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Abstract. This is a new formal framework for the theory of competitive equilibrium
and its applications. Our “short-run approach” means the calculation of long-run pro-
ducer optima and general equilibria from the short-run solutions to the producer’s profit
maximization programme and its dual. The marginal interpretation of the dual solu-
tion means that it can be used to value the capital and other fixed inputs, whose
levels are then adjusted accordingly (where possible). But short-run profit can be a
nondifferentiable function of the fixed quantities, and the short-run cost is nondifferen-
tiable whenever there is a rigid capacity constraint. Nondifferentiability of the optimal
value requires the introduction of nonsmooth calculus into equilibrium analysis, and
subdifferential generalizations of smooth-calculus results of microeconomics are given,
including the key Wong-Viner Envelope Theorem. This resolves long-standing discrep-
ancies between “textbook theory” and industrial experience. The other tool employed
to characterise long-run producer optima is a primal-dual pair of programmes. Both
marginalist and programming characterizations of producer optima are given in a tax-
onomy of seventeen equivalent systems of conditions. When the technology is described
by production sets, the most useful system for the short-run approach is that using the
short-run profit programme and its dual. This programme pair is employed to set up
a formal framework for long-run general-equilibrium pricing of a range of commodities
with joint costs of production. This gives a practical method that finds the short-run
general equilibrium en route to the long-run equilibrium, exploiting the operating poli-
cies and plant valuations that must be determined anyway. These critical short-run
solutions have relatively simple forms that can greatly ease the fixed-point problem
of solving for equilibrium, as is shown on an electricity pricing example. Applicable
criteria are given for the existence of the short-run solutions and for the absence of a
duality gap. The general analysis is spelt out for technologies with conditionally fixed
coefficients, a concept extending that of the fixed-coefficients production function to the
case of multiple outputs. The short-run approach is applied to the peak-load pricing of
electricity generated by thermal, hydro and pumped-storage plants. This gives, for the
first time, a sound method of valuing the fixed assets–in this case, river flows and the
sites suitable for reservoirs.
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1. Introduction

This is a new formal framework for the theory of competitive equilibrium and its
applications. Our “short-run approach” is a scheme for calculating long-run producer
optima and general equilibria by building on short-run solutions to the producer’s profit
maximization problem, in which the capital inputs and natural resources are treated as
fixed. These fixed inputs are valued at their marginal contributions to the operating
profits and, where possible, their levels are then adjusted accordingly.1 Since short-run
profit is a concave but generally nondifferentiable function of the fixed inputs, their
marginal values are defined as nonunique supergradient vectors. Also, they usually have
to be obtained as solutions to the dual programme of fixed-input valuation because there
is rarely an explicit formula for the operating profit. Thus the key property of the dual
solution is its marginal interpretation, but this requires the use of a generalized, multi-
valued derivative–viz., the subdifferential–because an optimal-value function, such as
profit or cost, is commonly nondifferentiable.
Differential calculus is essential for applications, but it has been purged from geometric

treatments of the Arrow-Debreu model, which are limited to equilibrium existence and
Pareto optimality results. Our use of subgradients rehabilitates it as a rigorous method
for equilibrium theory. The mathematical tools we employ–convex programming and
subdifferential calculus–enable us to reformulate some basic microeconomic results. In
addition to stating the known subdifferential versions of the Shephard-Hotelling Lemmas,
we have devised a subdifferential version of the Wong-Viner Envelope Theorem for the
short-run approach especially (Section 11). This facilitates economic analysis and resolves
long-standing discrepancies between “textbook theory” and industrial experience.2

We use these methods to set up a framework for the general-equilibrium pricing of
multiple outputs with joint production costs. This is applied to the pricing, operation
and investment problems of an electricity supply industry with a technology that can
include hydroelectric generation and pumped storage of energy, in addition to thermal
generation (Sections 15 to 17). This application draws on the much simpler case of
purely thermal generation (Section 2) and on our studies of the operation and valuation
of hydroelectric and pumped-storage plants in [24] and [27]. Those results are summarized
and “fed into” the short-run approach.
The short-run approach starts with fixing the producer’s capacities k and optimizing

the variable quantities, viz., the outputs y and the variable inputs v. For a competitive,
price-taking producer, the optimum quantities, ŷ and v̂, depend on their given prices, p
and w, as well as on k.3 The primal solution (ŷ and v̂) is associated with the dual solution
r̂, which gives the unit values of the fixed inputs (with r̂ · k as their total value); the
optima are, for the moment, taken to be unique for simplicity. When the goal is limited

1When carried out by iterations, the calculations might also be seen as modelling the real processes
of price and quantity adjustments.

2The usual theory of differentiable convex functions is, of course, included in subdifferential calculus
as a special case. Furthermore, the subgradient concept can also be used to prove–rather than assume–
that a convex function is differentiable by showing that it has a unique subgradient. We use this method
in [24] and [27, Section 9].
3From Section 4 on, short-run cost minimization is split off as a subprogramme, whose solution is

v̌ (y, k,w). In these terms, v̂ (p, k, w) = v̌ (ŷ (p, k,w) , k, w).
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to finding the producer’s long-run profit maxima, it can be achieved by part-inverting the
short-run solution map of (p, k, w) to (y,−v; r) so that the prices (p, r, w) are mapped
to the quantities (y,−k,−v). This is done by solving the equation r̂ (p, k, w) = r for k
and substituting any solution into ŷ (p, k, w) and v̂ (p, k, w) to complete a long-run profit-
maximizing input-output bundle. Such a bundle may be unique but only up to scale if
the returns to scale are constant (making r̂ homogeneous of degree zero in k).
Even within the confines of the producer problem, this approach saves effort by building

on the short-run solutions that have to be found anyway: the problems of plant operation
and plant valuation are of central practical interest and always have to be tackled by
producers. But the short-run approach is even more important as a practical method for
calculating market equilibria. For this, with the input prices r and w taken as fixed for
simplicity, the short-run profit-maximizing supply ŷ (p, k, w) is equated to the demand
for the products x̂ (p) to determine the short-run equilibrium output prices p?SR (k,w).
The capacity values r̂, calculated at the equilibrium prices p?SR (k, w) with the given k
and w, are only then equated to the given capacity prices r to determine the long-run
equilibrium capacities k? (r, w), and hence also the long-run equilibrium output prices and
quantities (by substituting k? in the short-run equilibrium solution).4 In other words,
the determination of investment is postponed until after the equilibrium in the product
markets has been found: the producer’s long-run problem is split into two–that of
operation and that of investment–and the equilibrium problem is “inserted” in-between.
Since the operating solutions usually have relatively simple forms, doing things in this
order can greatly ease the fixed-point problem of solving for equilibrium: indeed, the
problem can even be elementary if approached in this way (Section 2). Furthermore,
unlike the optimal investment of the pure producer problem, the equilibrium investment
k? has a definite scale (determined by demand for the products). Put another way:
r̂ (p?SR (k, w) , k, w), the value to be equated to r, is not homogeneous of degree zero in
k like r̂ (p, k, w). Thus one can keep mostly to single-valued maps, and avoid dealing
with multi-valued correspondences. And finally, like the short-run producer optimum,
the short-run general equilibrium is of interest in itself.
This exposition comes in three parts. The first and main part (Sections 2 to 19)

contains various characterizations of long-run producer optima, but its core is a frame-
work for the short-run approach to the long-run general-equilibrium pricing of a range of
commodities with joint costs of production (Sections 12 and 13). This is applied to the
peak-load pricing of electricity generated by a variety of techniques (Sections 15 to 17);
a greatly simplified version of this problem serves also as an introductory example (Sec-
tion 2). The characterizations of producer optima (needed for the short-run approach)
are complemented by criteria for the existence of optimum quantities and shadow prices
for the short-run profit maximization and cost minimization problems, and for the equal-
ity of total values of the variable quantities and the fixed quantities, i.e., for the absence
of a gap between the primal and dual solutions. These results form the second part
(Sections 20 to 23). The third and last part (Sections 24 to 28) introduces the concept

4The short-run approach to equilibrium might also be based on short-run cost minimization, in which
not only the capital inputs (k) but also the outputs (y) are kept fixed and are shadow-priced in the dual
problem, but such cost-based calculations are usually much more complicated than those using profit
maximization: see Section 12.
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of technologies with conditionally fixed coefficients, and the preceding general analysis is
specialized to this class. Two short appendices (A and B) provide contextual examples
of mathematical complications, one possible but exceptional (a duality gap), the other
typical (a nonfactorable joint subdifferential of a nondifferentiable bivariate convex func-
tion). Appendix C gives the required results of convex calculus (with one innovation,
viz., Lemma C.5 on subdifferential sections).
As a simple but instructive introduction to the short-run approach to long-run equi-

librium, we rehearse Boiteux’s treatment of the simplest peak-load pricing problem, viz.,
the problem of pricing the services of a homogeneous capacity that produces a nonstor-
able good with cyclic demands (such as electricity). A direct calculation of the long-run
equilibrium poses a fixed-point problem, but, with cross-price independent demands, the
short-run equilibrium is obtained by the elementary method of intersecting the supply
and demand curves for each time instant separately. At each time t, the short-run equi-
librium output price p?SR (t) is the sum of the unit operating cost w and a capacity charge
κ?SR (t) ≥ 0 that is nonzero only at times of full capacity utilization, i.e., when the out-
put rate y?SR (t) equals the given capacity k. Finally, the long-run equilibrium is found
by adjusting the capacity k so that its unit cost r equals its unit value, defined as the
unit operating profit, which equals the total capacity charge over the cycle,

R T
0
κ?SR dt

=
R T
0
(p?SR − w) dt. This solution is given by Boiteux with discretized time [9, 3.2—3.3].5

Its continuous-time version is given in Section 2.
We develop Boiteux’s idea into a frame for the analysis of investment and pricing by an

industry that supplies a range of commodities–such as a good differentiated over time,
locations or events (Sections 12 and 13). In Sections 15 to 17, this is applied to augment
the rudimentary one-station model to a continuous-time equilibrium model of electricity
pricing with a diverse technology, including energy storage and hydro as well as thermal
generation. Such a plant mix makes supply cross-price dependent, even in the short run
(i.e., with the capacities fixed). Demand, too, is allowed to be cross-price dependent.
The setting up of the short-run approach to pricing and investment (Sections 12 and

13) is the most novel part of this study. Unlike the characterization and existence results
about producer optima, this is not fully formalized into theorems: we assume, rather than
prove, that the short-run equilibrium is unique, and we merely note that its existence
cannot be guaranteed unless the fixed capacities are all positive (i.e., unless k À 0).6 The
question of a general method of computing short-run market equilibria is only touched
upon, in Figure 3, where the use of Walrasian tatonnement is suggested.7 And we do
not establish any qualitative properties of the long-run condition r̂ (p?SR (k,w) , k, w) = r,

