�case 32 against 12 where z1 � ẑ and z2 > 1� ẑ
leads to consideration of the inequality 1 � ẑ �c�L � = �2: The latter implies that for c � L
case 12 dominates case 32 for z2 > 1 � ẑ; thus Player 2 maximizes her pay-o¤ under 32 with
z2 = 1� ẑ: This goes some way towards explaining where the other subgame-perfect equilibrium
division arises. In either case we arrive at x = z1 and y = d1(z1) = �z1 + c: The �nal result is
not immediate since one must investigate exhaustively dominances between Player 1�s pay-o¤s
arising from potential multiplicities of �xed points for a given announcement (z1; z2).

3.4. Comparison: some inequalities

In the lemmas which follow we rank the various parameters and the various pay-o¤s occurring
in Table 3.1 by size in order to verify constraints, and to locate the position of the all important
pay-o¤s ẑ and 1� ẑ. Lemma-b and Lemma-c help to determine optimal behaviour of the players.
The proofs are routine and so are omitted.
Many of the inequalities between parameters are true for all c below the limit of capitulation

cost �C(�): These we term persistent. Others depend on what side of a single, threshold value
(depending on �) the value c stands. To identify the dependence of comparisons on c we will attach
various quali�ers to the comparison sign. Thus: g <Property(c) t is to mean: g < t i¤ Property(c)
holds. In particular <� is to mean �i¤ c < 1

2
(1 � �)�holds. Speci�cally we will need to refer to

the c ranges de�ned by the following thresholds, shown in ascending order (for � > 1=2) :

1

2
H(�) < G(�) < L(�) < T (�) < M(�) < H(�) <

1

2
(1� �); (3.4)

an extension of (1.7), where

G(�) :=
(1� �)2
(2� �) ; T (�) := (1� �)2; M(�) :=

(1� �)2

(2� 3� + 2�2)
:

Referring to the �xed-point types identi�ed in section 3.1, we �rst establish a linear ranking
for the type (a) �constant pay-o¤s�. Then we locate the two parameters � and � de�ned at the
top of Table 3.1. Next we follow up the location of � and of ẑ which were de�ned in (1.4), and

5z1 = d2(d1(z1)) = 1� �(1� �z1 � c)� c yields (1� �2)z1 = (1� c)(1� �):
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also of 1� ẑ: Subsequently, we consider pay-o¤s of type (b), i.e. those which depend on z1 only.
Lastly we consider a continuity feature of pay-o¤s of type (c), i.e. those which depend only on
z2: Henceforth we make the following.
Blanket Assumption.

2=3 < � < 1 and 0 < c � �C(�) =
1� �
2� � : (3.5)

As regards the �constant pay-o¤s�, the three x22, x24 and 1� ẑ; require special treatment; the
remaining six satisfy persistent inequalities. We consider these six �rst.
Lemma-P (Persistent inequalities). Assuming (3.5) we have:

�x22 < �x44 < x22 = x14 < x11 < x44 < x41 < x12 < x42: (3.6)

The location of the constant payo¤x24 is bounded by x22 and, depending on c; can drop below
�x22:
Lemma-24 (Properties of x24) Assuming (3.5) we have:

�x44 <
c<T x24 < x22 < x44 and �x22 <c<H x24:

A delimiter of cases 32 and 23 is given by �: Recall that 1 � � = c=(1 � �) is a delimiter of
case 3 in Proposition 2.2. (See the subsequent comments.)
Lemma-� (Properties of �): Assuming (3.5), we have transitively that:

1� � <� � <� x22 = 1� � <� � < 1� c:

The next lemma gives the only persistent inequalities concerning �. All other inequalities
depend on the location of c; e.g. x41 <c>H �: We need the following.
Lemma-� (Properties of �): Assuming (3.5) we have transitively:

�x24 < �x22 < �x44 < � < � <
� x12 < x42; and x22 <c>G � <c<L x11 and x41 <c>H �

The parameter � identi�es the incidence of the all important case 22.
Lemma-� (Properties of �): Assuming (3.5) we have:

�x44 < � < x11 < x12; and x24 <c>G � <� x22 = 1� � < x11:

The next two lemmas locate the pay-o¤s ẑ and 1� ẑ.
Lemma-Z (Properties of ẑ): Assuming (3.5) we have:

c

1� � = 1� � < ẑ < �; and �x22 < x41 <
� ẑ < x12;

implying � > ẑ > � etc., with the second inequality requiring c > (1 � �)2=(1 � 2� + 2�2) and
moreover

�

1 + �
= �x44 < � < x11 <

c>M ẑ < x12;

implying ẑ > � etc. Furthermore

1

2
<c>H=2 ẑ equivalently 1� ẑ <c>H=2 ẑ :

