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Abstract

With L∞ as the commodity space, the equilibrium price density is shown to
be a continuous function of the commodity characteristics. The result is based
on symmetry ideas from the Hardy-Littlewood-Pólya theory of rearrangements. It
includes, but is not limited to, the case of symmetric (rearrangement-invariant) pro-
duction costs and additively separable consumer utility. For example, in continuous-
time peak-load pricing of electricity, it applies also when there is a storage tech-
nology and demands are cross-price dependent. In this context, a continuously
varying price has two uses. First, it precludes demand jumps that would arise from
discontinuous switches from one price rate to another. Second, in the problems
of operating and valuing hydroelectric and pumped-storage plants (studied else-
where), price continuity guarantees that their capacities (viz., the reservoir and the
converter), the energy stocks, and in the case of hydro also the river flows, have
well-defined marginal values.
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1 Introduction

Discontinuous pricing, e.g., in time-of-use (TOU) tariffs, is likely to result in disequilib-
rium by creating demand discontinuities that are incompatible with pricing at marginal
cost: e.g., with a sudden price drop, any consequential demand jump means that the
marginal cost also rises and thus begins to differ from the ruling price. To avoid this,
an equilibrium price must be continuous as a function of time. This property has other
useful implications: for example, with marginal cost pricing of electricity, price continu-
ity guarantees that the short-run profit function is differentiable in the fixed inputs, and
hence that their efficiency rents are uniquely defined: see [15] or [18], and [16, Theorem
1] or [17].1 And these values are fundamental to the short-run approach to long-run
equilibrium that we develop in [20].
When both demand and supply are cross-price independent, the price-continuity re-

sult can be obtained by the elementary method of supply and demand curves: their
intersection varies continuously with time if the curves do. This applies to, e.g., the case
of cross-price independent demand for electricity supplied by thermal plants (Section 2).
By exploiting the results of [15] or [18], the method of curves can be extended to in-
clude energy storage (Section 3). This is useful because, as we show in [15] or [18], price
continuity guarantees that the capacities of a storage plant (viz., the reservoir and the
converter) have definite marginal values.
An alternative and ultimately much more general method of proving price continuity

in equilibrium begins by observing that, in examples like thermal electricity generation,
the short-run supply curve remains unchanged over the cycle, which is represented by
the interval [0, T ]. So, on the assumption of no start-up or shutdown costs, the short-
run cost is a symmetric (a.k.a. rearrangement-invariant) function of the output bundle y
= (y (t))t∈[0,T ]–and hence so is the long-run cost. Symmetry means that the production
cost, C (y), depends on the values of y but not on their particular arrangement on [0, T ].
In the language of electricity suppliers, the cost is a function of the load-duration curve,
which mathematically is the decreasing rearrangement of y (Definition 5). Cost symme-
try is useful because it implies that the trajectories of output y and of the supporting
price p are similarly arranged (Lemma 9 with Remark 10), which means that it cannot
be that p (t0) < p (t00) and y (t0) > y (t00). With symmetry, this holds globally on [0, T ],
i.e., for any instants t0 and t00. But, on the production side, it suffices to impose a weaker,
local condition which formalises the notion that a price jump cannot entail a drop in
supply (Definition 11). On the demand side, a similar, though slightly stronger, condi-
tion means that a price jump must entail a drop in demand (Definition 22). Together,
these conditions rule out a price jump in equilibrium (Theorem 26). The assumption on
consumer demand captures more than just the case of additively separable utility, and

1For the profit to be differentiable, the price does not have to be a pure density function: it suffices
that the density part be continuous [15]. This is useful when the price contains also a “singular” part.
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thus goes beyond the case of independent demands (Example 24). The assumption about
supply generalises both the case of symmetric costs and the case of additively separable
costs, but it has to be weakened further to include technologies such as energy storage
(Definition 14 and Lemma 35).2

Although our analysis is motivated by a continuous-time problem, it applies to any
good differentiated by a commodity characteristic that ranges over a topological space,
denoted also by T , which carries an “underlying” measure σ and thus generalises the
interval [0, T ] with the Lebesgue measure (for example, σ could be a probability on a
“continuum” of events). In such a context, quantities of goods and their values are
integrals with respect to (w.r.t.) σ–and so the commodity space consists of functions,
from T into the real line R, that are integrable, square-integrable or bounded (depending
on the problem). It must be paired with a suitable price space. A pair of Lebesgue
spaces, L% and L%

0
with (1/%) + (1/%0) = 1, is an example; and the price space L%

0
is the

norm-dual of L% when % < +∞.
But the case relevant for peak-load pricing is that of % = +∞: the functions repre-

senting commodity bundles must be bounded because the problem involves capacity costs
or constraints. The norm-dual of L∞ [0, T ] is larger than L1 [0, T ], and the elements of
L∞∗ \L1, called “price singularities”, have an essential role as capacity charges when the
output y ∈ L∞ [0, T ] has a pointed peak: if the set {t : y (t) = Sup (y)} has zero Lebesgue
measure then the subdifferential ∂ Sup (y) lies wholly in L∞∗ \L1. When the equilibrium
allocation actually lies in the smaller commodity space of continuous R-valued functions,
C [0, T ], such a price functional can be restricted to C and represented by a singular
measure. Thus it acquires a tractable mathematical form and can be used as part of a
TOU tariff. For example, when the demand for electricity has a firm pointed peak, a
point measure represents the capacity charge in $ per kW demanded at the peak instant,
whilst the fuel charge is a price density in $/kWh: see [14]. Thus the price system lies
in the space of measuresM [0, T ].
The type of equilibrium that the price space L1 [0, T ] does accommodate is one in

which the capacity charge is spread as a density over a peak plateau in the output. Such
an equilibrium arises if the users’ utility and production functions are Mackey continuous
(which means that consumption is interruptible, i.e., that a brief interruption causes only
a small loss of utility or output): see [19]. For this case, we identify a set of conditions on
which the equilibrium price function, p?, is not only integrable but also continuous. These
conditions–viz., symmetry of production costs, additive separability of consumer utility,
and their generalisations–are specific to commodity spaces of measurable functions (such
as L∞). Our price-continuity result is therefore quite different from those of Hindy
et al. [7], Horsley [8] and [9], Jones [23], and Ostroy and Zame [28], which apply to
the commodity space of measuresM (T ), and therefore to a different class of problems

2Even in the context of thermal generation with storage, our general framework improves on the
method of curves because it applies also with interdependent demands.
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(Section 10). They employ the standard approach to price representation, which relies
mainly on topological assumptions on consumer preferences and production sets in a
commodity space paired with the “target” price space. When the price space is C (T ),
that method necessitates the use ofM (T ) as the commodity space; so it could not serve
our purposes because production costs such as the capacity cost are undefined outside
the space L∞. However, like Ostroy and Zame, here as in [13] we exploit the “automatic”
continuity of the essential limit, which reduces the task to showing that the limit of p?

exists everywhere on T .
The method of curves, which does not require a fully formalised vector-space frame-

work, is presented first (Sections 2 and 3). The commodity and price spaces L∞ and L1

are introduced in Section 4. This is followed by a discussion of symmetry and its gener-
alisations, in Sections 5 and 6. Section 7 gives the general price-continuity theorem. The
case of additively separable utility (without cost separability) is spelt out in Section 8
(with additional results showing that both price and quantity trajectories are continuous
and bounded). The application to electricity pricing with storage and with a general,
cross-price dependent demand is presented in Section 9, which extends and supersedes
Section 3. Appendix A gives the proofs for Sections 5 to 9. Appendix B reviews the
concept of essential value (or limit). Appendix C reviews some properties of continuous
functions.

2 Peak-load pricing with cross-price independent de-
mands

The simplest model of equilibrium consists of supply and demand curves, S and D, in the
price-quantity plane; and if one or both curves vary continuously with a parameter such
as time, then so does their intersection point. This observation is useful in continuous-
time peak-load pricing, i.e., pricing a cyclically demanded good which is produced by one
or more techniques with capacity costs (in addition to variable costs). In this context, a
continuous price can serve as an equilibrium solution to the problem of demand jumps
caused by discontinuous switches from one price rate to another in a TOU tariff. A
local demand maximum arises on the wrong side of such an instant, viz., just after a
price drop (or just before a price jump). For example, the introduction of a two-rate
tariff for electricity usually results in a surge of demand just after the switch from the
daytime rate to the night-time rate: see, e.g., [27, pp. 65—66 with Figure 2.2]. Since this
is a typical example, the cyclically priced flow in question is henceforth referred to as
electricity, although the model applies to other goods as well.
With a one-station technology, the long-run marginal cost (LRMC) tariff has the

form p?LR (t) = w + rγ? (t), where r is the unit capacity cost, w is the unit running
cost, and γ? (with

R
γ? (t) dt = 1) is the distribution of the capacity charge, which is
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concentrated on the (global) maxima of the long-run equilibrium output y?LR. To keep
demand constant during the peak, the price varies continuously with time. With a multi-
station technology, the tariff structure is more complex: the offpeak price varies between
the lowest and the highest of the unit variable costs of the various station types. Marginal
cost pricing means that the offpeak price is the generating system’s marginal variable
cost, i.e., the unit fuel cost of the marginal station on line. (In the long run the system
must also be optimal, i.e., it must minimise the total cost of meeting the demand.) Thus
the marginalist principle might appear to imply discontinuous price changes: with, say,
a two-station technology with variable costs w1 < w2, it seems that the price must drop
from w2 to w1 as soon as the demand (at price w2) has fallen to k1, the capacity of
the first, base type. But the users’ response to such a sudden price drop is likely to
reverse, albeit temporarily, the downward trend of demand–in which case, to meet the
demand at the price w1, the second station must immediately be switched back on, and
the marginal fuel cost increases back to w2. This undermines the tariff because the ruling
price, w1, differs from the marginal cost. And if the tariff is revised to take account of
the new demand trajectory, new price discontinuities are created, so the difficulty arises
afresh. As we show, there is nevertheless an equilibrium solution: it consists in lowering
the price gradually, from w2 to w1, to keep the demand constant and equal to k1 for a
time after the peak station has been switched off. The price keeps falling just enough
to maintain the demand (which would fall below k1 if the price were kept constant at
w2). After such a transition period, the price “freezes” at w1, and demand starts falling
again. Price and quantity move alternately (along the vertical and horizontal segments
of the supply curve in Figure 1a), i.e., the price and output trajectories have alternating
plateaux: see Figures 1b and 1d.3 Thus price continuity implies that, in addition to the
peak plateau, the output has offpeak plateaux during which the price changes from w2
to w1 and vice versa.
In practice, a continuous price change could be approximated by a number of small

price jumps. A cruder but effective device is to stagger a price drop by timing it differently
for different consumers. For example, since 1977 Electricité de France has spread the
onset of its night-time rate over one and a half hours;4 each consumer is notified of his
particular night period but is given no choice in the matter. Since the effect on market
demand is akin to facing the “average consumer” with a price varying between the two
rates, this can be viewed as a rough implementation, workable even with two-rate or
three-rate meters, of the exact pricing solution.
With a cross-price independent demand for electricity and a purely thermal generating
3The graphs in Figures 1b and 1d are not periodic. They can be thought of in two ways: either as

representing only a part of the cycle, or as representing the whole cycle, but after a rearrangement of
time which produces nonincreasing price- and load-duration curves (and which exists by Lemma 9 and
Remark 7).

4With a uniformly timed night-time rate, the EdF’s experience in 1976 was that demand would surge,
just after the start of the low rate, by over 3GW (ca. 7% of maximum demand).
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technology, the method of supply and demand curves applies directly to the short-run
equilibrium, and it extends to the long-run equilibrium by the short-run approach. The
perfectly competitive short-run supply curve depends on the generating capacities (kθ)
and their unit running costs (wθ), where θ = 1, . . . ,Θ are the various station types. If
the current electricity price is p, then the supply from station type θ is: Sθ (p) = 0 for
p < wθ, Sθ (p) = kθ for p > wθ, and Sθ (p) = [0, kθ] for p = wθ (in which case Sθ (p) is
multi-valued). The total supply is STh (p) =

PΘ
θ=1 Sθ (p). For, say, Θ = 2 with w1 < w2,

the total supply from a two-station thermal system k = (k1, k2) is

STh (p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for p < w1
[0, k1] for p = w1
k1 if w1 < p < w2
[k1, k1 + k2] for p = w2
k1 + k2 for p > w2

(1)

(Figure 1a). This is, of course, the supply schedule of a producer whose short-run cost
is additively separable over the cycle [0, T ]. Here, for the thermal technology,

CSR (y (·)) =
Z T

0

cSR (y (t)) dt (2)

with (see also Figure 1c)

cSR (y) =

Z y

0

S−1Th (q) dq =
Z y

0

¡
w11[0,k1] (q) + w21[k1,k1+k2] (q)

¢
dq (3)

= w1y + (w2 − w1) (y − k1)+

if 0 ≤ y ≤ k1 + k2 (otherwise cSR = +∞).
The demand Dt (p) is, at any time t, a function of the current price alone. It can be

interpreted as the demand of a household maximising the utility function

U (x (·) ,m) = m+
Z T

0

u (t, x (t)) dt

over x (·) ≥ 0 andm ≥ 0 subject to the budget constraintm+
R T
0
p (t) x (t) dt ≤M , where

M is the income and p (·) is a TOU price in terms of the numeraire (which represents all
the other goods and thus closes the model). With this behaviour, the equilibrium price
can be expressed in terms of marginal utility and thus shown to be continuous in t if
∂u/∂x is continuous. For each t, the instantaneous utility u (t, x) is taken to be a strictly
concave, increasing and differentiable function of the consumption rate x ∈ R+, with
(∂u/∂x) (t, 0) > w1 (to ensure that the short-run equilibrium demand is positive at every
t, if k1 > 0). For simplicity, all demand is assumed to come from a single household. Its
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income M is the sum of an endowment of the numeraire (mEn) and the pure profit from
electricity sales, i.e.,

M = mEn +
2X

θ=1

µZ T

0

(p (t)− wθ)
+ dt− rθ

¶
· kθ

where r1 and r2 are the unit capacity costs (per cycle), and π+ = max {π, 0} is the
nonnegative part of π. To guarantee a positive demand for the numeraire, assume that
mEn >

P2
θ=1 (Twθ + rθ) kθ. Then the demand at any time t depends only on the current

price p (t), and it is determined from the equation

∂u

∂x
(t, x (t)) = p (t) .