5Boiteux’s work is also presented by Drèze [15, pp. 10—16], but the short-run character of the approach
is more evident from the original [9, 3.2—3.3] because Boiteux discusses the short-run equilibrium first,
before using it as part of the long-run equilibrium system. Drèze mentions the short-run equilibrium on
its own only as an afterthought [15, p. 16].
6This is not an unacceptable condition, but some capacities could of course be zero in long-run

equilibrium. The long-run model meets the usual adequacy assumption, as does the short-run model
with positive capacities, and so the existence of an equilibrium follows from results such as Bewley’s [7,
Theorem 1], which is amplified in [31, Section 3] and [29] by a proof using the continuity of demand in
prices.
7As is well known, this process does not always converge, but there are other iterative methods.
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as an equation for the investment k (or, more generally, as a subdifferential inclusion,
viz., (13.18)). But it is shown that our SRP programme-based system, consisting of
Conditions (13.11)—(13.15) together with (13.18)—(13.19), is a full characterization of
long-run market equilibrium. Furthermore, it is clear already from the introductory
example of Section 2 that the short-run approach can greatly simplify the problem of
solving for long-run equilibrium (as well as finding the short-run equilibrium on the way).
It is apparent that the approach is worth applying not only to the case of electricity but
also to the supply of other time-differentiated commodities (such as water, natural gas,
etc.). The questions of uniqueness, stability and iterative computation of equilibria,
though important, are not specific to the short-run approach; also, they have been much
studied and are well understood (at least in infinite-dimensional commodity spaces). The
central and distinctive quantitative elements of the approach are valuation and operation
of plants, and these are problems that we have fully solved for the various types of plant
in the electricity supply industry (see Section 16 and its references). The priorities in
developing the approach are: (i) to analyze the valuation and operation problems for other
technologies and industries, and (ii) to compute numerical solutions from real data by
using, at least to start with, the standard methods (viz., linear programming for producer
optima and tatonnement for market equilibria). It would seem sensible to address the
theoretical questions of uniqueness and stability in the light of future computational
experience (in which more elaborate iterative methods could be employed if necessary).
These questions are potentially important for practice as well as for completing the theory,
but they are not priorities for this study, and are left for further research.
Sections 3 to 11, between the introductory example and the setup for the short-run

approach, give characterizations of long-run producer optima. Each is either an opti-
mization system or a differential system, i.e., it is a set of conditions formulated in terms
of either the marginal optimal values or the optimal solutions to a primal-dual pair of
programmes (although one can also mix the two kinds of condition in one system).
Though equivalent, the various systems are not equally usable, and the best choice of

system depends on one’s purpose as well as on the available mathematical description
of the technology. In our application to electricity pricing with non-thermal as well as
thermal generation, the technology is given by production sets (rather than profit or
cost functions), and so the best tool for the short-run approach is the system using the
programme of maximizing the short-run profit (SRP), together with the dual programme
for shadow-pricing the fixed inputs. For each individual plant type,8 the problem of
minimizing the short-run cost (SRC) is typically easy (if it arises at all); therefore, it
can be split off as a subprogramme (of profit maximization). The resulting split SRP
optimization system serves as the basis of our framework for the short-run approach
to pricing and industrial investment (Section 13). Because of its importance to our
applications, this system is introduced as soon as possible, in Section 4–not only before
the differential systems (Sections 7, 8 and 11), but also before the other optimization

8By contrast, SRC minimization for a system of plants can be difficult because it involves allocating
the system’s given output among the plants. Its complexity shows in, e.g., the case of a hydro-thermal
electricity-generating system [35]. Our decentralized approach avoids having to deal directly with the
formidable problem of minimizing the entire system’s cost: see the Comments containing Formulae (12.3)
and (12.4).
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systems (Sections 6 and 11), and even before a discussion of the dual programmes (in
Section 5).
Of the differential systems, the first one to be presented formally, in Section 7, is that

which generalizes Boiteux’s original set of conditions, limited though it is to technologies
that are simple enough to allow explicit formulae not only for the SRC function but also
for the SRP function. Another differential system, introduced informally in Section 2
and formally in Section 11, has the same mathematical form but uses the LRC instead of
the SRP function (with the variables suitably switched). The two systems’ equivalence
extends the Wong-Viner Envelope Theorem (on the equality of SRMC and LRMC) to
convex technologies with nondifferentiable cost functions by Formula (11.1)–and this is
the result outlined earlier in Section 2 (where it is exemplified by our account of Boi-
teux’s short-run approach to the simple peak-load pricing problem). The extension is
made possible by using the subdifferential (a.k.a. the subgradient set) as a generalized,
multi-valued derivative. This is necessary because the joint-cost functions may lose dif-
ferentiability at crucial points. For example, in the simplest peak-load pricing problem,
the long-run cost is nondifferentiable at every output bundle with multiple global peaks
because, although the total capacity charge is determinate (being equal to r, the given
rental price of capacity), its distribution over the peaks cannot be determined purely by
cost calculations. And, far from being exceptional, multiple peaks forming an output
plateau do arise in equilibrium as a solution to the shifting-peak problem, as we show
in [26] under appropriate assumptions about demand.9 The short-run marginal cost is
even less determinate: whenever the output rate reaches full capacity, an SRMC exceeds
the unit operating cost w by an arbitrary amount κ–which makes the capacity charge
indeterminate in total as well as in its distribution. This is an example of the inclusion
between the subdifferentials of the two costs, as functions of the output bundle: the set
of SRMCs is larger than the set of LRMCs when the capital inputs are at an optimum
(i.e., minimize the total cost). It then takes a stronger condition to ensure that a partic-
ular SRMC is actually an LRMC. What is needed is the equality of rental prices to the
profit-imputed values of the fixed inputs (which are the fixed inputs’ marginal contribu-
tions to the operating profit). This equality is the required generalization of Boiteux’s
long-run optimum condition, which, for his one-station technology, equates the capac-
ity price r to the unit operating profit

R
κdt =

R
(p (t)− w) dt [9, 3.3, and Appendix:

12]. The valuations must be based on increments to the operating profit: it is gener-
ally ineffective to try to value capacity increments by any reductions in the operating
cost. The one-station example shows just how futile such an attempt can be: excess
capacity does not reduce the operating cost at all, but any capacity shortage makes the
required output infeasible. This leaves the capacity value completely indeterminate by

9This shows how mistaken is the widespread but unexamined view that nondifferentiabilities of convex
functions are of little consequence: the very points which are a priori exceptional turn out to be the
rule rather than the exception in equilibrium. Also, it is only on finite-dimensional spaces that convex
functions are “generically smooth” or, more precisely, twice differentiable almost everywhere with respect
to the Lebesgue measure (Alexandroff’s Theorem). On an infinite-dimensional space, a convex function
can be nondifferentiable everywhere.
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SRC calculations–in contrast to the definite value
R
(p (t)− w) dt obtained by calcu-

lating the SRP. Only with differentiable costs is the SRC as good as the SRP for the
purpose of capital-input valuation.
Our extension of the Wong-Viner Envelope Theorem uses the SRP function and thus

achieves for any convex technology what Boiteux [9, 1.1—1.2 and 3.2—3.3] in effect does
with the very simple but nondifferentiable cost functions of his problem, which are spelt
out here in (2.5) and (2.6). He realizes that there is something wrong with the supposed
equality of SRMC and LRMC [9, 1.1.4 and 1.2.2]. As he puts it,

“It seems practically out of the question that these costs should be equal;
it is difficult to imagine, for instance, how the marginal cost of operating a
thermal power station could become high enough to equal the development
cost (including plant) of the thermal energy [its long-term marginal cost].
The paradox is due to the fact that most industrial plants are in reality
very ‘rigid’. . . .
There is no. . . question of equating the development cost to the cost of

overloading the plant, since any such overloading is precluded by the as-
sumption of rigidity. . . . The more usual types of plant have some slight
flexibility in the region of their limit capacities. . . but. . . any ‘overload-
ing’ which might be contemplated in practice would never be sufficient to
equate its cost with the development cost; hence the paradox referred to
above.”

Its resolution starts with his

“new notion which will play an essential part in ‘peak-load pricing’: for
output equal to maximum, the differential cost [the SRMC] is indetermi-
nate: it may be equal to, or less or greater than the development cost [the
LRMC].”

In the language of subdifferentials, Boiteux’s “new notion”–that the LRMC is just one
of many SRMCs–is a case of the afore-mentioned general inclusion between the LRMCs
and SRMCs, which is usually strict: ∂yCLR (y, r) Ã ∂yCSR (y, k) when r ∈ −∂kCSR (y, k),
i.e., when the bundle of capital inputs k minimizes the total cost of an output bundle
y, given their prices r (and given also the variable-input prices w, which, being kept
fixed, are suppressed from the notation). For differentiable costs, this reduces to the
Wong-Viner equality of gradient vectors: ∇yCLR = ∇yCSR (when the capital inputs are
at an optimum). But for nondifferentiable costs, all it shows is that each LRMC is an
SRMC–which is the reverse of what is required for the short-run approach. The way out
of this difficulty is to bring in the SRP function, ΠSR, and require that the given prices
for the capital inputs are equal to their profit-imputed values, i.e., that r = ∇kΠSR (p, k)
or, should the gradient not exist, that r ∈ b∂kΠSR (which is the superdifferential a.k.a. the
supergradient set). This condition is stronger than cost-optimality of the fixed inputs
when the output price system p is an SRMC, i.e., if p ∈ ∂yCSR (y, k) then b∂kΠSR (p, k)
⊆ −∂kCSR (y, k), generally with a strict inclusion (indeed, ∇kΠSR can exist even when
∇kCSR does not, in which case ∇kΠSR ∈ −∂kCSR). And the new condition–that r
∈ b∂kΠSR (p, k)–is no stronger than it need be: it is just strong enough to do the job and
guarantee that if p ∈ ∂yCSR (y, k) then p ∈ ∂yCLR (y, r).
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Thus our analysis of the relationship between SRMC and LRMC bears out, amplifies
and develops Boiteux’s ideas, which, at the time, he allowed, with a hint of exasperation,
were “false in the theoretical general case, but more or less true of ordinary industrial
plant”. We accommodate both cases: the industrial reality of fixed coefficients and rigid
capacities as well as the unrealistic textbook supposition of smooth costs. By bridging
the gap between the inadequate existing theory and its intended applications, we put an
end to its disturbing and unnecessary divorce from reality. This allows peak-load pricing
to be put, for the first time, on a sound and rigorous theoretical basis (Sections 15 to
17).
From our perspective, Boiteux’s long-run optimum condition, that r =