16



Lemma-1-Z (Properties of 1� ẑ): Assuming (3.5) we have:

�x24 < x24 < 1� ẑ = x21 < x22 < x11 and 1� ẑ < �;

and moreover
ẑ <c<L x22 equivalently � <c<L 1� ẑ : (3.7)

The next lemma identi�es extreme values taken by the payo¤-functions depending on z1.
These will help to �nd improved pay-o¤s for Player 1.
Observation. The case 22 in fact occurs i¤ c < L(�) in view of (3.7). If this case subsists it

has the e¤ect of preventing (ẑ; 1� ẑ) from being an equilibrium, because x22 > x32 = 1� z2 = ẑ:
Lemma-b (Ascending Elbows): For the functions xi3(z1; z2) de�ned by (3.2) regarded as

functions of z1 it is the case, for any z2; that

x14 � x13(z1; z2) � x12; for �x14 � z1 � ẑ;
x44 � x43(z1; z2) � x42; for �x44 � z1 � �;
x24 � x23(z1; z2) � x22; for �x24 � z1 � �;

with equality occurring only at the end-points.
A continuity feature implies an �elbow�shape also for the payo¤ x3j regarded as a function of

z2; so identi�es a local minimum in z2: The information helps to �nd optimal pay-o¤s for Player
2.
Lemma-c (Descending Elbows): For the functions x3j(z1; z2) = 1 � z2 regarded as a

function of z2 it is the case that

x31 = x21 for z2 = ẑ
x32 = x22 for z2 = � provided � � � and � � z1 � 1� �
x33 = x23 for z2 = c+ �(1� z1) provided z1 < � and �x24 � z1 � �:
x34 = x24 for z2 = � provided z1 < �x24:

Note that �x24 < � (and � > � for large enough c).
We are now able to make an immediate and useful deduction.
Corollary 1 (Consistency). All z1 (resp. z2) intervals in Tables 3.1 which are de�ned

independently of the value of z2 (resp. z1); i.e. only by expressions involving c; �; are non-empty,
with the exception of Case 22 unless additionally c < 1

2
(1� �):

Proof. We omit the routine veri�cation. But note that

1

2
(1� �) < �C(�) =

1� �
2� � < 1� �:

Hence c < 1� �; as required by cases 42 and 24; however, the case 22 requires that c < 1
2
(1� �):

This is a stronger restriction than we assume in the Theorem.
Proposition 3.1 All �xed points in the �xed-charge penalty model generate subgame-perfect

equilibria, provided c � �C(�):
Proof. This is mostly routine and omitted. (Actually, the condition c � (1��)=(2��2) arises

when requiring x23 to be above c for z1 at the left endpoint of the z1-domain. But in fact, we are
concerned only with the right end of the domain, where the �xed-point is above c for c < �C(�):)
The Proposition thus follows from Propositions 2.1 and 2.3.�
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4. Proof of Main Results: uniqueness

This section is organized as follows. In Section 4.1, as a �rst step towards uniqueness, starting at
Section 4.1.1 we begin narrowing down the choice of announced claim pairs to ultimately just three
cases and note that these give rise to two possible division outcomes. The argument examines
Player 1�s choice of a �xed point x of d2(d1(x)); subsequent to the announcement round, and we
�nd that for two of the possible announcement vectors Player 1 selects a �xed point (his proposal
in the bargaining subgame) equal to his announced claim. We leave to Section 5 the check that
the three possible announcement vectors satisfy equilibrium conditions in two complementary sets
of cost values c as described in the Main Theorem of section 1.1. This last step is tedious and
relies on lemmas detailing case incidence. Before proceeding, we note a direct consequence of the
Veri�cation Theorem (Proposition 2.1) for the bargaining strategies �1xy;�

2
yx. In the two cases

where Player 1 employs �1xy with x = z1 and y = d1(x) in the negotiation subgame, the value z1
satis�es c=(1� �) < z1; so a reference to (3.3) and case 2 of Proposition 2.2 yields from (2.2) that
y = �x+ c:

4.1. Exclusion Lemmas: Narrowing down the search for subgame-perfect equilibria

This section shows that at a subgame-perfect equilibrium in the commitment game Player 1
receives one of x22 or ẑ; and that for c � L his announcement satis�es z1 = x32(z1; z2) = ẑ: We
will later show that for c < L he announces z1 2 (�; x22): The search-argument falls naturally into
three parts according to the three types of �xed point xij identi�ed in section 3.1, with each type
considered in a separate subsection, starting at 4.1.1. Its purpose is to identify announcements
(z1; z2) which are potentially supported by an SPNE and to dismiss the majority of these. Before
we start the search we clarify the method employed and the kind of technicalities that need to be
confronted to prove that certain announcements are not supported by an SPNE.
In each of the sixteen cases (i; j) we will look at pairs (z1; z2) permitted by the case, and test

whether unilateral deviation from (z1; z2) can improve a Player�s payo¤. One criterion, referring
to Player 1�s optimal behaviour, is that if we identify a case (k; l) and a vector (z01; z2) in its
domain such that xij(z1; z2) < xkl(z01; z2); then (z1; z2) is excluded from being an announcement
in a subgame-perfect equilibrium.
The analogous criterion for Player 2 is more involved. To show that (z1; z2) in the domain of

case (i; j) is excluded, we must identify (k; l) and z02 so that xkl(z1; z
0
2) < xij(z1; z2) and also check

that there is no �alternative dominance�for some (m;n) of the form xkl(z1; z
0
2) < xmn(z1; z

0
2);

as Player 1 would prefer to propose such xmn(z1; z02) in the negotiation subgame. The procedure
here is to refer to an instance of Lemma-c identifying a local minimum of 1 � z2 and checking
constraints imposed by end-points of cases 11,12,13,14. Lemma 10 provides an example.

We now list our Exclusion Lemmas which are used in an exhaustive search for the at most
two divisions achieved in a subgame-perfect equilibrium.
Lemma 4.1 6. Any announcement with z2 = �=(1+ �); in particular R(�) = (1; �)=(1+ �) is

not supported by a subgame-perfect equilibrium.
Proof. The play z2 = �=(1 + �) either yields an identical payo¤ of 1=(1 + �) to Player 1 for

c < H under all cases that subsist, or, if c > H; o¤ers Player 1 a better reply of z1 = ẑ. In the
former case to avoid penalty Player 1 must select z1 � 1=(1+ �): But for z1 � 1=(1+ �) reference
to case 31 shows that against such play, Player 2 can receive at least z2 > 1 � z1 � �=(1 + �);
since dominance occurs from cases 12 or 11 only.
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Lemma 4.2 7. Any announcement (t; 1� t) with t < ẑ is not supported by a subgame-perfect
equilibrium.
Proof. The reply z1 = ẑ to z2 = 1� t places (z1; z2) in case 12 and gives a payo¤ to Player 1

of x12 = ẑ > t; so is a better response by Player 1.
Lemma 4.3 8. The announcement (�; 1 � �) is not supported by a subgame-perfect equilib-

rium.
Proof. With z2 = 1� � we refer to case 13. Note that x13 > � for z1 > �: Thus 1� z2 is not

a best reply for Player 1 to z2. Finally note that �x22 < � by Lemma �:
Lemma 4.4 9. The announcement (1��; �) is not supported by a subgame-perfect equilibrium.
Proof. One checks that z1 = 1 � � = c=(1 � �) is not a best response to z2 = �. An

inspection of case 12 shows that z2 > 1 � ẑ holds (see note(ii) to Table 3.1 for case j = 2); and
x12 > ẑ > 1� z2; so that z1 = x12 is in fact the best response.
Lemma 4.5 10. If �x24 < z < � and z1 = 1� z; then the �xed-point proposals x over which

Player 1 maximizes in correspondence to z2 are as tabulated below.

x42 for z2 � �x24; x21 = 1� ẑ for : ẑ � z2 � x12;
x32 = 1� z2 for �x24 � z2 � �; x12 for 1� ẑ < z2;
x31 = 1� z2 for �x22 < z2 � ẑ; x11 for : x11 < z2

Thus since ẑ < x11 < x12 a best reply for Player 2 is z2 = ẑ:
Proof Cases j = 4; j = 3; and the case 22 fail. Note that x42 � x32 � x31 � x21:
Lemma 4.6 11. None of the following announcements, including (1 � �; �) for c > L;

and (ẑ; 1 � ẑ) when c < L; is supported by a subgame-perfect equilibrium with outcome equal to
(1� z; z):

(1� z; z) with �x24 = �(1� � � c)=(1� �2) < z � minf�; �g: (4.1)

Proof. To understand the claim here, note that c > L i¤ 1 � ẑ < �; and that � � � i¤
c � 1

2
(1 � �): We will need the comparisons of various thresholds in (3.4) of section 3.3. Finally

note that 1� ẑ < � by Lemma P-Z, and that if L < c < 1
2
(1� �); then 1� ẑ < �. Thus we have