In other words, Dt (p) = ((∂u/∂x) (t, ·))−1 (p). When w2 < (∂u/∂x) (t, k1 + k2), this
value of ∂u/∂x is the price needed to equate demand to k1 + k2. Similarly, when w1
≤ (∂u/∂x) (t, k1) ≤ w2, the middle term is the price needed to bring the demand down
to k1. So the short-run equilibrium price can be given as

p?SR (t) = w1 +min

(µ
∂u

∂x
(t, k1)− w1

¶+
, w2 − w1

)
+

µ
∂u

∂x
(t, k1 + k2)− w2

¶+
(4)

which is continuous in t if ∂u/∂x is (for any fixed x > 0). If additionally w1 >
mint (∂u/∂x) (t, k1) and w2 < maxt (∂u/∂x) (t, k1), then those times t with p?SR (t) be-
tween w1 and w2 (and with the equilibrium output equal to k1) form a set of positive
measure.5 With k2 > 0, this is an offpeak plateau in the output (Figure 1d).
The long-run equilibrium is obtained from the short-run equilibrium by solving the

simultaneous equations rθ =
R T
0
(p?SR (t, k1, k2)− wθ)

+ dt for k and putting the solution
k? into p?SR (t, k).

6

The short-run price formula (4) extends to the case of any number, Θ, of stations.
Also, no inequalities between the wθ’s need be assumed. This is useful when wθ depends
on time, in which case there may be no fixed merit order among the stations. Denote by
w↑ ∈ RΘ the nondecreasing rearrangement of the vector w = (wθ)

Θ
θ=1 ∈ RΘ (i.e., w↑1 is

the smallest entry in w, w↑2 is the second smallest, and so on). In these terms,

p?SR (t) = w
↑
1 (t) +

Θ−1X
θ=1

min

⎧⎨⎩
⎛⎝∂u

∂x

⎛⎝t, X
α:wα(t)≤w↑θ (t)

kα

⎞⎠− w↑θ (t)
⎞⎠+

,
³
w↑θ+1 (t)− w

↑
θ (t)

´⎫⎬⎭
(5)

5Note that 0 < meas {t : w1 < (∂u/∂x) (t, k1) < w2} because this set is nonempty and open.
6In the case of a corner solution with k2 = 0, only the inequality r2 ≥

R T
0
(p?SR − w2)

+ dt holds.
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+

Ã
∂u

∂x

Ã
t,

ΘX
θ=1

kθ

!
− w↑Θ (t)

!+
.

3 Peak-load pricing with storage and independent
demands

In addition to eliminating demand jumps, price continuity is useful in the problem of
operating and valuing storage facilities for cyclically priced goods. In the context of
electricity this applies to hydroelectric and pumped-storage plants. Here we deal with
pumped storage (PS); the case of hydro is similar. Unlike a thermal plant, a storage
plant has two capital inputs, viz., the reservoir capacity kSt (in kWh) and the conversion
capacity kCo (in kW) which transforms the stored energy into electricity and vice versa.
(For a more detailed description of the technology, see [18] and Section 9 here.) Given
a TOU electricity price p and the plant’s capacities kPS = (kSt, kCo), the stock of energy
can be assigned a TOU shadow price ψ (t), which is its marginal value in maximisation
of the operating profit. As we show in [18, Lemma 8], ψ (t) is unique for every t if p (t) is
continuous in t. In general, there is a set of such stock price functions Ψ̂ (p, kPS), but it
has just one element, ψ̂ (p, kPS), if p is continuous. It then follows that the capacities have
definite and separate marginal values, and so does the river flow in the case of hydro: see
[16, Theorem 1] and [17], in addition to [18, Theorem 9]. This brings out the importance
of price continuity in the general equilibrium.
In terms of any ψ ∈ Ψ̂ (p, kPS), the storage plant’s optimal output rate y (t) can be

given as in (6) below: y (t) = ±kCo if p (t) 6= ψ (t), with y (t) ∈ [−kCo, kCo] if p (t) = ψ (t).
For each t, this defines the plant’s supply curve SPS,t in the price-quantity plane, but
the curve is not cross-price independent because it depends on ψ (t), which depends on
the whole function p. This means that, with a combined generation and storage system,
the short-run equilibrium price cannot be found by intersecting curves as in the purely
thermal case. Nevertheless, if p?SR is an equilibrium tariff, and St is the system’s supply
curve constructed from kθ, wθ, kCo and a ψ ∈ Ψ̂ (p?SR, kPS), then–for a certain choice,
ψ?SR, of ψ–the curve St intersects the demand curve Dt at p

?
SR (t). This fact can still be

used to show that p?SR is continuous, but the argument requires an extra step, which is to
show that ψ?SR (t) is continuous in t (and hence that St varies continuously with t). Once
ψ?SR is known to be continuous, continuity of p

?
SR follows, as in the purely thermal case,

from (5), which is now applied with Θ+1 instead of Θ and with wΘ+1 (t) := ψ?SR (t). (It
also follows that the set Ψ̂ (p?SR) is actually a singleton ψ̂ (p?SR), and that this is ψ

?
SR.)

It remains to show that ψ?SR is indeed continuous. This can be deduced from equi-
librium conditions and two properties of every ψ ∈ Ψ̂, viz.: (i) that ψ is of bounded
variation, so it has the two one-sided limits ψ (t±),7 and (ii) that ψ rises or falls (possi-

7Since the set of t’s with ψ (t−) 6= ψ (t+) is at most countable, it does not matter which of the two
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bly with a jump or a drop) only when the reservoir is full or empty, respectively. Consider
a system with, say, two thermal stations as in (1) and one storage station (with conversion
capacity kCo). With p?SR and ψ?SR abbreviated to p

? and ψ?, introduce the curve

SPS,t (p) =

⎧⎨⎩ −kCo for p < ψ? (t)
[−kCo, kCo] for p = ψ? (t)
kCo for p > ψ? (t)

(6)

and add it to the STh of (1) to form

St (p) = STh (p) + SPS,t (p) .

For every t, this curve intersectsDt at p? (t). When p? (t) = ψ? (t), the rate of equilibrium
output from storage can be read off as the horizontal distance from the intersection point
to the centre of the horizontal segment of length 2kCo which St has at the price ψ? (t):
see Figure 2. As the point is left or right of centre, so the output is negative or positive,
i.e., the reservoir is being charged or discharged, respectively.
Suppose that ψ? has a jump at some t, i.e., ψ? (t−) < ψ? (t+). Say there is no wθ

between ψ? (t−) and ψ? (t+). (If there is, it only helps the argument.) Figure 2 shows
the case of Θ = 2 with w1 < ψ? (t−) < ψ? (t+) < w2; the curve given by (1) plus (6)
with ψ? (t−) or ψ? (t+) in place of ψ? (t) is denoted by St− or St+. Now note that Dt
cannot intersect St+ below ψ? (t+) or to the left of centre of the horizontal segment at
the level ψ? (t+), since this would mean that the reservoir is being charged for a time
just after t, which is infeasible because the reservoir is full at t.8 Similarly, Dt cannot
intersect St− above ψ? (t−) or to the right of centre of the horizontal segment at the
level ψ? (t−), since this would mean that the reservoir is being discharged for a time just
before t, which is again infeasible. (In Figure 2, the lines that Dt cannot intersect are
the heavy lines.) So, being monotone, Dt must have a vertical segment, from the centre
at level ψ? (t+) to the centre at level ψ? (t−). But such a vertical segment contradicts
the strict monotonicity of Dt in p, i.e., the differentiability of u (t, ·). This shows that ψ?
is continuous, and hence so is p?.
In Section 9, continuity of p? (·) and ψ̂ (p?) (·) is re-derived in a different way, and

in the other order: first it is proved for p? (by applying Theorem 26). And if p (·) is
continuous then so is ψ̂ (p) (·): see [15] or [18, Lemma 8].9

values is chosen for ψ (t) itself.
8Continuity of Dt in t is used here.
9Obviously that result cannot be used to derive the continuity of p? from that of ψ? as in this section:

such an argument would be circular.
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4 Commodity and price spaces for a general frame-
work

The method of curves is limited to the case of independent demands (Sections 2 and
3). However, a more general price-continuity result can be based on the same idea
that a price jump would cause a drop in the demand trajectory but a jump in the
supply trajectory. The demand drop must be nonzero to include the case when supply
does not actually jump but does not drop either–as can be the case in, e.g., thermal
electricity generation (see Figure 1a, where y stays at k1 if p jumps from w1 to w2).
For a general result (Theorem 26), such responses of demand and supply to price jumps
are simply assumed. We name them sub-symmetry and quasi-symmetry of preferences
and technologies, since these properties follow from the stronger condition of symmetry,
i.e., from invariance under rearrangement. A function C of y = (y (t))t∈[0,T ] is called
symmetric (a.k.a. rearrangement-invariant) if C (y) depends only on the distribution of
y w.r.t. the Lebesgue measure on [0, T ].10 For example, the short-run cost of thermal
electricity generation, the CSR of (2), is symmetric, and so is its long-run cost (which
is not additively separable like CSR). When C is convex, its symmetry guarantees that
y and p = ∇C (y) are similarly arranged, i.e., that for (almost) every t0 and t00 if p (t0)
< p (t00) then y (t0) ≤ y (t00): see [12, Theorem 1]. Applied to a joint cost as a function
of the output trajectory y, this means that outputs are always higher (or at least not
lower) at higher-priced times. In other words, price and output increments do not have
opposite signs anywhere on [0, T ].
Similarity of arrangement of prices and outputs is thus a global consequence of cost

symmetry. Its full strength is not necessary for proving price continuity, which is a local
property of the equilibrium price function p?: [0, T ]→ R. It suffices to assume a local and
approximate version of the arrangement similarity between quantities and the supporting
prices–and this is sub-symmetry (Definition 11). On the production side, the assumption
is further weakened to quasi-symmetry (Definition 14), to make it hold for technologies
such as energy storage (Lemma 35). On the consumption side, the assumption is slightly
strengthened (Definition 22). It is verified for differentiable additively separable utility
(Example 23); extensions to other forms of utility are sketched (Example 24). These
results (Lemma 35 and Example 23) make Theorem 26 apply to peak-load pricing of
electricity with cross-price independent demands and with (or without) energy storage,
thus re-establishing the results of Section 3 (and Section 2).
Such an analysis requires the duality framework of a pair of function spaces to repre-

sent commodities and prices. In peak-load pricing, an output bundle is always bounded
by the productive capacity, so the commodity space is L∞ [0, T ]. It is paired with L1 [0, T ]
as the price space–but our task is to show that the equilibrium price density p? is con-
10Equivalently, C is symmetric if C (y) = C (y ◦ ρ) for every Lebesgue measure-preserving transfor-

mation ρ: [0, T ]→ [0, T ].
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tinuous (and not just integrable) on [0, T ]. Before this application, T standing alone
denotes an abstract set of commodities which carries a topology with a countable base
of open sets. Additionally, T carries a finite nonatomic (and nonnegative) measure σ
on a sigma-algebra A that contains all the Borel subsets of T . Every nonempty open
subset of T is assumed to be σ-nonnull, i.e., to have a positive measure. The vector
space of all σ-equivalence classes of A-measurable real-valued functions on T is denoted
by L0 (T,σ). The commodity space of all σ-essentially bounded functions, L∞ (T ), is
paired with L1 (T ), the price space of all σ-integrable functions.11

Apart from T (which may represent a single differentiated good), there is a finite
number of homogeneous goods numbered by 1, 2, . . . , G ≥ 0. So a complete commodity
bundle is a (y, q) ∈ L∞ (T )×RG, and its value at a price system (p, r) ∈ L1 (T )×RG isR
T
p (t) y (t)σ (dt) + r · q, abbreviated to hp | yi+ r · q.

5 Symmetry and weaker conditions on production
sets

We next formalise the idea that a jump in the price trajectory cannot coincide with
a drop in the supply trajectory. First, this is shown to follow from symmetry of the
cost function (or of the input correspondence when the inputs are not aggregated into
a scalar cost). Symmetry implies an even stronger “similarity” of the price and output
trajectories, viz., that they rise and fall simultaneously (Lemma 9 and Remark 10). This
is more than is actually needed for price continuity, and the assumption is too strong
for some applications: in electricity pricing, the cost of energy storage is not symmetric
(although the cost of thermal generation is). We therefore weaken the similarity condition
(Definitions 11, 14 and 17). Like symmetry, the weaker properties are preserved in
summation of production sets. Some “general” examples meeting the weak conditions
are given at this stage, but the motivating example of energy storage is dealt with in
Section 9 (Lemmas 35 and 37).

Definition 1 A function C on L0 (T ) is σ-symmetric (a.k.a. rearrangement-invariant)
if, for every y and z in L0 (T ), the condition σ (y−1 (B)) = σ (z−1 (B)) for every Borel set
B ⊂ R implies that C (y) = C (z). (In other words, C is symmetric if its value depends
only on the distribution of its argument w.r.t. σ.)

Definition 2 A set S ⊂ L0 (T ) is σ-symmetric if its indicator function is symmetric,
i.e., if the conditions: y ∈ S, z ∈ L0 and σ (y−1 (B)) = σ (z−1 (B)) for every Borel set
B ⊂ R imply that z ∈ S also. (In other words, S is symmetric if z ∈ S whenever z has
the same distribution, w.r.t. σ, as some y ∈ S.)
11The analysis can be adapted for use with other L%-spaces in problems involving unbounded com-

modity bundles.
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When this concept is used here, S is the section of a production set Y ⊂L∞ (T )×RG
through a q ∈ RG, i.e., S is the q-restricted production set

Y (q) := {y ∈ L∞ (T ) : (y, q) ∈ Y} . (7)

The set of “output” bundles Y (q) is symmetric for each “input” q ∈ RG if and only if
the “input requirement” set Yy := {q : (y, q) ∈ Y} depends only on the distribution of y.
In such a case, the production cost

C (y) := inf
q
{− hr | qi : (y, q) ∈ Y}

is a symmetric function of y (for each input price system r ∈ RG).
For the purpose of proving price continuity on T , the relevant implication of symmetry

is similarity of arrangement for the functions p and y (on T ) which represent a price
system and an output bundle that maximises the (q-restricted) profit on S = Y (q). This
result (Lemma 9) is preceded by a discussion of similarity of arrangement, a concept
introduced by Day [2, p. 932].

