
Properties of a Binary Similarity Measure

Ben Veal
Department of Mathematics
London School of Economics
London WC2A 2AE, U.K.

b.w.veal@lse.ac.uk

CDAM Research Report LSE-CDAM-2005-06

March 2005

Abstract

Say we have a set of data which can be represented by a set of
distinct binary vectors A ⊆ {0, 1}n (e.g. medical data: each vector
could correspond to a patient and each entry to the presence or absence
of a particular symptom), and each vector has a corresponding label
of either 0 or 1 (for example this could represent whether a patient
has a particular disease or not). We form some classification rule
h : {0, 1}n → {0, 1} that correctly labels all of the vectors in A.
Now we are presented with a new vector x ∈ {0, 1}n\A (with no
assumptions of what distribution it has come from), and we would
ideally want it to be correctly classified by h. We might expect that if
x is ‘similar’ to the vectors in A then it is more likely to be correctly
classified by h (since h is correct or ‘consistent’ on A), but how do
we measure the similarity of x to A? Here we explore one particular
similarity measure, investigating its usefulness in classification and its
combinatorial and extremal properties.

1

1 Introduction

In this report we investigate a ‘measure of similarity’ for binary vectors first
introduced in [AH04].

The original idea was motivated by problems in classification of medical
data. A patient may be represented by a binary vector x ∈ {0, 1}n where
each entry indicates the presence of absence of a particular symptom, the
symptoms corresponding to the indices of the vector. A collection of entries
of the vector corresponds to a particular ‘syndrome’ displayed by the patient.

We may want to diagnose patients based on the symptoms (or lack of
symptoms) they display, i.e. based on these patient vectors. If we know the
true condition of all the patients corresponding to vectors in some set A,
we can use this information to hypothesize some rule for diagnosing other
patients based on their vectors. But given a new patient, how sure can we
be that our hypothesized rule will correctly diagnose that patient?

Many theories and results exist in the machine learning literature to help
answer this question, but in those cases assumptions are made on the patients
that are presented to us, usually that they are independent, and identically
distributed. In real world applications we can rarely make such assumptions.
In section 2 we show that the similarity measure investigated here may help
to answer this question when no such probabilistic assumptions are made. In
section 3 we present some combinatorial results linking the size of a vector
set A with extremal values of our similarity measure. As sugested in [AH04]
these extremal values give us a measure of the ‘representativeness’ of the
vector set A. Finally in section 4 we give some asymptotic results on the
values of previously mentioned quantities.

First let’s explain the similarity measure we have talked about in terms of
the patient data example given above. Say we have a set of patient vectors
A ⊆ {0, 1}n (where n is the total number of symptoms under consideration),
and consider two new patients represented by the vectors x,y /∈ A. If for
every collection of k symptoms (k some number between 1 and n) there is
a patient in A which is the same as y on those symptoms, (i.e. there is
a patient in A displaying the same syndromes of length k as y), but the

2

same cannot be said for x, then y is considered more similar to A than x
is. Equivalently if the shortest length syndrome of y that doesn’t appear
amongst any of the patients in A is longer than the corresponding syndrome
for x, then we consider y as being more similar to A than x is. Thus x /∈ A
is regarded as dissimilar to A if there is some ‘short’ syndrome observed in
x that is absent from any vector in A, the extreme case being when there is
a single symptom on which x differs from all vector of A.

Note that this definition of similarity measure is not a metric, since we are
comparing a vector with a set of vectors. There are many other similarity
measures we could use. For example the minimum Hamming distance of
a vector x to a vector set A is defined as min{d(x,y) : y ∈ A} where
d(x,y) is the number of entries where x and y differ. However we believe
the similarity measure investigated here is better suited to the medical data
example explained above. The relationship between minimum Hamming
distance and the similarity measure investigated here is explored in [AH04].

From now on I shall use mathematical terminology and talk of coordinates
or indices of the vectors rather than symptoms. Also for an index set I ⊆ [n]
and z ∈ {0, 1}n we define z|I ∈ {0, 1}|I| to be the vector formed by restricting
z to the indices in I. (We may sometimes refer to z|I as a subvector of z.)
Similarly for vector set V ⊆ {0, 1}n we define V |I = {z|I : z ∈ V }.

We now give the definition of similarity studied in this paper.

Definition 1.1 For A ⊆ {0, 1}n and x ∈ {0, 1}n, the similarity of x to
A, s(x, A), is defined to be the largest k such that every subvector x|I of
dimension k appears also as a subvector y|I of some observation y ∈ A.
That is,

s(x, A) = max{s : ∀I ⊆ [n], |I| ≤ s,∃y ∈ A,y|I = x|I}

where n is the dimension of the vectors (the number of symptoms considered).
Also define s(x, ∅) = 0 for all vectors x.

Note that 0 ≤ s(x, A) ≤ n − 1 ∀x ∈ Ac (where Ac = {0, 1}n\A), and
s(x, A) = n ∀x ∈ A.

3

Note also that s(x, A) is one less than the size of the smallest syndrome
of x that does not appear in any of the vectors in A. This is similar to
the definition of ‘specification number’ defined in [ABST95], and ‘witness
set’ explored in [KLRS96]. Similar ideas have appeared in the context of
machine learning in [GK95, Heg94, MS91]. However in those cases we are
considering vectors within our vector set, and the measure is used differently
to the way in which it is used here. Specifically the specification number
of x ∈ A is equivalent to s(x, A\{x}) + 1. This tells us how many entries
of vector x need to be revealed to a learner in order for them to be able to
say with certainty which of the vectors of A it is (the set A being known to
them).

2 Classification accuracy and similarity

In this section we present a result linking similarity measure with the accu-
racy of classification.

Before going any further, let’s introduce some more terminology and as-
sumptions that shall be used later. We assume that every vector in {0, 1}n

has a corresponding label of either 0 or 1, and call this the classification of
the vector. This could represent for example whether a patient corresponding
to that vector has a particular disease or not. (We assume that all patients
with the same vector will have the same diagnosis - theoretically it’s always
possible to include enough symptoms so that this is true.) In other words
we are assuming some function or concept, c : {0, 1}n → {0, 1} that classifies
the vectors in {0, 1}n (the exact specification of c is unknown to us). We
have some set of vectors A, called our training set for which we know the
classifications, and we use this information to try and approximate c with
another concept h : {0, 1}n → {0, 1} (the hypothesized diagnosis rule men-
tioned in the example in the introduction). We call c our underlying or true
concept and h our hypothesis. Most of the classifications given by h are called
predictions since we don’t know if they are correct or not. We shall assume
that h is consistent with c on our training set, in other words h(x) = c(x)
for all vectors x in A, then x is said to be ‘misclassified’ by h if h(x) 6= c(x).