1� ẑ < minf�; �g for c > L:
First we consider the z range 1� ẑ < z � �. We refer to case 12 with z2 = z where for z1 = ẑ

we obtain a superior outcome to 1 � z; as x12 > ẑ > 1 � z: This observation includes the case
z = � when L < c < 1

2
(1� �); so this is when (1� �; �) is indeed not an SPNE (but then (1� ẑ; ẑ)

is).
Now we consider the range �x24 < z < 1 � ẑ and we seek a best reply6 to any �xed z1 =

1 � z > ẑ: According as x11 � ẑ or x11 < ẑ our argument refers to one of the cases 21 and 31
which are contiguous at z2 = ẑ (where the payo¤ to Player 1 is 1� ẑ). So recall from Lemma Z
that x11 < ẑ i¤ c > M(�); and that M(�) > L(�):
Suppose �rst that c > L: Thus if c �M(�); then x11 � ẑ; and so against z1 the choice z2 = ẑ

gives Player 2 a best payo¤ of ẑ; since x21 = 1� ẑ: But1�z1 < 1� ẑ < ẑ; as c > L > 1
2
H(�): Thus

the response z2 = 1� z1 with assumed outcome 1� z1 yields an inferior payo¤ to that achieved
for z2 = ẑ. In conclusion z2 = 1� z1 is not a best reply to z1:
Now for c > M(�); we have x11 < ẑ; and the best response is z2 = x11: Here Player 1 receives

1� x11; i.e. Player 2 gets x11; and moreover by Lemma P-Z 1� z1 < 1� ẑ < x11:
Finally consider the case c < 1

2
H < L < M: By Lemma1-Z 1� ẑ > ẑ > � > �x24: Consider z

with �x24 < z < � and z1 = 1� z: Here z2 = ẑ satis�es z2 > z = 1� z1 and so case 31 holds for
6If L < c < 1

2 (1 � �) then 1 � ẑ < �; and here for z2 < 1 � ẑ it seems that best play by Player-1against z2 is
with 43 where z2 = �(1� z1) yielding 1� z2 to Player-1.
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the pair z1 = 1� z; z2 = ẑ: Moreover we again have c �M(�) and so against z1 the choice z2 = ẑ
gives Player 2 a best payo¤ of ẑ:
Armed with the exclusion lemmas we proceed to an exhaustive search for subgame-perfect

equilibria among the �xed points of Table 3.1.

4.1.1. Nine functions xij that are independent of z1 and z2

The aim in this subsection is to show that at equilibrium Player 2 selects z2 so that �x24 < z2 �
1 � ẑ: This will come after our �rst step, which is to inspect the nine functions of the current
heading. We will then discover that in consequence one only of these nine, namely x22; gives a
possible subgame-perfect equilibrium division.
The �rst six, of the nine functions, to be considered in our �rst step satisfy xij = z1 at an

end-point of their domain, though three achieve equality only in the limit. By inspection of Table
3.1 these six turn out to be x21; x22; x11; x41; x12; x42. For all c these six have values in the same
ascending order, namely:

1� ẑ = x21 < x22 < x11 < x41 < x12 < x42: (4.2)

Note that subject to di¤erent domain restrictions on z1 the six functions satisfy

x21; x11; x41 < z1 � x22; x12; x42:

The �rst three are thus unlikely candidates, as we shall con�rm. (One expects intuitively at
equilibrium to have xij � z1:) The remaining three functions of this group, ranked according to
size, are :

x24 < x14 = x22 < x44 <
c>H ẑ; (4.3)

with the restricted inequality requiring c > H(�). They all satisfy xij > z1 with strict inequality,
even in the limit at the edge of their domains. We will see that the three cases indicated by the
subscript are also excluded at equilibrium (case 14 despite the fact that value-wise x14 = x22):
As a second step, we consider the observation that the values x42 and x12 are the two highest

possible payo¤ values independent of z2 as per (4.2). In choosing a best reply at equilibrium,
Player 2 may prevent the former as an outcome by selecting z2 > �x24 and the latter by selecting
z2 � 1� ẑ: Note that �x24 < 1� ẑ: This leaves only one case with xij(z1; z2) = z1; namely 22 as
initially suggested.
Comment. Observe that the restriction just derived, namely,

1� x42 = �x24 < z2 � 1� ẑ (4.4)

opens the possibility of Player 1�s pay-o¤s x3j = 1� z2 falling in the range ẑ � 1� z2 < x42:
Having excluded two outcomes, the rest of this section is dedicated to excluding six others in

consequence of the range restriction (4.4) on z2.
First consider the three cases with xij > z1 as noted in (4.3)
(i) Case 24. Begin by noting that if 1 � ẑ < � then the case is excluded. So suppose