R
(p (t)− w) dt,

should be viewed as a special case, for the one-station technology, of the equation r
= ∇kΠSR. But staying within the confines of this particular example, Boiteux interprets
his condition merely as recovery of the total cost of production, including the capital
cost [9, 3.4.2: (2) and Conclusions: 4]. This is correct, but only in the case of a single
capital input, and it cannot provide a basis for dealing with a production technique that
uses a number of interdependent capital inputs.10 In such a case, our generalization of
Boiteux’s long-run optimum condition is stronger than capital-cost recovery: i.e., under
constant returns to scale, if r ∈ b∂kΠSR (or r = ∇kΠSR), then r · k = ΠSR, but not vice
versa (though the converse is of course true when k is a positive scalar). To think purely
in terms of marginal costs and cost recovery is a dead end: with multiple capital inputs,
cost recovery is not sufficient to guarantee that a short-run equilibrium is also a long-
run equilibrium or, equivalently, that an SRMC tariff is also an LRMC tariff. The SRP
function with its marginals (derivatives w.r.t. k), or the SRP programme with the dual
solution, have to be brought into the short-run approach. This is done here for the first
time.
In mathematical terms, the Extended Wong-Viner Theorem (11.1) comes from what

we call the Subdifferential Sections Lemma (SSL), which gives the joint subdifferential of
a bivariate convex function (∂y,kC) in terms of one of its partial subdifferentials (∂yC) and
a partial superdifferential, b∂kΠ (p, k), of the relevant partial conjugate (which is a saddle
function): see (9.3), and Lemma C.5 in Appendix C. This is applied, twice, to either
the SRP or the LRC as a saddle function obtained by partial conjugacy from the SRC,
which is a jointly convex function (C) of the output bundle y and the fixed-input bundle
k, with the variable-input prices w kept fixed (Section 11). The SSL can be regarded as
a direct precursor of a well-known result of convex calculus, viz., the Partial Inversion
Rule (PIR), which relates the partial sub/super-differentials of a saddle function (∂pΠ
and b∂kΠ) to the joint subdifferential of its bivariate convex “parent” function (∂y,kC):
see Lemmas C.6 and C.8 (whose proofs derive the PIR from the SSL). One well-known
application of this fundamental principle is the equivalence of two optimality conditions,

10Capital inputs are called independent if the SRP function (ΠSR) is linear in the capital-input bundle
k = (k1, k2, . . .); an example is the multi-station technology of thermal electricity generation. Such a
technology effectively separates into a number of production techniques with a single capital input each,
and Boiteux’s analysis applies readily: to ensure that the short-run equilibrium is also a long-run one,
it suffices to require cost recovery for each production technique θ with kθ > 0, although one must also
remember to check that any unused production technique (one with kθ = 0) cannot be profitable (e.g.,
that rθ ≥

R
(p (t)− wθ) dt for any unused type of thermal station).
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viz., the parametric version of Fermat’s Rule and the Kuhn-Tucker characterization of
primal and dual optima as a saddle-point of the Lagrange function: see, e.g., [45, 11.39 (d)
and 11.50]. Another well-known use of the PIR establishes the equivalence of Hamiltonian
and Lagrangian systems in convex variational calculus; when the Lagrange integrand is
nondifferentiable, this usefully splits the Euler-Lagrange inclusion (a generalized equation
system) into the pair of Hamiltonian differential inclusions, and it may even transform
the inclusion into ordinary equations because the Hamiltonian can be differentiable even
when the Lagrangian is not: see, e.g., [44, (10.38) and (10.40)], [43, Theorem 6] or [4,
4.8.2].11 Our own use of the PIR or the SSL relates the marginal optimal values for
a programme to those of a subprogramme, to put it in general terms. In the specific
context of extending the Wong-Viner Theorem, SRC minimization is a subprogramme
both of SRP maximization and of LRC minimization; their optimal values are CSR (y, k),
ΠSR (p, k) and CLR (y, r), respectively. This is a new use of what is, in Rockafellar’s
words, “a striking relationship...at the heart of programming theory” [41, p. 604].
One half of this argument (the application of the SSL to the saddle function ΠSR as

a partial conjugate of the bivariate convex function CSR to prove the first equivalence in
(11.1)) is given already in Section 9. It comes along with other applications of the PIR
and the SSL that establish the equivalence of saddle differential systems to the systems
with joint subdifferentials of Section 8.
Like all optimization, economic theory has to deal with the nondifferentiability of

optimal values that commonly arises even when the programmes’ objective and constraint
functions are all smooth. This has led to the eschewing of marginal concepts in rigorous
equilibrium analysis, but any need for this disappeared with the advent of nonsmooth
calculus. Of course, in using generalized derivatives such as the subdifferential, one
cannot expect to transcribe familiar theorems from the smooth to the subdifferentiable
case simply by replacing the ordinary single gradients with multi-valued subdifferentials–
proper subdifferential calculus must be applied. This not only extends the scope for
marginal analysis, but also leads to a rethinking and reinterpretation that can give a
new economic content to well-known results. The Wong-Viner Theorem is a case in
point: a useful extension depends on recasting its fixed-input optimality assumption
in terms of profit-based valuations (i.e., on restating the optimality of fixed inputs as
equality of their rental prices to their marginal contributions to the operating profit).
After this reformulation of optimality in terms of SRP marginals–but not before–the
“smooth” version can be transcribed to the case of subdifferentiable costs (by replacing
each ∇ with a ∂). Without this preparatory step, all extension attempts are doomed:
a direct transcription of the original Wong-Viner equality of SRMC and LRMC to the
subdifferentiable case is plainly false, and although it can be changed to a true inclusion
without bringing in the SRP function, that kind of result fails to attain the goal of
identifying an SRMC as an LRMC.12

11To distinguish the two quite different meanings of the word “Lagrangian”, we occasionally expand
it into either “Lagrange function” (in the multiplier method of optimization) or “Lagrange integrand”
(in the calculus of variations only).
12Without involving ΠSR, the inclusion (∂yCLR ⊆ ∂yCSR) can be improved only by making it more

precise but no more useful: ∂yCSR (y, k) can be shown to equal the union of ∂yCLR (y, r) over r ∈
−∂kCSR (y, k), i.e., over all those fixed-input price systems r for which k is an optimal fixed-input bundle
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Herein, one well-known optimality condition is, in the main part, conspicuous by its
absence. The Lagrangian saddle-point condition of Kuhn and Tucker is central to the
duality theory of convex programmes (CPs)–and we do use it in our studies of hydro and
energy storage [21], [23], [24] and [27], which serve the short-run framework’s application
to electricity supply in Sections 15 to 17–but we do not use the Kuhn-Tucker system
in the main part of this analysis (Sections 3 to 17). Instead, for a general analysis with
an abstract production cone, we prefer the Complementarity Conditions on the price
system and the input-output bundle (3.5). This system is a case of what we call the
FFE Conditions, which consist of primal feasibility, dual feasibility and equality of the
primal and dual objectives (at the feasible points in question). The FFE Conditions form
an effective system whenever the dual programme can be worked out from the primal
explicitly. This is so with the profit and cost problems because they become linear
programmes (LPs) once the production cone is represented by linear inequalities. For an
LP, the FFE system is linear in the primal and dual variables jointly–unlike the Kuhn-
Tucker system (which is nonlinear because of the quadratic term in the complementary
slackness condition): compare (5.3) with (5.2). And a linear system (i.e., a system of
linear equalities and inequalities) is much simpler to deal with: in particular, it can be
solved numerically by the simplex method (or another LP algorithm). The problem’s
size is smaller, though, when the method is applied directly to the relevant LP (or to its
dual), rather than to its FFE system.13 Either way, there is no need for the Kuhn-Tucker
system in solving the SRP programmes with their fixed-input valuation duals–although
it is instrumental in proving uniqueness of their solutions, in [21], [27] and [24].
In the LP formulation of a profit or cost programme, the fixed quantities are primal

parameters but need not be the same as the standard “right-hand side” parameters–and
so their shadow prices, which are the dual variables, need not be identical to the stan-
dard dual variables. Yet the usual theory of linear programming works with the standard
parameterization, and it is the standard dual solution that the simplex method provides
along with the primal solution. But, as we show in Section 14, this is not much of a
complication because any other dual variables can be expressed in terms of the standard
dual variables, i.e., in terms of the usual Lagrange multipliers for constraints. We use this
in valuing the fixed inputs for electricity generation, in Section 16. The principle has also
a counterpart beyond the linear or convex duality framework: it is the Generalized En-
velope Theorem for smooth optimization, whereby the marginal values of all parameters,
including any nonstandard ones, are equal to the corresponding partial derivatives of the
ordinary Lagrangian–and are thus expressed in terms of the constraints’ multipliers. See
[1, (10.8)] or [47, 1.F.b].
Our exposition of the producer optimum pauses for “stock-taking” in Section 10. In

particular, Tables 1 and 2 summarize the various characterizations of the long-run opti-
mum, though not their “mirror images” which result from a formal substitution of the
LRC for the SRP. These tables record also the methods employed to transform these
systems into one another. This shows a unity: the same methods are applied to systems
of the same type, even though the exposition gives special places to the two systems of

for the output bundle y (given also the omitted variable-input price system w). See the Comments at
the end of Appendix B.

13See the Comment at the end of Section 6 for a count of variables and constraints.
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importance for our application of the short-run approach, viz., the split SRP optimiza-
tion system of Section 4 and the SRC-P saddle differential system of Section 7. The
latter system’s “mirror image”, the L-SRC saddle differential system of Section 11, is
also directly involved in our application when its conditions of LRMC pricing and LRC
minimization serve as the definition of long-run optimum–as is often the case in public
utility pricing, including Boiteux’s work and our account of it in Section 2. The other
fourteen systems are not used here, but any can be the best tool, for the short-run ap-
proach as for other purposes, if the technology is described most simply in the system’s
own terms; see also the Comments at the end of Section 12. In particular, one should
not be trapped by the language into thinking that a system using the LRC programme
or function is somehow fundamentally unsuitable for the short-run approach.
Section 10 ends by noting that some of the systems–including the two “special” ones–

can be partitioned into a short-run subsystem (which characterizes SRP maxima) and
a supplementary condition that generalizes Boiteux’s long-run optimum condition and
requires that investment be at a profit maximum.
A complete formalization of all the duality-based systems is deferred to Sections 18

and 19, where the programmes’ duality and the systems’ equivalence are cast as rigorous
results with proofs. To this end, we restate formally the subdifferential versions of the
Shephard-Hotelling Lemmas (announced in Section 6). As has long been known [14,
pp. 555 and 583], these are cases of the derivative property of the optimal value, which
transcribes to the subdifferentiable case directly (by replacing ∇ with ∂).
Our characterizations of the producer optimum are complemented by results on the

equality of the primal and dual values and the solubility of both programmes. Such an
analysis is given in Sections 20 to 23; it yields sufficient criteria for the existence of a
pair of solutions with equal values. First, we recall from the general theory of CPs that
the absence of a duality gap is equivalent to the semicontinuity of the optimal value, and
we apply this to the profit and cost programmes (Section 20). To make this criterion
applicable, we give some sufficient conditions for the required semicontinuity of SRP as
well as LRC and SRC as functions of the programmes’ quantity data (Section 21). When
the commodity space for the variable quantities (the programme’s decision variables)
is infinite-dimensional, we utilize its weak* topology as well as its vector order. It is
therefore taken to be a dual Banach lattice (i.e., the dual of a completely normed vector
lattice). One example is L∞ [0, T ], which serves as the output space in our application
to peak-load pricing. With this or any other nonreflexive commodity space (for the
programme’s variable quantities), our results on the semicontinuity of profit or cost (as a
function of the fixed quantities) apply only when the given price system (for the variable
quantities) lies not just in the dual but actually in the smaller predual space. Such a
criterion is adequate only when the general-equilibrium price system is known to lie in
the predual–as is the case for the commodity space L∞ under Bewley’s assumptions
[7], which we weaken in [26] to make that result applicable to continuous-time problems.
But even the weakened assumption is restrictive: it requires that brief interruptions of
a consumption or input flow cause only small losses of utility or output (interruptibility
of demand). When this is not so and the programme’s price system cannot be taken
to lie in the predual, a duality gap can be precluded by imposing a generalized form of
Slater’s Condition (Section 23). This guarantees not only the semicontinuity, but even the
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continuity of profit or cost as a function of quantities, and thus also its subdifferentiability
(i.e., the existence of a subgradient) or, equivalently, solubility of the dual programme for
shadow-pricing the fixed quantities. The primal programme of optimal operation is shown
to be soluble in Section 22, when the given price system (for the variable quantities) lies
in the predual of the commodity space. When it does not, the programme can still be
soluble in some, though not all, cases (it must be soluble in general equilibrium even
when the supporting price system does not lie in the predual space).14