Definition 3 Two elements, p and y, of L0 (T ) are similarly arranged if, for any mea-
surable sets A0 and A00,12

ess sup
A0
p < ess inf

A00
p⇒ ess sup

A0
y ≤ ess inf

A00
y. (8)

After replacing p and y by any of their variants p̆ and y̆–which are literally functions
rather than equivalence classes of almost everywhere (a.e.) equal functions–similarity
of arrangement can be usefully reformulated in terms of values at any points t0 and t00

(instead of values on sets A0 and A00).

Remark 4 Two elements, p and y, of L0 (T ) are similarly arranged if and only if

p (t0) < p (t00)⇒ y (t0) ≤ y (t00)

for σ-almost every (a.e.) t0 and t00 in T–i.e., if and only if for any variants p̆ and y̆ (of
p and y) there is a σ-null set Z such that for every t0 and t00 in T \ Z

p̆ (t0) < p̆ (t00)⇒ y̆ (t0) ≤ y̆ (t00) . (9)

As is shown by Day [2, p. 939, 5.6], similarity of arrangement is equivalent to the
existence of a common ranking pattern. To state this, we first introduce the concepts.
12It obviously suffices to verify this for any σ-almost disjoint pair of σ-nonnull sets, A0 and A00.
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Definition 5 The nonincreasing rearrangement y↓ of a y ∈ L0 (T,σ) is the nonincreasing
function on [0,σ (T )] with the same distribution, relative to the Lebesgue measure (meas),
as the distribution of y w.r.t. σ. That is, y↓ is nonincreasing and, for every Borel set
B ⊂ R,13

meas {τ ∈ [0,σ (T )] : y↓ (τ) ∈ B} = σ {t ∈ T : y (t) ∈ B} .

Definition 6 A ranking pattern of a y ∈ L0 (T,σ) is any measure-preserving map
ρ: T → [0,σ (T )] such that y = y↓ ◦ ρ. The set of all such maps is denoted by R (y).14

Comments:

1. R (y) 6= ∅ (if σ is nonatomic). This is the Lorentz-Ryff Lemma [31, Lemma 1],
stated also in, e.g., [3, 3.3].

2. If y has no plateau (i.e., σ {t : y (t) = y} = 0 for each y ∈ R or, equivalently, y↓ is
strictly decreasing), then the pattern of y is unique, and it is

ρy = (y↓)
−1 ◦ y.

Note that ρy (t) = σ {τ ∈ T : y (τ) ≥ y (t)}, i.e., ρy (t) /σ (T ) is t’s “percentage
above”–the fraction of T on which y is above its “current” value y (t). Thus ρy
ranks the elements of T by the value of y (hence its name, “the ranking pattern”).

Remark 7 (Day) Assume that σ is nonatomic (on A). Two functions p and y, in
L0 (T,A,σ), are similarly arranged if and only if

R (p) ∩R (y) 6= ∅ (10)

i.e., if and only if both p = p↓ ◦ ρ and y = y↓ ◦ ρ for some measure-preserving map
ρ: T → [0,σ (T )].

Comments:

1. It is obvious that (10) implies (9) or, equivalently, (8). To prove the converse–that
(8) implies (10)–Day [2, p. 939, 5.6] shows that (8) implies that the pair (p, y)
is jointly equidistributed to (p↓, y↓), i.e., that (p, y) has the same joint distribution
as (p↓, y↓), and that this in turn implies (10). Thus he extends the Lorentz-Ryff
Lemma to pairs (and also n-tuples) of functions, and adds the joint equidistribution
as another equivalent condition.

13When y is the output and p is a TOU tariff, the graphs of y↓ and p↓ are known in electricity pricing
as the load-duration and price-duration curves. On L∞, the operation x 7→ x↓ is m

¡
L∞, L1

¢
-continuous:

see [10].
14“Measure-preserving” means that σ

¡
ρ−1 (B)

¢
= measB for every Borel set B ⊂ [0,σ (T )].
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2. In (8) and (9), the inequalities in the antecedent and the consequent must be strict
and nonstrict, respectively.

3. As is obvious from Remark 4 (or Remark 7), similarity of arrangement is a sym-
metric binary relation in L0–i.e., p and y can be interchanged in (8) or (9). It is
not a transitive relation (since every function is arranged similarly to a constant).

As we note next, similarity of arrangement is preserved in summation.

Remark 8 If each of two functions, y and z, is arranged similarly to p, then so is y+z.

As has been mentioned, if p represents a linear functional supporting a symmetric
set S at a point y, then p and y are similarly arranged (or, equivalently, have a common
pattern). This is next spelt out for the case of p ∈ L1 and y ∈ S ⊂ L∞. (The same holds
for L% and L%

0
instead of L∞ and L1.)

Lemma 9 Assume that the measure σ is nonatomic (on A) and that S is a symmetric
subset of L∞ (T,A,σ). If p ∈ L1 (T ) and y maximises hp | ·i on S–i.e., y ∈ S and hp | yi
= sup {hp | zi : z ∈ S}–then p and y are similarly arranged.

The corresponding result for functions follows [12, Theorem 1].

Remark 10 If σ is nonatomic, C: L∞ (T,σ) → R is a symmetric convex function and
p ∈ ∂C (y)∩L1 (T,σ), i.e., a p ∈ L1 is a subgradient of C at y, then p and y are similarly
arranged.

Applied to a (restricted) production set S = Y (q), Lemma 9 shows that, in an output
bundle y ∈ S ⊂ L∞ (T ) and a supporting price system p ∈ L1 (T ), the quantity and price
move up and down together over “time”. But a weaker property, introduced next, suffices
for the purpose of proving price continuity.

Notation The set of all neighbourhoods of t is denoted by N (t).

Definition 11 A set S ⊂ L∞ (T ) is sub-symmetric if: for every p ∈ L1 (T ) and every
y that maximises hp | ·i on S, and for every t ∈ T and ² > 0, there exists an H ∈ N (t)
such that for any two measurable sets A0 ⊂ H and A00 ⊂ H

²+ ess sup
A0
p < ess inf

A00
p ⇒ ess sup

A0
y ≤ ess inf

A00
y. (11)

Equivalently, S is sub-symmetric if, for every p, y, t and ² such as above, there exists an
H ∈ N (t) such that, for σ-almost every t0 and t00 in H,15

²+ p (t0) < p (t00)⇒ y (t0) ≤ y (t00) . (12)
15As in Remark 4, the p and y in (12) must be interpreted as any variants p̆ and y̆, and the phrase

“for a.e. t0 and t00 in H” is to be interpreted as meaning “for every t0 and t00 in H but outside of some
σ-null set Z ”. The excepted set Z depends on the choice of variants p̆ and y̆, but it can be chosen
independently of ² and, also, of t (since the topology of T has a countable open base).
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Comments:

1. Unlike the case of a symmetric S, in which p and y are similarly arranged by
Lemma 9, if S is only sub-symmetric then the relationship between p and y is not
symmetric, i.e., p and y cannot be interchanged in (11) or (12).

2. Because of the ², the strict inequality between the values of p in the antecedent of
(11) or (12) can be made nonstrict without changing the concept. But the inequality
between the values of y in the consequent of (11) or (12) must be non-strict, as in
(8) or (9).

Every symmetric set is obviously sub-symmetric.16 A proper example of sub-symmetry
in production is the additively separable convex cost

R
T
c (t, y (t)) dt: it is not a symmet-

ric function of y unless the “instantaneous” cost is independent of t directly (i.e., unless
the integrand c (t, y) is actually independent of t, as in (2)). But if the cost curve c (t, ·),
together with its y-derivative, varies continuously with t, then it can be approximated in
a neighbourhood of any t0 ∈ T by the fixed (time-independent) curve c (t0, ·). This is whyR
c (t, y (t)) dt is “locally and approximately” symmetric: in precise terms, its sublevel

sets are sub-symmetric, as is shown next.

Example 12 Assume that c: T × (−∞, k]→ R, where k ∈ R is a constant, is a differ-
entiable convex integrand, i.e., the function t 7→ c (t, y) is σ-integrable on T (for every
y ∈ R), whilst the function y 7→ c (t, y) is convex and differentiable on (−∞, k], for every
t ∈ T . Then

C (y) :=

Z
T

c (t, y (t))σ (dt) (13)

is a convex integral functional on L∞ (T ), defined effectively for y ≤ k: see, e.g., [29].
If additionally ∂c/∂y is (jointly) continuous on T × (−∞, k] then, for every a ∈ R,

the set
S = {y ∈ L∞ (T ) : C (y) ≤ a} (14)

is sub-symmetric, provided that C (y) < a for some y (Slater’s Condition).

Comments:

1. (∂c/∂y) (t, k) means the left (one-sided) derivative (w.r.t. y, at y = k); it is assumed
to be finite.

16To satisfy (11) when S is symmetric, it suffices to set H = T regardless of ² (by Lemma 9 and
Definition 3).
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2. With c differentiable in y on (−∞, k), even a strict inequality holds between the
values of y in (12), except when y (t0) = y (t00) = k. The exception is caused by
the kink which c (t, ·) has at y = k (where the curve is “cut off” by setting c (t, y)
= +∞ for y > k).

3. Typically, a negative y (t) can arise only from free disposal, and so the “instanta-
neous” production cost c (t, y) is nondecreasing in y, with c (t, y) = 0 for y ≤ 0.
In such a case, c (t, ·) usually has a kink at y = 0 but, like its kink at y = k,
this does not spoil the sub-symmetry result: Example 12 extends to the case of
(∂c/∂y) (t, 0+) > 0 = (∂c/∂y) (t, 0−).

Example 12 is next reoriented for application to an industrial customer, who uses a
differentiated input z ∈ L∞+ (T ) to produce a quantity

R
T
f (t, z (t)) dt of a homogeneous

output good.

Example 13 Assume that f : T × R+ → R is a differentiable concave integrand, i.e.,
the function t 7→ f (t, z) is σ-integrable on T (for every z ∈ R), and that the function
z 7→ f (t, z) is concave and differentiable on R+. Then

F (z) :=

Z
T

f (t, z (t)) σ (dt) (15)

is a concave integral functional on L∞+ (T ): see, e.g., [29].
If additionally ∂f/∂z is (jointly) continuous on T ×R+ then, for every ζ ∈ R, the set

S =
©
−z ∈ L∞− (T ) : F (z) ≥ ζ

ª
(16)

is sub-symmetric, provided that F (z) > ζ for some z (Slater’s Condition).

There is a significantly weaker condition on the technologies that, together with sub-
symmetry of preferences, ensures price continuity in equilibrium. To formulate it, we use
the concept of the essential value of p at t. Denoted by ess p (t), it exists if and only if the
lower and upper essential values, p (t) and p (t), are equal and finite. In other words, t
/∈ domess p if and only if either −∞ < p (t) < p (t) < +∞ or p (t) = −∞ or p (t) = +∞.
These concepts are reviewed in Appendix B.

Definition 14 A set S ⊂ L∞ (T,σ) is quasi-symmetric if: for every p ∈ L1 (T ) and
every y that maximises hp | ·i on S, and for any t‡ ∈ T \ domess p, there is a number
α > 0 such that every neighbourhood N ∈ N (t‡) has a pair of σ-nonnull subsets, A0 ⊂ N
and A00 ⊂ N , such that

α+ ess sup
A0
p ≤ ess inf

A00
p (17)
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ess sup
A0
y ≤ ess inf

A00
y (18)

i.e., for σ-almost every t0 ∈ A0 and t00 ∈ A00,17

α+ p (t0) ≤ p (t00) (19)

y (t0) ≤ y (t00) . (20)

The “price part” (17) of the quasi-symmetry condition is always met because, as is
noted next, it follows purely from the hypothesis of a price discontinuity (i.e., from the
nonexistence of ess p at t‡).

Remark 15 For any t‡ ∈ T \ domess p, there is an α > 0 such that every N ∈ N (t‡)
has σ-nonnull subsets, A0 and A00, with α+ ess supA0 p ≤ ess infA00 p. More specifically:

1. If p (t‡) = −∞ or p (t‡) = +∞, then every α > 0 has this property.

2. If −∞ < p (t‡) < p (t‡) < +∞, then any positive α < p (t‡)−p (t‡) has this property.

Corollary 16 Every sub-symmetric set (and hence every symmetric set) is quasi-symmet-
ric.

The next condition on the technologies does not come into the general price-continuity
result itself (Theorem 26). But it is needed to verify that, in equilibrium, the theorem’s
strong sub-symmetry assumption on consumer preferences holds in specific cases, such
as that of differentiable additively separable utility (Section 8). It serves to establish
first that the equilibrium price function is bounded and that consumption is therefore
bounded away from zero (which is necessary for strong sub-symmetry to hold). This
condition, formulated next, requires merely that the profit-maximising output must be
arbitrarily close to its peak at the “times” of sufficiently high prices (if the price function
is unbounded).18

Definition 17 A set S ⊂ L∞ (T ) is pseudo-symmetric if, for every p ∈ L1 (T ) and every
y that maximises hp | ·i on S,

lim
p%+∞

ess inf
t: p(t)>p

y (t) ≥ EssSup (y) := ess sup
t∈T

y (t) (21)

i.e., if for every δ > 0 there is a p ∈ R such that, for σ-almost every t ∈ T ,

p (t) > p⇒ y (t) ≥ EssSup (y)− δ. (22)

17This means “for every t0 in A0 and t00 in A00 but outside of some σ-null set Z ”. The excepted set Z
depends on the choice of variants of p and y, but it can be chosen independently of N and t‡.
18In the case of an industrial user, the condition means that his profit-maximising input must be

arbitrarily close to its minimum when the price is high, since his net output of the differentiated good
is, of course, the negative of his input.
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Comment: The question arises only when p is unbounded: when p ∈ L∞, Condition
(22) is met vacuously by p = EssSup (p) or larger (since this means that p (t) ≤ p for a.e.
t). In other words, if p is bounded from above, then (21) holds for every y ∈ L∞ because
the inequality in (21) has +∞ on its left-hand side; this is the only case in which the
inequality in (21) is strict.

Lemma 18 Every symmetric set is pseudo-symmetric.