� � 1� ẑ < x42 (see Lemma P-Z and Lemma P). Refer to the ascending elbows of Lemma-b: the
right end-point for z1 in case 24 , namely z1 = �x24; coincides with the left end-point for z1 in
case 23: But at z1 = �x24 the the same restrictions on z2 arise under case 24 and 23. It follows
that for the z2 restriction being considered, the payo¤ x24 is dominated by the increasing payo¤
function x23 (see Lemma b).
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(ii) Case 14 is excluded since z2 � 1� ẑ < x41 (see Lemma P and 1-Z):
(iii) Case 44. If z2 < �=(1 + �); the contiguous case 43 (Ascending Elbow) o¤ers Player 1 a

superior payo¤. According to Lemma 4.1, the case z2 = �=(1 + �) cannot arise.

Finally we consider the three cases with xij < z1.
Case 11 is ruled out since z2 � 1� ẑ < x22 < x11 by Lemmas 1 and 1-Z.
Case 41. For z2 < �x22 we have x41 < x32: For z2 = �x22 = 1� x41; one checks that the best

payo¤ to Player 1 is x41; but the claim z1 = x41 is excluded by this case.
Case 21 is ruled out if 1� ẑ < ẑ: So suppose ẑ � 1� ẑ and note that 1� ẑ < x22 < x12: So

under case 21 we are limited to ẑ � z2 � 1� ẑ: But we have � < ẑ � 1� ẑ < 1� � so for our z2
range, case 22 o¤ers more to Player 1 (as 1� ẑ < x22 = 1� �; by Lemma Z).
Of the nine case we have thus ruled out all but one, namely the case 22.

4.1.2. Exclusion of the three outcomes linearly depending on z1 only

As these cases have positive z1-slope �; they cannot o¤er an equilibrium, except possibly at
the right end-points of their z1-domains. We consider these end-points and �nd under case 23
a possible subgame-perfect equilibrium announcement (�; �): Being an endpoint, it is already
subsumed under the contiguous case 22.
(i) Case 13. Since we have already shown in (4.4) that z2 � 1 � ẑ; the requirements ẑ �

1� z2 < z1 � ẑ yield a contradiction. The case does not arise.
(ii) Case 43. We have either (a) z1 = � ; or (b) �z1 = � � z2:
(a) Consider z1 = �: Suppose �rst 1 � � < ẑ: Thus c > (1 � �)2=(2 � � + �2) and this lower

bound is below 1
2
(1� �): The case 31 holds undominatedly for z2 < 1� ẑ; so that the best reply is

z2 = 1� ẑ: (Note that there is an elbow at z2 = ẑ where 31 and 21 are contiguous, and x21 < x22.)
But we show in section 4.3 that the best replies to z2 = 1� ẑ occur for z1 � ẑ < � (see Lemma Z),
a contradiction. Next suppose only that c < 1

2
(1 � �): Refer now to case 22 which is dominated

by x11 only for z2 > x11. But � < x11; so the response z2 = x11 is best. However z1 = � under
case 43 gives Player 1 x43 = 1� �(1� �) = x42 by Lemma b. But x42 > x22 (Lemma P) so that
with z2 = x11 Player 2 receives 1� x22 > 1� x42:
When (b) arises, we have �z1 = (� � z2)=� � � , so that �x24 � z2 � �=(1 + �):
Consider the best play against any z1 in [�x44; �]: Now �x22 < �x44 < ẑ < �: If z1 � ẑ then

case 13 starts at z2 = 1 � z1 making this the best reply (from case 31); or note that x13 < x43
and case 13 gives better replies than for z2 � �(1� z1):
If z1 > ẑ; (which includes z1 = �) note that case 11 occurs if c > M(�); giving then a best

reply of z2 = x11: Otherwise Case 12 is available for blocking case 31, giving a best reply of
z2 = 1� ẑ: Case 31 requires 1� ẑ � z1; which holds i¤ ẑ � 1� ẑ i¤ c � 1

2
H: Otherwise, we have

� < ẑ < z1 < 1� ẑ < 1� � and case 22 arises, and here best replies are up to z2 = 1� ẑ; by case
12: note that � <� x12 by Lemma �:
(iii) Case 23. For the z2-domain to be non-empty it is necessary and su¢ cient that z1 � �:

Assume so. There are three possibilities: z1 = �; z1 = �; z1 = 1� z2 < �; �:
(a) Assume �rst that the right end-point of the z1-domain is z1 = � and that � < �: Thus

c < 1
2
(1 � �) by Lemma �; so � < 1 � � by Lemma �, and correspondingly in case 23 we have