Thermal generation and pumped storage of electricity are examples of production tech-
niques with conditionally fixed coefficients (c.f.c.). Introduced in Section 24, this concept
extends the notion of a fixed-coefficients technology to the case of a multi-dimensional
output bundle. The convex programme of SRP maximization for a c.f.c. technique, its
dual and the Kuhn-Tucker Conditions are also spelt out in Section 24, although fully
formalized statements and proofs are deferred to Section 25. In Section 26, the assump-
tions of Sections 21 to 23 are verified for c.f.c. techniques. Therefore, the solubility and
no-gap results of Sections 21, 22 and 23 can be applied to the profit and cost programmes
with such a technology, and this is done for the SRP programme (with its dual) in Sec-
tion 27. Finally, in Section 28, we note that c.f.c. techniques can also be handled by
linear programming (as is done for the electricity generation and storage techniques in
Section 16).
Notation is explained when first used, but it is also listed below in several categories.

Later, Table 3 shows the correspondence of notation between our general duality scheme
of Sections 5 and 14 and its application to electricity supply.15

List of Notation
Profit and cost optimization and shadow-pricing programmes: parameters and decision

variables, solutions, optimal values and marginal values

y ∈ Y an output bundle, in a space Y
k ∈ K a fixed-input bundle, in a space K
v ∈ V a variable-input bundle, in a space V
p ∈ P an output price system, in a space P
r ∈ R a fixed-input price system, in a space R
w ∈W a variable-input price system, in a space W
∆y, ∆k, etc. increments to y, k, etc. (∆ differs from the upright ∆)
Y a production set (in the commodity space Y ×K × V )
A, B and C matrices or linear operations, esp. such that (y,−k,−v) ∈ Y if and only

if Ay −Bk − Cv ≤ 0
AT the transpose of a matrix A
δ (· | Y) the 0-∞ indicator function of the set Y (equal to 0 on Y)

14In [21] and [24], we give examples of an SRP programme in which the output space is L∞ [0, T ] and
a “singular” price term places the price system outside the predual L1 [0, T ], but it is the timing of the
singularity, and not just its presence, that decides whether the programme is soluble or not.

15Note the two different uses of the symbols s and σ: in Sections 5 and 14, these mean the standard
parameters and dual variables, but in Section 15 they mean the energy stock and water spillage. Also,
the nθ, nSt and nTu of Section 16 are lower constraint parameters (whose original, unperturbed values
are zeros). In Sections 13 and 17, n means an input of the numeraire.
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Y◦ the polar cone of Y (a cone in P ×R×W when Y is a cone in Y ×K × V )
Y◦p,w the polar cone’s section through (p,w)
G0 and G00 respectively, the sets of generators and of spanning vectors of Y◦, when Y

is a polyhedral cone in a finite-dimensional space
projY (Y) projection on Y of a subset, Y, of Y ×K × V
YSR (k) short-run production set (the section of Y through −k)
ILR (y) long-run input requirement set (the negative of the section of Y through y)
ISR (y, k) short-run input requirement set (the negative of the section of Y through

(y,−k))
vmaxZ and vminZ sets of all the maximal and of all the minimal points of a subset,

Z, of an ordered vector space (used with YSR (k), ILR (y) or ISR (y, k) as Z)
ΠLR the maximum long-run profit, a function of (p, r, w)
ΠSR the maximum short-run a.k.a. operating profit, a function of (p, k, w)
CLR the minimum long-run cost, a function of (y, r, w)
CSR the minimum short-run cost, a function of (y, k, w)
∂C the subdifferential of a convex function Cb∂Π the superdifferential of a concave function Π
∇Π the (Gateaux) gradient vector of a function Π
∂/∂k partial differentiation with respect to a scalar variable k
V̌ (y, k, v) the set of all variable-input bundles that minimize the short-run cost
v̌ (y, k, v) the variable-input bundle such as above (i.e., minimizing the short-run

cost), if it is unique
Ŷ (p, k, w) the set of all output bundles that maximize the short-run profit (i.e.,

maximize the function hp | ·i− CSR (·, k, w))
ŷ (p, k, w) the output bundle such as above (i.e., maximizing the function hp | ·i −

CSR (·, k, w)), if it is unique
K̂ (p, r, w) the set of all fixed-input bundles that maximize the long-run profit
k̂ (p, r, w) the fixed-input bundle such as above (i.e., maximizing the long-run profit),

if it is unique (under decreasing returns to scale)
CSR (y, k, w) the maximum, over shadow prices, of total output value less fixed-input

value (and less ΠLR when Y is not a cone)
CLR (y, r, w) the maximum, over shadow prices, of total output value (less ΠLR when

Y is not a cone)
ΠSR (p, k, w) the minimum, over shadow prices, of total fixed-input value (plus ΠLR

when Y is not a cone)
R̂ (p, k, w) the set of all fixed-input price systems that minimize the total fixed-input

value (plus ΠLR when Y is not a cone)
r̂ (p, k, w) the fixed-input price system such as above (i.e., minimizing the total fixed-

input value), if it is unique
P̌ (y, k, w) the set of all output price systems that maximize the total output value

less fixed-input value, h· | yi−ΠSR (·, k, w), less ΠLR when Y is not a cone
p̌ (y, k, w) the output price system such as above (i.e., maximizing h· | yi−ΠSR (·, k, w)),

if it is unique
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s vector of the standard primal parameters for a convex or linear programme (paired
to its equality and inequality constraints)

σ vector of the standard dual variables (Lagrange multipliers of the constraints) for
a convex or linear programme
Σ̂ (p, s) the set of all the standard dual solutions (Lagrange multiplier systems), when

the primal is a linear programme with s as its primal parameters and hp | ·i as its linear
objective function

σ̂ (p, s) the standard dual solution such as above, if it is unique
L the Lagrangian (the Lagrange function of the primal and dual variables and para-

meters)

Characteristics of the Supply Industry

θ a production technique of the Supply Industry
Φθ the set of fixed inputs of production technique θ
Ξθ the set of variable inputs of production technique θ
Yθ the production set of technique θ, a cone in Y ×RΦ(θ) ×RΞ(θ)

ξ a variable input, with a price wξ

φ a fixed input, with a price rφ
ΦF the set of fixed inputs with given prices rF

ΦE the set of fixed inputs with prices rE to be determined in long-run equilibrium
Gφ the supply cost of an equilibrium-priced input φ ∈ ΦE, a function of the supplied

quantity kφ
Characteristics of consumer and factor demands (from Industrial User)

F production function of the Industrial User–a function of inputs: n of the numeraire
and z of the differentiated good (e.g., electricity)
Uh consumer h’s utility, a function of consumptions: ϕ of the Industrial User’s prod-

uct, m of the numeraire and x of the differentiated good (e.g., electricity)
u (t, x) the consumer’s instantaneous utility from the consumption rate x at time t

(when U is additively separable)
mEn
h consumer h’s initial endowment of the numeraire

ςhφ consumer h’s share of profit Πφ from the supply of input φ ∈ ΦE

ςh IU consumer h’s share in the Industrial User’s profit, ΠIU
$hθ consumer h’s share in the operating profit from production technique θ of the

Supply Industry
B (p, %,M) consumer’s budget set when his income is M , the differentiated good

(electricity) price is p and the Industrial User’s product price is %
M̂SRh

¡
p; rE, rF;w, % | k

¢
consumer’s income in the short run

M̂LRh

¡
p, rE, %

¢
consumer’s income in the long run (Supply Industry’s pure profit is

zero)
x̂h (p, %;M) consumer h’s demand for the differentiated good (electricity) when its

price is p, the Industrial User’s product price is %, and the income is M
ϕ̂h (p, %;M) consumer h’s demand for the Industrial User’s product when its price is

%, the differentiated good’s (electricity) price is p, and the consumer’s income is M
ẑ (p, %) the Industrial User’s factor demand for the differentiated good (electricity)
n̂ (p, %) the Industrial User’s factor demand for the numeraire
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Short-run general-equilibrium prices and quantities

p?SR, %
?
SR prices for the differentiated good (electricity) and for the IU’s product

y?SR θ output of the differentiated good (electricity) by production technique θ
v?SR θ variable input into production technique θ
x?SRh, z

?
SR consumer demand and factor demand for the differentiated good (electric-

ity)
m?
SRh, n

?
SR consumer demand and factor demand for the numeraire

ϕ?SR the Industrial User’s output

Long-run general-equilibrium prices and quantities

w the given prices of the Supply Industry’s variable inputs
rF the given rental prices of the Supply Industry’s fixed-priced capital inputs
rE rental prices of the Supply Industry’s equilibrium-priced capital inputs–to be

determined in long-run equilibrium
r? the equilibrium prices of the equilibrium-priced inputs (i.e., the equilibrium value

of rE)
k?θ equilibrium capacities of producer θ in the Supply Industry
p?LR, y

?
LR θ, etc. equilibrium prices and quantities–as above, but for the long-run

equilibrium

Electricity generation (all techniques)

p (t) electricity price at time t (in $/kWh), i.e., p is a time-of-use tariff
Dt (p) cross-price independent demand for electricity (in kW) at time t, if the current

price is p

Thermal generation

S (p) in the short run, the cross-price independent rate of supply (in kW) of thermally
generated electricity, if the current price is p
cSR (y) the instantaneous short-run thermal cost per unit time (in $/kWh), if the

current output rate is y (in kW); the common graph of the correspondences S and ∂cSR
is the thermal SRMC curve

θ a type of thermal planteξ (θ) fuel type used by plant type θ
wξ price of fuel of type ξ (in $ per kWh of heat)
vθ fuel input of plant type θ (in kWh of heat)
ηθ technical efficiency of plant type θ, i.e., 1/ηθ is the heat rateewθ = wξθ

/ηθ unit running cost of plant type θ (in $/kWh of electricity output)
wθ abbreviation for ewθ when plant types correspond to fuels one-to-one
kθ thermal generating capacity of type θ (in kW)
κθ (t) unit value of the generating capacity at time t, per unit time (in $/kWh)
rθ =