4

There are many elegant and useful results in the machine learning litera-
ture on the classification accuracy of consistent hypotheses (see for example
[BEHW89, Val84, Ant01, AB99]). A typical result from ‘PAC’ learning, for
example, will tell us for a given confidence level and size of training set,
the probability of misclassification by our hypothesis when the underlying
concept is restricted to be in some known class of functions. However, as
mentioned in the introduction, all these approaches depend on probabilistic
assumptions about the sample data that is presented to us.

Recent work by Vovk ([Vov02]) outlines an algorithm that not only pro-
duces predictions but also an indication of their credibility. The credibility
of the prediction depends on the example which we are trying to classify, and
is ascertained by looking at how ‘strange’ it would be to give this example
a given classification when compared to previously classified data. This is
similar to the approach suggested in [AH04] for use with similarity measure.
There it is suggested that perhaps we can be more confident of our predic-
tions on data that are ‘similar’ to our training set A, where ‘similarity’ is
measured according to definition 1.1. We could then form a hierarchy of
classification confidence based on similarity measure, and maybe decide not
to classify data that is low in this hierarchy. Empirical work carried out at
Rutgers University [HSS04] seems to confirm this approach. Experimental
results on real life data sets show a higher error rate for vectors with a low
similarity measure.

Unlike current PAC learning theory, and the work of Vovk, it is suggested
in [AH04] that the similarity measure approach might be useful even when
no probabilistic assumptions about the sample data can be made. Here we
present some theoretical results to give some weight to this idea.

First we need to introduce some background material. There is a standard
way of representing a Boolean function f : {0, 1}n → {0, 1} by a formula
which shall now be explained.

For each index i of the input vectors we associate a literal, ui, and its

5

negation, ui, which represent the following functions:

ui(x) =

{
1 if xi = 1,
0 if xi = 0,

ui(x) =

{
1 if xi = 0,
0 if xi = 1,

(1)

We can use parenthesis “(”, “)” and the logical connectives ∧ (AND), ∨ (OR)
with the literals and their negations to form other Boolean formulae.
E.g. ψ = (u1 ∧ u2) ∨ u3 represents the following function:

ψ(x) =

{
1 if x1 = 1 and x2 = 0, or if x3 = 1
0 otherwise

We can then form more complex formulae by recursive use of parenthesis and
logical connectives e.g. (ψ ∨ φ) ∧ u3. A disjunction is that formed by use of
the ∨ connective, e.g. ψ ∨ φ, and a conjuction by use of the ∧ connective,
e.g. ψ ∧ φ. A monomial is a conjunction of literals and/or negations of
literals. Often the ∧ symbol is dropped from the notation in this case, e.g.
u1u2u3 instead of u1 ∧ u2 ∧ u3. A disjunctive normal form (written DNF)
is a disjunction of monomials, e.g. (u1u2u3) ∨ (u3u4u5) ∨ (u3u4u5). Each
monomial in the DNF is called a term of the DNF. It turns out that any
Boolean function can be represented by a DNF formula (see for example
[Ant01]).

DNF formulae are the natural formulae to think about when considering
binary medical data as in the example in the introduction. Doctors usually
determine whether a patient has a particular condition by looking for the
presence of a collection of symptoms, e.g. a stuffy nose, sore throat and a
cough may indicate a cold. Some symptoms may indicate a different condi-
tion than that which is being checked for, and so absence of these symptoms
will be required for a positive classification, e.g. if the patient also has a
fever, then they are unlikely to have a cold and more likely to have the flu.
If we associate each literal with a symptom as we did for the corresponding
vector indices in the introduction, then a monomial corresponds to a collec-
tion of symptoms and/or lack of symptoms, i.e. a syndrome. This monomial
takes the value 1 if and only if the symptoms corresponding to the literals
in the monomial are present, and those of the negated literals are absent,

6

i.e. if and only if the patient displays the syndrome. A monomial thus gives
us a simple binary classification rule, based on one particular syndrome. It
may be however that there are several syndromes that lead to a positive
classification. For example sneezing and a sore throat with no fever may also
indicate a cold. In this case a disjunction of monomials, i.e. a DNF, would
be appropriate.

In the case where the initial vector set to be considered is not binary, for
example one of the indices may correspond to a temperature reading, we can
transform the vectors into binary vectors by a process called binarization.
This consists of setting a number of cut-points for each non-binary index in
the original vector, and then associating a binary entry in the transformed
vector for each cut-point. The binary entry then takes the value 1 if and only
if the correponding entry in the original vector is greater than the cut-point
corresponding to this binary entry. See [BHIK97] for more details.

For many classification problems, especially the medical example given,
we can expect that the number of terms (number of syndromes), and the
maximum length (number of literals/symptoms) of each term (syndrome)
are bounded. This leads to the following definition.

Definition 2.1 A k-term-l-DNF is a DNF of at most k terms, and in which
each term contains at most l literals.

Sometimes we may be interested in negating the ouput of a Boolean function,

Definition 2.2 The negation of a Boolean function f : {0, 1}n → {0, 1},
denoted f̄ is obtained by negating the output of f :

f̄(x) =

{
1 if f(x) = 0
0 if f(x) = 1

If we know a DNF for a Boolean function f we can find a formula for f̄ by
the process of negation. This consists of negating every literal that appears

7

in f and then replacing every ∧ with a ∨, and every ∨ with a ∧ (see [Ant01]).
The resulting formula is in conjunctive normal form, or CNF. It consists of
a conjunction of disjunctions of monomials. We can transform this into a
DNF by using the distributive law for Boolean formulae:

u3 ∧ (u1 ∨ u2) = (u1 ∧ u3) ∨ (u2 ∨ u3)

The following simple example makes this process clearer.
Let φ = u1u2 ∨u3u4, then negating gives: φ = (u1 ∨u2)∧ (u3 ∨u4), and then
using the distributive law we get: φ = u1u3∨u1u4∨u2u3∨u2u4. Consequently
we have the following lemma:

Lemma 2.3 If f : {0, 1}n → {0, 1} has a k-term l-DNF then f̄ has an
lk-term k-DNF.

