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Abstract

Koopmans’s approach to hydroelectric storage is reformulated for competitive profit
maximization, with electricity priced by time of use. Duality methods of linear programming
are applied to the problems of operation and rental valuation of a hydro plant and its river.
Both problems are approached by using time-dependent shadow-pricing of water, and if the
given market price for electricity (p) is a continuous function of time, then the shadow price
function for water (ψ) is shown to be unique. The two prices (ψ and p) determine not
only the optimal water storage policy but also the marginal values of the plant’s capacities,
defined as derivatives of the operating profit. In particular, the unit reservoir rent equals
the total positive variation of the water value (ψ) over the cycle. Profit-imputed values of
the river flow and of the hydro capacities (reservoir and turbine) are therefore definite–
unlike Koopmans’s cost-imputed values, derived from fuel savings in a mixed hydro-thermal
system. The marginal capacity values can be used to determine the optimum investment.
The model applies also to other natural flows, e.g., water supply and geothermal or tidal
energy.
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1 Introduction

In view of the economic significance of hydroelectric generation to many countries, the scale
of the investment it can entail, and the planning and operational difficulties it presents, it is
unsurprising that it is the subject of so much study by engineers, operations researchers and
economists. A common economic understanding should inform this work and, indeed, in his
1957 article [20], and again in his 1975 Nobel Lecture [21, pp. 262—263], Koopmans pointed to
the efficiency rents of the fixed inputs (river flow, reservoir and turbine) as the elements that
can underpin the various approaches. In fact, the models of different researchers have remained
largely separate,1 and this is because of the technical obstacles faced by economists in taking
their part of the project forward–for although Koopmans’s work is much cited, it has never
been used in practice or, until now, followed up in theory.

We recast Koopmans’s operation problem as one of competitive profit maximization, which
is the relevant setting for modern decentralized electricity supply industries. Several advances
in mathematical economics instruct our solution, and Koopmans’s continuous-time formulation
can now be handled as part of a general equilibrium problem in an infinite-dimensional com-
modity space. The framework we use is the adaptation of Bewley’s equilibrium model [13] that
we have developed to investigate Boiteux’s conjectures on the peak-load pricing of electricity
[5, 3.4 and 3.3.3]. Koopmans’s scheme, like Boiteux’s, is marginalist, and both encounter the
problem of nondifferentiability of joint cost functions. We employ subdifferentials to describe
multi-valued derivatives and have worked out generalizations of the smooth-calculus results that
economists commonly use, including a subdifferential version of the Wong-Viner Envelope The-
orem on the equality of short-run and long-run marginal costs [16].2 The short-run approach to
long-run general equilibrium that we have devised in [16] is the wider conceptual setting for this
paper. This is because a key element of the short-run approach is the profit-based valuation of
capital inputs.

Koopmans undertakes the task of minimizing the operating cost of an entire electrical sys-
tem by constructing a water storage plan for the hydro-plant operation that minimizes the fuel
cost incurred by the thermal generating plant in producing a given output of electricity. From
this operating solution he imputes time-of-use (TOU) values both to electricity (p) and to water
(ψ), and thence the two hydro capacities, viz., the reservoir and the generator. These shadow
prices enable him to verify that his water storage plan is optimal. His objectives are of partic-
ular interest to a centralized utility (with a predominantly thermal system) that seeks efficient
utilization of its plant and needs to calculate the marginal costs of electricity in its system.
However, he adds greatly to his difficulties by setting out to infer all the values associated with
the hydro plant (the shadow prices of electricity, water and the hydro capacities) in one fell
swoop. As we show in [16], it is much simpler to split the complex problem of simultaneous

1 In [12, Sections 5 and 6], we discuss Koopmans’s analysis in more detail, and we review other work on cost
minimisation for a hydro-thermal system, including [7, Chapters 5 and 6], [19] and [22]. See also the overview in
[1, pp. 277—282]. A more recent operational study of hydro in [3], [9] and [23] is set up as a profit maximisation
problem for a single hydro plant, but it concentrates entirely on operation and does not address the economic
questions of valuation and investment (it makes no use of the dual solution ψ, except as a tool for deriving the
primal operating solution, and does not point to the interpretation of ψ as the marginal value of water).

2See also [10] for subdifferentiation of symmetric functions, such as the thermal generation cost (as a function
of the output bundle).
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valuation of both outputs and fixed inputs into subproblems, one of which entails short-run
profit calculations–even though profit maximization may not be the explicit operational ob-
jective.3 Furthermore, Koopmans’s method has little or no place in today’s largely deregulated
and decentralized supply industry in which each plant aims, in the face of a time-dependent
market price for electricity p (t), to maximize its own profit (as opposed to participating in the
collective cost-minimizing operation of a system of plants).

Having profit maximization as the optimizing principle not only allows us to address the
problems of a decentralized supply industry (as well as those of a centralized utility), but also
it facilitates a full and simple solution. In particular: (i) profit-maximizing hydro operation
and the dual problem of valuation can be handled (in the case of a constant hydrostatic head)
by means of linear programmes (LPs), rather than the convex programmes (CPs) needed for
Koopmans’s cost minimization; (ii) one can depict simply the solutions to the operation and
valuation LPs, which is not possible with Koopmans’s operation CP or its dual;4 and (iii) profit-
imputed values of the hydro capacities and the river flow (i.e., their marginal contributions to
the operating profit) turn out to be fully determinate–unlike Koopmans’s cost-imputed values
of the hydro inputs (i.e., the marginal savings on the thermal operating cost).

In our setup, the TOU electricity value p (t) is a given market price; it is not an imputed
shadow price as in Koopmans’s analysis. Given p, we impute an optimal TOU value, ψ (t), to
water (or, more precisely, to the water’s potential energy). This essentially solves the operation
problem (Section 8): the hydro plant is operated just like a thermal plant with a time-varying
“fuel” price ψ (t). It makes sense, then, to value a hydro plant’s capacities by their marginal
contributions to the maximum operating profit, a.k.a. short-run profit ΠHSR. These rents can
be expressed in terms of the electricity and water values p and ψ (Theorem 9). For a hydro
plant with a constant head, the shadow price for water (ψ) can be determined from a linear
programme (21)—(27) that is dual to the LP of profit-maximizing operation (13)—(17).5 By
using the dual constraints to eliminate the dual variables other than ψ, the dual is reformulated
as a convex but unconstrained programme of shadow pricing the water (33)—(35). This leads
to a simple characterization of the solution: the optimal ψ is obtained from p by “shaving off”
the local peaks of p and “filling in” its troughs, and the optimal output (y) follows from this
(Section 3, Figures 1a and 1b).

3 In terms of the sub- or super-differential, ∂ or ∂–a generalised, multi-valued derivative of a convex or concave
function–the split calculation uses the rule: (p,−r) ∈ ∂y,kCSR (y, k) if and only if both p ∈ ∂yCSR (y, k) and
r ∈ ∂kΠSR (p, k), where CSR is the operating a.k.a. short-run cost as a function of the output bundle y and
fixed-input bundle k, and ΠSR is the operating profit as a function of k and the output price system p. If the
joint marginal values are nonunique (i.e., ∂y,kCSR is multi-valued because CSR is nondifferentiable) then, for
a p ∈ ∂yCSR (y, k), the set ∂kΠSR (p, k) is generally a proper subset of −∂kCSR (y, k), and it may even be a
singleton (in which case the ordinary gradient vector ∇kΠSR exists): indeed, this is so in Theorem 9. That is
why ∂y,kCSR does not factorise into the Cartesian product of ∂yCSR and ∂kCSR, and why its calculation in terms
of partial subdifferentials requires the function ΠSR (which is, by definition, a partial convex conjugate of CSR).
Like all results on marginal values of optimisation programmes, the splitting of ∂y,kCSR can be reformulated in
terms of programme solutions (in particular, any r from ∂kΠSR can be obtained from the fixed-input valuation
programme that is dual to the profit-maximising operation programme). This is also spelt out in [16].

4Since Koopmans does not do so, we state the dual CP in our review of his work in [12].
5The dual is the problem of minimising the plant’s value subject to the constraints that decompose the given

price p (t) into the sum of values of the plant’s capital services (κ) and the Lagrange multipliers (ν) for the
nonnegativity constraints on water stock and electricity output (plus a constant, λ).

3



This last insight also makes it easier to identify a critical case of the dual solution: the
imputed TOU value of water (the function ψ) is unique if the given TOU electricity price (p)
is a continuous function of time (Lemma 8).6 It then follows that the capital inputs (reservoir
and turbine) also have definite marginal values (∂ΠHSR/∂kSt and ∂ΠHSR/∂kTu). This is not so
in Koopmans’s cost-minimum framework because he has to value both flows (electricity and
water), and the shadow-price pair (p and ψ) is typically indeterminate (although, as our result
shows, for each continuous p there is just one ψ). With competitive profit maximization, the
output price (p) is unique simply because it is treated as given, and although a fixed-input’s
shadow price (ψ) might still be indeterminate, this possibility can be excluded by a problem-
specific argument (which in our case consists in examining the structure of Lagrange multipliers
for the capacity constraints). This is a major advantage of the profit approach.

The imputed values of the hydro capacities and the river flow are useful in making investment
decisions, whether to expand an existing plant or to develop a new hydro site. This is an end
Koopmans envisaged for his cost-imputed values, but their nonuniqueness causes complications
because, for example, it means that the incremental value of investment becomes nonadditive
(superadditive) when two or more hydro inputs are being varied. Such calculations are made
much simpler by using the profit-imputed values: being unique, they can be simply equated
to the corresponding marginal costs of investment to determine the optimal capacities. Also,
the dual LP (or the equivalent unconstrained CP) gives a simple and direct way of imputing
the values. By contrast, Koopmans’s values are derived from a tortuous operating solution.
They do serve his immediate purpose–to verify the cost-optimality of his storage plan–but
the nonuniqueness of his values is an obstacle to their use in practical investment planning.

Time-continuity of the electricity price (p) is not only a natural assumption to make; it is
also one that we verify for competitive equilibrium in the commodity space of bounded functions
of time [15], where the price function is proved to be continuous for a class of problems that
includes peak-load pricing with storage.7

Section 2 describes the hydro technology. Formal analysis (with proofs in the Appendix)
is preceded by heuristics, in Section 3. In Sections 4 and 5, the short-run profit maximum
problem and its dual are set up as linear programmes (LPs) which are doubly infinite: with
continuous-time dating of commodities, the primal (13)—(17) contains continua of output and
input variables (electricity y and river flow e) as well as continua of dated capacity constraints
(on the electricity flow y and on the water stock s). The primal and the dual are shown to
be soluble, and their (optimal) solutions are described in Section 6. In Section 7, the dual LP
is reformulated as an unconstrained CP of shadow-pricing the water. In Sections 8 and 9, the
optimal water price (ψ̂) is shown to be unique if the given electricity price p is continuous over
time; and formulae are given, in terms of p and ψ̂, for the optimal output (ŷ) and for the profit
derivatives that represent the marginal values of the reservoir and the turbine (∂ΠHSR/∂kSt and
∂ΠHSR/∂kTu). Their use in investment calculations is also sketched. Finally, Section 10 indicates
the changes needed when the policy of pure “coasting” (y = e) is infeasible (i.e., when e £ kTu);
the hydro plant’s operation may then necessitate spillage.