� � z2 � 1� �:
Suppose �rst c > L: By (3.7) we have 1 � ẑ < �; and so case 23 cannot subsist under the

restriction already derived above, namely that z2 � 1� ẑ:
Now suppose c � L. We have � � 1 � ẑ < 1 � � (by Lemma Z). Thus for z1 = � we have

in case 23 that � � z2 � 1 � � and the payo¤ to Player 1 is x22 = 1 � � (see Lemma b), so
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Player 2 optimizes his payo¤ by taking z2 = � (any larger choice incurs penalty). As the choice
for (z1; z2) = (�; �) is in the domain of case 22 we can con�rm that it o¤ers an equilibrium (see
section 4.2.1). Since � < 1� �; the payo¤ to the players is (x22; 1� x22) = (1� �; �):
Conclusion: For c < L the case yields an announcement (�; �) which is part of a SPNE but

with outcome (1� �; �):
(b) Now assume that z1 = � is the right end-point. Then the z2-domain collapses to the one

point z2 = c=(1� �) = 1� �: But (z1; z2) = (�; 1� �) is not an equilibrium by Lemma 4.3.
(c) Finally assume that z1 = z is the right end-point with z = 1 � z2 < �. For z2 = 1 � z

consider case 13. Taking any z1 > � with � < z1 < ẑ we have z1 > z = 1� z2 and

x23 = �z + (1� � � c) < �z1 + 1� c� � + c� = x13:

This concludes our consideration of outcomes linearly dependent on z1:

4.1.3. Four cases depending on z2 with xij(z1; z2) = 1� z2
We argue with z1 �xed throughout these four cases. As 1 � xij is increasing in z2, optimal
behaviour on the part of Player 2 requires that z2 be as large as the domain of de�nition permits.
The cases 32 and 33 thus require that z1 + z2 = 1 at equilibrium.
(i) Case 31. Payo¤ maximization for Player 2 implies z2 = ẑ; assuming 1 � z1 < ẑ (for

otherwise the case fails). Suppose �rst that c > 1
2
H: Here case 12 applies since 1 � ẑ < ẑ: But

x12 > 1� ẑ = x31 (for all c; see Lemma Z), so in this case there is no equilibrium outcome. Next
suppose c < 1

2
H. As c < L we have � < 1 � ẑ; so � < ẑ < 1 � �, i.e. z2 = ẑ satis�es a de�ning

condition of case 22. This o¤ers Player 1 an interval of replies yielding a payo¤ 1 � � > 1 � ẑ
(since � < ẑ); implying again that the case 31 does not yield a subgame-perfect equilibrium.
(ii)Case 34. Here we have �=(1+�) � z2 � � and in this range therefore (c+��z2)=� � �x24:

This together with z1 � �(1 � z2) < (1 � z2) shows that case 23 arises. Here Player 1 receives
x23 > 1 � z2 (by Lemma b) except when z2 = �: Now suppose z2 = �. If (z1; z2) is supported
by a subgame-perfect equilibrium, we must in fact have z1 = �(1� z2); so z1 = �(1� �) = �x24:
This value for z1 coincides with the left end-point of case 23 when z2 = �. Thus better replies for
Player 1, with a payo¤ x23; which is superior to x34 = 1� �; and is increasing in z1; are available
throughout the z1-domain of case 23.
(iii) Case 32. Since here at a subgame-perfect equilibrium z1+z2 = 1 the condition z1+�z2 �

c+ � implies that we have z1 � c=(1� �); i.e. z2 � �: In addition we have z2 � �: The case thus
leads to the set of possible equilibrium outcomes (4.1), all of which are excluded by Lemma 4.6
with the exception of the pair (ẑ; 1� ẑ) in the case c � L:
(iv)Case 33. Payo¤maximization for Player 2 implies z2 = (c+��z1)=�; or z2 = c+�(1�z1):

Using the condition z1+z2 = 1 we �nd correspondingly the two possibilities for a subgame-perfect
equilibrium settled by Lemmas 8 and 9.
As promised, the case considered here o¤er three possibilities for z1, namely x22; � and ẑ; but

two negotiation subgame proposals (and outcomes) of x22 and ẑ:
We next turn to a detailed study of the cases 22 and

5. Proof of the Main Results: Existence

In this section we will �rst show that for c � L(�) the announcement S(c; �) = (ẑ; 1� ẑ) followed
by the proposals x = ẑ and y = �x+c gives a subgame-perfect equilibrium. Then in section 5.2 for
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c < L(�) we consider the case 22 which o¤ers the division S(c; �) = (x22; 1�x22): Here there is an
interval of �rst round announcements for Player 1 to consider, and we show all of these together
with the proposals x = x22 and y = �x+c form a subgame-perfect equilibrium of the commitment
game Gc�. For the former division S(c; �) sections 5.1.1 and 5.1.2 below identify which cases ij
of Table 3.1 may occur when c � L(�) when one of the Players is assumed to announce his
component of the vector S as his announced claim. Inspection of these cases follows a natural
structure. Identify sequences of cases with one index, for instance i; �xed and the other j running
through consecutive values: these correspond to contiguous intervals of possible announcements
by the other player and exhibit monotonicity of pay-o¤s. This simpli�es the identi�cation of a
best reply. For the latter division we are mostly concerned with identifying �elbows�based on the
case 22 (see Lemma-c).