R T
0
κθ (t) dt unit value of the generating capacity in total for the cycle (in $/kW)

γ (t) = κ (t) /
R T
0
κ (t) dt density, at time t, of the distribution of capacity charges

over the cycle, i.e., a subgradient of the function EssSup (more generally, a subgradient
of any capacity requirement function)
rFθ the given rental price of the generating capacity of type θ (in $/kW)
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νθ (t) unit value of nonnegativity constraint on output at time t, per unit time (in
$/kWh)
yθ (t) rate of electricity output from plant type θ at time t (in kW)

Pumped-storage

kSt the plant’s storage a.k.a. reservoir capacity (in kWh)
κSt (dt) unit value of storage capacity on a time interval of length dt (in $/kWh)
rSt =

R T
0
κSt (dt) unit value of storage capacity in total for the cycle (in $/kWh)

r?St the (long-run) equilibrium rental price of storage capacity (in $/kWh)
νSt (dt) unit value of nonnegativity constraint on energy stock on an interval of length

dt (in $/kWh)
kCo the plant’s conversion capacity (in kW)
κPu (t) unit value of converter’s pump capacity at time t, per unit time (in $/kWh)
κTu (t) unit value of converter’s turbine capacity at time t, per unit time (in $/kWh)
κCo (t) = κPu (t) + κTu (t) unit value of converter’s capacity at time t, per unit time

(in $/kWh)
rCo =

R T
0
κCo (t) dt unit value of conversion capacity in total for the cycle (in $/kW)

rFCo the given rental price of conversion capacity (in $/kW)
yPS (t) rate of electricity output from the pumped-storage plant at time t (in kW)
ŶPS (p; kSt, kCo) the set of all the electricity output bundles that maximize the op-

erating profit of a pumped-storage plant with capacities (kSt, kCo), when the electricity
tariff is p
ŷPS (p; kSt, kCo) the electricity output bundle such as above (i.e., the one maximizing

the storage plant’s operating profit), if it is unique
s0 energy stock at time 0 and T (in kWh)
λ unit value of energy stock at time 0 and T (in $/kWh)
s (t) energy stock at time t (in kWh)
ςhSt household’s share of profit from supplying the storage capacity
ψ (t) unit value of energy stock at time t (in $/kWh)
Ψ̂PS (p; kSt, kCo) the set of all the imputed time-of-use values of energy stock (shadow-

price functions for energy stock) in a pumped-storage plant with capacities (kSt, kCo),
when the electricity tariff is p

ψ̂PS (p; kSt, kCo) the imputed time-of-use value (shadow price) of energy stock, if it is
unique (as a function of time)

Hydro

kSt the plant’s storage a.k.a. reservoir capacity (in kWh)
κSt (dt) unit value of storage capacity on a time interval of length dt (in $/kWh)
rSt =

R T
0
κSt (dt) unit value of storage capacity in total for the cycle (in $/kWh)

r?St the (long-run) equilibrium rental price of storage capacity (in $/kWh)
G (kSt) the supply cost of reservoir of capacity kSt
νSt (dt) unit value of nonnegativity constraint on water stock on an interval of length

dt (in $/kWh)
kTu the plant’s turbine-generator capacity (in kW)
κTu (t) unit value of turbine capacity at time t, per unit time (in $/kWh)
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rTu =
R T
0
κTu (t) dt as the unit value of turbine capacity in total for the cycle (in $/kW)

rFTu the given rental price of turbine capacity (in $/kW)
νTu (t) unit value of nonnegativity constraint on turbine’s output at time t, per unit

time (in $/kWh)
e (t) rate of river flow at time t (in kW)
yH (t) rate of electricity output from the hydro plant at time t (in kW)
ŶH (p; kSt, kTu; e) the set of all the electricity output bundles that maximize the op-

erating profit of a hydro plant with capacities (kSt, kTu) and river inflow function e when
the electricity tariff is p
ŷH (p; kSt, kTu; e) the electricity output bundle such as above (i.e., the one maximizing

the hydro plant’s operating profit), if it is unique
σ (t) rate of spillage from the reservoir at time t (in kW)
s0 water stock at time 0 and T (in kWh)
λ unit value of water stock at time 0 and T (in $/kWh)
s (t) water stock at time t (in kWh)
ψ (t) unit value of water stock at time t (in $/kWh)
Ψ̂H (p; kSt, kTu; e) the set of all the imputed time-of-use water values (shadow water-

price functions) in a hydro plant with capacities (kSt, kTu) and river inflow function e,
when the electricity tariff is p

ψ̂H (p; kSt, kTu; e) the imputed time-of-use water value (shadow price), if it is unique
(as a function of time)

ςhSt household’s share of profit from supplying the reservoir capacity

Specific vector spaces, norms and functionals

meas the Lebesgue measure, on an interval [0, T ] of the real line R
L1 [0, T ] the space of meas-integrable real-valued functions on [0, T ]
L∞ [0, T ] the space of essentially bounded real-valued functions on [0, T ]
EssSup (y) = ess supt∈[0,T ] y (t) the essential supremum of a y ∈ L∞ [0, T ]
kyk∞ := EssSup |y| the supremum norm on L∞

C [0, T ] the space of continuous real-valued functions on [0, T ]
M [0, T ] the space of Borel measures on [0, T ]R
[0,T ]

s (t)µ (dt) the integral of a continuous function s with respect to a measure µ
εt the Dirac measure at t (i.e., a unit mass concentrated at the single point t)
BV (0, T ) the space of functions of bounded variation on (0, T )
Var+ (ψ) the total positive variation (upper variation) of a ψ ∈ BV (0, T )
Var+c (ψ) := Var

+ (ψ) + (ψ (0)− ψ (T ))+ the cyclic positive variation of ψ

Norms and topologies on vector spaces, dual spaces, order and nonnegativity, scalar product

Y ∗ the norm-dual of a Banach space (Y, k·k)
k·k∗ the dual norm on Y ∗

Y 0 the Banach predual of (Y, k·k), when Y is a dual Banach space
k·k0 the predual norm on Y 0

Y+, Y ∗+ and Y 0+ the nonnegative cones in Y , Y ∗ and Y 0 (when these are Banach
lattices), e.g., L∞+ and L1+ are the nonnegative cones in L

∞ and L1
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y+ and y− the nonnegative and nonpositive parts of a y ∈ Y (when Y is a vector
lattice)
k À 0 means that k is a strictly positive vector (in a lattice paired with another one);

here, used only with a finite-dimensional k
h· | ·i a bilinear form (scalar product) on the Cartesian product, P ×Y , of two vector

spaces (when P = Rn = Y , p · y is an alternative notation for the scalar product hp | yi
:= pTy, where y is a column vector and pT is a row of the same, finite dimension n)
w (Y, P ) the weak topology on a vector space Y for its pairing with another vector

space P (e.g., with Y ∗ or Y 0 when Y is a dual Banach space)
m(Y, P ) the Mackey topology on Y for its pairing with P (e.g., with P = Y ∗ or with

P = Y 0 when Y is a dual Banach space)
w∗ and m∗ abbreviations for w (P ∗, P ) and m(P ∗, P ), the weak* and the Mackey

topologies on the norm-dual of a Banach space P
bw∗ the bounded weak* topology (on a dual Banach space)
clY,T Z the closure of a set Z relative to a (larger) set Y with a topology T
intY,T Z the interior of a set Z relative to a (larger) set Y with a topology T
Y a the algebraic dual of a vector space Y
TSLC = m(Y, Y a) the strongest locally convex topology on a vector space Y

Sets derived from a set in a vector space

coneZ the cone generated by a subset, Z, of a vector space (i.e., the smallest cone
containing Z)
convZ the convex hull of a subset, Z, of a vector space (i.e., the smallest convex set

containing Z)
corZ the core of a subset, Z, of a vector space
extZ the set of all the extreme points of a subset, Z, of a vector space
spanZ the linear span of a subset, Z, of a vector space
N(y | Z) = ∂δ (y | Z) the outward normal cone to a convex set Z at a point y ∈ Z

(a cone in the dual space)
Na (y | Z) = ∂aδ (y | Z) the algebraic normal cone to Z at y (a cone in algebraic dual

space); ∂a is the algebraic subdifferential

Sets and functions derived from functions or operations on a vector space

argmaxZ f means the set of all maximum points of an extended-real-valued function
f on a set Z
domC the effective domain of a convex extended-real-valued function C
dbomΠ the effective domain of a concave extended-real-valued function Π
epiC the epigraph of a convex extended-real-valued function C (on a vector space)
kerA the kernel of a linear operation, A
lscC the lower semicontinuous envelope of C (the greatest l.s.c. minorant of C)
uscΠ the upper semicontinuous envelope of Π (the least u.s.c. majorant of Π)
C# the Fenchel-Legendre convex conjugate (of a convex function C)
Π# the concave conjugate (of a concave function Π)
C#1,2 , etc. the partial conjugate, of a multi-variate function, w.r.t. all the variables

shown (here, w.r.t. the first and the second variables together)
C 04 C 00 the infimal convolution of convex functions, C 0 and C 00
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Other notation
cardΦ the number of elements in a (finite) set Φ
∅ the empty set
1A the 0-1 indicator function of a set A (equal to 1 on A)
lim inf, lim sup respectively, the lower and upper limits (of a real-valued) function)
R the real line

2. Peak-load pricing with cross-price independent demands

We illustrate the short-run approach to solving for long-run general equilibrium with
the example of pricing, over the demand cycle, the services of a homogeneous productive
capacity with a unit capital cost r and a unit running cost w. The technology can be
interpreted as, e.g., electricity generation from a single type of thermal station with a fuel
cost w (in $/kWh) and a capacity cost r (in $/kW) per period. The cycle is represented
by a continuous time interval [0, T ]. Demand for the time-differentiated, nonstorable
product, Dt (p), is assumed to depend only on the time t and the current price p. As a
result, the short-run equilibrium can be found separately at each instant t, by intersecting
the demand and supply curves in the price-quantity plane. This is because, with this
technology, short-run supply is cross-price independent: given a capacity k, the supply is

(2.1) S (p, k, w) =

⎧⎪⎪⎨⎪⎪⎩
0 for p < w

[0, k] for p = w

k for p > w

where p is the current price. That is, given a time-of-use (TOU) tariff p (i.e., given a
price p (t) at each time t), the set of profit-maximizing output trajectories, Ŷ (p, k, w),
consists of selections from the correspondence t 7→ S (p (t) , k, w). When Dt (w) > k,
the short-run equilibrium TOU price, p?SR (t, k, w), exceeds w by whatever is required to
bring the demand down to k (Figure 1a). The total premium over the cycle is the unit
operating profit, which in the long run should equal the unit capacity cost r–i.e., the
long-run equilibrium capacity, k? (r, w), can be determined by solving for k the equation

(2.2) r =

Z T

0

(p?SR (t, k, w)− w)+dt

where π+ = max {π, 0} is the nonnegative part of π (i.e., by equating to r the shaded
area in Figure 1b). Put into the short-run equilibrium price function, the equilibrium
capacity gives the long-run equilibrium price

(2.3) p?LR (t; r, w) = p
?
SR (t, k

? (r, w) , w) .