6Continuity over time is the only assumption on p that can, by itself, guarantee uniqueness of the imputed
values of water and the hydro capacities (see [11] for a counterexample when p is a discontinuous step function
and so time is effectively a discrete variable).

7The application to pumped storage is fully worked out in [15]; the case of hydroelectric storage is similar.
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In [17], we extend the analysis, and especially the valuation method, to the case of a variable
head. This requires the use of a controlled differential equation, and the optimization problem
becomes nonlinear (although it remains convex). Another reason for presenting that case sepa-
rately is that the “hydro” technology has other interpretations, in which there is no equivalent
of head variability. For example, the model herein is applicable to water supply (when priced
by TOU), as well as to other natural energy flows (e.g., geothermal or tidal).

2 Hydro technology

Hydro generation produces electricity, a nonstorable good with a cyclical demand and price,
from a storable input of water.8 We assume that a water stock, up to the reservoir’s capacity ,
kSt, can be held at no running cost (or loss of stock). Water is stored at a height, called the head,
which determines its potential energy. This is converted first to kinetic energy in penstocks (the
conduits carrying water down from the reservoir to turbines), and then to electrical energy by a
turbine-driven generator (or “turbine” for brevity). In [17], we deal with the variable-head case,
but a constant head is assumed here (as a good approximation for high-head plants). Therefore
the energy stock s (t) is always in a constant proportion to the stored water volume, and it can
be referred to as “water”. Similarly, the rate of river inflow, e (t), can be measured in terms of
power (instead of volume per unit time).9

The turbine-generator’s technical efficiency is also taken to be constant.10 The water stock
can therefore be measured as the output it actually yields on conversion (i.e., in kWh of electrical
energy). The turbine capacity, kTu, is its maximum output rate (in kW of electrical power),
i.e., in unit time a unit turbine can convert a unit of stock into a unit of output.

The river inflow e is taken to be known with certainty. It varies periodically over time, and
a common cycle for the water inflow and the electricity price is represented by an interval [0, T ]
of the real line R. The cycle is generally a year because of seasonal variation, i.e., T = 8760
hours. The inflow function e is usually continuous, but it suffices to assume that e is essentially
bounded.

Definition A real-valued measurable function e: [0, T ] → R is essentially bounded, with re-
spect to the Lebesgue measure (meas), if e is bounded on [0, T ] \N for some set N with
measN = 0. Functions which are equal almost everywhere (a.e.)–i.e., differ only on a
set of measure zero–are identified with each other. The vector space of all the equiva-
lence classes of essentially bounded functions is denoted by L∞ [0, T ]. It is normed by the

8The model applies also to electricity generation from geothermal energy, and it can be adapted to tidal
energy (although this requires changes because a tidal plant cannot generate at all times in the ebb-flow cycle).
The model applies also to the supply of other goods, such as water (when priced by TOU): in that case, the
inflow e (t) is the rainfall collected in reservoirs, and its conversion to the consumable good consists in water
purification and pumping to users.

9For example, with a penstock efficiency of 98% and a turbine-generator’s efficiency of 85%, a cubic metre of
water at a height of 100m yields 103 × 9.81 × 102 × 0.98 × 0.85/ 3600× 103 ≈ 0.227 kWh of electric energy,
and a river inflow of 1000m3 / s is equivalent to 103 × 9.81× 102 × 0.98× 0.85 ≈ 817 MW (the factor 9.81 is the
Earth’s gravity in m / s2).
10 In reality the equipment is not perfectly divisible, and a turbine’s efficiency varies with the load (typically

between 85% and 95%). A generator’s efficiency is a constant of ca. 95%.
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Role in prog-
ramme pair

Variable Notation Unit

Price data
(dual
parameters)

electricity price
at time t

p (t) $/kWh

Quantity
data
(primal
parameters)

reservoir capacity
water-stock floor
turbine capacity
electr. output floor
river inflow rate at t
top-up of stock

kSt (t) = const.
nSt (t) = 0

kTu (t) = const.
nTu (t) = 0
e (t)
ζ = 0

$/kWh
kWh
kW
kW
kW
kWh

Quantity
decisions
(primal
variables)

hydroelectric output
(water discharge
rate) at time t
water stock
at time 0 or T

y (t)

s0

kW

kWh

Derived
quantities

water stock at time t
rate of outflow from
reservoir at time t

s (t) := s0 −
R t
0 y (τ) dτ

f (t) := y (t)− e (t) kWh

Shadow
prices
(dual
decision
variables,
paired
to primal
parameters)

unit reservoir value
on interval length dt
value of stock floor
(nonnegativity)
unit turbine value
at time t
value of output floor
(nonnegativity)
water value at time t
water value at 0 or T

κSt (dt)

νSt (dt)

κTu (t)

νTu (t)

ψ (t)
λ

$/kWh

$/kWh

$/kWh

$/kWh

$/kWh
$/kWh

Derived
valuations

total reservoir rent
for whole cycle [0, T ]
total turbine rent

κSt [0, T ] =
R T
0 κSt (dt)R T

0 κTu (t) dt

$

$

Table 1: Notation. Some functions of time (kSt, etc.) are equated to constants. This indicates
that they are constants in the original, unperturbed programme, but are perturbed with time-
varying increments (∆kSt (t), etc.) to interpret the time-dependent dual variables (∆κSt, etc.).
The duality scheme (Section 5) similarly uses a nonzero increment ∆ζ to ζ = 0 (paired with
the dual variable λ). NB: ψ (t) = λ + (κSt − νSt) [0, t) by a constraint of the dual (valuation)
LP. Also, Section 10 uses an extra primal variable σ to denote spillage.
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supremum norm

kek∞ = EssSup |e| = ess sup
t∈[0,T ]

|e (t)| := inf
N :measN=0

sup
t∈[0,T ]\N

|e (t)| .

For the use of L∞ as a commodity space in an equilibrium model of peak-load pricing,
see [13] and [15]. For some other uses of L∞, with a general underlying measure (instead
of meas), see [4].

The hydro plant’s output rate is also a periodic function, yH (abbreviated to y). A storage
policy generally consists of an output y (t) ≥ 0 and a spillage σ (t) ≥ 0. However, except in
Section 10, spillage is excluded by the assumption that kTu ≥ e. This makes it feasible for the
plant to “coast”, i.e., to generate at a rate y (t) equal to the inflow rate e (t). It also means
that all the incentive to use the reservoir comes from a time-dependent output price: if p were
a constant, the plant might as well coast all the time.

The net outflow from the reservoir is the signed function

f = y − e+ σ (1)

and the stock, s (t) at time t, is an absolutely continuous function on [0, T ] that satisfies the
evolution equation ṡ := ds/dt = −f . This can be restated as

s (t)− s (0) = −
Z t

0
f (τ) dτ :=

Z t

0
(−y + e− σ) (τ) dτ . (2)

So s is actually a Lipschitz function, since kTu ≥ y ≥ 0 a.e., and since both e and σ are also
bounded (by assumption).

The space of all continuous functions C [0, T ], which contains the Lipschitz functions, is
normed by the maximum norm

ksk∞ = Max |s| = max
t∈[0,T ]

|s (t)| .

Its norm-dual C∗, which serves as the price space for the services of storage capacity, is identified
as the space of all (signed, finite) Borel measuresM [0, T ] by means of the bilinear form

hµ, si :=
Z
[0,T ]

s (t)µ (dt)

for s ∈ C and µ ∈M (Riesz’s Representation Theorem).

Definition A (signed, finite) Borel measure on [0, T ] is a countably additive real-valued set
function on the Borel sigma-algebra; i.e., it is a µ: B [0, T ] → R with µ (

S∞
m=1Bm)

=
P∞
m=1 µ (Bm) for every sequence of pairwise disjoint sets Bm ∈ B [0, T ]. The vector

space of all Borel measures on [0, T ] is denoted by M [0, T ]. For some of its uses in
optimization, see, e.g., [2] and [18].
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The available capacities are taken to equal the installed capacities, and therefore to be
constant over the cycle. This does play a part in some of the main results, including the
determinacy of rental values (Lemma 8 and Theorem 9). However, to take full advantage of
sensitivity analysis, the constant existing capacities k are perturbed with increments ∆k which
are periodic functions of time; this is further explained in Section 5. (The notation ∆k, etc., is
always to be interpreted as a single symbol meaning “an increment to k”.)

On the assumption of constant hydro capacities

kH = (kSt, kTu) ,

the long-run (LR) production set of the hydro technique is the convex cone11

YH :=
©
(y,−kH,−e) ∈ L∞+ [0, T ]×R2− × L∞− [0, T ] : 0 ≤ y ≤ kTu and

∃s ∃σ ∈ [0, e] (ṡ = −y + e− σ, s (0) = s (T ) and 0 ≤ s ≤ kSt)} . (3)

The formulation imposes the periodicity or balance constraint s (T ) = s (0), but this stock level
at the beginning or end of a cycle is taken to be a costless decision variable. In other words,
when it is first commissioned, the reservoir comes filled up to any required level at no extra
cost, but its periodic operation thereafter is taken to be a technological constraint.12

Thus our formulation is purely cyclic, unlike that of Koopmans [20, p. 196], which has
separate initial and final stock levels (as data, not decisions). Another “purely cyclic” alternative
is to regard the initial and final stock levels as equal but given, not chosen: this is so in, e.g., [3].
But if this level is arbitrary, there is no good reason to keep it for the start of the next period,
and it would not be optimal to do so: generally, with a multi-period planning horizon, it would
be best to build the level of s (0) = s (T ) up, to a long-term “turnpike” optimum (running a
surplus or deficit over a number of cycles), and then keep it approximately the same. Such a
long-run solution is likely to be approximated better by optimizing over s (0) = s (T ) than by
fixing it at a particular level.