An industrial user of a differentiated good meets a pseudo-symmetry condition if his
production function is additively separable.19

Example 19 Under the assumptions of Example 13 on the concave functional F (z)
:=
R
T
f (t, z (t))σ (dt) for z ∈ L∞+ (T ), if additionally supt∈T (∂f/∂z) (t, 0) < +∞ (as is

the case when T is compact and ∂f/∂z is continuous in t), then, for every ζ ∈ R, the set
S = − {z ≥ 0 : F (z) ≥ ζ} is pseudo-symmetric (provided that F (z) > ζ for some z).

The “symmetry-like” concepts are applied to the sections of a production set Y ⊂
L∞ (T ) × RG through a q ∈ RG. To say that such a set has symmetric T -sections (or
sub-symmetric T -sections, etc.) means that, for every q ∈ RG, the set Y (q) defined
by (7) is symmetric (or sub-symmetric). These properties are mostly preserved in the
summation of sets (although quasi-symmetry for the sum requires sub-symmetry for all
but one of the sets). To establish this, note first that

(Y0 +Y00) (q) =
[

(q0,q00): q0+q00=q

(Y0 (q0) +Y00 (q00)) . (23)

Furthermore, the components of a profit-maximising output bundle in the sum’s section
are also profit maxima: in precise terms, if

y = y0 + y00 maximises hp | ·i on Y (q) := (Y0 +Y00) (q) (24)

q = q0 + q00 and (y0, q0) ∈ Y0 and (y00, q00) ∈ Y00 (25)

then
y0 maximises hp | ·i on Y0 (q0) and y00 maximises hp | ·i on Y00 (q00) . (26)

Lemma 20 If two subsets, Y0 and Y00, of L∞ (T )× RG have symmetric T -sections that
are additionally convex and w (L∞, L1)-closed (weakly* closed) in L∞ (T ), then also their
sum Y := Y0 +Y00 has symmetric sections.

Lemma 21 For any two subsets, Y0 and Y00, of L0 (T )×RG:
19Similarly, a supplier of the good meets the pseudo-symmetry condition if his cost is additively

separable, as in Example 12.
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1. If both Y0 and Y00 have sub-symmetric T -sections, then so has their sum Y :=
Y0 +Y00.

2. If Y0 has quasi-symmetric sections, and Y00 has sub-symmetric sections, then their
sum Y := Y0 +Y00 has quasi-symmetric sections.

3. If both Y0 and Y00 have pseudo-symmetric sections, then so has their sum Y :=
Y0 +Y00.

6 Sub-symmetry of preferences

A variant of the sub-symmetry concept is needed to formulate a condition on consumer
preferences which, together with quasi-symmetry of the production set, ensures price
continuity in equilibrium. For use in this context, the condition is reoriented to minimi-
sation of “expenditure” instead of maximisation of “profit” as in Definition 11. Also, it
is formulated “pointwise” because its verification requires a condition on the particular
consumption bundle x: Example 23 requires that Inf (x) > 0 (which is needed because
the demand x (t) cannot drop when it is already zero). Recall that N (t) means the set
of all neighbourhoods of t.

Definition 22 A set S ⊂ L∞ (T ) is strongly sub-symmetric at a point x ∈ S if: for
every p ∈ L1 (T ) such that x minimises hp | ·i on S, and for every t ∈ T and ² > 0, there
exist an H ∈ N (t) and a δ > 0 such that, for any two measurable sets A0 ⊂ H and
A00 ⊂ H,

²+ ess sup
A0
p < ess inf

A00
p ⇒ ess inf

A0
x ≥ δ + ess sup

A00
x. (27)

Equivalently, S is strongly sub-symmetric at x if, for any t and ² such as above, there
exists an H ∈ N (t) and a δ > 0 such that, for σ-almost every t0 and t00 in H,

²+ p (t0) < p (t00)⇒ x (t0) ≥ x (t00) + δ. (28)

Comment: A symmetric set need not be strongly sub-symmetric at every point. For
example, if c (t, y (t)) in (13) is actually c (y (t)), a convex function of y (t) alone, then
the sublevel set (14) is symmetric and hence sub-symmetric, but not strongly so (at a
point x = −y), unless c is differentiable and EssSup (y) < k.
This concept is used with S equal to a superlevel set for the ordering of L∞+ (T )

obtained by fixing an em ∈ RG in an ordering 4 of L∞+ (T )×RG+, i.e., with S equal to
S (ex, em,4) := ©x ∈ L∞+ (T ) : (ex, em) 4 (x, em)ª (29)

which is a “preferred set” for the section of 4 through em. When 4 is represented by a
function U on L∞+ (T ) × RG+, this set is {x : U (ex, em) ≤ U (x, em)}, a superlevel set of U
= U (·, em).
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In the following example of strong sub-symmetry in consumption, the utility function
has the additively separable form, U (x) =

R
T
u (t, x (t)) dt. This is mathematically sim-

ilar to the case of additively separable cost and production functions (Examples 12 and
13).

Example 23 Assume that u: T × R+ → R is a differentiable concave integrand, i.e.,
the function t 7→ u (t, x) is σ-integrable on T (for every x ∈ R+), whilst the function
x 7→ u (t, x) is concave, (strictly) increasing and differentiable on R++ (and continuous
also at x = 0), for every t ∈ T . Then

U (x) :=

Z
T

u (t, x (t))σ (dt) (30)

is a concave integral functional on L∞+ (T ): see, e.g., [29].
If additionally ∂u/∂x is (jointly) continuous on T ×R++ then, for every ex ∈ L∞ (T )

with EssInf (ex) > 0, the set
S =

©
x ∈ L∞+ (T ) : U (x) ≥ U (ex)ª (31)

is strongly sub-symmetric at ex.
The strong sub-symmetry condition can be verified for other functional forms of util-

ity. For example, the additively separable form can be generalised by adding further
terms.

Example 24 Assume that v: T × R+ × T ×R+ → R has the properties:

1. The function (x0, x00) 7→ v (t0, x0, t00, x00) is jointly concave, increasing and continu-
ously differentiable on R2+, for every (t0, t00) ∈ T × T .

2. The function (t0, t00) 7→ v (t0, x0, t00, x00) is σ×σ-integrable on T ×T , for every (x0, x00)
∈ R2+.

With u: T ×R+ → R as in Example 23 (and ∂u/∂x continuous), define

U (x) :=

Z
T

u (t, x (t))σ (dt) +
1

2

Z
T

Z
T

v (t0, x (t0) , t00, x (t00))σ (dt0)σ (dt00) (32)

for every x ∈ L∞+ (T ). Assume also, without loss of generality, that v (t0, x0, t00, x00) =
v (t00, x00, t0, x0). If additionally ∂2v/∂x0∂x00 ≤ 0 everywhere and EssInf (ex) > 0, then the
set

S =
©
x ∈ L∞+ (T ) : U (x) ≥ U (ex)ª

is strongly sub-symmetric at ex.20
20A weaker sufficient condition on the derivatives is that σ (T ) supx0,x00 ∂

2v/∂x0∂x00 does not exceed
infx0,x00

¡
−∂2u/∂x2

¢
, where x0 and x00 range over [Inf (ex) ,Sup (ex)].
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7 Continuity of the equilibrium price density func-
tion

As is shown next, the weak symmetry-like conditions are sufficient for price continuity
in equilibrium. The sets of producers and households (or consumers) are denoted by Pr
and Ho. The production set of producer i ∈ Pr is Yi ⊂ L∞ (T )×RG, and Y :=

P
i∈PrYi

is the total production set. The consumption set of each household h ∈ Ho is the
nonnegative orthant L∞+ (T ) × RG+. Consumer preferences, taken to be complete and
transitive, are given by a total (a.k.a. complete) weak preorder 4h. The corresponding
strict preference is denoted by ≺h. The household’s initial endowment is denoted by¡
xEnh ,m

En
h

¢
∈ L∞+ ×RG+; the household’s share in the profits of producer i is ςhi ≥ 0, withP

h ςhi = 1 for each i.
21

Definition 25 A price system (p?, r?) ∈ L1 (T ) × RG supports an allocation, (x?h,m?
h)

≥ 0 and (y?i , q?i ) ∈ Yi for each h ∈ Ho and i ∈ Pr, as a competitive equilibrium if:

1.
P

h

¡
x?h − xEnh ,m?

h −mEn
h

¢
= (y?, q?) :=

P
i (y

?
i , q

?
i ).

2. hp? | y?i i+ hr? | q?i i = supy,q {hp? | yi+ hr? | qi : (y, q) ∈ Yi}.

3. hp? |x?hi+ hr? |m?
hi =


p? |xEnh +

P
i ςhiy

?
i

®
+

r? |mEn

h +
P

i ςhiq
?
i

®
.

4. For every (x,m) ≥ 0, if hp? |xi + hr? |mi ≤ hp? |x?hi + hr? |m?
hi, then (x,m) 4h

(x?h,m
?
h).

Theorem 26 Assume that:

1. A price system (p?, r?) ∈ L1 (T,σ) × RG supports a competitive equilibrium with
a consumption allocation (x?h,m

?
h) ∈ L∞+ (T ) × RG+ (for h ∈ Ho) and with a total

input-output bundle (y?, q?) ∈ Y.

2. The section Y (q?) of the total production set is a quasi-symmetric subset of L∞ (T ).

3. The set S (x?h,m
?
h,4h), defined by (29), is strongly sub-symmetric at x?h, for each

household h.

4. For each h, the initial endowment is nonnegative and has a continuous variant,
i.e., essxEnh ∈ C+ (T ).

Then the equilibrium price has a continuous variant, i.e., ess p? ∈ C (T ).
21The ranges of running indices in summations, etc., are always taken to be the largest possible with

any specified restrictions.
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8 Continuity and boundedness of price and quantity
with additively separable utility

As is shown below, the price-continuity result (Theorem 26) applies when the consumer’s
utility is, up to a monotone transformation, a differentiable additively separable function
of a consumption bundle x ∈ L∞+ (T ), for a fixed consumption of the other goods,m. With
such preferences, verification of the strong sub-symmetry condition rests on Example 23
and on the following first-order condition (FOC) for utility maximisation or expenditure
minimisation.

Lemma 27 Assume that u: T ×R+ ×RG+ → R is a concave integrand parameterised by
RG+, i.e.:

1. For every t ∈ T , the function (x,m) 7→ u (t, x,m) is concave.

2. The function t 7→ u (t, x,m) is σ-integrable on T , for every x ∈ R+ and m ∈ RG+.

3. The function x 7→ u (t, x,m) is concave, (strictly) increasing and continuous on R+,
for every t ∈ T and m ∈ RG+.

Assume also thatW : R1+G → R is differentiable, concave and increasing in each variable,
and define

U (x,m) :=W (U (x,m) ,m) (33)

where, for x ∈ L∞+ (T ) and m ∈ RG+,

U (x,m) :=

Z
T

u (t, x (t) ,m)σ (dt) (34)

(with u (t, x,m) := −∞ for x < 0 and U (x,m) := −∞ for (x,m) ® 0). If additionally
p ∈ L1 (T ), M > 0, and (ex, em) maximises U (x,m) over x and m subject to: hp |xi+ r ·
m ≤M , x ≥ 0 and m ≥ 0, then there exists a scalar eλ > 0 such that

eλp (t) ∈ ∂xu (t, ex (t) , em) for σ-almost every t ∈ T . (35)

When (∂u/∂x) (0) = +∞, it follows that ex À 0 (i.e., ex (t) > 0 for a.e. t ∈ T ). If
additionally u (t, ·,m) is differentiable on R++ (for every t ∈ T and m ∈ RG+), then there
is a unique scalar eλ > 0 such that

eλp (t) = ∂u

∂x
(t, ex (t) , em) for σ-almost every t ∈ T . (36)
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Comment: That p ∈ L1 is part of (36), but that part is assumed and not proved in
Lemma 27: unless EssInf (ex) > 0, ex can be optimal also when p ∈ L∞∗ \ L1.
Utility maximisation is usually equivalent to expenditure minimisation, as is noted

next.

Remark 28 Assume that 4 is a total preorder on a closed convex subset X of a real
topological vector space (L,T ), and that 4 is T -locally nonsatiated and lower semicon-
tinuous along each linear segment of X.22 Then the following three conditions on a pointex ∈ X and a continuous linear functional p ∈ (L,T )∗ are equivalent to one another,
provided that there exists an xS ∈ X with


p |xS

®
< hp | exi:

1. For every x ∈ X, if hp |xi ≤ hp | exi then x 4 ex.
2. For every x ∈ X, if hp |xi < hp | exi then x 4 ex.
3. For every x ∈ X, if hp |xi < hp | exi then x ≺ ex (i.e., if x < ex then hp |xi ≥ hp | exi).
For each t, the FOC (36) establishes a monotone correspondence between the “cur-

rent” price p (t) and the “instantaneous” consumption rate xh (t). If additionally the net
output rate is near its peak whenever the current price is sufficiently high (which is the
pseudo-symmetry condition), it follows that the equilibrium price function p? is bounded,
and that the equilibrium consumption x?h is therefore bounded away from zero. These
two preliminary results are established next (Proposition 30 and Corollary 31). For the
rest of this section, the utility of each household h, is taken to have the form (33)—(34).
The “instantaneous” utility a.k.a. felicity function, uh, is assumed to meet the following
conditions, in addition to those of Lemma 27.
Continuity of Marginal Utility. For every h and m ∈ RG+

∂uh
∂x

(·, ·,m) ∈ C (T ×R++) (37)

i.e., the function (t, x) 7→ (∂uh/∂x) (t, x,m) is (jointly) continuous on T ×R++.23
Boundedness of Marginal Utility (in t). For every h and (x,m) ∈ R++ × RG+

sup
t∈T

∂uh
∂x

(t, x,m) < +∞. (38)

When T is compact, this follows from the continuity of ∂uh/∂x in t.
Unboundedness of Marginal Utility (in x). For every h and m ∈ RG+

∂uh
∂x

(t, x,m)% +∞ uniformly in t ∈ T as x& 0. (39)

22By definition, 4 is T -locally nonsatiated if x0 ∈ clT {x ∈ X : x0 ≺ x} for every x0 ∈ X (where x0 ≺ x
means that x0 4 x and x0 6< x). Even for the strongest choice of T , this follows from nonsatiation if 4
can be represented by a concave function U .
23Partial continuity of ∂uh/∂x in x follows from its monotonicity, i.e., from the concavity of uh in x.
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Remark 29 Assume (39). If xEnh = 0 for each h, then y? À 0.

Proposition 30 In addition to (38) and (39), assume that:

1. The section Y (q?) of the total production set is a pseudo-symmetric subset of
L∞ (T ).

2. xEnh ≥ 0 for each h.