5.1. The case c � L(�)

In this section we work under the assumption that c � L(�):

5.1.1. Incidence of cases when z1 = ẑ for c � L(�):

One checks that the only cases to occur are: 43,41,33,32,31,13,12. All of this follows from Lemma
P and we omit the proof.�
We now consider these cases. The cases: 33,32,31 o¤er Player 1 an outcome 1 � z2: The

identical outcome in the two cases 13 and 12 occurs on the domain z2 > 1� ẑ and o¤ers Player 1
more than 1� z2; so Player 2 maximizes his payo¤ z2 at the right end-point of case 32, and thus
plays z2 = 1 � ẑ: The cases 43,33,32,13 are contiguous (33 ends on z2 = (c + � � ẑ)=� where 32
begins, since (c+ � � ẑ)=� < (c+ � � �ẑ) for c > L; and z1 + z2 < 1 for this z2), and so lead to a
minimum payo¤ to Player 1 of value ẑ on these cases. Note that case 32 has a domain constraint
of z2 � 1 � ẑ and z2 � � so the inequality (3.7) is critical to this case subsisting. Note that
x11 < x12 = x13 (Lemma b) and the case 11 is excluded by dominance considerations.
The cases 41,31,21 are also contiguous (obvious from Table 3.1 case j = 1) though the case 41

subsists i¤ c > (1� �)2=(1� 2 + 2�2). As long as 41 subsists, it is the case that x41 < ẑ (Lemma
b), so all these cases have lower payo¤ to Player 1 and are excluded by dominance considerations.
If the case 41 fails, then the case 31 is contiguous to 32 and so has payo¤below x13; so is excluded
by dominance considerations.

5.1.2. Incidence of cases when z2 = 1� ẑ for c � L(�):

One checks that the only cases to occur are: 44, 43, 41, 33, 32,31,13. All of this follows from
Lemma P and we omit the proof.�
Conclusions. The cases 44,43,33,32 are contiguous and end on z1 = ẑ: (Cases 44 and 43

subsist i¤ c > H(�): If it subsists, case 43 �ends�, i.e. has z1 right-end point, where z2 � �(1� z1);
as this inequality is sharper than z1 � � and here case 33 �begins�. If the case 43 fails, case 33
begins at z1 = �ẑ: Either way the case 33 �ends�on z1 = c + �ẑ for c > L(�) by (3.3). ) The
pay-o¤s are weakly increasing along this sequence with case 32 o¤ering 1�z2 = ẑ. The maximum
on this sequence of cases occurs at z1 = ẑ: The payo¤ x41 is below ẑ i¤ c > (1��)2=(1�2�+2�2);
by Lemma Z, i.e., whenever the case 41 subsists. The domain of case 31 has z1 > ẑ and o¤ers ẑ;
i.e. below the demand z1:We conclude that z1 = ẑ is a best reply.
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5.2. The case c < L(�) : the case 22

In this section we work under the assumption that c < L(�): Our uniqueness analysis of Section 4
showed that in the negotiation subgame case 22 may be supported by a subgame-perfect equilib-
rium. Since in this case the payo¤ is (x22; 1� x22) = (�1; �2) = (1� �; �); Player 2 will not wish
to make an announcement higher than �: We begin by considering the best response by Player 1
to z2 = �2 = �:

5.2.1. Incidence of the Case when z2 = �2 = � for c < L(�):

One checks that the only cases to occur are: 34,33,32,31,22,14,23 with domain of 23 a singleton.
All of these case return the same payo¤of x22 so that in particular all the replies in the interval

(�; 1� �) are best replies for Player 1.�
We now consider the best response by Player 2 to the two special cases z1 = 1� �and z1 = �

and then to the general case � < z1 < 1� �:

5.2.2. Incidence of Case when z1 = x22 = �1 = 1� � for c < L(�):

Here one shows that the only cases to occur are: 31,32,21,12,22,42 with 42 and 32 contiguous.
The case 22 has left endpoint z2 = � to the left of case 12, which begins at z2 = 1 � ẑ as

c < L(�). We note that x12 < x42: Clearly the case 22 o¤ers Player 1 x22 < x12; so the largest
value z2 under case 32 consistent with z2 lying outside the case 22 is z2 = �: That is thus the best
reply. Note that x21 < x12 so the case 21 is dominated.