3 Heuristics for valuation of water and capacities

To start with, assume that not only the market price of electricity, p (t), but also the shadow
price of water, ψ (t), is known.13 Then the operating decisions can be decentralized within the
hydro plant, with the reservoir “buying” water at the price ψ (t) from the river and “selling” it
to the turbine, which in turn sells the generated electricity at the market price p (t) outside the
11The constraint on spillage σ ≤ e is actually never binding: see Section 10.
12 It is easy to add a given price q > 0 for the use of an initial stock (keeping the periodicity constraint), and

to give an upper bound on q. The analysis remains the same except that ψ (0)− ψ (T ) equals q instead of zero,
if p (0) = p (T ). And, since the minimum time required to build the stock up to any sustainable level is never
more than one cycle (and is usually less), a reasonable q times the optimum of s (0) = s (T ) cannot exceed the
interest on a period’s operating profit as calculated from the present model (in which q = 0).
13When ψ is formally introduced, as the Lagrange multiplier paired with the parameter e, it is by definition

the price of the inflowing water. However, it must equal the price of water stored for hydro generation because,
by assumption, there is no alternative use. This is why the inflow’s price cannot exceed that of the stock. The
reverse inequality is obvious.
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plant. The short-run profit maximization separates into problems with obvious solutions, one
for each kind of capacity. The maximum profits of the reservoir and the turbine, ΠSt (ψ, kSt)
and ΠTu (p− ψ, kTu), are both linear in k. A unit turbine can earn the profit flow (p− ψ)+,
which is the nonnegative part of p− ψ, by generating when p (t) > ψ (t). The profit is earned
only at the times of full capacity utilization, since the optimum output is yH (t) = kTu when
p (t) > ψ (t): see Figures 1a and 1b. In total over the cycle, the value of a unit turbine is
therefore ΠTu/kTu =

R T
0 (p (t)− ψ (t))+ dt. As for the reservoir, a unit can earn a profit of

ψ (τ)− ψ (τ) by buying stock at time τ and selling it at a later time τ when ψ (τ) > ψ (τ). So
the value of a unit reservoir is the sum of all shadow price rises in a cycle. In precise terms: if
ψ (T ) ≥ ψ (0), then ΠSt/kSt = Var+ (ψ), which denotes the total positive variation (a.k.a. upper
variation) of ψ, i.e., the supremum of

P
m (ψ (τm)− ψ (τm))

+ over all finite sets of pairwise
disjoint subintervals (τm, τm) of (0, T ). (For a discussion of Var

+ see, e.g., [8, Section 8.1].)
If ψ (T ) < ψ (0), the reservoir should start the cycle full, and refill towards the end of the

cycle. This brings an extra profit of ψ (0) − ψ (T ), so in general the unit rent is the cyclic
positive variation

Var+c (ψ) := Var
+ (ψ) + (ψ (0)− ψ (T ))+ . (4)

Later it is shown that actually ψ (0) = ψ (T ) if p (0) = p (T ) and p ∈ C [0, T ].
The maximum operating profit of the whole hydro plant (ΠHSR) is, however, a function not

of ψ but of the problem’s parameters (p, kH, e) alone: ψ is an auxiliary function which must
eventually be given in terms of (p, kH, e). Then ∂ΠHSR/∂kSt and ∂Π

H
SR/∂kTu can be obtained by

substituting the correct ψ into the expressions Var+c (ψ) and
R T
0 (p (t)− ψ (t))+ dt.

The correct value, ψ̂, is the water price function that minimizes the value of the hydro plant’s
fixed resources (kH, e). So, given a TOU electricity price p, one can find ψ̂ by unconstrained
minimization of

kStVar
+
c (ψ) + kTu

Z T

0
(p (t)− ψ (t))+ dt+

Z T

0
ψ (t) e (t) dt (5)

over ψ, an arbitrary bounded-variation function on (0, T ).
In the case of kTu > e (t) > 0 for every t, the sum of the two integrals in (5) has a minimum

at (and only at) ψ = p.14 Therefore the main feature of this programme is the trade-off between
minimizing the variation (which on its own would require setting ψ at a constant value) and
minimizing the integrals (which on its own would require setting ψ equal to p). From this
trade-off it is clear to what extent the local peaks of p should be “shaved off” and the troughs
“filled in” to obtain the optimum shadow price ψ̂–at least in the case that the market price p
is piecewise strictly monotone and kTu > e > 0 at all times. (An extension dispensing with the
upper bound on e is sketched in Section 10.) The solution, presented graphically in Figure 1a,
is determined by constancy intervals of ψ̂, on each of which p (t) − ψ̂ has a constant sign. If
14This is proved by subdifferentiating, w.r.t. ψ, the two terms VTu (ψ) := kTu

T

0
(p− ψ)+ dt and VRi (ψ) :=

T

0
ψedt. For a rigorous proof, consider V = VTu + VRi as a convex and k·k1-continuous function on L1 [0, T ].

It has a minimum at a ψ if and only if 0 ∈ ∂V (ψ) ⊂ L∞ (i.e., the zero function belongs to the subdifferential,
a.k.a. the set of all subgradients, of V at ψ). And g ∈ ∂VTu (ψ) if and only if: g = kTu a.e. on {t : ψ < p},
kTu ≥ g ≥ 0 a.e. on {t : ψ = p}, and g = 0 a.e. on {t : ψ > p}. Also, ∇VRi = e. Since kTu > e > 0 a.e., it follows
that 0 ∈ ∂V (ψ) if and only if ψ = p a.e.
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kSt/Min (e) and kSt/ (kTu −Max (e)), upper bounds on the times needed to fill up and to empty
the reservoir, are sufficiently short, then the constancy intervals do not abut. Around a trough
of p, there is an interval

¡
t, t
¢
characterized by

kSt =

Z t

t
e (t) dt (6)

on which p (t) < ψ̂ throughout. Around a local peak of p, there is an interval
¡
t, t
¢
characterized

by

kSt =

Z t

t
(kTu − e (t)) dt (7)

on which p (t) > ψ̂ throughout. These are the first-order conditions (FOCs) for the dual
optimum: (6) or (7) is obtained by equating to zero the increment in the minimand (5) that
results from shifting the constant value of ψ by an infinitesimal unit, on an interval around a
peak or a trough of p.15 These conditions make it feasible to produce the “bang-coast-bang”
output (viz., y (t) = kTu when ψ̂ (t) < p (t), y (t) = e (t) when ψ̂ (t) = p (t), and y (t) = 0 when
ψ̂ > p): the reservoir goes alternately from empty to full and vice versa (Figures 1b and 1c).
This is the optimal output.

The same marginal calculation for the dual problem also shows that an optimum ψ can
be nonunique if p is discontinuous. Suppose, for example, that p jumps at the beginning, and
drops at the end, of an interval A =

¡
t, t
¢
meeting (7) and the condition

max
©
p (t−) , p ¡t+¢ª < min©p (t+) , p ¡t−¢ª = inf

t∈A
p (t) . (8)

Just before t and just after t, an optimal ψ equals p, i.e., ψ (t−) = p (t−) and ψ
¡
t+
¢
= p

¡
t+
¢
.

Inside A, p > ψ = const.; but an optimal constant value of ψ on A can be anywhere between
the two unequal terms of (8): the jump and the drop of p create an “indifference zone” for
ψ|A. Figure 2 shows this when p

¡
t+
¢ ≤ p (t−) < p (t+) ≤ p ¡t−¢ so p (t−) ≤ ψ|A ≤ p (t+).

Different values from this range divide the same total rent differently between the three fixed
inputs: the jump dψ {t} := ψ (t+) − ψ (t−) can be any fraction of p (t+) − p (t−), and it is
an indeterminate contribution to the reservoir’s unit rent. The interval’s contribution to the
turbine’s rent,

R
A (p (t)− ψ) dt, is similarly indeterminate (since it depends on the arbitrary

choice of ψ (t+), which fixes the constant value of ψ on A). And the indeterminate ψ|A itself is
the river’s unit rent, on A.16

Conversely, given a continuous p, there is a unique optimum, ψ̂ (Lemma 8). Therefore the
gradient ∇k,eΠ exists, and ∇eΠ = ψ̂ (Theorem 9). The directional derivative of Π with respect
to the capacities and the inflow is then a linear function of their increments, i.e.,

DΠHSR (∆kSt,∆kTu,∆e) =
∂ΠHSR
∂kSt

∆kSt +
∂ΠHSR
∂kTu

∆kTu +
∇eΠHSR,∆e® (9)

15Matters complicate when, for relatively large kSt, the neighbouring intervals of water collection and of
discharge abut; but a similar optimality rule applies to such clusters: see [11].
16The case of p dropping at the beginning, and jumping at the end, of an interval A = t, t that meets

Condition (6) is similar, except that the turbine’s rent on A is zero (since p < ψ|A).

10



= ∆kStVar
+
c

³
ψ̂
´
+∆kTu

Z T

0

³
p (t)− ψ̂ (t)

´+
dt+

Z T

0
ψ̂ (t)∆e (t) dt

(with all the derivatives and ψ̂ evaluated at the given kH and e). So the profit-imputed value
of investment is (jointly) additive in all the increments (unlike Koopmans’s cost-imputed in-
cremental value, which is calculated from a multi-valued subdifferential ∂k,eC of the short-run
cost, instead of our single-valued gradient ∇k,eΠ).

4 The linear programme of profit-maximizing plant operation

For a hydro plant with storage and turbine capacities kH = (kSt, kTu), and with a river inflow
e, the operation problem is to maximize the value of electricity output y, at a given TOU price
represented by an integrable function p on [0, T ], subject to the technological constraints in (3),
i.e.,

Given (p, kH, e) ∈ L1 [0, T ]×R2 × L∞ [0, T ] (10)

maximize hp, yi over y ∈ L∞ [0, T ] (11)

subject to: (y,−kH,−e) ∈ YH defined by (3). (12)

The plant operation problem is next formulated as an LP by expanding the technological
constraint (12) into turbine constraints on the output rate, and reservoir constraints and a
balance constraint on the water stock. To exclude spillage (i.e., make it unnecessary and
unprofitable), we assume that the river inflow rate never exceeds the turbine capacity (i.e., that
e ≤ kTu until Section 10), and that the electricity price is strictly positive at all times (i.e.,
p ∈ L1++ [0, T ]). With the constants kSt and kTu viewed as special cases of cyclically varying
functions, the primal LP of plant operation is:

Given (p; kSt, kTu; e) ∈ L1++ ×R2+ × L∞+ ⊂ L1++ ×
¡C+ × L∞+ ¢× L∞+ with kTu ≥ e (13)

maximize
Z T

0
p (t) y (t) dt over y ∈ L∞ [0, T ] and s0 ∈ R (14)

subject to: 0 ≤ y (t) ≤ kTu for a.e. t (15)Z T

0
(y (t)− e (t)) dt = 0 (16)

0 ≤ s0 −
Z t

0
(y (τ)− e (τ)) dτ ≤ kSt for every t (17)

where s0 means the initial stock (and y the output), and so the associated stock trajectory is
s (t) = s0 −

R t
0 (y − e) (τ) dτ with s (0) = s0 of course.17

Notation The optimal value of (10)—(12) or (13)—(17) is the (maximum) operating profit of
the hydro plant, denoted by ΠHSR (p, kH, e). The (optimal) solution set of (10)—(12) is

17There is a syntactical reason for using s0, understood as one symbol, to mean the initial stock when it is a
decision variable, as in (14): s (0) is a complex, “parse-able” expression which should not serve as a variable’s
name (a similar distinction is usually made in initial value problems).
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ŶH (p, kH, e), occasionally abbreviated to Ŷ . The corresponding lowercase notation ŷ is
used only when the solution is known to be unique. Also, the space L1 appearing in (10)
consists of all functions integrable with respect to (w.r.t.) meas, the Lebesgue measure.
The integral

R T
0 p (t) y (t) dt is also written as hp, yi.18 The condition p > 0 a.e. on [0, T ]

is also written as pÀ 0, or as p ∈ L1++.