3. hp? |x?hi+ r ·m?
h > 0 for each h, i.e., the equilibrium expenditures are positive.

4. 0 < EssSup (y?) := ess supt∈T y
? (t), i.e., the equilibrium net output of the differen-

tiated good is nonzero (as is the case by Remark 29 if xEnh = 0 for each h).

Then p? ∈ L∞ (T ), i.e., the equilibrium price is essentially bounded.

Remark 29 can now be strengthened so that Example 23 can be applied to verify the
strong sub-symmetry condition of Theorem 26.

Corollary 31 On the assumptions of Proposition 30, EssInf (x?h) > 0 for each h.

Corollary 32 In addition to the assumptions of Proposition 30, assume (37). Then the
set S (x?h,m

?
h,4h), defined by (29), is strongly sub-symmetric at x?h, for each h.

Therefore, as is spelt out next, Theorem 26 applies to the case of additively separable
utility (if ∂uh/∂x is continuous in (t, x) and infinite at x = 0).

Theorem 33 In addition to (37), (38) and (39), assume that:

1. A price system (p?, r?) ∈ L1 (T ) × RG supports a competitive equilibrium with a
consumption allocation (x?h,m

?
h)h∈Ho and a total input-output bundle (y

?, q?) ∈ Y.

2. The section Y (q?) of the total production set is quasi-symmetric, and also pseudo-
symmetric.

3. xEnh ∈ C+ (T ) for each h.

4. hp? |x?hi+ r ·m?
h > 0 for each h.

5. EssSup (y?) > 0 (as is the case by Remark 29 when xEnh = 0 for each h).

Then the equilibrium price has a continuous variant (which is also bounded and strictly
positive), i.e., ess p? ∈ CB++ (T ).24
24Because of (38), ess p? is bounded even if T is not compact.
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Finally, when the equation λp = (∂uh/∂x) (t, x) has a unique solution for x, price
continuity implies that the equilibrium quantities, x?h (t) and y

? (t), are also continuous
in t.

Corollary 34 On the assumptions of Theorem 33, if additionally T is compact and
(∂uh/∂x) (t, ·) is (strictly) decreasing, for each t–i.e., the “instantaneous” utility function
x 7→ uh (t, x) is strictly concave (as well as differentiable on R++)–then the equilibrium
consumption of the differentiated good has a continuous variant (which is also strictly
positive), i.e., essx?h ∈ C++ (T ).

9 Application to peak-load pricing with storage

The price-continuity theorem is next applied to electricity pricing with (or without)
pumped storage. This extends the results of Sections 2 and 3 to the case of cross-
price dependent demand, provided that the preferences and technologies of electricity
users meet the weak symmetry-like conditions. To present this application rigorously yet
briefly, we assume that:

1. As a result of aggregating commodities on the basis of some fixed relative prices,
there are just two consumption goods apart from electricity–viz., a numeraire
(measured in $) and a homogeneous final good produced with an input of electricity.

2. The various kinds of thermal generating capacity and fuel have fixed prices, rTh
= (r1, . . . , rΘ) and w = (w1, . . . , wΘ), in terms of the numeraire (i.e., in $/kW
and $/kWh, respectively). The prices of storage and conversion capacities, rPS
= (rSt, rCo) in $/kWh and $/kW, are also fixed.

A complete commodity bundle consists therefore of electricity (a differentiated good)
and of a number of homogeneous goods, viz., the thermal capacities, the fuels, the storage
and conversion capacities, the produced final good and the numeraire. The quantities are
always written in this order; but those which are irrelevant in a particular context (and
can be set equal to zero) may be omitted. For example, a consumption bundle consists of
electricity, the produced final good and the numeraire; so it may be written as (x;ϕ,m) ∈
L∞ [0, T ] × R2. A matching consumer price system is (p; %, 1) ∈ L∞∗ [0, T ] × R2 (whilst
a complete price system is (p; rTh, w; rPS; %, 1)). There is a finite set, Ho, of households;
and for each h ∈ Ho the utility function Uh is m(L∞ ×R2, L1 × R2)-continuous (Mackey
continuous) on the consumption set L∞+ [0, T ]×R2+. Each household’s initial endowment
is a quantity mEn

h > 0 of the numeraire only; and nonsatiation in this commodity is
assumed.
There is also an industrial user, producing the final good from inputs of electricity and

the numeraire (z, n). The user’s production function F : L∞+ [0, T ]×R+ → R is assumed
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to be m(L∞ ×R, L1 ×R)-continuous, concave, nondecreasing and nonzero, with F (0, 0)
= 0.25 In the case of decreasing returns to scale, each household’s share ςh in the user
industry’s profits must also be specified.
The electricity supplier uses a multi-station thermal technology and pumped storage.

A thermal technique, θ, generates an output flow y from the inputs of fuel vθ (in kWh),
and of generating capacity kθ (measured in kW, like the output rate y (t)). The long-run
production set of technique θ = 1, . . . , Θ is the cone

Yθ :=

½
(y;−kθ,−vθ) ∈ L∞ [0, T ]× R2− : EssSup

¡
y+
¢
≤ kθ,

Z T

0

y+ dt ≤ vθ
¾

(40)

and the total thermal production set is

YTh :=

(Ã
ΘX
θ=1

yθ;− (kθ, vθ)θ∈Θ

!
: (yθ;−kθ,−vθ) ∈ Yθ for θ = 1, . . . ,Θ

)
.

This is the sum of the Yθ’s, each of which is embedded in L∞ ×
¡
R2−
¢Θ
; for simplicity,

different types of station are assumed to use different fuels. To justify formally the fixed
prices of inputs for electricity supply (rTh, w and rPS), there is also the production set
equal to the hyperplane perpendicular to the vector (r, w, 1) and passing through the
origin in the space of the electricity supplier’s inputs and the numeraire.
Thermal generation is supplemented by pumped storage. Energy is moved in and out

of storage with a converter, which is taken to be perfectly efficient and symmetrically
reversible: this means that in unit time a unit converter can either turn a unit of the
marketed good (electricity) into a unit of the stocked intermediate good (a storable
form of energy), or vice versa. On this simplifying assumption, the signed outflow of
energy from the reservoir, −ṡ (t), is equal to the storage plant’s net output rate, y (t)
= y+ (t) − y− (t). The converter’s capacity is denoted by kCo (measured in kW). The
reservoir’s capacity is kSt (in kWh); stock can be held in storage at no running cost (or
loss of stock). The long-run production set is, therefore,

YPS :=
©
(y;−kSt,−kCo) ∈ L∞ [0, T ]×R2− : |y| ≤ kCo, and ∃s ṡ = −y, s (0) = s (T ) and 0 ≤ s ≤ kSt

ª
.

The minimum requirements for storage capacity and conversion capacity, when the
(signed) output from storage is y with

R T
0
y dt = 0, are:26

ǩSt (y) = max
t∈[0,T ]

Z t

0

y (t) dt+ max
t∈[0,T ]

Z T

t

y (t) dt (41)

ǩCo (y) = kyk∞ = ess sup
t∈[0,T ]

|y (t)| . (42)

25It follows that F (z, n) > 0 for every n > 0 and every z with EssInf (z) > 0.
26Formula (41) is derived in [15].
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In these terms, (y,−kSt,−kCo) ∈ YPS if and only ifZ T

0

y (t) dt = 0, ǩSt (y) ≤ kSt and ǩCo (y) ≤ kCo. (43)

Unlike the thermal capacity and fuel requirements in (40), and unlike ǩCo (y), the storage
capacity requirement ǩSt (y) is not a symmetric function of y. But the storage technology
does meet the quasi-symmetry condition. We verify this by formalising the following
argument, in which ψ is the shadow price of stock: take an electricity price p which
jumps at some t, i.e., p (t−) < p (t+). Can the supply (from the storage plant) drop? If
it does, i.e., y (t−) > y (t+), then obviously y (t−) > −kCo and y (t+) < kCo, so p (t−)
≥ ψ (t−) and p (t+) ≤ ψ (t+). Hence 0 < p (t+) − p (t−) ≤ ψ (t+) − ψ (t−), so s (t)
= kSt, i.e., the reservoir must be full at t. So it cannot be being discharged just before
t or charged just after t, i.e., y (t−) ≤ 0 ≤ y (t+). This contradicts the drop in y. But
the argument is not rigorous because p and y may fail to have the one-sided limits. The
need to make it rigorous is what has led us to the concept of quasi-symmetry.

Lemma 35 For every kPS = (kSt, kCo) ∈ R2+, the set of feasible flows from storage,
YPS (−kPS) ⊂ L∞ [0, T ], is quasi-symmetric (with the usual topology on [0, T ]).

As we show in [19], the assumed Mackey continuity of the users’ utility and pro-
duction functions, Uh and F , means that electricity consumption is interruptible (i.e., a
brief interruption causes only a small loss of utility or output), and this guarantees that
the equilibrium TOU price is a density, i.e., a time-dependent rate in $/kWh. As we
state next, sub-symmetry conditions on Uh and F guarantee that the price density is
continuous.

Theorem 36 The electricity pricing model has a long-run competitive equilibrium. Fur-
thermore:

1. If an equilibrium tariff p? ∈ L∞∗+ [0, T ] supports (together with a price %? ∈ R+ for
the other produced good) an equilibrium allocation with a nonzero electricity output
y?Th + y

?
PS from thermal generation and pumped storage, then p? ∈ L1+ [0, T ].

2. Assume additionally that:

(a) For each household h, the set©
x ∈ L∞+ : Uh (x,ϕ?h,m?

h) ≥ Uh (x?h,ϕ?h,m?
h)
ª

is strongly sub-symmetric at x?h.
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(b) The section of the industrial user’s production set through any (ζ,−n) ∈ R×
R−, i.e., the set

YIU (ζ,−n) =
©
−z ∈ L∞− [0, T ] : F (z, n) ≥ ζ

ª
is sub-symmetric.

Then p? has a continuous variant, i.e., ess p? ∈ C [0, T ].

The conditions on the users are met when Uh and F are additively separable utility and
production functions with a continuous marginal utility or productivity: see Sections 5,
6 and 8. Since this case uses Proposition 30 and Corollary 31 (to apply Example 23), it
requires also the following result on the storage technology.

Lemma 37 For each kPS = (kSt, kCo) ∈ R2+, the set YPS (−kPS) is pseudo-symmetric.

Corollary 38 Assume that:

1. As in Section 8, each household’s utility Uh has the (concave) integral form (34),
and the instantaneous utility from electricity consumption uh (·, ·,ϕ,m) satisfies
(37), (38) and (39) for any (ϕ,m) ∈ R2+ (in place of m ∈ RG+).

2. The industrial user’s production function F has the integral form (15).

Then any equilibrium tariff has a continuous variant (which is also strictly positive),
i.e., ess p? ∈ C++ [0, T ]. Furthermore, for each h, if additionally uh is strictly concave (in
its second variable, x) then the equilibrium consumption of electricity has a continuous
variant (which is also strictly positive), i.e., essx?h ∈ C++ [0, T ].

10 Comparisons with other frameworks for price con-
tinuity

Our analysis applies to the commodity space L∞ (T ), and potentially to other Lebesgue
function spaces. A different kind of price-continuity result applies to the commodity
space of all (Borel) measures,M (T ). This choice of space describes a commodity bundle
which can either be concentrated on a single characteristic (the point measure at a t ∈ T )
or be spread out as a density (w.r.t. an underlying measure σ on T ). It has been used to
model physical commodity differentiation by Horsley [8] and [9], Jones [22] and [23], Mas-
Colell [25], and Ostroy and Zame [28]. It applies also to continuous-time intertemporal
problems, but only if the good in question can be consumed instantly as well as over
time, like aggregate wealth in the consumption-savings problem of Hindy et al. [7]. By
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contrast, for a good which can only be consumed over time rather than instantly, a
consumption or production bundle can be represented by a density function but not
by a point measure. With capacity constraints, the feasible quantity densities are also
bounded, and the commodity space must be L∞ [0, 1] or a subspace thereof.
It might seem possible to embed the commodity space L∞ [0, 1] inM [0, 1] and then

apply a price-continuity result formulated for the larger space. This strategy may to
some extent succeed with pure exchange, but not with production because, in problems
such as peak-load pricing, the production sets in the original commodity space, L∞ [0, 1],
do not have a usable extension toM [0, 1]. An example of central interest is the capacity
cost function

C (y) = ess sup
t∈[0,1]

y+ (t) (44)

which obviously does not have a finite, nondecreasing extension beyond L∞ [0, 1]. Ex-
tension of consumer preferences is less problematic. For example, additively separable
concave utility, originally defined by U (x) =

R 1
0
u (t, x (t)) dt for x ∈ L∞+ , does have a

w (M, C)-upper semicontinuous extension toM+ [0, 1], viz.,

U (µ) =

Z 1

0

u

µ
t,
dµAC
dmeas

(t)

¶
dt+

Z 1

0

∂u

∂x
(t,+∞)µS (dt)

where dµAC/dmeas is the density (w.r.t. the Lebesgue measure) of the absolutely con-
tinuous part of µ, and µS is the singular part of µ: see, e.g., [29, (4.4)] with n = 1, or
[28, p. 599] for the case of u independent of t directly with (du/dx) (+∞) = 0. This
U fails Jones’ condition of continuity for the weak topology w (M, C),27 but Ostroy and
Zame [28, Theorem 1] have succeeded in weakening that assumption to w (M, C)-upper
semicontinuity (and continuity for the variation norm ofM). Although they study only
the case of pure exchange, it is possible to include production, as in Jones’ work. This
cannot, of course, remove the basic obstacle to deriving results for L∞ from those for
M–which is that production costs such as (44) cannot be extended toM.
A useful (though equally inapplicable to L∞) variant of the analysis for the commodity

spaceM is given by Hindy et al. [7], who develop Jones’ idea [23, p. 525] of replacing the
instantaneous consumption rate x (t) by its average over a small ²-neighbourhood of each
t, in which case the utility function extends to U² (µ) = (1/2²)

R 1
0
u (t, µ [t− ², t+ ²]) dt,

defined for µ ∈M+ [0, 1]. Such preferences result in an absolutely continuous, and actu-
ally Lipschitz, equilibrium price function; roughly speaking, this is because the “moving
average” (1/2²)

R t+²
t−² p (τ) dτ is continuous in t whenever p ∈ L1, and it is a Lipschitz

function of t if p ∈ L∞. The same applies to various weighted averages. Hindy et al. [7,
Proposition 7 and Theorem 2] show that such a utility function (but not the additively
27A strictly concave, additively separable utility on L∞+ is w

¡
L∞, L1

¢
-discontinuous–see, e.g., [1, p.