Proof of 2.3: If we negate a k-term l-DNF then we end up with a CNF
consisting of a conjunction of at most k disjunctions, with each disjunction
containing at most l literals. Using the distributive law on these disjunctions
gives us a disjunction of at most lk monomials each of length at most k (since
must take one literal from each of the k disjunctions in order to form a con-
junction/monomial). ¤

For the following results we shall deal with k-term-l-DNF functions, and
assume we know beforehand maximum values of k and l for our underlying
concept. By previous remarks these are not unrealistic assumptions.

We will need the following lemma.

Lemma 2.4 If we have a hypothesis h : {0, 1}n → {0, 1} that is consistent
with some underlying concept c : {0, 1}n → {0, 1} on A ⊆ {0, 1}n, and
such that there is a kh-term lh-DNF representing h and a kc-term lc-DNF
representing c, then there is a DNF φm of degree ≤ max{kh + lc, kc + lh}
such that

φm(x) = 1 ⇔ c(x) 6= h(x)

8

Proof of 2.4: Let h̄ : {0, 1}n → {0, 1} be the negation of h, i.e. h̄(x) =
1 ⇔ h(x) = 0, similarly let c̄ be the negation of c. Now let φh be a kh-term
lh-DNF representing h, and φc a kc-term lc-DNF representing c. By lemma
2.3 there is a kh-DNF for h̄, say φh̄, and a kc-DNF for c̄, say φc̄. Now let
m : {0, 1}n → {0, 1} be defined by: m(x) = 1 ⇔ h(x) 6= c(x), i.e. m(x)
indicates whether x is misclassified by h or not. Then:

m(x) = 1 ⇔ either h(x) = 1 and c(x) = 0, or h(x) = 0 and c(x) = 1

⇔ either h(x) = 1 and c̄(x) = 1, or h̄(x) = 1 and c(x) = 1

⇔ either x satisfies a term of φh and a term of φc̄

or x satisfies a term of φh̄ and a term of φc

Hence we can make a DNF for m by taking all conjunctions of either a term
from φh with a term from φc̄, or a term from φh̄ with a term from φc, and
then forming the disjunction of all these resulting terms. The resulting DNF
has terms of length at most max{kh + lc, kc + lh}. ¤

Theorem 2.5 If we have a hypothesis h : {0, 1}n → {0, 1} that is consistent
with some underlying concept c : {0, 1}n → {0, 1} on A ⊆ {0, 1}n, and
such that there is a kh-term lh-DNF representing h, and a kc-term lc-DNF
representing c, then for any x ∈ {0, 1}n:

s(x, A) ≥ max{kh + lc, kc + lh} ⇒ h(x) = c(x)

Proof of 2.5: For a given DNF term T, let V (T) ⊆ {0, 1}n denote the set
of all vectors satisfying T, and let IT ⊆ [n] be the set of indices of the literals
in T. Then for any x ∈ V (T) we have x|IT = y|IT ⇔ y ∈ V (T), i.e. V (T)
consists of all vectors in {0, 1}n that are the same as x on the indices of IT.
Now let φm be defined as in Lemma 2.4, and x be any misclassified vector (i.e.
h(x) 6= c(x)). Then x must satisfy at least one term of φm. Let Tm be such
a term, and ITm the set of indices of its literals. Then V (Tm) ∩ A = ∅ since
h is consistent with c on A, but any vector that satisfies Tm is misclassified
by c (since φm is a DNF for the misclassified vectors). Hence, putting this
together with Lemma 2.4 we get:

h(x) 6= c(x) ⇒ x|ITm
/∈ A|ITm

⇒ s(x, A) < |ITm| ≤ max{kh + lc, kc + lh}

9

for some term Tm of φm.
¤
We can also say something about the number of misclassified vectors.

Corollary 2.6 If h misclassifies one vector, then it misclassifies at least
2n−max{kh+lc,kc+lh} vectors, where kh, lh, kc and lc are as in (2.4).

Proof of 2.6: Let φm be as in (2.4), then since there’s at least one mis-
classified vector, φm must have at least one term, say Tm. There are 2n−|Tm|

vectors that satisfy Tm, all of them misclassified by h, and by (2.4) we have

2n−max{kh+lc,kc+lh} ≤ 2n−|Tm|

Hence there are at least 2n−max{kh+lc,kc+lh} misclassified vectors. ¤

The following simple example shows that the bound of Theorem 2.5 is
tight.
Let n = 3, and

A =

1
0
1

 ,

0
1
0

 ,

1
1
0

 ,

0
0
0

Suppose a DNF for the underlying concept, c, is φc = u2∨u3, and a DNF for
our hypothesis, h, is φh = u1 ∨ u2 (so h is consistent on A). Then we have
lc = lh = 1, and kc = kh = 2.

The vector v =

1
0
0

 is misclassified by h, (h(v) = 1, but c(v) = 0), and

we have s(v,A) = 2 = max{kh + lc, kc + lh} − 1. (The only vectors with
similarity greater than or equal to max{kh + lc, kc + lh} are the vectors A
themselves, and h is consistent on these.)

If we are prepared to look at our hypothesis and training set in a bit more
detail we can improve on the bound of Theorem 2.5.
We need a bit more notation before we can proceed.

10

Let A+ be the set of all vectors in A that are labelled as 1 by our underlying
concept c, and A− the ones that are labelled 0. For a DNF term/monomial
T denote by IT the set of indices corresponding to the literals appearing in
T , Ic

T the set of indices corresponding to literals not appearing in T , and VT

for the set of all vectors in {0, 1}n that satisfy the term T .
We also need the following definition.

Definition 2.7 For vector set A ⊆ {0, 1}n, vector x ∈ {0, 1}n, and index
set I ∈ [n] let sI(x, A) be the similarity of x to A if we restrict the vectors
to the indices in I, i.e.

sI(x, A) = s(x|I , A|I)

With these definitions we can now present an improvement on Theorem 2.5.