The two formulations of the operation problem are equivalent in the sense that y solves
(10)—(12) if and only if y together with some s0 solves (13)—(17)–in which case y together with
the specific value

s0,y := max
t∈[0,T ]

µZ t

0
(y (τ)− e (τ)) dτ

¶
(18)

is a solution: s0,y is the lowest initial stock required for s (t) never to fall below 0. (Unless
there is spare storage capacity, this is actually the only feasible value for s0, given y.) One
can therefore restrict attention to points (y, s0) with s0 = s0,y; and so the stock trajectory
associated with a hydro output y is

s (t) = s0,y −
Z t

0
(y (τ)− e (τ)) dτ . (19)

The dual programme, introduced next, serves the purposes of characterizing optimal oper-
ation and calculating the marginal values of the capacities and the inflow. To ensure that the
dual has a solution of the kind sketched in Section 3, for the most part it is assumed from here
on that

kTu > EssSup (e) ≥ EssInf (e) > 0 and kSt > 0. (20)

This means that the “pure coasting” policy (i.e., y = e with σ = 0) is feasible and, furthermore,
that it verifies Slater’s Condition for the primal.19

5 Fixed-input valuation as the dual linear programme

As is set out in, e.g., [24], the dual to a convex programme depends on the choice of perturba-
tions for the primal parameters. A choice of admissible perturbations determines the structure
of the dual variables (a.k.a. Lagrange multipliers) to be paired with the parameter increments.
Therefore, the dual programme depends not only on the particular values of the primal para-
meters, but also on the vector space of parameter increments or perturbations. This “ambient”
space for the given parameter point can be chosen to suit one’s purpose.

In the case of (13)—(17), the programme contains a separate set of capacity constraints for
each time t–so, by considering a separate increment ∆kH (t) for each t, one can impute an
18The revenue flow is not discounted within the cycle because all the prices are in present-value terms. The

same applies to the shadow stock prices ψ, to be introduced formally in (27); so the rises of ψ give stock
appreciation net of the interest on its value.
19This standard constraint qualification for CPs is, in the infinite-dimensional case, useful with LPs as well.

Without it, the primal and dual values may be different, or there may be no dual optimum. For example, if
p ∈ L1, kTu > e > 0 but kSt = 0, then the primal and dual values are the same (viz., pedt), but an (exact)
dual optimum exists only if p ∈ BV (in which case the optimal stock price is ψ̂ = p). See also [2, p. 31.].
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instantaneous value, κH (t), to capacity services at each time t. In other words, not only their
total value, but also its distribution over the cycle can be determined. Even if the existing
capacities kH are actually constant, it is useful to consider the cyclically varying increments
∆kH because this gives a marginal interpretation to the time-dependent Lagrange multipliers
for the capacity constraints: denoted by κH = (κSt,κTu), these are the unit values of the
capacities’ services at any particular time. As part of the “variation of constants”, we also
consider a varying increment ∆nSt (t) to the zero floor for the water stock in (17), and a varying
increment ∆nTu (t) to the zero floor for the turbine output rate in (15). This gives a marginal
interpretation to the time-dependent Lagrange multipliers for the nonnegativity constraints:
denoted by νH = (νSt, νTu), these are the unit values of lowering the “floors” at any time.
Finally, a scalar ∆ζ is an increment to the zero on the r.h.s. of (16); this can be thought of
as the quantity of water taken to be available for topping up the reservoir between cycles. Its
multiplier, a scalar λ, is the marginal value of water at the beginning (or end) of cycle. All
the multipliers (κH, νH and λ) are terms of the TOU electricity price p in its decomposition
(26)—(27) below, which is a part of the dual programme’s constraints.

The short-run profit maximization problem (13)—(17) is thus embedded in the family of
perturbed programmes obtained by adding an arbitrary cyclically varying increment (∆kSt,
∆nSt, ∆kTu, ∆nTu, ∆e) and a scalar ∆ζ ∈ R to the particular parameter point consisting
of the constants (kSt, 0, kTu, 0, e) and 0. The function spaces for the resource increments,
indicated already in (13), are: C [0, T ] for ∆kSt and ∆nSt, and L∞ [0, T ] for ∆kTu and ∆nTu.
These are paired with M [0, T ] and L1 [0, T ] as spaces for the shadow prices, i.e., Lagrange
multipliers. (The pairing of L∞ with its norm-dual L∞∗, instead of the smaller space L1 is also
needed, but only in proving the dual’s solubility: both κTu and νTu are actually in L1, although
κTu ∈ L1 only because p ∈ L1 instead of L∞∗.)

In other words, the marginal value of the storage capacity services on an interval A ⊂ [0, T ]
is given by a measure κSt (A); this is the incremental operating profit from the availability on
A of an extra unit of the reservoir. Another measure, νSt (A), gives the incremental profit from
lowering the stock floor by a unit, on A. The marginal value of the turbine capacity services,
on A, is the Lebesgue integral of a function κTu ∈ L1. The value of lowering the turbine output
floor by a unit is the integral of another function, νTu ∈ L1.

Thus the complete shadow-price system (κSt, νSt; κTu, νTu; ψ, λ) values all the resource
increments (∆kSt, −∆nSt; ∆kTu, −∆nTu; ∆e, ∆ζ). Of course, it also values the particular
resource bundle (kSt, 0; kTu, 0; e, 0) that represents the plant itself–and the dual to the
operation programme (13)—(17) is to minimize the plant’s value by an admissible choice of the
shadow prices. The main dual constraints (26)—(27) decompose the electricity price p into the
sum of: the turbine capacity charge κTu, minus the value of the output floor νTu, and the
shadow price of water ψ. The water price is the sum of: the initial price λ, the cumulative of
reservoir capacity charges κSt, and the cumulative of −νSt. This is spelt out next.

Theorem 1 (Fixed-input value minimization as the dual) The dual of the linear pro-
gramme (13)—(17), relative to the specified perturbation and the pairing of the parameter spaces
C and L∞ withM and L1 respectively, is:

Given (p; kH, e) as in (13) (21)
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minimize kSt

Z
[0,T ]

κSt (dt) + kTu

Z T

0
κTu (t) dt+

Z T

0
ψ (t) e (t) dt (22)

over λ ∈ R, ψ ∈ L1 [0, T ] and (κSt, νSt;κTu, νTu) ∈M [0, T ]×M [0, T ]× L1 [0, T ]× L1 [0, T ]
(23)

subject to: (κSt, νSt;κTu, νTu) ≥ 0 (24)

κSt [0, T ] = νSt [0, T ] (25)

p = ψ + κTu − νTu (26)

ψ = λ+ (κSt − νSt) [0, ·] . (27)

Remark 2 Under (20), any solution to (21)—(27) has the disjointness properties that

κφ ∧ νφ = 0 for φ = Tu, St and κSt {0, T} ∧ νSt {0, T} = 0 (28)

i.e., it is not optimal for the dual variables to overlap and partly cancel each other out.20

6 Conditions for optimal operation and valuation

The dual programme (21)—(27) has a solution, (in which ψ ∈ BV (0, T ) by (27) and νTu and
κTu are in L1 because p ∈ L1, whilst κSt and νSt are in M). The primal and dual optima
are characterized by the Kuhn-Tucker Conditions, which for LPs reduce to feasibility and
complementary slackness. Spelt out next, these conditions are later used to determine plant
operation in terms of the water price, and to establish that this shadow price is unique.

Proposition 3 (Dual solubility and optimality conditions) Assume (20). Then:

1. The fixed-input value minimization programme (21)—(27) has an (optimal) solution

(κSt, νSt;κTu, νTu;ψ,λ) ∈M [0, T ]×M [0, T ]× L1 × L1 × BV (0, T )×R.

The programme’s value is finite and equal to the short-run profit ΠHSR (p, kH, e), the optimal
value of (13)—(17).

2. Points
¡
y, s0,y

¢ ∈ L∞ × R and (κSt, νSt;κTu, νTu;ψ,λ) are optimal solutions to, respec-
tively, the primal (13)—(17) and the dual (21)—(27) if and only if:

(a)
¡
y, s0,y

¢
and (κSt, νSt;κTu, νTu;ψ,λ) are feasible, i.e., satisfy (15)—(17) and (24)—

(27).

(b) The measure κSt is concentrated on {t ∈ [0, T ] : s (t) = kSt}, whilst νSt is concen-
trated on {t : s (t) = 0}, where s is given by (18)—(19).

(c) The function κTu vanishes a.e. outside of {t : y (t) = kTu}, whilst νTu vanishes out-
side of {t : yTu (t) = 0}.

20For φ = St, this means that κSt and νSt are disjoint as measures on the circle obtained from the interval
[0, T ], and not only on [0, T ] itself.
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7 Shadow pricing of water as the dual problem

The dual problem can be transformed into one of unconstrained minimization over ψ ∈ BV (0, T )
by using the dual constraints (25)—(27) and the disjointness condition (28) to eliminate the other
dual variables (κSt, νSt; κTu, νTu; λ).

Notation The space BV (0, T ) consists of all functions ψ of bounded variation on (0, T )
with ψ (t) lying between the left and right limits, ψ (t−) = limτ%t ψ (τ) and ψ (t+)
= limτ&t ψ (τ).21 A ψ ∈ BV (0, T ) is extended by continuity to [0, T ]; i.e., ψ (0) := ψ (0+)
and ψ (T ) := ψ (T−). The cyclic positive variation of ψ is defined by (4).
If finite numbers ψ (0−) and ψ (T+) are additionally specified, then ψ ∈ BV [0−, T+];
and such a ψ defines a measure on [0, T ] by

dψ
£
t0, t00

¤
:= ψ

¡
t00+

¢− ψ
¡
t0−¢ (29)

for t0 ≤ t00. The integral of s w.r.t. the measure (dψ)+ is also written as R s (dψ)+. When
ψ (0−) = ψ (T+), the usual variation norm of (dψ)+ equals Var+c (ψ).

It is convenient to set
ψ (0−) = ψ (T+) = λ (30)

so that, from (27) and (25),
κSt − νSt = dψ on [0, T ] .

From this, (24) and (28),

κSt = (dψ)
+ and νSt = (dψ)

− (31)

ψ (0+) ∧ ψ (T−) ≤ λ ≤ ψ (0+) ∨ ψ (T−) .

i.e., λ lies between ψ (0+) and ψ (T−). All choices of λ from this range are equally good, i.e.,
contribute the same to (22). Lastly, from (24), (26) and (28),

κTu = (p− ψ)+ and νTu = (p− ψ)− . (32)

Proposition 4 (Shadow pricing of water as the dual) Assume (20). The fixed-input value
minimization programme (21)—(27) is then equivalent to the following convex programme:

Given (p; kH, e) as in (13) (33)

minimize kStVar+c (ψ) + kTu

Z T

0
(p− ψ)+ dt+

Z T

0
ψ (t) e (t) dt (34)

over ψ ∈ BV (0, T ) . (35)

Notation The solution set for (33)—(35) is denoted by Ψ̂ (p, kH, e) 6= ∅. Again, the correspond-
ing lowercase notation ψ̂ is used only when the dual solution is unique.