An obvious advantage of this method is that the short-run equilibrium is of interest
in itself. Also, the short-run calculations can be very simple, as in this example. For
comparison, to calculate the long-run equilibrium directly requires timing the capacity
charges so that they are borne entirely by the resulting demand peaks–i.e., it requires
finding a density function γ ≥ 0 such thatZ T

0

γ (t) dt = 1 and if γ (t) > 0 then y (t) = sup
τ
y (τ)(2.4)
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where: y (t) = Dt (p (t)) and p (t) = w + rγ (t) .

This poses a fixed-point problem that, unlike the short-run approach, is not much sim-
plified by cross-price independence of demands.16

Since the operating profit is ΠSR (p, k, w) = k
R T
0
(p (t)− w)+dt, the break-even condi-

tion (2.2) can be rewritten as r = ∂ΠSR/∂k, i.e., it can be viewed as equating the capital
input’s price to its profit-imputed marginal value. This is, with any convex technology,
the first-order necessary and sufficient condition for a profit-maximizing choice of invest-
ment k: together with a choice of output y that maximizes the short-run profit (SRP),
such a choice of k maximizes the long-run profit (LRP), and thus turns the short-run
equilibrium into the long-run equilibrium.
Furthermore, with any technology and any number of capital inputs, r = ∇kΠSR if

and only if r is the unique solution to the dual of the SRP maximization programme
(and there is no duality gap): this is the derivative property of the optimal value ΠSR as
a function of the primal parameter k. This identity is useful when, with a more complex
technology, the SRP programme has to be solved by a duality method, i.e., together
with its the dual. It means that the dual solution r̂ (p, k, w), evaluated at the short-run
equilibrium output price system p?SR (k,w), can be equated to the capital inputs’ given
prices r to determine their long-run equilibrium quantities k?.
When the producer is a public utility, competitive profit maximization usually takes

the form of marginal-cost pricing. In this context, the equality r = ∂ΠSR/∂k, or r
= ∇kΠSR when there is more than one type of capacity, guarantees that an SRMC price
system is actually an LRMC. The result applies to any convex technology–even when
the costs are nondifferentiable, and the marginal cost has to be defined by using the
subdifferential as a generalized, multi-valued derivative. This is so in the above example
of capacity pricing, since the long-run cost

(2.5) CLR (y (·) , r, w) = w
Z T

0

y (t) dt+ r sup
t∈[0,T ]

y (t)

is nondifferentiable if the output y has multiple peaks: indeed, for every γ satisfying (2.4),
the function p = w + rγ represents a subgradient of CLR with respect to y (w.r.t. y).
And multiple peaks are more of a rule than an exception in equilibrium (note the peak
output plateau in Figure 1d here, and see [26] for an extension to the case of cross-price
dependent demands). Similarly, the short-run cost

(2.6) CSR (y (·) , k, w) =
(
w
R T
0
y (t) dt if 0 ≤ y ≤ k

+∞ otherwise

is nondifferentiable if supt y (t) = k. In Figure 1a, the nondifferentiability shows in the
(infinite) vertical interval [w,+∞) that represents the multi-valued instantaneous SRMC
at y = k.17 In Figure 1c, it shows as a kink, at y = k, in the graph of the instantaneous

16In terms of the subdifferential, ∂C, of the long-run cost (2.5) as a function of output, the fixed-point
problem is to find a function p such that p ∈ ∂CLR (D (p)), where D (p) (t) = Dt (p (t)) if demands are
cross-price independent.
17The SRMC and the short-run supply correspondences are inverse to each other, i.e., have the same

graph: in Figure 1a, the broken line is both the supply curve and the SRMC curve.
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cost function

(2.7) cSR (y) =

(
wy if 0 ≤ y ≤ k
+∞ otherwise

(which gives CSR (y) as
R T
0
cSR (y (t)) dt, so that a TOU price p is an SRMC at y if

and only if p (t) is an instantaneous SRMC at y (t) for each t). With this technology,
CSR is therefore nondifferentiable whenever k is the cost-minimizing capital input for
the required output y: cost-optimality of k means merely that it provides just enough
capacity, i.e., that k = Sup (y). This condition, being quite unrelated to the input prices
r and w, obviously cannot ensure that an SRMC price system is an LRMC. To guarantee
this, one must strengthen it to the condition that r =

R T
0
(p (t)− w)+dt in this example

or, generally, that r = ∇kΠSR (or that r belongs to the supergradient set b∂kΠSR (p, k, w),
should ΠSR be nondifferentiable in k).18 The capital’s cost-optimality would suffice for
the SRMC to be the LRMC if the costs were differentiable; this is the Wong-Viner
Envelope Theorem. The preceding remarks show how to reformulate it to free it from
differentiability assumptions. This is detailed in Section 11.
Cross-price independent demand arises from price-taking optimization by consumers

and industrial users with additively separable utility and production functions. In this
case, the short-run equilibrium prices can readily be given in terms of the marginal utility
of the differentiated good (and its productivity if there are industrial users). For the
simplest illustration, all demand is assumed to come from a single household maximizing
the utility function

U (x (·) ,m) = m+
Z T

0

u (t, x (t)) dt

over x (·) ≥ 0 and m ≥ 0, the consumptions of the nonstorable good and the numeraire,
subject to the budget constraint

m+

Z T

0

p (t)x (t) dt ≤M

where M is the income and p (·) is a TOU price in terms of the numeraire (which rep-
resents all the other goods and thus closes the model). For each t, the instantaneous
utility u (t, x) is taken to be a strictly concave, increasing and differentiable function of
the consumption rate x ∈ R+, with (∂u/∂x) (t, 0) > w (to ensure that, in a short-run
equilibrium with k > 0, consumption is positive at every t). The income consists of an
endowment of the numeraire (mEn) and the pure profit from electricity sales, i.e.,

M = mEn + k

Z T

0

(p (t)− w)+ dt− rk.

To guarantee a positive demand for the numeraire, assume thatmEn > (Tw + r) k. Then,
at any time t, demand (for the good) depends only on the current price p (t), and it is
determined from the equation

∂u

∂x
(t, x (t)) = p (t) .

18This condition (r = ∇kΠSR) is stronger than cost-optimality of the fixed inputs when p is an SRMC.
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In other words, Dt (p) = ((∂u/∂x) (t, ·))−1 (p). When w < (∂u/∂x) (t, k), this value of
∂u/∂x is the price needed to equate demand to k. So the short-run equilibrium price is

(2.8) p?SR (t, k, w) = w +

µ
∂u

∂x
(t, k)− w

¶+
.

By (2.2) and (2.3), the long-run equilibrium capacity k? (r, w) is determined from

r =

Z T

0

µ
∂u

∂x
(t, k)− w

¶+
dt

and the long-run equilibrium price is, in terms of k?,

(2.9) p?LR (t, r, w) = w +

µ
∂u

∂x
(t, k? (r, w))− w

¶+
.

Figure 1. Short-run approach to long-run equilibrium of supply and
(cross-price independent) demand for thermally generated electricity: (a)
determination of the SR equilibrium price and output for each instant t,
given a capacity k; (b) and (d) trajectories of the SR price and output; (c)
the SR cost curve. When k is such that the shaded area in (b) equals r,
the SR equilibrium is the LR equilibrium.
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3. Cost and profit as values of programmes with quantity decisions

Costs and profits of a price-taking producer are, by definition, the optimal values of
programmes with quantities as decision variables. With several variables, it can be much
easier to solve the mathematical problem in stages, by fixing some variables and dealing
with the resulting subproblem first. The subproblem may also be of independent interest,
especially if it corresponds to a stage in a practical implementation of a complete solution.
In production, the decision on plant operation (with fixed investment) corresponds to
short-run profit maximization as a subproblem of long-run profit maximization: although
operation is usually planned along with investment, the producer is still free to make
operating decisions after constructing the plant. In other words, his final choices of
the outputs y and the variable inputs v are made only after fixing the capital inputs
k. Such a multi-stage problem can be solved in the reverse order: this means that the
decisions to be implemented last are determined first but are made contingent on the
decisions to be implemented earlier, and the complete solution is put together by back
substitution. For the producer, this means first choosing y and v to maximize short-run
profit, given an arbitrary k as well as the prices, p and w, for the variable commodities.
Even within the confines of the purely periodic (or static) problems considered here, this
approach has a couple of analytical advantages. First, in addition to being of independent
interest, the short-run equilibrium (given k) can be much easier to find than the long-
run equilibrium, as in Section 2. Second, when there is a number of technologies, the
short-run equilibrium is usually much easier to find by solving the profit maximization
programmes (to determine the total short-run supply and equate it to demand) than
by solving the duals of cost minimization programmes (to determine the SRMCs, which
would have to be equated both to one another and to the inverse demand). This profit
approach is simpler than the cost approach in two ways, viz., by giving unique solutions
to the producer problem with its dual, and by reducing the number of unknowns in the
subsequent equilibrium problem: see Section 12.
A third advantage of the short-run approach emerges only when the framework, unlike

this one, takes account of non-periodic demand and price uncertainty. The prices for the
variable commodities (p,w), or their probability distribution in a stochastic model, will
change in unforeseen ways between the planning and the completion of plants, and will
also keep shifting thereafter. As a result, both the plant mix and the design of individual
plants will become suboptimal. But whether a plant is optimal or not, it should be
optimally operated, and a solution to this problem is part of the short-run approach.
It is the above considerations that make short-run profit maximization the subproblem

of central interest to us. It, too, may be solved in two stages, though this time the order
in which the decision variables (y and v) are determined is only a matter of convenience:
it is usually best to start with the simpler subproblem. Here, it is assumed that short-run
cost minimization (finding v given k and y) is easier than revenue maximization (finding
y given k and v). The solution sequence (first v, then y and finally k) corresponds to a
chain of three problems: (i) the “small” one of short-run cost minimization (with k and y
as data, v as a decision), (ii) an “intermediate” problem of short-run profit maximization
(with k as a datum,and y and v as decisions), and (iii) the “large” problem of long-run
profit maximization (with k, y and v as decision variables).
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A fourth problem, another intermediate one, is that of long-run cost minimization
(with y as a datum, k and v as decision variables). It is in terms of this problem and
its value function that that public utilities usually formulate their welfare-promoting
principles of meeting the demand at a minimum operating cost, optimizing their capital
stocks, and pricing their outputs at LRMC. Together, these policies result in long-run
profit maximization and competitive equilibrium in the products’ markets. Although
the separate aims are stated in terms of long-run costs (as LRMC pricing and LRC
minimization), their combination is best achieved through short-run calculations–for
the reasons outlined above and detailed in Section 12.
Each of the four problems, when formulated as one of optimization constrained by a

convex production set Y, has a linear objective function.19 This has several implications.
One is that each problem (SRC or LRC minimization, or SRP or LRP maximization)
can be formulated as a linear programme (LP), by representing Y as the intersection of a
finite or infinite set of half-spaces; this is discussed further in Section 14. What matters
for now is that in passing to a subproblem, once a decision variable has become a datum
(like k in passing from long to short run), the corresponding term of the linear optimand
(r · k) can be dropped, since it is fixed. Its coefficient (r) can then be removed from the
subproblem’s data (which include k).20

The commodity spaces for outputs, fixed inputs and variable inputs are denoted by Y ,
K and V , respectively. These are paired with price spaces P , R andW by bilinear forms
(a.k.a. scalar products) denoted by hp | yi, etc.; the alternative notation p · y is employed
to mean pTy when both P and Y are equal to the finite-dimensional space Rn (where pT
is the row vector obtained by transposing a column p). Unless specified, the range of a
decision variable (say y) is the whole space (Y ).
With p, r and w denoting the prices for outputs, fixed inputs and variable inputs (y,

k and v, respectively), the long-run profit maximization programme is:

Given (p, r, w) , maximize hp | yi− hr | ki− hw | vi over (y, k, v)(3.1)

subject to (y,−k,−v) ∈ Y.(3.2)

Its optimal value, the maximum LRP as a function of the data, is denoted byΠLR (p, r, w).
By definition, (y, k, v) solves (3.1)—(3.2) if and only if

(3.3) (y,−k,−v) ∈ Y and hp, r, w | y,−k,−vi = ΠLR (p, r, w) .