Theorem 2.8 If we have a hypothesis h : {0, 1}n → {0, 1} that is consistent
with some underlying concept c : {0, 1}n → {0, 1} on A ⊆ {0, 1}n, and c can
be represented by a kc-term lc-DNF (with kc > 0), then for any x ∈ {0, 1}n

we have:

h(x) = 1 and sIc
T+

(x, VT+ ∩ A) ≥ kc ⇒ c(x) = 1 (2)

h(x) = 0 and sIc
T−

(x, VT− ∩ A) ≥ lc ⇒ c(x) = 0 (3)

where T+ is any term of h satisfied by x, and T− is any term of h̄ satisfied
by x.

Proof of 2.8: Assume that h(x) = 1 but c(x) = 0. Then x satisfies a term
of a DNF for h, say T , and a term of a DNF for c̄ (the negation of c), say T ′.
By lemma 2.3 c̄ has a lkc

c -term kc-DNF, and so we may assume |IT ′| ≤ kc.
Since h is consistent with c on A, A cannot contain any vectors that satisfy
both T and T ′. So none of the vectors in VT ∩ A satisfy T ′. Since x does
satisfy T ′ we cannot have x|IT ′\IT

∈ (VT ∩A)|IT ′\IT
(since otherwise we have

a vector in VT ∩ A that satisfies T ′). If sIc
T
(x, VT ∩ A) ≥ kc then we must

have x|IT ′\IT
∈ (VT ∩A)|IT ′\IT

since (IT ′\IT) ⊆ Ic
T , and |IT ′\IT | ≤ |IT ′| ≤ kc.

11

This is a contradiction. Hence we must have sIc
T
(x, VT ∩A) < kc in this case.

The proof for (3) is similar.
¤

The following corrolary shows why Theorem 2.8 is a tighter bound than
Theorem 2.5.

Corollary 2.9 For h, c, and A as is Theorem 2.5, and any x ∈ Ac

s(x, A) ≥ max{kh+lc, kc+lh} ⇒ sIc
T+

(x, VT+∩A) ≥ kc or sIc
T−

(x, VT−∩A) ≥ lc

For some term T+ of a DNF for h satisfied by x, or some term T− of a
DNF for h̄ satisfied by x.

Proof of 2.9: If h(x) = 1 then there is a term T+ of a DNF for h of length
at most lh satisfied by x. By definition there is a substring of x|Ic

T+
of length

sIc
T+

(x, VT+ ∩ A) + 1 not appearing in A|Ic
T+

. Since VT+ ∩ A consists of all

vectors in A that are the same as x on IT+ , there must be a substring of x
of length |IT+|+ sIc

T+
(x, VT+ ∩ A) + 1 not appearing in A.

So we have:

s(x, A) ≤ |IT+|+ sIc
T+

(x, VT+ ∩ A) ≤ lh + sIc
T+

(x, VT+ ∩ A)

Since s(x, A) ≥ kc + lh we must have:

sIc
T+

(x, VT+ ∩ A) ≥ kc

If h(x) = 0 then there is a term T− of a DNF for h̄ of length at most kh

satisfied by x. Using the same agument again but with lc and kh instead of
kc and lh yields:

sIc
T−

(x, VT− ∩ A) ≥ lc

¤

12

So any vector that satisfies the bound of Theorem 2.5 will also satisfy the
bound of Theorem 2.8.
The following example shows that the converse is not true.
Let n = 4, and

A =

1
1
1
0

 ,

1
1
0
1

 ,

1
0
1
0

 ,

0
1
0
0

 ,

0
0
1
0

 ,

0
0
0
1

Suppose a DNF for the underlying concept, c, is φc = u2u3 ∨ u1u4, and a
DNF for our hypothesis, h, is φh = u1 (so h is consistent on A).
Then we have lc = kc = 2.

The vector v =

0
0
0
0

 satisfies u1, and we have

sIc
u1

(v, Vu1 ∩ A) = s{2,3,4}

0
0
0
0

 ,

0
1
0
0

 ,

0
0
1
0

 ,

0
0
0
1

 = 2 = kc

However, s(v, A) = 2 < 4 = kc + lc. So Theorem 2.5 in not useful in this
case, whereas Theorem 2.8 tells us that h is definitely consistent with c on v
(given that we know kc = 2).

Theorems 2.5 and 2.8 give some weight to the idea of using similarity
measure for a hierarchy of classification confidence as proposed by Anthony
and Hammer. The following example however, shows that this approach will
not always work.
Let n = 4 and

A =

1
1
0
0

 ,

1
0
1
0

 ,

1
1
1
0

 ,

0
1
0
0

 ,

0
0
0
0

Let our underlying concept c have a DNF φc = u1u2 ∨ u1u3 ∨ u1u3u4, and
suppose our hypothesis h has DNF φh = u1 (this is the most obvious choice

13

for h, and it is the function that would be found using a standard ID3 method
outlined in [Qui86]). Then we get φc̄ = u1u3 ∨ u1u4 ∨ u2u3, and φh̄ = u1. By
considering terms of φc with terms of φh̄, and terms of φc̄ with terms of φh

we get a DNF for the vectors misclassified by h:

φm = ū1u3ū4 ∨ u1ū2ū3

This gives the following misclassified vectors:

v1 =

1
0
0
0

 ,v2 =

0
1
1
0

 ,v3 =

0
0
1
0

 ,v4 =

1
0
0
1

We have s(v1, A) = 2, s(v2, A) = 1, s(v3, A) = 1, and s(v4, A) = 0. All
other vectors in Ac have similarity 0 to A since they all have a ‘1’ in the
bottom entry (whereas the vectors of A have a ‘0’).

So we see in this example that all of the misclassified vectors have similarity
measure greater than or equal to the similarity measure of the correctly
classified ones. We can find examples like this of arbitrary dimension, by
just adding dimensions to the vectors in this example, and including in our
training set all vectors that are the same as A in the example above on the
first four indices.