21The one-sided limits exist at every t and are equal nearly everywhere (n.e.), i.e., everywhere except for a
countable set. Specification of ψ (t) between ψ (t−) and ψ (t+) is unnecessary.
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It is this formulation of the dual that leads to the idea of obtaining ψ̂ by “levelling off”
the local extremes of p in the way described in Section 3. The insight can be developed into a
specialized algorithm when p is piecewise monotone. In this approach, the dual is tackled first,
in the CP form (33)—(35), and the primal solution is found subsequently. (For comparison: the
simplex and other methods for LPs find both solutions simultaneously.)

8 Determination of hydro output

The plant operation problem is soluble for every p ∈ L1 [0, T ].

Proposition 5 (Primal solubility) Assume that kTu ≥ e ≥ 0. If p ∈ L1, then the short-run
profit-maximizing operation programme (13)—(17) has an (optimal) solution (y, s0). It follows
that the problem (10)—(12) has a solution, i.e., Ŷ (p, kH, e) 6= ∅.

Once the dual is solved, so that an optimal ψ is known, the operation problem largely
reduces to maximization of instantaneous profits (as Part 2c of Proposition 3 shows). At each
t with p (t) 6= ψ (t), the optimum output y (t) is of the “bang-bang control” type, either kTu or
0. Any remaining part of an optimal y is a “singular control”, which arises at a time t when
the instantaneous optimum is multi-valued because ψ (t) = p (t). This part can be determined
on the assumption (36) that p has no plateau: this ensures that p (t) = ψ (t) only when the
reservoir is either empty or full; and at those times the output rate must equal e (t). See
Figure 1.

Proposition 6 (Hydro output with plateau-less price) In addition to assuming (20) and
that p ∈ L1++ [0, T ], assume that p has no plateau, i.e., that

∀p ∈ R+ meas {t : p (t) = p} = 0. (36)

If y ∈ Ŷ (p, kH, e) and ψ ∈ Ψ̂ (p, kH, e), i.e., y solves (10)—(12) and ψ solves (33)—(35), then

y (t) =

⎧⎨⎩
kTu if p (t) > ψ (t)
e (t) if p (t) = ψ (t)
0 if p (t) < ψ (t)

. (37)

So (10)—(12) has a unique solution ŷ (p, kH, e).22

9 Marginal capacity values in terms of water price

By definition, ΠHSR (p, kH, e) is the optimal value of the primal (operation) problem, maxy hp, yi.
Since the dual and primal values are equal (Proposition 3), a dual (water-pricing) solution ψ
gives Π as the total fixed-input value (the plant’s total rent on the capacities and the river
inflow); and it has the advantage of giving the marginal values ∇k,eΠ as well.
22Since y is fully determined in terms of any optimal ψ, it is unique (even though ψ may be nonunique unless

p ∈ C).
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Corollary 7 (Dual calculation of SR profit) Assume (20). Then, for each ψ ∈ Ψ̂ (p, kH, e),

ΠHSR (p, kH, e) = kStVar
+
c (ψ) + kTu

Z T

0
(p (t)− ψ (t))+ dt+

Z T

0
ψ (t) e (t) dt (38)

Furthermore, this sum equalsZ T

0
ψ (t) (y (t)− e (t)) dt+

Z T

0
(p (t)− ψ (t)) y (t) dt+

Z T

0
ψ (t) e (t) dt

term-by-term, for every y ∈ Ŷ (p, kH, e).23

Since Π is positively homogeneous of degree 1 (a.k.a. linearly homogeneous) in (k, e),24

Euler’s Theorem shows that if Π is differentiable in k,25 then

ΠHSR (p, kH, e) = kSt
∂ΠHSR
∂kSt

+ kTu
∂ΠHSR
∂kTu

+
∇eΠHSR, e® . (39)

A comparison with (38) suggests that if there is a unique optimal ψ, then the partial derivatives
of Π do exist and equal the coefficients of kSt, kTu and e in (38); formally this follows from (27)
and the marginal interpretation of κSt, κTu and ψ (spelt out in the Proof of Theorem 9). And
the optimal stock price ψ is indeed unique if p, the TOU price of the good, is continuous over
time.

Lemma 8 (Water price uniqueness and continuity) In addition to (20), assume that p ∈
C++ [0, T ]. Then the dual (33)—(35) has a unique (optimal) solution ψ̂ (p, kH, e), which belongs
to C++ [0, T ]. If additionally p (0) = p (T ), then also ψ̂ (0) = ψ̂ (T ).

Theorem 9 (Efficiency rents of a hydro plant) Assume that p ∈ C++ [0, T ]. Then the op-
erating profit of a hydro plant–i.e., the value of the primal problem (10)—(12)–is differentiable
with respect to the water inflow function (e) and the capacities (of the reservoir and the turbine,
kH = (kSt, kTu)), at every (kH, e) satisfying (20). The derivatives defining the unit rents are
given by the formulae

∂ΠHSR
∂kSt

(p, kH, e) = Var
+
c

³
ψ̂ (p, kH, e)

´
(40)

∂ΠHSR
∂kTu

(p, kH, e) =

Z T

0

³
p (t)− ψ̂ (p, kH, e) (t)

´+
dt (41)

∇eΠHSR (p, kH, e) = ψ̂ (p, kH, e) (42)

in which ψ̂ is the unique solution to the dual problem (33)—(35) of water pricing.
23This shows that the values of the fixed inputs are equal to their profits–hψ, y − ei for the reservoir, hp− ψ, yi

for the turbine, and hψ, ei for the river–when the shadow price ψ is used to decentralise the operation within
the plant (as is described in Section 3).
24That is, Π (p;αk,αe) = αΠ (p; k, e) for every scalar α > 0. Note also that Ŷ and Ψ̂ are positively homoge-

neous, in (k, e), of degrees 1 and 0 respectively; i.e., Ŷ (p;αk,αe) = αŶ (p; k, e) and Ψ̂ (p;αk,αe) = Ψ̂ (p; k, e) for
α > 0.
25When Π is nondifferentiable, Π (k, e) = r · k + hψ, ei for every (r,ψ) ∈ ∂k,eΠ (the superdifferential of Π as a

concave function of (k, e)).
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The marginal capacity values ∇kΠHSR can be used to determine the optimum investment into
a hydro plant on the basis of a given TOU electricity price p, a given river inflow e and the supply
costs of the two capital inputs, the reservoir and the turbine. Investment in reservoirs is well
known to present a complicated problem which in practice often involves other considerations
such as irrigation, flood control, navigation and leisure opportunities; and its scale can be
large enough to affect an entire economy. What we outline here is investment planning for a
purely hydroelectric scheme. The price-taking problem we formulate next is self-contained if
the scheme is small enough not to change the existing price p. With a larger hydro scheme it
can be used as part of a general equilibrium system that determines the new price as well. In
any case, the turbine’s unit cost, rTu, can be reasonably regarded as constant, i.e., independent
of the capacity kTu. By contrast, the reservoir’s marginal cost, rSt, typically increases with kSt
because the most suitable parts of the site are developed first. In formal terms, on a potential
hydro site, a reservoir can be built at a cost which is a convex and increasing function, G, of
its capacity kSt ∈

£
0, kSt

¤
, with G (0) = 0. Therefore, the investment problem is:

Given (p, e, rTu) ∈ C [0, T ]× L∞ [0, T ]×R++ and the function G (43)

maximize ΠHSR (p, kSt, kTu, e)−G (kSt)− rTukTu over (kSt, kTu) ∈ R2+ (44)

and the FOCs for an interior solution are:

∂ΠHSR
∂kSt

(kSt, kTu) =
dG

dkSt
(kSt) (45)

∂ΠHSR
∂kTu

(kSt, kTu) = rTu. (46)

The system can be solved numerically (for kSt and kTu) by, e.g., a quasi-Newton method: it
requires no more than to calculate ∂Π/∂kSt and ∂Π/∂kTu at the successive approximations–and
this can be done by applying Theorem 9 and solving the dual LP (21)—(27) or the unconstrained
CP (33)—(35). A similar application to investment in pumped storage is presented in more detail
in [14].

Comment: For a multi-purpose reservoir, the upper and lower bounds on the water stock
usually vary with time of year to ensure that the water level is high enough for navigation
but low enough for holding any unexpected floodwater–so the constants kSt and 0 in (17),
etc., are replaced by some known functions of time, s (t) and s (t). Our results, including the
uniqueness and continuity of the water value ψ (t), extend to the case of slowly-varying reservoir
constraints, i.e., it suffices to assume that both ṡ (t) and ṡ (t) always lie strictly between −kTu+e
and e (which are assumed to be negative and positive, respectively). Matters complicate if ṡ (t)
or ṡ (t) are not confined to this range: the operating programme may even be infeasible, or ψ
may be discontinuous (and likely to be nonunique as well).

10 The case of infeasible coasting

With spillage assumed feasible as in (3), one can drop the condition that e ≤ kTu. But with
e £ kTu, i.e., with coasting no longer feasible, an optimal water price ψ need not be continuous
or unique (despite the continuity of the electricity price p).
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For this extension, the primal problem (13)—(17) is modified by adding the spillage term,
σ ∈ L∞, to the net outflow from the reservoir f , as in (1). The extra variable is constrained
as in (3), i.e., 0 ≤ σ ≤ e. However, there is no real need for an extra Lagrange multiplier for
the constraint σ ≥ 0 because such a multiplier would turn out to be identical to ψ (at the dual
optimum). The multiplier must be nonnegative; i.e., the constraint ψ ≥ 0 must be adjoined to
the dual (33)—(35).26 The multiplier for the constraint σ ≤ e turns out to be zero: the primal
value is the same with or without this constraint.27 This means that free disposal of water is
effectively unlimited, as in [20, 1.4a].28 Last, an extra slackness condition, that ψ = 0 a.e. on
{t : σ (t) > 0}, is adjoined to Part 2c of Proposition 3.