In the central case of constant returns to scale (c.r.t.s.), the production set Y is a cone,
and ΠLR is the 0-∞ indicator of the polar cone

(3.4) Y◦ = {(p, r, w) : ∀ (y,−k,−v) ∈ Y hp | yi− hr | ki− hw | vi ≤ 0}
i.e., ΠLR (p, r, w) is 0 if (p, r, w) ∈ Y◦, and it is +∞ otherwise. Condition (3.3) is then
equivalent to the conjunction of technological feasibility, price consistency and break-even

19Even if the objective were nonlinear, it could always be replaced by a linear one with an extra
scalar variable, subject to an extra nonlinear constraint: as is noted in [12, p. 48], minimization of f (y)
over y is equivalent to minimization of ρ over y and ρ subject to ρ ≥ f (y) in addition to any original
constraints on y.
20More generally, this is so whenever the optimand separates into a function of (r, k) plus terms

independent of r and k.
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conditions, which make up the Complementarity Conditions

(3.5) (y,−k,−v) ∈ Y, (p, r, w) ∈ Y◦ and hp, r, w | y,−k,−vi = 0.

One subprogramme of (3.1)—(3.2) is short-run profit maximization, i.e.,

Given (p, k, w) , maximize hp | yi− hw | vi over (y, v)(3.6)

subject to (y,−k,−v) ∈ Y.(3.7)

Its optimal value is ΠSR (p, k, w), the maximum SRP.
Another subprogramme of (3.1)—(3.2) is long-run cost minimization, i.e.,

Given (y, r, w) , minimize hr | ki+ hw | vi over (k, v)(3.8)

subject to (y,−k,−v) ∈ Y.(3.9)

Its optimal value is CLR (y, r, w), the minimum LRC.
The common subprogramme (of all three of the above) is short-run cost minimization,

i.e.,

Given (y, k, w) , minimize hw | vi over v(3.10)

subject to (y,−k,−v) ∈ Y.(3.11)

Its optimal value is CSR (y, k, w), the minimum SRC.
Partial conjugacy relationships between the value functions (ΠLR, ΠSR, CLR, CSR) are

summarized in the following diagram:

(3.12)

w

ΠLR

r p

% -
k y

w ΠSR CLR w

p r

- %
y k

CSR

w .

For example, the arrow from the y next to CSR to the p next to ΠSR indicates that ΠSR
is, as a function of p, the Fenchel-Legendre convex conjugate of CSR as a function of y,
with (k, w) fixed; i.e., by definition,

(3.13) ΠSR (p, k, w) = sup
y
{hp | yi− CSR (y, k, w)} .
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Similarly, −ΠLR is, as a function of r, the concave conjugate of ΠSR as a function of k,
with (p,w) fixed; i.e.,

(3.14) ΠLR (p, r, w) = sup
k
{ΠSR (p, r, w)− hr | ki} .

The right half of the diagram (3.12) represents similar links between CLR and CSR or
ΠLR. Details such as the signs and convexity or concavity are omitted.
As is spelt out next, those y and k which yield the suprema in (3.13) and (3.14) are

parts of an input-output bundle that maximizes the long-run profit.

4. A primal-dual optimization system for the short-run approach

A joint programme for two or more decision variables can be split by optimizing in
stages: first over a subset of the variables (keeping the rest fixed), then over the other
variables (the optimand comprising the value function from the first stage) to obtain the
complete solution by back substitution. The method can be applied to solve the LRP
maximization programme (3.1)—(3.2) for (y, k, v) by:

(1) first minimizing hw | vi over v to find the solution set V̌ (y, k, w), or the solution
v̌ (y, k, w) if it is indeed unique, and the minimum value CSR (y, k, w), which is
hw | v̌i;

(2) then maximizing hp | yi− CSR (y, k, w) over y to find the solution set Ŷ (p, k, w),
or the solution ŷ (p, k, w) if it is unique, and the maximum value ΠSR (p, k, w),
which is hp | ŷi− CSR (ŷ);

(3) and finally, maximizing ΠSR (p, k, w) − hr | ki over k to find the solution set
K̂ (p, r, w), or the solution k̂ (p, r, w), should it be unique (which it obviously
cannot be if returns to scale are constant, in the long run).

Every complete solution can then be given, in terms of p, r and w, as a triple (y,−k,−v)
such that: k ∈ K̂ (p, r, w), y ∈ Ŷ (p, k, w) and v ∈ V̌ (y, k, w). With decreasing returns
to scale, if the solution is unique, it is the triple: k̂ (p, r, w), ŷ

³
p, k̂ (p, r, w) , w

´
and

v̌
³
ŷ
³
p, k̂ (p, r, w) , w

´
, k̂ (p, r, w) , w

´
.

In other words, the LRP programme (3.1)—(3.2) for (y, k, v) can be reduced to an
investment programme, for k alone, by first solving the SRP programme (3.6)—(3.7) for
(y, v) and substituting its optimal value (ΠSR) for the term hp | yi− hw | vi in (3.1). The
SRP programme for (y, v) can, in turn, be reduced to a programme for y alone by solving
the SRC programme (3.10)—(3.11) and substituting its value (CSR) for the term hw | vi
in (3.6).
So an input-output bundle (y,−k,−v) maximizes long-run profit at prices (p, r, w) if

and only if both

(4.1) k maximizes ΠSR (p, ·, w)− hr | ·i on K (given p, r and w)

and the bundle (y,−v) maximizes short-run profit (given k) at prices (p, w) or, equiva-
lently,

y maximizes hp | ·i− CSR (·, k, w) on Y (given p, k and w)(4.2)

v minimizes hw | ·i on {v ∈ V : (y,−k,−v) ∈ Y} (given y, k and w).(4.3)
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We call (4.1)—(4.3) the split LRP optimization system. Its SRC subprogramme for v in
(4.3) is taken to be readily soluble. By contrast, the reduced SRP programme for y in
(4.2) may require a duality approach. This consists in pricing the constraining parameters
and solving the dual programme of valuation together with the primal (when there is no
duality gap). For the SRP programme as the primal, this means valuing the fixed inputs
k: a dual solution (with no gap) is a shadow-price system r such that

r minimizes h· | ki+ΠLR (p, ·, w) on R (given p, k and w)(4.4)

and the minimum value, hr | ki+ΠLR (p, r, w) , equals ΠSR (p, k, w) .(4.5)

Under c.r.t.s., Conditions (4.4)—(4.5) become

r minimizes h· | ki on {r ∈ R : (p, r, w) ∈ Y◦} (given p, k and w)(4.6)

and the minimum value, hr | ki , equals ΠSR (p, k, w) .(4.7)

The duality scheme that produces the programme in (4.6) or (4.4) as the dual to SRP
maximization is set out in Section 5.
As well as helping solve the operation problem, the dual solution can be used to check

the investment for optimality, i.e., (4.1) is equivalent to (4.4)—(4.5). Formally, this follows
from the definitional conjugacy relationship (3.14) between ΠSR and ΠLR (as functions of
k and r) by using the first-order condition (C.24) and the Inversion Rule (C.32), given in
Appendix C. The system (4.2)—(4.5) is therefore equivalent to (4.1)—(4.3), and hence also
to LRP maximization (3.3), and to Complementarity (3.5) under c.r.t.s. It is, however,
put entirely in terms of solutions to the SRP programme for (y, v) and its dual for r,
with the primal split into the SRC programme (for v) and the reduced SRP programme
(for y). We therefore call (4.2)—(4.5) the split SRP optimization system. It is likely to
be the best basis for the short-run approach when the technology is specified by means
of a production set. Alternative systems are presented in Sections 6 to 8 and 10.

5. Cost and profit as values of programmes with price decisions

Unless there are duality gaps, short-run and long-run cost and profit are also the op-
timal values of programmes that are dual to those of Section 3. The scheme producing
the duals is an application of the usual duality framework for convex programmes (CPs),
expounded in, e.g., [44] and [36, Chapter 7]. However, ours starts not from a single pro-
gramme but from a family of programmes that depend on a set of data, whose particular
values complete the programme’s specification. One way to perturb the programme is
simply to add an increment to its data point, thus “shifting” it within the given fam-
ily. Some, possibly all, of the scheme’s primal perturbations are therefore increments to
some–though typically not all–of the data. The same goes for the dual perturbations.
Before applying the duality scheme to the profit and cost programmes, we discuss it

briefly and illustrate it in the framework of linear programming. A central idea is that
the dual programme depends on the choice of perturbations of the primal programme;
different perturbation schemes produce different duals. Theoretical expositions usually
start from a programme without any data variables whose increments might serve as
primal perturbations: say, f (y) is to be maximized over y subject to G (y) ≤ 0. In
such a case, any perturbations must first be introduced, and the standard choice is to
add ² = (²1, ²2, . . .) to the zeros on the r.h.s.’s, thus perturbing the original constraints
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G (y) ≤ 0 to G (y) ≤ ². The original programme has no data other than the functions
f and G themselves, and the increments ∆f and ∆G (which change the programme to
maximization of (f +∆f) (y) over y subject to (G+∆G) (y) ≤ 0) could never serve as
primal perturbations–not even if they were taken to be linear, i.e., if f and G were
a vector and a matrix of coefficients of the primal variables, y = (y1, y2, . . .). This is
because the perturbed constrained maximand must be jointly concave in the decision
variables and the perturbations,21 but the bilinear form f · y is not concave (or convex)
in f and y jointly.22