3 Combinatorial results

First a simple but useful result:

Theorem 3.1 For any vector sets A and B, and any vector x we have:

max{s(x, A), s(x, B)} ≤ s(x, A ∪B) ≤ s(x, A) + s(x, B\A) + 1

≤ s(x, A) + s(x, B) + 1

Proof of 3.1: The first inequality is obvious since A,B ⊆ A ∪ B, and
so any set of indices I for which x|I ∈ A|I or x|I ∈ B|I will also satisfy

14

x|I ∈ (A ∪ B)|I . The second inequality comes from the fact that s(x, A) is
one less than the size of the smallest set of indices on which x differs from all
vectors in A, and that x|I /∈ A|I and x|J /∈ (B\A)|J ⇒ x|I∪J /∈ (A ∪ B)|I∪J .
So we get s(x, A ∪B) + 1 ≤ (s(x, A) + 1) + (s(x, B\A) + 1).
The third inequality comes from (B\A) ⊆ B. ¤

It would be useful to have some measure of how representative a dataset is
of the whole of {0, 1}n. The following two definitions (introduced in [AH04])
attempt to do just that. Assume from now on that A is a proper non-empty
subset of {0, 1}n (i.e. ∅ 6= A 6= {0, 1}n).

Definition 3.2 The pervasiveness, P (A), of A ⊆ {0, 1}n is defined to be the
minimum similarity of x ∈ {0, 1}n to A; that is,

P (A) = min
x∈{0,1}n

s(x, A) = min
x∈Ac

s(x, A)

Definition 3.3 The extent of A ⊆ {0, 1}n , e(A), is defined to be the maxi-
mum similarity of x 6∈ A to A; that is,

e(A) = max
x∈Ac

s(x, A)

Note that, for A 6= {0, 1}n, 0 ≤ P (A) ≤ e(A) ≤ n− 1.
Some alternative characterisations of pervasiveness and extent are given in
[AH04].
We now present some more relationships linking P (A), e(A), and |A| (note
that |Ac| = 2n − |A|). The following definitions will be needed for the proof
of Theorem 3.6.

Definition 3.4 A set of indices I ⊆ [n] is shattered by a vector set A if A|I
contains all possible binary vectors of dimension |I|.

Definition 3.5 The VC-dimension of a vector set A (written VCdim(A))
is the size of the largest set of indices that is shattered by A.

15

Note that we must have 2VCdim(A) ≤ |A|, and so VCdim(A) ≤ blog2 |A|c.

Theorem 3.6 With the above notation,

n− 1− blog2 |Ac|c ≤ P (A) ≤ blog2 |A|c

Proof of 3.6: First the lower bound.
We must have some vector x ∈ Ac such that s(x, A) = P (A) (by definition of
P (A)). So there exists some I ⊆ [n] such that |I| = P (A)+1, and x|I /∈ A|I .
Therefore for all y such that y|I = x|I , we have y ∈ Ac, and so

2n−(P (A)+1) ≤ |Ac| (4)

Taking logarithms and rearranging gives n− 1− blog2 |Ac|c ≤ P (A).
For the upper bound, let I ⊆ [n] such that |I| = P (A). Then we have:

s(x, A) ≥ P (A) ∀x ∈ {0, 1}n

⇒ x|I ∈ A|I ∀x ∈ {0, 1}n

⇒ I is shattered by A

⇒ |I| ≤ VCdim(A)

⇒ P (A) = |I| ≤ VCdim(A) ≤ blog2 |A|c
¤

Proposition 3.7 For any non-empty A ⊂ {0, 1}n, the pervasiveness and
extent satisfy,

P (A) ≤ e(A) < |A|

Proof of 3.7: The first inequality comes from the definitions of P (A) and
e(A).
Now, let x be a vector with s(x, A) = e(A). For each vector y ∈ A we
can find an index that differentiates it from x, this gives a total of at most
|A| indices to distinguish x from all vectors in A. Hence s(x, A) < |A|, i.e.
e(A) < |A|. ¤

16

4 Asymptotic results

In this section we present some asymptotic results on the expected value of
the similarity measure, and pervasiveness of a random vector set.

Theorem 4.1 For any x ∈ {0, 1}n, a random vector set A, and any constant
0 < p < 1, then almost surely we have,

lim
n→∞

[
s(x, A)−

(
n−

⌊
log2

[
log2(log 1

1−p
(n)) log 1

1−p
(n)

]⌋)]
= 0

Where A is chosen according to the distribution Ux in which each vector in
{0, 1}n\{x} is chosen independently with probability p to be in A.

Proof of 4.1: Note that by symmetry the distribution of s(x, A) under Ux

is the same for all vectors x, hence we can limit our investigations to s(0, A)
under U0.
For vector x 6= 0 let

Dx = {y ∈ {0, 1}n : ∀i ∈ [n],xi = 0 ⇒ yi = 0}

So Dx consists of all vectors that have at least the same 0’s as x and possibly
more. Note that there is a one-to-one correspondence between the vectors of
weight d and the index sets I ⊆ [n] such that |I| = n− d.

We have:

s(0, A)− (n− d) ≥ 0 ⇔ s(0, A) ≥ n− d

⇔ ∀I ⊆ [n] such that |I| = n− d, 0|I ∈ A|I
⇔ ∀x ∈ {0, 1}n such that w(x) = d, A ∩Dx 6= ∅
⇔ @x ∈ {0, 1}n such that w(x) = d and Dx ⊆ Ac

(5)

Now let us assume that, apart from 0, each vector in {0, 1}n is chosen inde-
pendently with probability p to be in A, (0 is not chosen).

17

For any vector x of weight d we have |Dx\{0}| = 2d − 1, and so:

PU0 (Dx ⊆ Ac) = (1− p)2d−1

(Remember 0 is in Ac with probability 1.)
There are

(
n
d

)
vectors of weight d. Hence by the union bound:

PU0 (∃x ∈ {0, 1}n : w(x) = d, and Dx ⊆ Ac) ≤
(
n

d

)
(1−p)2d−1 < nd(1−p)2d−1

If we let d =
⌊
log2

[
b log2(log 1

1−p
(n)) log 1

1−p
(n)

]⌋
+ 1 for any fixed b > 1

2

then this gives:

nd(1− p)2d−1 = nd(1− p)
2[b log2(log 1

1−p
(n)) log 1

1−p
(n)]−1

=
n

d−2b log2(log 1
1−p

(n))

1− p

=
n

(1−2b) log2(log 1
1−p

(n))+log2[b log2(log 1
1−p

(n))]

1− p
→ 0 as n→∞

Since 1− 2b < 0, and the first term of the exponent of n grows much faster
than the second we get

n
(1−2b) log2(log 1

1−p
(n))+log2[b log2(log 1

1−p
(n))]

1− p
−→ 0 as n −→∞

and so by (5), with probability 1, for any b > 1
2
:

limn→∞
[
s(0, A)−

(
n−

⌊
log2

[
b log2(log 1

1−p
(n)) log 1

1−p
(n)

]⌋
− 1

)]
≥ 0

⇒ limn→∞
[
s(0, A)−

(
n−

⌊
log2

[
log2(log 1

1−p
(n)) log 1

1−p
(n)

]⌋
− blog2(b)c − 1

)]
≥ 0

⇒ limn→∞
[
s(0, A)−

(
n−

⌊
log2

[
log2(log 1

1−p
(n)) log 1

1−p
(n)

]⌋)]
≥ 0 (6)

(Since blog2(b)c = −1 for b close to 1
2
.)