In the extended framework, one can formally prove that an optimal storage policy involves
no spillage if kTu ≥ e and p ∈ L1++. This can be shown either by establishing that ψ À 0,
or directly as follows. Suppose contrarily that σ > 0 on a neighbourhood of some t. If y (t)
< kTu (t) then the output can be increased around t, so (y,σ) is not optimal. If y (t) = kTu (t)
then ṡ (t) = (−y + e− σ) (t) ≤ 0− σ (t) < 0, i.e., the stock is falling around t, and so there is
room to store a unit being spilt, to release it at the nearest opportunity (which will come, since
σ 6= 0 implies that y (τ) < e (τ) ≤ kTu for some τ). Again, this shows that (y,σ) is not optimal.
And although this argument treats y, e and σ as though they were continuous functions (rather
than elements of L∞), it can be made rigorous by choosing t to be a density point of the set
{y < kTu} or {y = kTu}, respectively.29

With EssInf (e) > 0 (but without assuming that e ≤ kTu), the modified primal and dual
problems remain feasible, and the Kuhn-Tucker characterization of optimality continues to
hold.30 If the inflow exceeds the turbine’s capacity only on a relatively short interval, spillage
is still avoided. Consider an inflow increment (kTu − e) +∆e on an interval

£
t, t
¤
on which the

reservoir is full in the original solution, the one that corresponds to an inflow e < kTu. To
make room for the excess inflow, an extra amount ∆E =

R t
t ∆e (t) dt of water is discharged

immediately before t, with the turbine operating at full capacity to sell the extra output at best
prices, as close to p (t) as possible. This solution is supported by the stock price ψ that “freezes”
when the discharge starts and stays constant until t, when it jumps back to the original price
trajectory (so ψ is discontinuous at t). As ∆E increases, so the discharge period preceding£
t, t
¤
starts earlier. Here we assume that it does not merge with an earlier water collection

period (during which p < ψ) before ∆E reaches kSt.31 In the borderline case of ∆E = kSt, the
reservoir becomes empty at t and full again at t. The no-spillage solution is still feasible, but
only just; and the water price on

£
t, t
¤
is an arbitrary constant between 0 and ψ (t).32 In this

case ψ is nonunique (and discontinuous). If ∆E is further increased (keeping t and t fixed),
26This is superfluous when e < kTu because in this case every solution, ψ, to (33)—(35) is nonnegative anyway.
27When p ∈ L1+, there is an optimum policy with σ (t) ≤ (e (t)− kTu)+ < e (t).
28 In reality, the spillage rate is constrained–quite apart from the considerations of flood control, etc.–by

spillway capacity (unless this is exceeded by e−y at a time when the reservoir is full and automatically overflows
“from the top”).
29For the concept of a density point, see, e.g., [8, (5.8)].
30Verification of Slater’s Condition now requires a different choice of a feasible policy, viz., any (y,σ) with

y + σ = e and kTu − ² ≥ y ≥ ² and σ ≥ ², for some number ² > 0.
31 If the two do merge, then the two constant values of ψ become one value, which decreases as ∆E continues

to increase (and the water collection period shrinks).
32This indeterminacy is noted in [20, p. 226: last paragraph].
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then a total of ∆E − kSt must be spilt on
£
t, t
¤
. This can be done in any way, but ψ is unique

(though it is discontinuous at t and t), since ψ = 0 on
£
t, t
¤
.

11 Conclusions

This analysis shows how to operate a hydro plant to maximize its profit, how to value the
plant’s capacities and its river flow on this basis, and how to use these valuations in investment
decisions. As well as being better suited to the more decentralized structure of today’s utilities,
short-run profit-maximization for an individual hydro plant turns out to be a much simpler
problem to solve than that of cost minimization for a whole hydro-thermal system. When a
hydro plant is operated to maximize profit, the hydro inputs (including the water inflow) have
well defined marginal values, at least if the given TOU price for electricity is continuous over
the cycle. The marginal capacity values and the TOU water value can be calculated by solving
a linear programme (or an equivalent convex but unconstrained programme). These values can
be used to determine the optimum levels of investment on a hydro site.

The “constant-head” model of the hydro technology has other interpretations as well: the
analysis and its valuation method are applicable to other natural energy flows (e.g., geothermal
or tidal), and also to water supply (when priced by TOU). An extension to the variable-head
case (which requires convex control theory) is given in [17]. Extension to the case of stochastic
river inflow is a subject for future work. This would especially enhance the model’s application
to water supply (as well as to the original hydro problem).
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A Proofs

Except for the shadow-price uniqueness result (Lemma 8), the proofs are mostly routine ap-
plications of duality for optimization in infinite-dimensional spaces, as expounded in, e.g., [24,
Examples 4, 4’, 4”] and [2, 3.3—3.7]. To put the primal constraints in the required operator
form, define the integrals I0 and IT : L∞ [0, T ]→ C [0, T ] by

(I0f) (t) :=

Z t

0
f (τ) dτ and (IT f) (t) :=

Z T

t
f (τ) dτ . (47)

The reservoir constraints (17) on (y, s0) can then be rewritten as

0 ≤ s01[0,T ] − I0 (y − e) ≤ kSt. (48)

A formula for the adjoint operation I∗0 :M [0, T ]→ L∞∗ [0, T ] is needed. (As for the embedding
R 3 s0 7→ s01[0,T ] ∈ C, its adjoint is: M3 κ 7→ hκ, 1i = κ [0, T ].)

Lemma 10 The adjoints I∗0 , I∗T mapM [0, T ] into BV [0, T ] ⊂ L1 [0, T ]; and they are given by

(I∗0µ) (t) = µ [t, T ] and (I∗Tµ) (t) = µ [0, t] for a.e. t (49)

for every µ ∈M [0, T ]. If µ [0, T ] = 0, then −I∗0µ = µ [0, ·] = I∗Tµ.

Proof. This follows from Fubini’s Theorem.
Proof of Theorem 1 (Fixed-input value minimization as the dual). Since (13)—

(17) is an LP, it would suffice to apply results such as those of [2, 3.3 and 3.6—3.7]. However,
to facilitate extensions requiring nonlinear models, this proof is couched in CP terms. The
dual to a concave maximization programme consists in minimizing, over the dual variables
(the Lagrange multipliers for the primal), the supremum of the Lagrange function over the
primal decision variables: see, e.g., [24, (4.6) and (5.13)]. The “cone model” of [24, Example
4’] is applicable, since (48) and (15)—(16) represent the inequality constraints of the primal
programme (13)—(17) by means of the nonnegative cones (C+ and L∞+ ) and convex constraint
maps (which are actually linear).

The dual variables here are the κSt, νSt; κTu, νTu, ψ and λ of (23); and these are paired
with the parameter increments ∆kSt, −∆nSt, ∆kTu, −∆nTu, ∆e and ∆ζ (as is discussed in
Section 5). The primal variables are (y, s0) ∈ L∞ ×R, and the Lagrange function is

LH (y, s0;κ, ν,ψ,λ) =
⎧⎨⎩ ΠHExc (y, s0;κ, ν,λ) + V

H (κ,ψ)
if (κ, ν) ≥ 0 and
ψ = λ− I∗0 (κSt − νSt)

+∞ otherwise
(50)

where
V H := hκSt, kStiM,C + hκTu, kTuiL∞∗,L∞ + hψ, eiL1,L∞ (51)

and, with the notation

µSt := κSt − νSt and µTu := κTu − νTu (52)
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one has

ΠHExc := hp− µTu − λ+ I∗0µSt, yi− hµSt, s0i (53)

= hp− µTu − λ+ µSt (·, T ] , yi− s0µSt [0, T ]
since I∗0µSt = µSt (·, T ] by Lemma 10.

Formulae (50)—(53) are interpreted below; for details of their derivation, see [11, Appendix].
But first, to complete the calculation of the dual minimand when (κ, ν) ≥ 0 and

ψ = λ− I∗0µSt (54)

(which are dual constraints, since the minimand is +∞ otherwise), note that

sup
y,s0

L = V + sup
y,s0
ΠExc (55)

since V is independent of (y, s0). By (53), ΠExc is linear in these variables, so its supremum is
either 0 or +∞; and it is zero if and only if ∂ΠExc/∂s0 = 0 and ∇yΠExc = 0. These conditions
are equivalent to the conjunction of (25) and

p = λ+ µSt [0, ·] + µTu. (56)

In view of (25) and Lemma 10, (56) with (54) are the same as (26)—(27). So the dual programme
is: given (p; k, e), minimize the V (κ,ψ; k, e) of (51) over (κ, ν) ≥ 0, ψ and λ subject to (51)—(27).

Comments: (i) In (51)—(53), V is the value of the available resources (k, e), priced at (κ,ψ).
(ii) For an entrepreneur buying all the inputs, ΠExc is the excess profit (a.k.a. pure profit)

from an output y and the use of an inflow e and an initial stock s0. To see this, recall from
(50) that 0 = hλ− ψ − I∗0µSt, ei, add this to (53) and use the identities f (t) = y (t)− e (t) and
s (t) = s0 − I0f (t) to obtain that

ΠHExc = hp, yi− hκTu − νTu, yi− hκSt − νSt, si− λ h1, fi− hψ, ei . (57)

This sum is the total over the cycle of the revenue from sales to the market minus the cost of all
the resources needed at each time t. The resources in question are: the time-varying minimum
requirements for the turbine and reservoir capacities (priced at κ), the floors for generation and
stock (priced at ν), the required top-up (priced at λ), and the river inflow (priced at ψ). The
last term in (57) can be rewritten as

R T
0 ψ (t) e (t) dt, since ψ ∈ L1 by (27).

(iii) By adding and subtracting the value of internal sales (of the outflow y from reservoir
to turbine, priced at ψ), (57) can be restated as

ΠHExc = hp, yi− hµTu, yi− hψ, yi+ hψ, y − ei− hµSt, s0 − I0 (y − e)i− hλ, y − ei .
This gives ΠExc as the sum of pure profits from the two parts of the plant: the first three terms
add up to the excess profit from generation alone, whilst the other three terms add up to the
excess profit from storage. The latter sum is equal to the appreciation of s0 over the cycle
because, with λ− ψ = I∗0µSt and f := y − e as per (1) with σ = 0,

hψ, fi− hλ, fi− hµSt, s0 − I0 (f)i = − hI∗0µSt, fi− hµSt, s0 − I0 (f)i = −s0 hµSt, 1i .

22



Proof of Remark 2. If this were false, then the minimand’s value could be decreased by
replacing (κSt, νSt; κTu, νTu) with (µ

+
St, µ

−
St; µ

+
Tu, µ

−
Tu) given by (52).

Proof of Proposition 3 (Dual solubility and optimality conditions). Like that
of Theorem 1, this proof is put in CP terms. Consider first the dual problem with L∞∗,
instead of L1, as the range for ψ, κTu and νTu in (23). Since the nonnegative cones in the
(primal) parameter spaces (C+ and L∞+ ) have nonempty interiors (for the supremum norm), the
framework of [24, Examples 4, 4’, 4”] is applicable. To verify the Generalized Slater’s Condition
of [24, (8.12)] for the primal constraints (15)—(17), it suffices to take y = e (so that f = y − e
= 0), setting s0 at any value strictly between 0 and kSt. So the dual has a (proper) solution,
and the primal and dual values are equal (and finite): see, e.g., [24, Theorems 18 (a) and 17
(a)].

To complete the proof of Part 1, it remains to show that ψ, κTu and νTu are in L1. For ψ this
is obvious from (27). Next, from the Hewitt-Yosida decomposition of (26) one has κFATu − νFATu
= pFA = 0, where pFA means the purely finitely additive part of p: see, e.g., [4, Appendix I:
(26)—(27)]. Given (28), this means that κFATu = 0 = νFATu , as required. (That ν

FA
Tu = 0 follows

also from p ≥ 0 alone: (28) and the Hewitt-Yosida decomposition of (26) give νFATu = p−FA = 0,
as well as κFATu = p

+
FA = pFA.)