539]–and a fortiori it can have no w (M, C)-continuous extension toM+ (since C ⊂ L1).
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separable utility) is continuous28 and uniformly proper for a norm k·k on M [0, 1] for
which

(M [0, 1] , k·k)∗ = Lip [0, 1] (45)

i.e., the norm-dual ofM is identified as the space of Lipschitz functions by means of the
bilinear form

hp |µi =
Z
[0,1]

p (t)µ (dt)

for p ∈ Lip and µ ∈M. Given this, Lipschitz continuity of the equilibrium price follows
from Mas-Colell and Richard’s general framework [26]. The norm in question is

kµk :=
Z 1

0

|µ [0, t]| dt+ |µ [0, 1]| (46)

i.e., it is the L1-norm of the cumulative distribution function (c.d.f.) of µ plus the total
mass of µ.
This formula extends the Kantorovich-Rubinshtein-Vassershtein (KRV) norm k·kKRV,

and the dual’s representation (45) can be derived from the corresponding result for
k·kKRV. Given a compact metric space (K, d), the KRV norm of a null measure µ (a
signed measure of zero total mass on K) is defined as the optimal value of the Monge-
Kantorovich mass transfer problem in which µ+ and µ− (the nonnegative and nonpositive
parts of µ) represent the initial and final distributions of the mass to be transferred: see,
e.g., [5, p. 329, line 2 f.b.] or [24, VIII.4.4: (25)]. The KRV norm turns out to be dual
to the Lipschitz norm

kpkL := sup
t0,t00∈K

|p (t0)− p (t00)|
d (t0, t00)

.

This, the best Lipschitz constant for p, is a seminorm on Lip (K); it is a norm on the
subspace Lip0 (K) that consists of those Lipschitz functions vanishing at a fixed point
t0 ∈ K. This space is, in other words, isometric to the KRV norm-dual of the space of
null measuresMN (K), i.e., ¡

MN, k·kKRV
¢∗
= (Lip0, k·kL) (47)

by the Kantorovich-Rubinshtein Theorem: see, e.g., [5, 11.8.2] or [24, VIII.4.5: Theorem
1].
For the case of K = [0, 1] with the metric d (t0, t00) = |t0 − t00|, an explicit formula for

the KRV norm is

kµkKRV =
Z 1

0

|µ [0, t]| dt (48)

for µ ∈MN [0, 1]: see, e.g., [5, Problem 11.8.1].29 Also, kpkL = ess sup[0,1] |ṗ|.
28OnM+ [0, 1], the k·k-topology, w (M, C) and w (M,Lip) are equivalent to one another.
29This defines a distance between two measures, µ0 and µ00, of equal mass as kµ00 − µ0kKRV.
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To derive (45) from (47), represent M [0, 1] as the direct sum of MN [0, 1] and
span (ε1), the one-dimensional space of point measures at t0 = 1. Then the norm (46)
onM [0, 1] is the direct sum of k·kKRV and the usual norm |·| of the real line: from (48),
and from the fact that the c.d.f. of ε1 is zero on [0, 1),30

kµ− µ [0, 1] ε1kKRV + |µ [0, 1]| = k(µ− µ [0, 1] ε1) [0, ·]kL1 + |µ [0, 1]|
= kµ [0, ·]kL1[0,1] + |µ [0, 1]| =: kµk .

It follows that
(M [0, 1] , k·k)∗ = Lip0 [0, 1]⊕R ' Lip [0, 1]

with Lip mapped to Lip0⊕R by p 7→ (p− p (1) , p (1)). It also follows that the dual norm
on Lip [0, 1] is the maximum of k·k∗KRV and |·|, i.e.,

kpk∗ = max {kṗk∞ , |p (1)|} .

11 Conclusions

Equilibrium pricing of a continuous-time flow such as electricity is likely to require a
continuously varying price to eliminate the demand jumps caused by sudden switches
between different price rates. Price continuity is also useful for other reasons, notably
in rental valuation of storage plants. With cross-price independent demand and supply
curves, an equilibrium price varies continuously if the curves do. A more general result is
based on ideas from the Hardy-Littlewood-Pólya theory of rearrangements. In particular,
symmetry of the production cost implies “similarity of arrangement” of price and output
trajectories, which can be used to prove price continuity. But it is important that the
assumption can be weakened for use with non-symmetric costs (such as the reservoir cost
in energy storage), and that it can be adapted for use with preferences also. This yields
what we believe to be the first applicable price-continuity result for competitive equilib-
rium in the Lebesgue commodity and price spaces L∞ (T ) and L1 (T ), i.e., the spaces
of bounded and of integrable functions on a (topological) measure space of commodity
characteristics.

A Proofs

Proof of Lemma 8. This follows from, e.g., Definition 3 and the inequalities

ess sup
A0
(y + z) ≤ ess sup

A0
y + ess sup

A0
z (49)

ess inf
A00
y + ess inf

A00
z ≤ ess inf

A00
(y + z) (50)

30This is why the choice of t0 = 1 is convenient.
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for every y and z.
Proof of Lemma 9. It suffices to show that hp | yi ≥ hp↓ | y↓i, which is the reverse

of the Hardy-Littlewood-Pólya Inequality, and then to apply Day’s characterisation of
the case of equality [2, 5.2, pp. 937—938].31 To this end, since σ is nonatomic, take any
ρ ∈ Rp (i.e., p = p↓ ◦ ρ). Since S is symmetric, y↓ ◦ ρ ∈ S; so

hp | yi ≥ hp | y↓ ◦ ρi = hp↓ ◦ ρ | y↓ ◦ ρi = hp↓ | y↓i

(since ρ is measure-preserving). So hp | yi = hp↓ | y↓i, and Day’s result [2, 5.2] shows that
R (p) ∩R (y) 6= ∅.
Comment: In the Proof of Lemma 9, ρ is a pattern of p but not of y, in general. If,

however, p has no plateau, then it has a single pattern, and so ρ must be the common
pattern of p and y.
Proof of Example 12. This is proved in the same way as Example 13, with

Corollary 43 applied this time to M equal to a negative scalar multiple of ∂c/∂y.
Proof of Example 13. Take any t ∈ T , ² > 0, p ∈ L1 (T ) and y that maximises

hp | ·i on S, i.e., z := −y minimises hp | ·i on −S = {x : F (x) ≥ ζ}. There exists a scalar
µ ≥ 0 such that32

p (τ) = µ
∂f

∂z
(τ , z (τ)) for σ-almost every τ ∈ T with z (τ) > 0 (51)

p (τ) ≥ µ∂f
∂z
(τ , z (τ)) for σ-almost every τ ∈ T with z (τ) = 0. (52)

If µ > 0 then, by Corollary 43 applied to M = µ∂f/∂z,33 there exists an H ∈ N (t) such
that: for every t0 and t00 in H and every z0 and z00 in [EssInf (z) ,EssSup (z)] ⊂ R+

z0 < z00 ⇒ ∂f

∂z
(t0, z0) ≥ ∂f

∂z
(t0, z00) ≥ ∂f

∂z
(t00, z00)− ²

µ
.

From this and (51)—(52), for a.e. t0 and t00 in H,

z (t0) < z (t00)⇒ p (t0) ≥ µ∂f
∂z
(t0, z (t0)) ≥ µ∂f

∂z
(t00, z (t00))− ² = p (t00)− ².

In other words, for a.e. t0 and t00 in H,

²+ p (t0) < p (t00)⇒ z (t0) ≥ z (t00)

which proves (12), since y = −z.
31The inequality is: hp | yi ≤ hp↓ | y↓i, with equality if and only if p and y are similarly arranged. This

is a special case of [2, 5.2], for ϕ (x1, x2) = x1x2.
32This is where Slater’s Condition is used.
33Here it suffices to use the partial continuity of ∂c/∂y in t, which holds uniformly in y.

32



Finally, if µ = 0 then p (t00) > p (t0) implies that z (t00) = 0 ≤ z (t0), as required.
Proof of Remark 15. For every N ∈ N (t‡)

ess inf
N
p ≤ p (t‡) and p (t‡) ≤ ess sup

N
p.

Case 1: If p (t‡) = +∞ then ess supN p = +∞; so for every α there is an A00 ⊂ N
with p ≥ ess infN p + 1 + α almost everywhere on A00. There is also an A0 ⊂ N with p
≤ ess infN p+ 1 a.e. on A0; hence (17). When p (t‡) = −∞, the argument is similar.
Case 2: If −∞ < p (t‡) < p (t‡) < +∞, then ess infN0 p and ess supN0 p are finite for

some N0 ∈ N (t‡). For every N ∈ N (t‡) and ² > 0 there exist A0, A00 ⊂ N ∩ N0 such
that

p ≤ ess inf
N∩N0

p+
²

2
a.e. on A0 and p ≥ ess sup

N∩N0
p− ²

2
a.e. on A00.

Used with an ² ≤ p (t‡)− p (t‡)− α, this gives

α ≤ p (t‡)− p (t‡)− ² ≤ ess sup
N∩N0

p− ess inf
N∩N0

p− ² ≤ ess inf
A00
p− ess sup

A0
p

as required.
Proof of Corollary 16. Given a sub-symmetric S ⊂ L∞ (T ) and any p, t‡ and y as

in Definition 14, fix any α > 0 that is less than p (t‡)− p (t‡) if p (t‡) and p (t‡) are finite.
Fix any ² < α, and choose an H ∈ N (t‡) as in Definition 11. For every N ∈ N (t‡),
apply Remark 15 (to N ∩H) to choose nonnull subsets, A0 and A00, of N ∩H with

²+ ess sup
A0
p < α+ ess sup

A0
p ≤ ess inf

A00
p.

Since A0 ∪A00 ⊂ H, it follows that ess supA0 y ≤ ess infA00 y, by (11).
Proof of Lemma 18. Given a symmetric S ⊂ L∞ (T ) and any p and y maximising

hp | ·i on S, fix any δ > 0 and denote the set of δ-near-peaks of y by

Pδ (y) := {t ∈ T : y (t) ≥ EssSup (y)− δ} .

Take any two numbers p00 and p0 with p00 > p0 > ess infPδ(y) p, and define the sets

A0 := {t ∈ Pδ : p (t) ≤ p0} and A00 := {t ∈ T : p (t) ≥ p00} .

Then ess infA00 p ≥ p00 > p0 ≥ ess supA0 p, which implies (by Lemma 9 and Definition 3)
that

ess inf
A00
y ≥ ess sup

A0
y ≥ ess inf

A0
y ≥ EssSup (y)− δ

(the penultimate inequality holds because A0 is nonnull). This means that (22) holds for
p = p00 (or larger).
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Proof of Example 19. As in the Proof of Example 13, take a z := −y min-
imises hp | ·i on −S = {z : F (z) ≥ ζ} and a µ ∈ R+ satisfying (51)—(52). Set p :=
µ supt∈T (∂f/∂z) (t, 0). Then p ≥ µ (∂f/∂z) (t, z) for every t ∈ T and z ∈ R+, and so

p (t) > p⇒ z (t) = 0 ≤ EssInf (z)

which means that (22) holds even for δ = 0. (To prove it only for δ > 0, which is all that
is required, it would suffice to assume supt∈T (∂f/∂z) (t, 0) < +∞ for every z > 0.)
Proof of Lemma 20. This uses parts of the Hardy-Littlewood-Pólya Theorem,

which characterises the majorisation order ≺HLP, abbreviated to ≺ (defined below).
Take any q ∈ RG, y ∈ Y (q) and any z ∈ L0 with the same distribution as y, i.e.,

σ ◦ z−1 = σ ◦ y−1 (so z ∈ L∞). Since y and z have the same distribution (w.r.t. σ), there
is a σ-doubly stochastic (d.s.) linear operator34 D: L∞ → L∞ with z = Dy: see [31,
Theorem 1]. Use (23) to choose (y0, q0) ∈ Y0 and (y00, q00) ∈ Y00 with y = y0 + y00 and q
= q0 + q00. Since D is d.s., Dy0 ≺ y0 ∈ Y0 (q0): see, e.g., [3, 4.9] or [31, Theorem 3].
It follows that Dy0 ∈ Y0 (q0). This step uses a characterisation of symmetry in terms

of ≺, which is the partial nonstrict preorder (a reflexive and transitive binary relation)
defined on L1 (T ) by: w ≺ x if and only if

R τ

0
w↓ (t) dt ≤

R τ

0
x↓ (t) dt for every τ ∈

[0,σ (T )], with equality when τ = σ (T ).35 (For x↓, see Definition 5.) Denote the set of
all functions on T majorised by x by

maj (x) := {w : w ≺ x}

and denote the set of those functions equidistributed (a.k.a. equimeasurable) to x by

eqd (x) :=
©
w : σ ◦ w−1 = σ ◦ x−1

ª
.