18

For an upper bound, let

#Dd = |{x : w(x) = d and Dx ⊆ Ac}|
I shall proceed by showing that for certain values of d, limn→∞ PU0 (#Dd = 0) =
0, and so by (5) this will imply limn→∞ [s(0, A)− (n− d)] < 0 almost surely.
We have already seen that if w(x) = d then we have

PU0 (Dx ⊆ Ac) = (1− p)2d−1

hence

E (#Dd) =

(
n

d

)
(1− p)2d−1

(since there are
(

n
d

)
vectors of weight d).

For α ⊆ [n] let 1α be an indicator variable which is equal to 1 ⇔ D0α ⊆ Ac,
and 0 otherwise, where 0α is the weight |α| vector with 0’s at every index
apart from those in α.
Then we have:

EU0

(
#D2

d

)
= EU0

[(∑

α:|α|=d

1α

)2]

= EU0

 ∑

α:|α|=d

∑

β:|β|=d

[1α × 1β]

=
∑

α:|α|=d

∑

β:|β|=d

PU0 (D0α ⊆ Ac and D0β ⊆ Ac)

=
∑

α:|α|=d

{
PU0 (D0α ⊆ Ac)

∑

β:|β|=d

PU0 (D0β\D0α ⊆ Ac)
}

=
∑

α:|α|=d

{
(1− p)2d−1

d∑

l=0

∑

β:|α∩β|=l

PU0 (D0β\D0β ∩D0α ⊆ Ac)
}

=

(
n

d

)
(1− p)2d−1

d∑

l=0

(
n− d

d− l

)(
d

l

)
(1− p)2d−1−(2l−1)

Chebyshev’s inequality tells us that for a non-negative random variable x
with mean µ and variance σ, and any ε > 0 we have:

P (|x− µ| ≥ ε) ≤ σ2

ε2

19

Taking ε = µ we get:

P (|x− µ| ≥ µ) ≤ σ2

µ2

that is P (x = 0 or x ≥ 2µ) ≤ σ2

µ2

so P (x = 0) ≤ σ2

µ2
(7)

Applying (7) to the random variable #Dd we get:

PU0 (#Dd = 0) ≤ EU0 (#D2
d)− EU0 (#Dd)

2

EU0 (#Dd)
2

=
[
(

n
d

)
(1− p)2d−1

∑d
l=0

(
n−d
d−l

)(
d
l

)
(1− p)2d−1−(2l−1)]− (

n
d

)2
(1− p)2(d+1)−2

(
n
d

)2
(1− p)2(d+1)−2

=

∑d
l=0

(
n−d
d−l

)(
d
l

)
(1− p)1−2l − (

n
d

)
(

n
d

)

=

(
n

d

)−1 d∑

l=0

(
n− d

d− l

)(
d

l

)(
(1− p)1−2l − 1

)
(since

(
n
d

)
=

∑d
l=0

(
n−d
d−l

)(
d
l

)
)

<

(
n

d

)−1 d∑

l=1

(
n− d

d− l

)
d l

(1

1− p

)2l

<

d∑

l=1

(n− d)!2

n!(n− 2d+ l)!
d 2l

(1

1− p

)2l

=
d∑

l=1

(n− d) · · · (n− 2d+ l + 1)

n(n− 1) · · · (n− d+ 1)
d 2l

(1

1− p

)2l

There are d terms on the top of the first fraction, and d − l terms on the
bottom, hence dividing top and bottom by nd gives,

PU0 (#Dd = 0) <
d∑

l=1

(
1− d

n

)
· · ·

(
1− (2d−l−1)

n

)

1
(
1− 1

n

)
· · ·

(
1− d−1

n

) d 2l

nl

(1

1− p

)2l

For every term of the sum, the top of the first fraction is a product of factors
smaller than 1, with no factor smaller than 1− 2d

n
. So, for each term, taking

20

just d of these factors and dividing by
(
1− 2d

n

)d
we get,

PU0 (#Dd = 0) <
1(

1− 2d
n

)d

(
1− d

n

)
· · ·

(
1− (2d−1)

n

)

1
(
1− 1

n

)
· · ·

(
1− d−1

n

)
d∑

l=1

(d2

n

)l(1

1− p

)2l

If we pair up the factors on the top and bottom of the second fraction we
see that the top is smaller, hence this fraction is less than 1. Also if we take
n > 4d, we get 1

(1− 2d
n

)
> 2, hence;

PU0 (#Dd = 0) < 2d

d∑

l=1

(d2

n

)l(1

1− p

)2l

(for n > 4d). (8)

Let d =
⌊
log2

[
b log2(log 1

1−p
(n)) log 1

1−p
(n)

]⌋
for any constant b < 1

2
. Then

for large n we have d2

n
< 1 and 1

1−p
> 1. Hence for large n the terms in (8)

either increase with l, or decrease at first and then increase.
Hence:

PU0 (#Dd = 0) < 2d d

[(
d2

n

)(
1

1− p

)2

+

(
d2

n

)d (
1

1− p

)2d
]

For d as above we have:

2d d
(d2

n

)(1

1− p

)2

≤
(
b log2(log 1

1−p
(n)) log 1

1−p
(n)d3

n

) (1

1− p

)2

=

b log2(log 1

1−p
(n)) log 1

1−p
(n)

⌊
log2

[
b log2(log 1

1−p
(n)) log 1

1−p
(n)

]⌋3

n

(1

1− p

)2

−→ 0 as n→∞

Also:

2d d
(d2

n

)d(1

1− p

)2d

≤ 2d d
2d+1

nd
n

b log2(log 1
1−p

(n))
= 2d d2d+1

n
d−(b log2(log 1

1−p
(n)))

21

<
2dd3d

n
log2

ů
b log2(log 1

1−p
(n)) log 1

1−p
(n)

ÿ
−

ţ
b log2(log 1

1−p
(n))

ű
−1

=
(2d3)d

n
(1−b) log2(log 1

1−p
(n))+log2(b log2(log 1

1−p
(n)))−1

<
(2d3)d

n
1
2

log2(log 1
1−p

(n))+ 1
2

log2

ů
b log2(log 1

p
(n))

ÿ since b <
1

2

≤ (2d3)d

n
1
2
d

=

(
2d3

√
n

)d

−→ 0 as n −→∞

(Since
√
n grows much faster than d3.)