For Part 2, apply the Kuhn-Tucker saddle-point characterization of optima–given in, e.g.,
[24, Theorem 1 (e) and (f)]–to the primal (13)—(17) and its dual (21)—(27). This shows that
(y, s0) and (κ, ν,ψ,λ) is a dual pair of solutions if and only if they maximize and minimize
(respectively) the Lagrange function L given by (50). The minimum in question is characterized
by: nonnegativity (24) and compatibility (27) of dual variables, primal feasibility (15)—(17) and
complementary slackness, which translates here into Conditions 2b and 2c. As for the maximum
in question, it is characterized by the conditions ∂ΠExc/∂s0 = 0 and ∇yΠExc = 0, i.e., by (25)—
(26).

Comment: Existence of a dual optimum in the norm-dual spaces (κSt and νSt inM = C∗,
and κTu, νTu and ψ in L∞∗) comes automatically from (20), which ensures that the Generalized
Slater’s Condition of [24, (8.12)] holds with the norm topologies of the primal parameter spaces
L∞ and C. The density representation (of the dual variables other than κSt and νSt) comes
from the problem’s structure and the assumptions on p: by the constraint (27), ψ ∈ BV ⊂ L1;
with p ≥ 0, every optimal νTu is in L1; and if p ∈ L1 then every optimal κTu is also in L1.

Proof of Proposition 4 (Shadow pricing of water as the dual). This is a refor-
mulation of Theorem 1: substitute the ψ given by (27) into (26), and note that, given any ψ
(and p), the best choice for κSt and κTu is as in (31)—(32), because kSt > 0 and kTu > 0. This
reduces the dual programme (21)—(27) to minimization of

kSt

Z
[0,T ]

(dψ)+ + kTu

Z T

0
κTu (t) dt+

Z T

0
ψ (t) e (t) dt

over ψ ∈ BV [0−, T+], subject to ψ (0−) = ψ (T+) lying between ψ (0+) and ψ (T−). Hence
the first of the integrals equals the sum of (ψ (0+)− ψ (T−))+ and R(0,T ) (dψ)+; and this sum
is Var+c (ψ).

Proof of Proposition 5 (Primal solubility). With p ∈ L1, the maximand of (14) is
continuous for the weak* topology w

¡
L∞, L1

¢
. The feasible set is bounded: in y by (15), and
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in s0 by (17) with, e.g., t = 0. So, being also weakly* closed, the feasible set is compact by
the Banach-Alaoglu Theorem. And it is nonempty, since the point (y, s0) = (e, 0) is feasible by
assumption. So an optimum exists by Weierstrass’s Extreme Value Theorem.

At this stage, it is useful to introduce a notation for the sets of those times when the reservoir
is empty or full or neither, given a hydro output y meeting the balance constraint

R T
0 f (t) dt

= 0. These sets (which have already appeared in Condition 2b of Proposition 3) are:

E (f) := {t ∈ [0, T ] : s (t) = 0} (58)

F (f, kSt) := {t ∈ [0, T ] : s (t) = kSt} (59)

B (f, kSt) := [0, T ] \ (E ∪ F ) = {t : 0 < s (t) < kSt} (60)

where s (t) is given by (18)—(19) in terms of f := y− e, and kSt ≥Max (s). Since s (0) = s (T ),
0 and T are either both in B, or both in E, or both in F . From (18), E 6= ∅. Unless there
is spare reservoir capacity, F 6= ∅ also; and then all three sets are nonempty. Their connected
components are subintervals of [0, T ]; and, being open, B is the union of a countable (finite or
denumerable) sequence of intervals. Those not containing 0 or T are denoted by

Am =
¡
tm, tm

¢ 6= ∅
for m = 1, . . . ,M ≤ ∞, where 0 ≤ tm < tm ≤ T . If {0, T} ⊆ B, then B additionally contains
two subintervals whose union is

A0 = (t0, T ] ∪
£
0, t0

¢
for some 0 < t0 < t0 < T . When 0, T /∈ B, we set for completeness t0 = T and t0 = 0, so that
A0 = ∅ in this case. In either case B =

S
m≥0Am.

All these sets may be thought of as subsets of the circle that results from “gluing” 0 and T
into a single point T0. Then (Am)m≥0 are the component arcs of B (a.k.a. B-arcs); A0 is that
arc which contains T0 (if T0 ∈ B); and tm and tm are the beginning and the end of arc Am
(w.r.t. the “clockwise” orientation).

The formula for the output y, in terms of any ψ ∈ Ψ̂, is proved next. On {t : p 6= ψ},
the optimal y equals unambiguously kTu or 0. Uniqueness of y on {p = ψ} comes from the
no-plateau assumption (36) on p: this ensures that {p = ψ} ⊆ E ∪ F , up to a null set. And at
each t ∈ E ∪F one has f (t) = −ṡ (t) = 0 (and hence y (t) = e (t)), since s has an extremum at
t.

Remark 11 If s: [0, T ]→ [0, 1] is absolutely continuous, then ṡ = 0 almost everywhere on the
set E := {t ∈ [0, T ] : s (t) = 0}.

Proof of Proposition 6 (Hydro output with plateau-less price). Take any y ∈ Ŷ
(not yet known to be unique) and any ψ ∈ Ψ̂ (which may be nonunique, unless p ∈ C). The
first and the third lines of (37) follow from Part 2c of Proposition 3 with (26)—(27). It remains
to show that y = e a.e. on S := {t : p = ψ}. For each m, one has ψ = const. on Am (f, kSt) by
Part 2b of Proposition 3. Therefore meas (S ∩Am) = 0 by (36), and hence meas (S ∩B (f, kSt))
= 0 by countable additivity. This means that S is, up to a null set, contained in the set
F (f, kSt) ∪ E (f), on which y − e = −ṡ = 0 a.e. (by Remark 11). This completes the proof of
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(37). It follows that Ŷ is a singleton, even when Ψ̂ is not. (Given any ψ ∈ Ψ̂, any y0 and y00
from Ŷ satisfy (37) and are therefore equal.)

Proof of Corollary 7 (Dual calculation of SR profit). Formula (38) follows from
Propositions 3 and 4. To derive it term-by-term, use the optimality conditions (complementary
slackness and feasibility) to expand hp, yi:

Π :=

Z T

0
py dt =

Z T

0
(p− ψ) y dt+

Z T

0
ψedt+

Z T

0
ψ (y − e) dt

= kTu

Z T

0
(p− ψ)+ dt+

Z T

0
ψedt−

Z T

0
ψ
ds

dt
dt

integrating the last term by parts to obtain

−
Z T

0
ψ ds = − [ψs]t=T+t=0− +

Z
[0,T ]

sdψ = s (0) (ψ (0−)− ψ (T+)) + kSt

Z
[0,T ]

(dψ)+

= 0 + kStVar
+
c (ψ)

as required.
Before a detailed proof of Lemma 8, it is worth presenting the main ideas. The key principle

is that equipment can earn a rent only at a time of full capacity utilization. In the present
context this means that p can exceed ψ only when the turbine is working at full power (i.e.,
when y (t) = kTu). Similarly ψ can exceed p only when the turbine is off (i.e., when y (t)
= 0). Therefore ψ (t) equals p (t) when the reservoir is either full or empty (since s (t) = 0
or s (t) = kSt implies that y (t) = −ṡ (t) + e (t) = e (t), which lies strictly between 0 and kTu
by assumption). By the same principle, ψ can be rising or falling only when the reservoir is
full or empty (respectively); so ψ stays constant on each open interval

¡
t, t
¢
during which the

reservoir constraints are inactive (i.e., 0 < s (t) < kSt). Together, these conditions determine
the function ψ almost completely–except for the possibility of jumps or drops of ψ that may
occur at endpoints of a (closed) interval on which the reservoir is either full throughout or empty
throughout.33 Suppose, for example, that t is the end of an interval on which the reservoir is
full. At that instant, ψ can jump but not drop; and the same is true of p−ψ (since p = ψ just
before t, and p ≥ ψ just after t). So neither term, ψ or p− ψ, can jump at t if their sum (p) is
continuous. This determines the constant value of ψ on

¡
t, t
¢
as p (t); so ψ is unique.

Proof of Lemma 8 (Water price uniqueness and continuity). Fix any primal
solution y ∈ Ŷ , which exists by Proposition 3 (though it may be nonunique). To show that
there is just one dual solution, we shall express every dual solution ψ ∈ Ψ̂ by the same formula
in terms of y.34

In the case of F (y, kSt) 6= ∅, which we deal with first, we shall use the Kuhn-Tucker Condi-
tions to show that any ψ ∈ Ψ̂ (p, kH, e) can be given, in terms of y, as

ψ (t) = p (t) for every t ∈ (E ∪ F ) (f, kSt) \ {0, T} (61)
33To simplify, we assume here that the times when the reservoir is full form a set F that consists of a finite

number of intervals (which may be single instants). Although F can be more complex, this is only a technicality
(dealt with in the Proof of Lemma 8).
34The basis for this strategy (used also in proving Proposition 6) is that every dual solution supports every

primal solution; i.e., the set of saddle-points for a dual pair of convex programmes is the Cartesian product (of
the primal and dual solution sets): see Proposition 3.
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whereas on the m-th component Am of B (f, kSt), whose endpoints are tm and tm, it is the
constant

ψ (t) =

½
p (tm) if tm 6= 0
p
¡
tm
¢
if tm 6= T for every t ∈ Am (f, kSt) (62)

for each m ≥ 0. Since both E and F are nonempty, Am 6= (0, T ), so at least one line of (62)
applies; and when both do, they are consistent. So (61)—(62) fully determine ψ on (0, T ), and
hence on [0, T ] because ψ (0) and ψ (T ) are defined by continuity.

To use the optimality conditions as stated in Proposition 3–i.e., in terms of (κ, ν, ψ, λ)
rather than ψ alone–recall from Section 7 that if a ψ ∈ BV (0, T ) solves (33)—(35), then (21)—
(27) is solved by: the same ψ, (κTu, νTu) =

¡
(p− ψ)+ , (p− ψ)−

¢
, any λ between ψ (0+) and

ψ (T−) and (κSt, νSt) =
¡
µ+St, µ

−
St

¢
, where µSt = dψ on (0, T ) with µ {0} = ψ (0+)−λ and µ {T}

= λ− ψ (T−).
By (26)—(27),

p = ψ + κTu − νTu = λ+ (κSt − νSt) [0, ·] + κTu − νTu a.e. (63)

It suffices to show that, at every point of (E ∪ F ) \ {0, T}, ψ is continuous and equal to p: then
(62) follows, since ψ is constant on each B-component Am, and since Am 6= (0, T ).

A discontinuity of ψ could only be a jump at a time when the reservoir is full, or a drop when
it is empty. If t ∈ F say, then, being full at t, the reservoir cannot be being emptied just before
t.35 That is, just before t the outflow y cannot exceed the inflow e, which, by assumption, is
smaller than kTu. A fortiori, the capacity charge κTu must be zero just before t. Similarly, just
after a t ∈ F the reservoir cannot be being filled, i.e., y cannot be less than e, which is positive
by assumption; and so νTu must be zero just after t. So p− ψ = κTu − νTu is nonpositive just
before t and nonnegative just after t, and hence p−ψ cannot drop at a t ∈ F . This means that
any discontinuous changes in ψ and p − ψ are of the same sign and cannot cancel each other
out. So ψ (and p−ψ) must be continuous if p is. And it follows (from the signs of p−ψ before
and after t) that p (t) = ψ (t). The “upside down” version of this reasoning applies to t ∈ E.