5.2.3. Incidence of Case when z1 = �1 = 1� � for c < L(�):

Here one shows that the only cases to occur are: 43,34,32,31,22,23,13.
An �elbow�occurs at z2 = � as 31 has z2-domain �x22 < z2 < ẑ (note1� � = x22) contiguous

with case 22 which has � � z2 � x22 ; at z2 = � we have x31 = 1 � � = x22: The case 32 is to
the left of z2 = �: The case 34 has z2 > �x44 > �x22 and, as � < �; is subsumed by cases 31 and
22. Case 13 has z2 > 1 � �; a domain contiguous to the right of case 22, and one checks that
x13 > x22. As for 23 since x23 = � < 1 � � no dominance occurs. Case 43 has z2 � �x22:and
x43 = x41 > x22:

5.2.4. Incidence of Case when � = �2 < z1 < �1 = 1� � for c < L(�):

Here one shows that the only cases to occur are: 42,43,34, possibly 33,32,31,22, possibly 21,12,13.
Begin by noting that case 32 is contiguous with 22 at z2 = �:Case 13 has left end-point at

z2 = 1� z1 > �:We have � < 1� z1 < 1� � and the case 31 falls below 22. cases 34 falls below
case 22; case33 falls below 22 and 13. Cases 42 and 43 if they occur are to the left of case 22.
Case 21 if it occurs is for z2 � ẑ > �: Thus z2 = � is a best reply.

6. Concluding discussion

There are a number of consequences of a discontinuous penalty structure. Foremost is this: if one
terminates the negotiation subgame after a �nite number of steps in order to use a backwards
induction on the commitment game, one needs to adapt the usual arguments and de�nitions
to include discontinuous �compensated present value functions�. This involves consideration of

24



�pseudo-�xed�points, i.e. values x such that F (x) = F (x+) = limt&x F (t) or F (x) = F (x�) =
limt%x F (t), which give rise to limiting equilibria. These are "-equilibria, but of a speci�c form,
which we term pseudo-equilibria (see web-site version of this paper). Thanks to Tarski�s Fixed
Point Theorem (see Tarski (1955) and Davies, Hayes, Rousseau (1971)), games with monotone
�present value�still yield Nash equilibria, a natural assumption which is satis�ed here. It is the
case that the largest and smallest subgame-perfect pseudo-equilibrium division is, just as in our
model, a true ��xed-point�in the continuation game �this can be shown by a re�nement of the
argument of Shaked and Sutton (1984).
We have not attempted to verify whether there are subgame-perfect equilibrium divisions

which are not �xed-points. However, one can argue that for practical purposes, the pseudo-�xed
points include all the pseudo-equilibrium divisions arising from monotone pure strategy pairs
(�; �) in the negotiation subgame, in the following sense. Going down the negotiation tree one
may derive a relation between Player 1�s equilibrium o¤ers conditional on the past to obtain the
indi¤erence equations

xi = d2(d1(xi+2)) for i = 0; 2; 4; ::: . (6.1)

If this sequence is not eventually constant, it will be monotonic and will have as limit a pseudo-
�xed point. Terminating the sequence, at will, at xN = u; and reading the equation as a forwards
iteration, establishes a unique sequence fvr(u)g de�ned by its initial value u; which is monotonic
and converging as r ! 1 towards a nearest pseudo-�xed point (to u) of F (x; z1; z2). The
function F is piecewise linear with slope either zero or �2 in each maximal interval � of linearity,
thus the convergence is uniform. It is for this reason that we may consider the in�nite negotia-
tion game as terminating after some large, but reasonable, number of rounds depending on the
tolerance level " admitted when looking at "-equilibria.
As regards the multiplicity of �xed-points, one can show that the largest equilibrium division

of the negotiation subgame arises in the limit, as the horizon recedes to in�nity, of a terminated
subgame, à la Ståhl (1972), in which Player 1 as last bidder takes the whole asset. See Binmore
(1981); the smallest equilibrium similarly corresponds to Player 2 taking all as last bidder. There
may be an additional third stationary strategy equilibrium division, and this is characterized as the
nearest �xed point from some �xed, alternative intermediate division of the asset in the �nal round
(and horizon taken to in�nity). We refer the reader to Binmore, Piccione and Samuelson (1998)
for a discussion of the support a perspective of evolutionary stability o¤ers to the signi�cance of
stationary strategies.
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