Hence for this value of d, as n→∞, PU0 (#Dd = 0) → 0,
i.e. PU0 (@x ∈ {0, 1}n such that w(x) = d and Dx ⊆ Ac) → 0
By (5) this implies that with probability 1, for any b < 1

2
:

limn→∞
[
s(0, A)−

(
n−

⌊
log2

[
b log2(log 1

1−p
(n)) log 1

1−p
(n)

]⌋)]
< 0

⇒ limn→∞
[
s(0, A)−

(
n−

⌊
log2

[
log2(log 1

1−p
(n)) log 1

1−p
(n)

]⌋
− dlog2(b)e

)]
< 0

⇒ limn→∞
[
s(0, A)−

(
n−

⌊
log2

[
log2(log 1

1−p
(n)) log 1

1−p
(n)

]⌋)]
< 1 (9)

(Since dlog2(b)e = −1 for b close to 1
2
.)

Finally,
[
s(0, A)−

(
n−

⌊
log2

[
log2(log 1

1−p
(n)) log 1

1−p
(n)

]⌋)]
must be an in-

teger, hence putting (6) and (9) together, and by the comments at the be-
ginning of the proof we have proved the theorem. ¤

Note that log2(log 1
1−p

(n)) = log2(log2(n)) − log2(log2(
1

1−p
)), and so the con-

tribution due to p in Theorem 4.1 is independent of n.

In Theorem 4.1 the size of our set A is a random variable dependent on
fixed p and n, but what about for fixed |A|?
In this case the probability of finding an index in which all |A| vectors have
entry 1 tends to one as the number of indices tends to infinity, and so we get
limn→∞ s(0, A) = 0 (almost surely) in this case.

22

Theorem 4.2 For fixed 0 < p < 1, and a randomly chosen vector set A,
almost surely we have,

lim
n→∞

[
P (A)−

(
n− blog2(n log 1

1−p
(2))c − 1

)]
= 0

where A is chosen according to the distribution U in which each vector from
{0, 1}n is chosen independently with probability p.

Proof of 4.2:
The proof follows the same format as that for Theorem 4.1, i.e. the proba-
bilistic method.
First a definition. A k-cube is a set, Ck ⊆ {0, 1}n, of 2k vectors such that
there is some index set I ⊆ [n] with |I| = n − k and x|I = y|I ∀x,y ∈ Ck

(the dimensions of the cube are the indices in [n]\I).
This leads to the following:

P (A) ≤ n− k − 1 ⇔ ∃x ∈ Ac and I ∈ [n] with |I| = n− k such that x|I /∈ A|I
⇔ ∃ a k-cube in Ac (since x|I /∈ A|I and y|I = x|I ⇒ y /∈ A)

(10)

For each index set there are 2n−k possible 0-1 patterns on those indices, and
there are

(
n

n−k

)
=

(
n
k

)
different index sets of size n− k. This gives a total of(

n
k

)
2n−k k-cubes. Putting this together with (10) gives:

PU (P (A)− (n− k − 1) ≤ 0) = PU (P (A) ≤ n− k − 1)

= PU (∃ a k-cube in Ac)

<

(
n

k

)
2n−k(1− p)2k

(by the union bound)

<
nk

k!
2n−k(1− p)2k

< 2nnk(1− p)2k

Let k = blog2(n log 1
1−p

(2 + ε))c = blog2(log 1
1−p

((2 + ε)n))c for some ε > 0.

Then:

2nnk(1− p)2k

< nk

(
2

2 + ε

)n

= e k log2(n)+n log2(2
2+ε

) → 0 as n→∞ (11)

23

(Since log2(
2

2+ε
) < 0 and n grows much faster than k log2(n).)

So for this value of k we have limn→∞ [P (A)− (n− k − 1)] ≥ 0
almost surely.
i.e.

lim
n→∞

[
P (A)− (n− blog2(n log 1

1−p
(2 + ε))c − 1)

]
≥ 0 (12)

Now for the upper bound.
Let #Ck denote the number of k-cubes in Ac. We shall use Chebyshev’s
inequality again to find a value of k such that as n → ∞, #Ck > 0 almost
surely. By (10) this will imply that limn→∞ [P (A)− (n− k − 1) ≤ 0] almost
surely.
We have already seen that the number of different k-cubes in {0, 1}n is(

n
k

)
2n−k, and the probability of a given k-cube appearing in Ac is (1 − p)2k

.
Hence:

EU (#Ck) =

(
n

k

)
2n−k(1− p)2k

(13)

Let 1Ck
be an indicator variable which is equal to 1 ⇔ Ck ∈ Ac, and 0

otherwise.
Then we get:

EU

(
#C2

k

)
= EU

(∑
Ck

1Ck

)2

= EU

∑

Ck

∑

C′k

1Ck
1C′k

=
∑
Ck

∑

C′k

PU (Ck ⊆ Ac and C ′k ⊆ Ac)

=
∑
Ck

PU (Ck ⊆ Ac)
∑

C′k

PU (C ′k\Ck ⊆ Ac)

=
∑
Ck

PU (Ck ⊆ Ac)
k∑

i=0

∑

C′k:

C′k shares i
dimensions
with Ck

PU (C ′k\Ck ⊆ Ac)