Since κTu and νTu are equivalence classes, this argument is formalized by using the essential
limit concept–for which see, e.g., [6, IV.36—IV.37] or [25, II.9: p. 90]. It is also convenient to
say that an inequality between functions holds somewhere on A ⊆ [0, T ] to mean that it holds
on an A0 ⊆ A with measA0 > 0 (i.e., it is not the case that the reverse inequality holds a.e. on
A).

Recall from Section 4 that y with the s0,y of (18) solve (13)—(17). Consider first a t ∈
F \ {0, T}. For every ∆t > 0, it cannot be that f > 0 a.e. on (t−∆t, t); i.e., somewhere on
(t−∆t, t) one has y ≤ e < kTu. Therefore κTu = 0 somewhere on (t−∆t, t), by Part 2c of
Proposition 3; and, as ∆t→ 0, this shows that the lower left essential limit of κTu at t is zero.
Similarly, somewhere on (t, t+∆t) one has f ≥ 0, i.e., y ≥ e > 0. Therefore νTu = 0 somewhere
on (t, t+∆t). This means that the lower right essential limit of νTu at t is zero; i.e.,

ess lim inf
τ&t

νTu (τ) = 0 = ess lim inf
τ%t

κTu (τ) for t ∈ F \ {0, T} . (64)

35This, by the way, is where the constancy of kSt over time is used.
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Given (63) as well as continuity of p and nonnegativity of κTu and νTu, it follows from (64)
that36

p (t)− ψ (t−) = ess lim
τ%t

(κTu − νTu) (τ)

= ess lim inf
τ%t

κTu (τ)− ess lim inf
τ%t

νTu (τ) ≤ 0 (65)

≤ ess lim inf
τ&t

κTu (τ)− ess lim inf
τ&t

νTu (τ) = ess lim
τ&t

(κTu − νTu) (τ) (66)

= p (t)− ψ (t+) .

Therefore ψ (t−) ≥ ψ (t+) from a comparison of the first and the last sums. But also, since
t ∈ F ,

ψ (t−) ≤ ψ (t+) (67)

by Part 2b of Proposition 3; so all three inequalities (65), (66) and (67) must actually hold as
equalities. This shows that ψ (t−) = ψ (t+) = p (t), i.e., the two-sided limit of ψ at t exists
and equals p (t). (Since it exists, it also equals ψ (t) because ψ (t) always lies between ψ (t−)
and ψ (t+).) The same can be shown for t ∈ E (by the “upside down” version of the proof for
t ∈ F ); so

ψ (t) = lim
τ→tψ (τ) = p (t) for t ∈ (E ∪ F ) \ {0, T} 6= ∅. (68)

Nonemptiness of this set follows from the assumption that F 6= ∅, since E 6= ∅ always, by (18).
By Part 2b of Proposition 3, ψ is constant on each Am. This and (68) show that ψ ∈ C (0, T ).

(Equivalently ψ ∈ C [0, T ], since ψ (0) := ψ (0+) and ψ (T ) := ψ (T−).)
It remains to show that the proven properties of ψ imply (62). Since E∪F * {0, T}, the set

B consists of two or more nonempty components Am. Each of these has at least one endpoint
that is neither 0 nor T ; i.e., tm 6= 0 or tm 6= T (tm 6= T and tm 6= 0 always). Say it is tm; then
tm ∈ (E ∪ F ) \ {0, T}, since tm /∈ Am (Am is an open arc). So, by (68) and the constancy of ψ
on Am,

p (tm) = ψ (tm) = ψ (t) for every t ∈ Am. (69)

If T 6= tm, then (69) holds with tm in place of tm, by the same argument. This also shows that
p (tm) = p

¡
tm
¢
if both tm 6= 0 and tm 6= T . (All this applies to m = 0 as well, if A0 6= ∅. In this

case ψ is additionally constant on A0 ⊃ {0, T}; so ψ (0) = ψ (T ) even if p (0) 6= p (T ).) This
completes the proof of (61)—(62) when F 6= ∅.

If p (0) = p (T ), then ψ (0) = ψ (T ) follows by virtually the same argument as that proving
(68), with 0 and T thought of as a single point of the circle.

Finally, consider the case of F (f, kSt) = ∅, which is trivial in that the reservoir is never
used to capacity, and it earns no rent. Formally, κSt = νSt = 0 by Part 2b of Proposition 3 and
(25); so ψ is a constant. Its uniqueness is readily shown: ψ minimizes (34) over BV (0, T ), so,
a fortiori, it minimizes (34) over R. Since for ψ ∈ R the sum (34) simplifies to

kTu

Z T

0
(p (t)− ψ)+ dt+ ψ

Z T

0
e (t) dt

36This argument uses also the fact that lim inf (A−B) ≤ lim inf A− lim inf B ≤ lim sup (A−B) whenever the
middle term is well defined. It equals lim (A−B) if the latter exists, as here (although the inequalities suffice).
The same holds with lim supA− lim supB as the middle term.
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the minimum in question is characterized by the FOC

meas {t : p (t) > ψ} ≤ 1

kTu

Z T

0
e (t) dt ≤ meas {t : p (t) ≥ ψ} (70)

which means that ψ is an upper quantile of order (1/TkTu)
R T
0 e (t) dt for the distribution of

p with respect to meas /T .37 And the quantile is unique if p ∈ C [0, T ], since the cumulative
distribution function of p is then strictly increasing on the interval (Min (p) ,Max (p)).

Comment: Although (64) suffices for the argument, both inf signs can be deleted, i.e.,
(64) can be strengthened to: κTu (t−) = 0 = νTu (t+) with νTu (t−) ≥ 0 and κTu (t+) ≥ 0,
for t ∈ F \ {0, T}, whenever p (t±) exist.38 This is because, by (28) and the continuity of
κ 7→ κ± ∈ R+, the four limits exist and are equal to (κTu − νTu)

± (t±) = (p− ψ)± (t±). All
four limits are zero if p is continuous at t.

Given Lemma 8, Theorem 9 is a routine case of the marginal interpretation of the dual
solution. Before a formal proof, it is worth retracing in the present context the familiar argument
which establishes the derivative property of the value function when differentiability is taken
for granted. With the dual minimand (34) denoted by V (kH, e,ψ), the r.h.s.’s of (40)—(42)
are obviously the partial derivatives of V in (kH, e) evaluated at the dual optimum ψ̂ (kH, e).

And the total derivatives, in (kH, e), of the dual value V
³
kH, e, ψ̂ (kH, e)

´
are equal to the

corresponding partial derivatives, since the partial derivative of V in ψ vanishes by the FOC
for the optimality of ψ̂. To complete the calculation, note that the dual value equals the
primal value ΠHSR.

39 This is, indeed, the substance of the first step in the Proof of Theorem 9,
except that a standard convex duality result is used instead of the above derivation “from first
principles”. This is necessary because a rigorous application of the chain rule would run into
difficulties, since it would require the differentiability of ψ̂ in (kH, e), and of V in ψ. This would

make their composition Π (kH, e) = V
³
kH, e, ψ̂ (kH, e)

´
differentiable, but neither this nor even

the uniqueness of an optimal ψ (i.e., the existence of ψ̂) may be presupposed. Rather, these
properties must be derived–by using price continuity, since they are known to fail in general
if p /∈ C (see [11] for an example). This gap is filled by Lemma 8.

Proof of Theorem 9 (Efficiency rents of a hydro plant). The first, routine, step is
to identify the dual variables as marginal values of the primal parameters, with the marginal
values formalized as supergradients (of the primal value, a concave function of the parameters):
see, e.g., [24, Theorem 16: (b) and (a), with Theorem 15: (e) and (f)] or [18, 7.3: Theorem
1’]. This is applied in such a way as to give the marginal interpretation to the optimal κ and ν
themselves, rather than only to their totals over the cycle, although the formulae to be proved
are for the total values. Therefore the short-run profit is considered as a function, eΠHSR, of all
the quantity parameters

(∆kSt,∆nSt;∆kTu,∆nTu;∆e,∆ζ) ∈ C × C × L∞ × L∞ × L∞ ×R
37Note that 0 < T

0
e (t) dt < TkTu by (20).

38The abbreviations κ (t±) for the essential (one-sided) limits should not be mistaken for the ordinary limits
of a particular variant of κ, in as much as the ordinary limits may be nonexistent.
39Conversely, the equality of short-run profit to the fixed-input value can be rederived from (40)—(42) by

applying Euler’s Theorem to Π as a jointly homogeneous function of (k, e).
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discussed in Section 5. It is an extension of the optimal value of the programme (13)—(17), i.e.,

ΠHSR (p; kSt, kTu, e) = eΠHSR (p; kSt, 0; kTu, 0; e, 0) for (kSt, kTu) ∈ R2

where the scalars are identified with constant functions on [0, T ]. In this setting, the result
giving the marginal values of the primal parameters is

b∂kSt,nSt,kTu,nTu,e,ζ eΠHSR = {(κSt,−νSt,κTu,−νTu,ψ,λ) : (κ, ν,ψ,λ)
meet Conditions 2a,2b and 2c of Proposition 3} . (71)

For differentiation of ΠHSR, with respect to the constant capacities and the cyclically varying
inflow, it follows from (71) that

b∂kSt,kTu,eΠHSR =
(ÃZ

[0,T ]
κSt (dt) ,

Z T

0
κTu (t) dt,ψ

!
: ∃ν ∃λ (κ,−ν,ψ,λ) ∈ b∂kH,nH,e,ζ eΠHSR

)

=

½µ
Var+c (ψ) ,

Z T

0
(p− ψ)+ dt,ψ

¶
: ψ ∈ Ψ̂ (p; kSt, kTu, e)

¾
(72)

by using (32) and substituting κSt = (dψ)+. When p ∈ C, the set Ψ̂ in (72) is actually a
singleton by Lemma 8, and hence so is b∂kH,eΠHSR (p; kH, e).
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Figure 1: Trajectories of: (a) shadow price for water ψ̂, (b) profit-maximising hydro output ŷH,
(c) water stock. Unit rent for storage capacity is Var+c (ψ̂) = (dψ̂)

0 + (dψ̂)00, the sum of rises of

ψ̂. Unit rent for turbine capacity is
R T
0

³
p(t)− ψ̂(t)

´+
dt, the sum of dark grey areas in (a). In

(b), each of the light grey areas equals the reservoir’s capacity kSt. When ŷH (t) 6= e (t) in (b),
the thin line is the inflow trajectory e, and the thick line is ŷH.
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Figure 2: Indeterminacy of an optimal shadow price of water ψ when the TOU price of good
p is discontinuous. In the case shown, the constant value of ψ on

¡
t, t
¢
can be set at any level

between p (t−) and p (t+); so the jump of ψ at t is an indeterminate part of the reservoir’s unit
rent. The dark grey area represents

R t
t (p− ψ)+ dt, the interval’s contribution to the turbine’s

unit rent.
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