If x ∈ L∞ (T ) and σ is nonatomic, then maj (x) is convex and w (L∞, L1)-compact, and
it is the w (L∞, L1)-closed convex hull of eqd (x): see, e.g., [3, 5.2].36 So a closed convex
S is symmetric if and only if the conditions w ≺ x ∈ S imply that w ∈ S. Applied to
Dy0, y0 and Y0 (q0) in place of w, x and S, this shows that Dy0 ∈ Y0 (q0).
Similarly, Dy00 ∈ Y00 (q00). Hence z = Dy0 +Dy00 ∈ Y (q).
Comment: For our purposes, the useful implication of symmetry is the similarity of

arrangement for p and y ∈ argmaxY(q) hp | ·i, by Lemma 9. Preservation of this property,
in summation, is simpler to prove than preservation of symmetry: if y maximises hp | ·i on
Y (q), use (23) to decompose it as in (24)—(25). Then, by (26) and the assumed property
of Y0 (q0) and Y00 (q00), both y0 and y00 are arranged similarly to p; and it follows that so
34A σ-d.s. operator is also known as a Markov operator with σ as an invariant measure.
35Roughly speaking, w ≺ x means that the distribution of w (w.r.t. σ) is “more concentrated about

the average” than the distribution of x.
36A stronger result is that eqd (x) is the set of all the extreme points of maj (x): see [32, p. 1026]. A

similar result holds for weak majorisation [11].
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is y = y0 + y00 (Remark 8). A similar argument, spelt out next, applies to the weaker
conditions.
Proof of Lemma 21. For all three parts of the lemma, given any q ∈ RG, any

p ∈ L1 (T ) and y that maximises hp | ·i on Y (q), use (23) to choose (y0, q0) ∈ Y0 and
(y00, q00) ∈ Y00 with y = y0 + y00 and q = q0 + q00, as in (24)—(25). This ensures (26). From
here on the proof depends on the part.
For Part 1, given also any t ∈ T and ² > 0, use (26) and the sub-symmetry of both

Y0 (q0) and Y00 (q00) to take H 0 ∈ N (t) and H 00 ∈ N (t) as in Definition 11 with y0 or y00
in place of y. Set H := H 0 ∩ H 00; then for σ-a.e. t1 and t2 in H, if ² + p (t1) < p (t2)
then both y0 (t1) ≤ y0 (t2) and y00 (t1) ≤ y00 (t2), and so y (t1) ≤ y (t2) by adding up. This
proves Part 1.
For Part 2, one extends the Proof of Corollary 16 by combining it with the decompo-

sition of y. Given also any t‡ ∈ T \ domess p, use (26) and the quasi-symmetry of Y0 (q0)
to take an α > 0 as in Definition 14 (with y0 in place of y). Fix any positive ² < α, and
use (26) and the sub-symmetry of Y00 (q00), to choose an H ∈ N (t‡) as in Definition 11
(with y00 in place of y). For every N ∈ N (t‡), by the quasi-symmetry of Y0 (q0), there
exist nonnull subsets, A1 and A2, of N ∩H with

ess sup
A1

y0 ≤ ess inf
A2
y0 (53)

²+ ess sup
A1

p < α+ ess sup
A1

p ≤ ess inf
A2
p. (54)

Since A1 ∪ A2 ⊂ H, it follows–from (54) and (11) applied to y00 ∈ Y00 (q00) in place of
y ∈ S–that

ess sup
A1

y00 ≤ ess inf
A2
y00.

Adding this to (53) and applying (49)—(50) completes the argument.
For Part 3, given also any δ > 0, use (26) and the pseudo-symmetry of both Y0 (q0)

and Y00 (q00) to take p00 and p0 such that, for a.e. t,

p (t) > p0 ⇒ y0 (t) ≥ EssSup (y0)− δ

2
and p (t) > p00 ⇒ y00 (t) ≥ EssSup (y00)− δ

2

and set p := max {p0, p00}. Then, for a.e. t,

p (t) > p⇒ y (t) = y0 (t) + y00 (t) ≥ EssSup (y0) + EssSup (y00)− δ ≥ EssSup (y)− δ

as required.
Proof of Example 23. Take any t ∈ T , ² > 0 and p ∈ L1 (T ) such that x

minimises hp | ·i on S (so p ≥ 0). If p = 0, there is nothing to prove. If p 6= 0, then (since
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EssInf (ex) > 0) there is a (unique) scalar eλ > 0 such that, for a.e. t ∈ T ,37
eλp (t) = ∂u

∂x
(t, ex (t)) . (55)

Since EssInf (ex) > 0, Corollary 43 applies to M = ∂uh/∂x with x := EssInf (ex) and x
:= EssSup (ex); so for every t ∈ T and ² > 0 there exist a number δ > 0 and an H ∈ N (t)
such that: for each h, every t0 and t00 in H and every x0 and x00 in [x, x] ⊂ R++

x0 < x00 + δ ⇒ ∂u

∂x
(t0, x0) >

∂u

∂x
(t00, x00)− eλ².

From this and (55), for a.e. t0 and t00 in H,

ex (t0) < ex (t00) + δ ⇒ p (t0) =
1eλ ∂uh

∂x
(t0, ex (t0)) > 1eλ ∂u

∂x
(t00, ex (t00))− ² = p (t00)− ².

In other words, for a.e. t0 and t00 in H,

²+ p (t0) ≤ p (t00)⇒ ex (t0) ≥ ex (t00) + δ

which proves (28).
Proof of Theorem 26. Recall that T has a countable base of open sets which

are σ-nonnull. So, by Corollary 41, it suffices to show that ess p? exists everywhere on
T . Suppose contrarily that there is a t ∈ T \ domess p?. Since y? maximises hp? | ·i on
Y (q?), use the quasi-symmetry of Y (q?) to choose a number α > 0 as in Definition 14.
Fix also any positive ² ≤ α.38 Since x?h minimises hp? | ·i on S (x?h,m?

h,4h),39 use the
strong sub-symmetry of this set to choose a number δ > 0 and an H ∈ N (t) such that,
for each h and for σ-almost every t0 and t00 in H,

²+ p? (t0) < p? (t00)⇒ x?h (t
0) ≥ x?h (t00) + δ. (56)

Fix any positive number β ≤ δ. By the continuity of xEnh , there is an I ∈ N (t) such that
for a.e. t0 and t00 in I, and for each h,¯̄

xEnh (t0)− xEnh (t00)
¯̄
< β ≤ δ. (57)

37To prove (55), use the formula for the normal cone to a superlevel set of a continuous concave
function: see, e.g., [21, 4.3: Proposition 2]. (Slater’s Condition holds here because u is increasing in x;
and U is norm-continuous at ex because EssInf (ex) > 0.) This shows that p ∈ λ−1∂U (ex) for some λ > 0;
and the formula for ∂U–given in [29, Corollary 2C] and [21, 8.3: Theorem 3]–completes the argument.
(Here ∂U reduces to ∇U .) It also follows that p À 0. Alternatively, the FOC for an expenditure
minimum can be deduced from the FOC for a utility maximum, i.e., from Lemma 27 with G = 0 and
Remark 28 (which applies here because hp | exi > 0).
38The value ² = α will do, but a smaller ² dispels any impression that the argument “hangs by a

thread”, in the sense of relying on the contradiction between a strict inequality a < b and the reverse
inequality a ≥ b. The same goes for the choice of a β ≤ δ.
39With 4h locally nonsatiated, utility maximisation implies expenditure minimisation: see Remark 28.
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By the quasi-symmetry of Y (q?)–i.e., by (17)—(18) applied to N = H ∩ I–there exist
σ-nonnull sets A0 ⊂ H ∩ I and A00 ⊂ H ∩ I with

ess sup
A0
y? ≤ ess inf

A00
y? (58)

α+ ess sup
A0
p? ≤ ess inf

A00
p?. (59)

From this and (56) it follows that, for each h,

x?h (t
0) ≥ x?h (t00) + δ for a.e. t0 ∈ A0 and t00 ∈ A00 (60)

(i.e., for every t0 ∈ A0 \ Z and every t00 ∈ A00 \ Z, where Z is some σ-null set). Since y?
=
P

h

¡
x?h − xEnh

¢
, it follows from (57) and (60) that y? (t0) > y? (t00) for a.e. t0 ∈ A0 and

t00 ∈ A00; and a fortiori (since σ (A0) > 0 and σ (A00) > 0)

ess sup
A0
y? > ess inf

A00
y?.

This contradicts (58) and thus proves that domess p? = T .
Proof of Lemma 27. One way to derive (36) is to use the FOC of smooth

optimisation, after extending u (t, ·,m), if possible, to a differentiable function on the
whole of R. A more general method, which applies also when u is nondifferentiable in x,
is the Kuhn-Tucker Condition of convex optimisation. (This does not require a concave
extension of u (t, ·,m) beyond R+, so it applies also when ∂u/∂x% +∞ as x& 0, as is
assumed from (39) on.) For an (ex, em) ≥ 0 to be a maximum point it is necessary (and
sufficient) that there exists a (λ, µ, ν) ∈ R++×L∞∗+ ×RG+ such that, with b∂ denoting the
superdifferential,40

(λp− µ,λr − ν) ∈ b∂x,mU (ex, em) (61)

hp | exi+ r · em =M (62)

µ is concentrated on {t ∈ T : ex (t) ≤ ²} for every ² > 0 (63)

ν · em = 0. (64)

(See, e.g., [30, Examples 4’, 4”], where [30, (8.12)] implies, through [30, Theorems 18 (a)
and 17 (a)], “the strong form of the Kuhn-Tucker Theorem”, i.e., the equivalence in [30,
Corollary 15A], so that every primal optimum is “supported” by a dual optimum. And,
withM > 0, the generalised Slater’s Condition of [30, (8.12)] is verified at, e.g., the point
(x,m) = (²1T ; ², . . . , ²): for a sufficiently small ² > 0, it meets the budget constraint
strictly, and it lies in the interior of L∞+ (T ) × RG+ for the supremum norm. Finally, λ
cannot be 0 because of nonsatiation, i.e., because u is increasing in x, andW is increasing
in U .) Obviously (61) implies that

λp− µ ∈ b∂xU (ex, em) = ∂W

∂U
b∂xU (ex, em) . (65)

40Since U is concave and W is concave and increasing, their composition U is also concave.
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From this and the formula for b∂xU given in, e.g., [29, Corollary 2C] and [21, 8.3: Theorem
3] it follows that (with em suppressed from the notation)

(λp− µ)CA (t) = λp− µCA (t) ∈ δb∂xu (t, ex (t)) for a.e. t ∈ T (66)

where δ := ∂W/∂U > 0, and µCA is the countably additive part of µ ∈ L∞∗ (in the
Hewitt-Yosida decomposition, for which see, e.g., [1, Appendix I: (26)—(27)] or [6, III.7.8]).
Since, for σ-a.e. t, the term µCA (t) /δ is nonnegative and actually vanishes unless ex (t) =
0, it can be absorbed into b∂xu (t, 0) = [(∂u/∂x) (t, 0) ,+∞), i.e., µCA/δ + b∂xu ⊆ b∂xu.
Thus (66) implies (35) with eλ := λ/δ. When ∂u/∂x = +∞ at x = 0, it follows thatexÀ 0 because b∂xu = ∅ at x = 0. When u is additionally differentiable w.r.t. x on R++,
Condition (35) simplifies to (36), since b∂xu (t, ex (t)) = {(∂u/∂x) (t, ex (t))}.
Proof of Remark 29. By Lemma 27, 0¿

P
h x

?
h = y

?.
Proof of Proposition 30. The idea is that a sufficiently high price would depress

the demand so much that it could not equal the supply, given that the output is then
close to its peak by pseudo-symmetry.
Since p? ≥ 0, it suffices to show that p? is bounded from above. By (36), for each h

there exists a λ∗h > 0 such that, for a.e. t ∈ T ,

λ∗hp (t) =
∂uh
∂x

(t, x∗h (t) ,m
∗
h) . (67)

Fix any positive numbers y and (xh) withX
h∈Ho

xh < y < EssSup (y
?)

and use (38) to define

p0 := max
h∈Ho

sup
t∈T

1

λ∗h

∂uh
∂x

(t, xh,m
?
h) < +∞.

By (67), with m?
h suppressed from the notation henceforth,

x?h (t) ≥ xh ⇒ p? (t) =
1

λ∗h

∂uh
∂x

(t, x?h (t)) ≤
1

λ∗h

∂uh
∂x

(t, xh) ≤ p0.

Since xEnh ≥ 0, it follows that for a.e. t

p? (t) > p0 ⇒ y? (t) ≤
X
h

x?h (t) <
X
h∈Ho

xh < y < EssSup (y
?) . (68)

Since y < EssSup (y?) and Y (q?) is pseudo-symmetric, there exists a p00 ∈ R such that,
for a.e. t,

p (t) > p00 ⇒ y (t) ≥ y. (69)
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Set p = max {p0, p00}. Then

p? (t) ≤ p for almost every t ∈ T (70)

because (68) and (69) contradict each other unless {t : p? (t) > p} is a null set.
Comments: When Y (q?) is symmetric, the Proof of Proposition 30 simplifies and

strengthens:

1. The number p0 itself is a bound on p?. This is because, in terms of the sets

A0 := {t ∈ T : p? (t) > p0} and A00 := {t ∈ T : y? (t) ≥ y}

the implication (68) means that ess supA0 y
? < y ≤ ess infA00 y?; and, since y? and

p? are similarly arranged (Lemma 9), it follows that

ess sup
A0
p? ≤ ess inf

A00
p? ≤ ess sup

A00
p? ≤ p0.

(The penultimate inequality holds because A00 is σ-nonnull, whilst the last inequal-
ity holds by (68) again.) This shows that

ess sup
t: p?(t)>p0

p? (t) ≤ p0

which cannot be–unless p? ≤ p0 a.e. (in which case A0 is null and the supremum
on A0 is −∞).

2. In the one-consumer case with xEn = 0, the number p0 (which depends on x)
becomes the exact upper bound on p? as x % EssSup (y?), since λ?p0 decreases
then to

inf
x: x<Sup(y?)

sup
t∈T

∂u

∂x
(t, x) = sup

t∈T
inf

x: x<Sup(y?)

∂u

∂x
(t, x) = sup

t∈T

∂u

∂x
(t,EssSup (y?)) = λ? EssSup (p?) .

Proof of Corollary 31. The idea is that a bounded price must mean a positive
minimum consumption rate (since the marginal utility becomes infinite at zero).
By Proposition 30 and uniformity of the divergence in (39), there is a constant xh > 0

with
∂uh
∂x

(t, xh) > λ?hEssSup (p
?) for every t ∈ T

(with m?
h suppressed from the notation). It follows that

x?h (t) > xh for almost every t ∈ T

since x?h (t) ≤ xh would imply that (∂uh/∂x) (t, x?h (t)) ≥ (∂uh/∂x) (t, xh) > λ?hp
? (t), which

contradicts (67).
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Proof of Corollary 32. This follows from Corollary 31 and Example 23.
Proof of Theorem 33. This follows from Theorem 26, since its strong sub-

symmetry assumption on preferences holds by Corollary 32.
Proof of Corollary 34. As is shown below, x?h has a variant

x̆?h: T → [xh, xh] = [EssInf (x
?
h) ,EssSup (x

?
h)] ⊂ R++

for which (67) holds everywhere on T , i.e.,

λ∗h ess p
? (t) =

∂uh
∂x

(t, x̆?h (t)) for every t ∈ T . (71)

(To see this, start from any variant x̆?h: T → [xh, xh], for which (71) holds for t outside of
some σ-null set Z. For any t ∈ Z choose a sequence tn ∈ T \Z with tn → t as n→ +∞,
then choose a limit point x of the sequence (x̆?h (tn)), and redefine x̆

?
h (t) as x. Since (71)

holds along the sequence tn, it also holds at t = limn tn because ∂uh/∂x and ess p? are
continuous by (37) and Theorem 33.)
Since uh (t, ·) is strictly concave, (71) can be inverted to give x̆?h as the composition

x̆?h (t) =

µ
∂uh
∂x

(t, ·)
¶−1

(λ∗h ess p
? (t)) for every t ∈ T . (72)

By (37), Lemma 44 applies toM = ∂uh/∂x withK = [xh, xh]; this shows that the function

(t, r) 7→
µ
∂uh
∂x

(t, ·)
¶−1

(r)

is continuous (in t and r jointly). Since ess p? is continuous on T by Theorem 33, it
follows from (72) that so is x̆?h (and also that x̆

?
h = essx

?
h).