24

=
∑
Ck

PU (Ck ⊆ Ac)
k∑

i=0

[∑

C′k: C′k shares
i dimensions
with Ck and

C′k∩Ck=∅

PU (C ′k ⊆ Ac)+
∑

C′′k : C′′k shares
i dimensions
with Ck and

C′′k∩Ck 6=∅

PU (C ′′k\Ck ⊆ Ac)
]

=

(
n

k

)
2n−k(1−p)2k

k∑
i=0

(
n− k

k − i

)(
k

i

) [(
2n−k − 2k−i

)
(1− p)2k

+ 2k−i(1− p)(2k−2i)
]

=

(
n

k

)
2n−k(1− p)2k

k∑
i=0

(
n− k

k − i

)(
k

i

)
(1− p)2k

[
2n−k + 2k−i

(
(1− p)−2i − 1

)]
(14)

By Chebyshev’s inequality (7) we get:

PU (#Ck = 0) ≤ EU (#C2
k)− EU (#Ck)

2

EU (#Ck)
2

Substituting in (13) and (14) gives:

PU (#Ck = 0)

≤
∑k

i=0

(
n−k
k−i

)(
k
i

)
(1− p)2k

[
2n−k + 2k−i

(
(1− p)−2i − 1

)]
− (

n
k

)
2n−k(1− p)2k

(
n
k

)
2n−k(1− p)2k

=

∑k
i=0

(
n−k
k−i

)(
k
i

) [
2n−k + 2k−i

(
(1− p)−2i − 1

)]
− (

n
k

)
2n−k

(
n
k

)
2n−k

=

∑k
i=0

(
n−k
k−i

)(
k
i

)
2k−i

(
(1− p)−2i − 1

)
(

n
k

)
2n−k

(since
(

n
k

)
=

∑k
i=0

(
n−k
k−i

)(
k
i

)
)

=

(
n

k

)−1 k∑
i=0

(
n− k

k − i

)(
k

i

)
2−n+2k−i

(
(1− p)−2i − 1

)

< 2k

k∑
i=0

(
k2

n

)i

2−n+2k−i

(
1

1− p

)2i

(by the same sequence of steps as in (8))

= 2−n+3k

k∑
i=0

(
k2

2n

)i (
1

1− p

)2i

(15)

(for n > 4k).

25

Let k = blog2(n log 1
1−p

(2))c = blog2(log 1
1−p

(2n))c. Then for large n we have
k2

2n
< 1, also 1

1−p
> 1. Hence for large n the terms in (15) either increase with

i, or decrease at first and then increase.
Hence:

PU (#Ck = 0) <
(k + 1)

2n−3k

[
1

1− p
+

(
k2

2n

)k (
1

1− p

)2k
]

Obviously for k as above we get:

(k + 1)

2n−3k

1

1− p
→ 0 as n→∞

also:

(k + 1)

2n−3k

(
k2

2n

)k (
1

1− p

)2k

≤ (k + 1)

2n−3k

(
k2

2n

)k

2n

= (k + 1)

(
4k2

n

)k

→ 0 (16)

as n→∞
So for this value of k we almost surely have a k-cube in Ac as n→∞.
Hence with probability 1 we have:

lim
n→∞

[P (A)− (n− k − 1)] ≤ 0

i.e.
lim

n→∞

[
P (A)− (n− blog2(n log 1

1−p
(2))c − 1)

]
≤ 0 (17)

Since (12) is true for arbitrarily small ε, putting (12) and (17) together
proves the theorem. ¤

There are a couple of things to note about the previous proof. Firstly, since
log2(n log 1

1−p
(2)) = log2(n)− log2(log2(

1
1−p

)), we get that, as in Theorem 4.1,

the contribution due to p is independent of n. Secondly the rate of con-
vergence of the lower bound is highly dependent on ε in (11), and is much
slower than that for the upper bound (16) which is independent of ε. So we
can expect slow convergence from below to the value in the statement of the
theorem.

26

References

[AB99] M. Anthony and P. Bartlett. Neural Network Learning: Theo-
retical Foundations. Cambridge University Press, 1999.

[ABST95] M. Anthony, G. Brightwell, and J. Shawe-Taylor. On specifying
boolean functions by labelled examples. Discrete Applied Math-
ematics, pages 1–25, 1995.

[AH04] M. Anthony and P.L. Hammer. A boolean measure of similar-
ity. research report 27-2004, Rutgers University, RUTCOR, Rut-
gers University, 640 Bartholomew Road, Piscataway, New Jersey
08854-8003, U.S.A., August 2004.

[Ant01] M. Anthony. Discrete Mathematics of Neural Networks, chap-
ter 2, pages 9–18. SIAM Monographs on Discrete Mathematics
and Applications. SIAM, Philadelphia, 2001.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth.
Learnability and the vapnik-chervonenkis dimension. Journal of
the ACM, 36(4):929–965, 1989.

[BHIK97] E. Boros, P.L. Hammer, T. Ibaraki, and A. Kogan. Logical anal-
ysis of numerical data. research report 04-97, Rutgers University,
RUTCOR, Rutgers University, 640 Bartholomew Road, Piscat-
away, New Jersey 08854-8003, U.S.A., February 1997.

[GK95] S. A. Goldman and M. J. Kearns. On the complexity of teaching.
Journal of Computer and Systems Sciences, 1(50):20–31, 1995.

[Heg94] T. Hegedüs. Combinatorial results on the complexity of teaching
and learning. In Proceeding of the 19th International Symposium
on Mathematical Foundations of Computer Science. Springer-
Verlag, August 1994.

[HSS04] P.L. Hammer, E. Subasi, and M. Subasi. Classification results
from similarity measure experiments. Personal correspondance
with Martin Anthony, 2004.

27

[KLRS96] E. Kushilevitz, N. Linial, Y. Rabinovich, and M. Saks. Wit-
ness sets for families of binary vectors. Journal of Combinatorial
Theory, pages 376–380, 1996.

[MS91] S. Miyano and A. Shinohara. Teachability in computational
learning. New Generation Computing, pages 337–347, 1991.

[Qui86] J.R. Quinlan. Induction of decision trees. Machine Learning,
1(1):81–106, 1986.

[Val84] L. G. Valiant. A theory of the learnable. Communications of the
ACM, 27(11):1134–1142, 1984.

[Vov02] V. Vovk. On-line confidence machines are well-calibrated.
www.vovk.net/kp, April 2002.

28