Proof of Lemma 35. Given a p ∈ L1 [0, T ] and any t‡ ∈ [0, T ] \ domess p, take a
storage policy y that maximises the operating profit hp | ·i on YPS (−kPS). If kSt = 0 or
kCo = 0, then y = 0 and there is nothing to prove (since (17) holds by Remark 15). So
assume that kSt > 0 and kCo > 0. The stock trajectory associated with y is

s (t) = −
Z t

0

y (τ) dτ + max
t∈[0,T ]

Z t

0

y (τ) dτ (73)

(since the second summand is the initial stock required for s (t) never to fall below 0).
The sets of those times when the reservoir is empty or full or neither are

E := {t ∈ [0, T ] : s (t) = 0} (74)

F := {t ∈ [0, T ] : s (t) = kSt} . (75)

As we show in [15] and [18], there exists a function ψ on [0, T ]–which is the TOUmarginal
value of stock, dependent also on p and k of course–with the following properties:
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1. ψ is of bounded variation on the interval (0, T ), with ψ (0) := ψ (0+) and ψ (T )
:= ψ (T−) by convention.

2. ψ rises only on F and falls only on E. In formal terms, the sets F and E support,
respectively, the nonnegative and nonpositive parts of the signed Borel measure
defined by

dψ [t0, t00] := ψ (t00+)− ψ (t0−) (76)

for t0 ≤ t00, with ψ (0−) = ψ (T+) set equal to any number between ψ (0+) and
ψ (T−).41 In symbols, supp (dψ)+ ⊆ F and supp (dψ)− ⊆ E.

3. The optimum output is of the “bang-bang” type on the set {t : p (t) 6= ψ (t)}, i.e.,
for a.e. t ∈ [0, T ]

y (t) =

½
kCo if p (t) > ψ (t)
−kCo if p (t) < ψ (t)

. (77)

For simplicity choose variants of p and y which satisfy (77) for every t. There are
two cases, and each requires a different argument: “from prices to quantities” if ψ is
continuous, and “from quantities to prices” if ψ is discontinuous.42

Case 1: If ψ is continuous at t‡, take any α > 0 that is less than p (t‡) − p (t‡) if
p (t‡) and p (t‡) are finite. Fix any positive number β ≤ α and an I ∈ N (t‡) such that
|ψ (t)− ψ (t‡)| < β/2 for every t ∈ I. By Remark 15, for every N ∈ N (t‡) there exist
sets A0 ⊂ N ∩ I and A00 ⊂ N ∩ I, both of positive measure, with α + p (t0) ≤ p (t00) for
every t0 ∈ A0 and t00 ∈ A00. Suppose that y (t0) > y (t00) for some t0 ∈ A0 and t00 ∈ A00; then
of course y (t0) > −kCo and y (t00) < kCo, so p (t0) ≥ ψ (t0) and p (t00) ≤ ψ (t00). Hence the
contradiction

α ≤ p (t00)− p (t0) ≤ ψ (t00)− ψ (t0) < β ≤ α

which shows that actually y (t0) ≤ y (t00) for every t0 ∈ A0 and t00 ∈ A00. (This case includes
the cases of t‡ = 0 and t‡ = T , since at the endpoints ψ is defined by continuity, which
means one-sided continuity.)
Case 2: If ψ is discontinuous, at a t‡ ∈ (0, T ), then ψ (t‡−) 6= ψ (t‡+), so t‡ ∈ E ∪ F .

Consider, e.g., the case of ψ (t‡−) < ψ (t‡+), in which t‡ ∈ F . Take any positive α
< ψ (t‡+) − ψ (t‡−) and any positive ² ≤ ψ (t‡+) − ψ (t‡−) − α; fix an I ∈ N (t‡) such
that |ψ (t)− ψ (t‡−)| ≤ ²/2 for every t ∈ I ∩ (0, t‡) and |ψ (t)− ψ (t‡+)| ≤ ²/2 for every
t ∈ I ∩ (t‡, T ). Being full at t‡, the reservoir cannot be being discharged just before t‡ or
charged just after t‡. In formal terms, for every N ∈ N (t‡) it cannot be that y > 0 a.e.
on N ∩ I ∩ (0, t‡), i.e., y ≤ 0 on some nonnull set A0 ⊆ N ∩ I ∩ (0, t‡). A fortiori p ≤ ψ on
41So dψ has zero total mass on [0, T ], and dψ {0} and dψ {T} do not have opposite signs (in this

context, 0 and T can also be viewed as a single point of a circle).
42Case 2 cannot arise if p is continuous [15], but here the continuity of p must not be assumed (since

it is, of course, to be proved by using the present lemma).
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A0. Similarly, on some nonnull set A00 ⊆ N ∩ I ∩ (t‡, T ) one has y ≥ 0 and, hence, p ≥ ψ
on A00. So, for every t0 ∈ A0 ⊆ N and t00 ∈ A00 ⊆ N ,

p (t0) ≤ ψ (t0) ≤ ψ (t‡−) +
²

2
and p (t00) ≥ ψ (t00) ≥ ψ (t‡+)−

²

2

and therefore
p (t00)− p (t0) ≥ ψ (t‡+)− ψ (t‡−)− ² ≥ α.

This completes the proof, since y (t00) ≥ 0 ≥ y (t0) by the very choice of A0 and A00. (The
case of ψ (t‡−) > ψ (t‡+), in which t‡ ∈ E, is handled in a similar way.)
Comment: In Case 2, the Proof of Lemma 35 shows also that, for t‡ ∈ F ,

0 ≤ ψ (t‡+)− ψ (t‡−) ≤ p (t‡)− p (t‡) .
When the last inequality is strict, the choice of α for Case 2 can be improved: as in
Case 1, any α < p (t‡) − p (t‡) will do. For α > ψ (t‡+) − ψ (t‡−), this is shown as in
Case 1.
Proof of Theorem 36. By [1, Theorem 1] there is an equilibrium price system

with p? ∈ L∞∗+ . And actually p? ∈ L1, as we show in [19]. This proves Part 1.
For Part 2, we verify the assumptions of Theorem 26. Since each of the Yθ’s has

symmetric sections, so does their sum YTh (Lemma 20). Since YPS has quasi-symmetric
sections (Lemma 35), and YIU has sub-symmetric sections (by assumption), the total
production set has quasi-symmetric sections (Lemma 21). For households, strong sub-
symmetry at x?h is assumed. And x

En
h = 0 ∈ C+ [0, T ] trivially.

Proof of Lemma 37. The function ψ on [0, T ], introduced in the Proof of
Lemma 35, is bounded (since it is of bounded variation). By (77), if p (t) > Sup (ψ)
then y (t) = kCo ≥ EssSup (y). So (22) holds even with δ = 0 (and with p = Sup (ψ)).
Proof of Corollary 38. To show that p? is continuous, we verify the assumptions

of Theorem 33. As in the Proof of Theorem 36, the set YTh has symmetric sections
and YPS has quasi-symmetric sections. Additionally YIU has sub-symmetric sections
(Example 13), so the total production set has quasi-symmetric sections (by Parts 1 and 2
of Lemma 21). Also, both YPS and YIU have pseudo-symmetric sections (Lemma 37 and
Example 19); so the total production set has pseudo-symmetric sections (by Part 3 of
Lemma 21). Finally, xEnh = 0 for each h by assumption (so y?Th+ y

?
PS− z?, the electricity

output net of industrial consumption, is strictly positive by Remark 29).
By assumption, uh is increasing (in x), so p? À 0 by (36). Also, with uh strictly

concave (in x), x?h is continuous by Corollary 34. And Min (x
?
h) > 0 by Corollary 31.

B Lower and upper essential values

Assume that T is a (Hausdorff) topological space, and that σ is a measure on a sigma-
algebra, A, of subsets of T that contains the Borel sigma-algebra. Recall that L0 (T,σ)
is the vector space of all (σ-equivalence classes of) measurable R-valued functions on T .
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Definition 39 For every p ∈ L0 (T ), the lower essential value of p at t is

ess p (t) := sup
N∈N (t)

ess inf
N
p (78)

i.e., it is the supremum, on the neighbourhood system N (t), of the essential infimum of
p in any neighbourhood, N , of t. The upper essential value of p at t is

ess p (t) := inf
N∈N (t)

ess sup
N
p. (79)

The notations are abbreviated to p and p. Where p (t) and p (t) are equal and finite, their
common value is the essential value of p at t, denoted by ess p (t). Its domain is

domess p =
©
t ∈ T : −∞ < p (t) = p (t) < +∞

ª
.

Comments:

1. The essential values are literally functions (rather than equivalence classes).

2. For p ∈ L1, equivalent definitions of p, p and ess p are given in, e.g., [34, II.9: pp.
89—90].

3. ess infT p ≤ p (t) and p (t) ≤ ess supT p, with equality at some t ∈ T in each case.
So unless p ∈ L∞, both p and p are extended real-valued functions, from T into
R∪ {±∞}. But ess p is finite (on domess p).

4. The lower and upper essential limits are usually defined by means of pierced neigh-
bourhoods, i.e.,

ess lim inf
τ→t

p (τ) := sup
N∈N (t)

ess inf
N\{t}

p and ess lim sup
τ→t

p (τ) := inf
N∈N (t)

ess sup
N\{t}

p.

The limits are identical to the values (78)—(79) if σ {t} = 0. This is the case in
[4, IV.36—IV.37]–where σ = meas, and T is an interval of R. The one-sided, left
or right, essential limits are then defined as well. These are used in the theory of
stochastic processes to establish the continuity of sample paths.

5. If σ {t} > 0 (i.e., t is an atom for σ) then

ess p (t) = min
n
p (t) , ess lim inf

τ→t
p (τ)

o
and ess p (t) = max

½
p (t) , ess lim sup

τ→t
p (τ)

¾
.

6. The essential limit is the limit for the essential topology [4, p. 105].
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The following account of the key results on essential values combines those of [4,
IV.37] and [34, II.9: pp. 90, 91, 94].

Lemma 40 For every p ∈ L0 (T,σ):

1. The lower value p is lower semicontinuous, and the upper value p is upper semi-
continuous (each as a function from T into R∪ {±∞}).

2. If the topology of T has a countable open base, then p ≤ p ≤ p almost everywhere
on T (w.r.t. σ).

3. If every nonempty open subset of T is σ-nonnull, then p ≤ p everywhere on T .

So when the essential value of p exists everywhere on T , it is “automatically” contin-
uous, and it is a variant of p. (This is also stated in [28, Appendix: Lemma 5].)

Corollary 41 Assume that T has a countable base of open sets that are σ-nonnull. If
domess p = T , then ess p ∈ C (T ) and ess p = p almost everywhere on T (w.r.t. σ).

C Uniform continuity and inverse continuity

For a jointly continuous mapM on a product of two topological spaces, the implications
of compactness of one or both spaces are spelt out (for use in the Proofs of Examples 12,
13 and 23).

Lemma 42 Assume that T is a (Hausdorff) topological space, K is a metrisable compact
with a metric dK, and dR is a metric on a set R. Then any continuous mapM : T×K →
R is (jointly) continuous uniformly in the second variable; i.e., for every t ∈ T and
every number ² > 0 there exist a neighbourhood H of t and a number δ > 0 such that
for every t0 and t00 in H and for every x0 and x00 in K with dK (x0, x00) < δ one has
dR (M (t0, x0) ,M (t00, x00)) < ².

Comment: If T is, likeK, a compact metric space, then so is T×K; in which case every
continuous map M is uniformly continuous on T ×K (i.e., for every ² > 0 there exists a
δ > 0 such that, for every t0 and t00 in T and for every x0 and x00 in K, if dT (t0, t00) < δ and
dK (x

0, x00) < δ then dR (M (t0, x0) ,M (t00, x00)) < ²). This–joint continuity that is uniform
in both variables–is obviously stronger than the property established in Lemma 42.

Corollary 43 If a continuous function M : T × [x, x]→ R is nonincreasing in the second
variable (which ranges over a bounded closed interval of R), then for every t ∈ T and
² > 0 there exist a neighbourhood H of t and a δ > 0 such that for every t0 and t00 in H
and for every x0 and x00 in [x, x], if x0 < x00 + δ then ²+M (t0, x0) > M (t00, x00).
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When the inverse of M (t, ·) exists for each t, it is jointly continuous if the domain of
M is compact. This is a special case of the result stated in, e.g., [33, 5.9.1].

Lemma 44 Assume that both T and K are compact spaces, and M : T ×K → R is a
(jointly) continuous map into another (Hausdorff) topological space. If for each t ∈ T
the map Mt =M (t, ·) is invertible, then so is the map

T ×K 3 (t, x) 7→ (t,M (t, x)) ∈ T ×R. (80)

The inverse is defined, on the compact range of the map (80), by

(t, r) 7→
¡
t,M−1

t (r)
¢
∈ T ×K (81)

and it is also continuous. Hence the map (t, r) 7→M−1
t (r) is continuous.
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Figure 1: Short-run equilibrium of supply and (cross-price independent) demand for
thermally generated electricity: (a) determination of the price and output for each instant
t; (b) and (d) the trajectories of price and output; (c) the short-run cost curve (the integral
of S w.r.t. y).

48



Figure 2: Proof of continuity of short-run equilibrium price for electricity supplied by a
combined generation-and-storage system: the energy stock price ψ? cannot be discontin-
uous if the (cross-price independent) demand curve Dt is strictly decreasing; and if ψ

? (t)
is continuous in t, then so is the supply curve St and hence also p? (t).

49