But in applications, increments to some of the programme’s data can commonly serve
as primal perturbations. We call those data the intrinsic primal parameters; some or all
of the other data will turn out to be dual parameters. For example, in SRP maximization
(3.6)—(3.7), the fixed-input bundle k is a primal parameter because, since the production
set Y is convex, the constrained maximand is a concave function of (y, k, v): it is

hp | yi− hw | vi− δ (y,−k,−v | Y)

where δ (·, ·, · | Y) denotes the 0-∞ indicator of Y (i.e., it equals 0 on Y and+∞ outside of
Y). By contrast, the coefficient (say, p) of a primal variable (y) is not a primal parameter
(i.e., its increment ∆p cannot be a primal perturbation) because the bilinear form hp | yi
is not jointly concave in p and y. For these reasons, all of the quantity data, but no price
data, are primal parameters for the profit or cost optimization programmes of Section 3.
As for the production set, it cannot itself serve as a parameter because convex sets do not
form a vector space to begin with. However, once the technological constraint (y,−k,−v)
∈ Y has been represented in the form Ay − Bk − Cv ≤ 0 (under c.r.t.s.), the matrices
or, more generally, the linear operations A, B and C are vectorial data. But none can
be a primal parameter, for lack of joint convexity of Ay in A and y, etc. Nor can A, B
or C be a dual parameter (for a similar reason). Such data variables, which are neither
primal nor dual parameters, and hence play no role in the duality scheme, we call tertial
parameters.
It can be analytically useful, or indeed necessary, to introduce other primal perturba-

tions, i.e., perturbations that are not increments to any of the data (which are listed after
“Given” in the original programme). This amounts to introducing additional parameters,
which we call extrinsic; their original, unperturbed values can be set as zeros, as in [44].
When the constraint set is represented by a system of inequalities and equalities, the
standard “right-hand side” parameters are always available for this purpose (unless they
are all intrinsic, but this is so only when the r.h.s. of each constraint is a separate datum
of the programme and can therefore be varied independently of the other r.h. sides). In
Section 14, we show how to relate the marginal effects of any other, “nonstandard” per-
turbations to those of the standard ones–i.e., how to express any “nonstandard” dual
variables in terms of the usual Lagrange multipliers for the constraints. This is useful in

21This is equivalent to joint convexity of the constrained minimand, which is the sum of the minimand
and the 0-∞ indicator function of the constraint set. In [44] it is called “the minimand” for brevity.
22After a linear change of variables, it becomes a saddle function: 4f · y = (f + y) · (f + y)− (f − y) ·

(f − y) is convex in f + y and concave in f − y.
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the problems of plant operation and valuation, including those that arise in peak-load
pricing (Section 16).23

Once a primal perturbation scheme has been fully defined, the framework is completed
automatically (except for the choice of topologies and the continuous-dual spaces in
the infinite-dimensional case): dual variables are introduced and paired to the specified
primal perturbations (both the intrinsic and any extrinsic ones). The corresponding dual
match is set up in reverse: to be paired with the primal variables, dual perturbations
are introduced. Some or possibly all of these perturb the dual just like increments to
some of the original programme’s data–which are thus identified as the intrinsic dual
parameters. Any other dual perturbations are called extrinsic, and these can be thought
of as increments to extrinsic dual parameters (whose original, unperturbed values are set
as zeros). However, in the profit or cost programmes, all the dual parameters are price
data (and are therefore intrinsic).
In the reduced formulations of the profit or cost problems, some of the price data

are not dual parameters because the corresponding quantities have been solved for in
the reduction process, and have thus ceased to be decision variables: e.g., the variable-
input price w is not a dual parameter of the reduced SRP programme in (4.2) because the
corresponding input bundle v has been found in SRC minimization (and so it is no longer
a decision variable). But in the full (i.e., non-reduced) formulations, all the price data
are dual parameters, and thus the programme’s data (other than the technology itself)
are partitioned into the primal parameters (the quantity data) and dual parameters (the
price data).

The primal and dual optimal values can differ at some “degenerate” parameter points
(see Appendix A), but such duality gaps are exceptional, and they do not occur when
the primal or dual value is semicontinuous in, respectively, the primal or dual parameters
(Section 20). Note that both optimal values, primal and dual, depends on the data,
which are the same for both programmes. So, in this scheme, each of the optimal values
(primal and dual) is a function of both the primal and the dual parameters), and can
have two varieties of continuity and differentiability properties:

(1) Properties of Type One are those of the primal value with respect to the primal
parameters, and of the dual value w.r.t. the dual parameters.

(2) Properties of Type Two are those of the primal value w.r.t. the dual parameters,
and of the dual value w.r.t. the primal parameters.

This distinction cannot be articulated when, as in [44] and [36], the primal and dual values
are considered only as functions of either the primal or the dual parameters, respectively.

23In this as in other contexts, it can be convenient to think of extrinsic perturbations either as
complementing the intrinsic perturbations (which are increments to the fixed inputs) by varying some
aspects of the technology (such as nonnegativity constraints), or as replacing the intrinsic perturbations
with finer, more varied increments (to the fixed inputs). For example, the time-constant capacity kθ in
(16.3) is an intrinsic primal parameter. The corresponding perturbation is a constant increment ∆kθ,
and this can be refined to a time-varying increment ∆kθ (·). This perturbation (∆kθ or ∆kθ (·)) is
complemented by the increment ∆nθ (·) to the zero floor for the output rate yθ (·) in (16.3). The same
goes for all the occurrences of ∆k and ∆n in the context of pumped storage and hydro, where ∆ζ is
another complementary extrinsic perturbation.
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Comments (parameters and their marginal values, dual programme and FFE Condi-
tions, the Lagrangian and Kuhn-Tucker Conditions for LPs):
(1) Let the primal linear programme be: Given any vectors p and s (and a matrix

A), maximize p · y over y subject to Ay ≤ s. Here, the only intrinsic primal
parameter is the standard parameter s. There is no obviously useful candidate
for an extrinsic primal parameter, and if none is introduced, then the dual is the
standard dual LP: Given p and s (and A), minimize σ · s over σ ≥ 0 subject
to ATσ = p, where AT is the transpose of A.24 The only dual parameter is p.
If both programmes have unique solutions, ŷ (s, p,A) and σ̂ (s, p,A), with equal
values V (s, p,A) := p · ŷ = σ̂ · s =: V (s, p, A), then the marginal values of all
the parameters, including the tertial (non-primal, non-dual) parameter A, exist
as ordinary derivatives. Namely: (i) ∇sV = ∇sV = σ̂, (ii) ∇pV = ∇pV = ŷ, and
(iii) ∇AV = ∇AV = −σ̂⊗ ŷ = −σ̂ŷT (the matrix product of a column and a row,
in this order, i.e., the tensor product), where ∇A is arranged in a matrix like A
(i.e., ∂V/∂Aij = −σ̂iŷj for each i and j). The first two formulae (for ∇sV and
∇pV) are cases of a general derivative property of the optimal value in convex
programming: see, e.g., [44, Theorem 16: (b) and (a)] or [32, 7.3: Theorem 1’].
Heuristically, the third formula follows from each of the first two by comparing the
marginal effect of A with that of either s or p on the constraints (primal or dual).
It can also be proved formally by applying the Generalized Envelope Theorem for
smooth optimization [1, (10.8)],25 whereby each marginal value (∇sV, ∇pV and
∇AV) is equal to the corresponding partial derivative of the Lagrangian, which is
here

(5.1) L (y,σ; p, s;A) :=
(
p · y + σT (s−Ay) if σ ≥ 0
+∞ if σ ¤ 0

.

(2) The Kuhn-Tucker Conditions form the system

(5.2) σ ≥ 0, Ay ≤ s, σT (Ay − s) = 0 and pT = σTA

which, because of the quadratic term σTAy, is nonlinear in the decision variables
(y and σ).

(3) But the FFE Conditions (primal feasibility, dual feasibility and equality of the
primal and dual objectives) form the system

(5.3) Ay ≤ s, σ ≥ 0, pT = σTA and p · y = σ · s
which is linear (in y and σ). This makes it easier to solve than the Kuhn-Tucker
system (5.2). For an LP, the FFE system is effective because the dual programme
can be worked out from the primal explicitly.

(4) For a general CP, the dual cannot be given explicitly (i.e., without leaving an
unevaluated extremum in the formula for the dual constrained objective function

24The dual constraint must be changed to ATσ ≥ p if y ≥ 0 is adjoined as another primal constraint.
(In that case, the primal LP may be interpreted as, e.g., revenue maximization given a resource bundle
s, an output-price system p and a Leontief technology defined by an input-coefficient matrix A.)
25Without a proof of value differentiability, the Generalized Envelope Theorem is also given in, e.g.,

[47, 1.F.b].
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in terms of the Lagrangian).26 That is why the Kuhn-Tucker system is better as
a general solution method than the FFE system, although the latter is simpler
in some specific cases (such as linear programming). The FFE system requires
forming the dual from the primal to start with, but the Kuhn-Tucker system re-
quires only the Lagrangian. It offers a workable method of solving the programme
pair, and this matters more than an explicit expression for the dual programme.
However, as with an LP, the FFE system can be simpler with a specific CP that
has an explicit dual.

The duality scheme is next applied to all four of the profit and cost programmes of
Section 3; the one of most importance for our applications is the dual to SRP max-
imization. The duals are shown to consist in shadow-pricing the given quantities, so
their subprogramme relationship is the reverse of that between the primals: the more
quantities that are fixed, the more commodities there are to shadow-price. (In other
words, the fewer primal variables, the more primal parameters, and hence the more dual
variables.) For this reason, the duals are listed, below, in the reverse order to that of the
primals (listed in Section 3). See also Figure 2, in which the large single arrows point
from primal programmes to their subprogrammes, and the double arrows point from the
dual programmes to their subprogrammes. Each of the four middle boxes gives the data
for the pair of programmes represented by the two adjacent boxes (the outer box for the
primal and the inner box for the dual); the data are partitioned into the primal para-
meters (the given quantities) and the dual parameters (the given prices). There are no
other parameters in this scheme (i.e., it has no extrinsic parameters).
In the SRC minimization programme (3.10)—(3.11), only y and k can serve as primal

parameters;27 and perturbation by both increments, ∆y and ∆k, yields the following
dual programme for shadow-pricing both the outputs and the fixed inputs:

(5.4) Given (y, k, w) , maximize hp | yi− hr | ki−ΠLR (p, r, w) over (p, r) .

Its optimal value is denoted by CSR (y, k, w) ≤ CSR (y, k, w), with equality when Sec-
tion 21 applies. The dual parameter is w.
In the LRC minimization programme (3.8)—(3.9), only y can serve as a primal para-

meter; and perturbation by the increment ∆y yields the following dual programme for
shadow-pricing the outputs:

(5.5) Given (y, r, w) , maximize hp | yi−ΠLR (p, r, w) over p.

Its optimal value is denoted by CLR (y, r, w) ≤ CLR (y, r, w). The dual parameters are r
and w.
In the SRP maximization programme (3.6)—(3.7), only k can serve as a primal para-

meter; and perturbation by the increment ∆k yields the following dual programme for

26The standard dual to the ordinary CP of maximizing a concave function f (y) over y sub-
ject to G (y) ≤ s (where G1, G2, etc., are convex functions) is to minimize supy L (y,σ) :=
supy (f (y) + σ · (s−G (y))) over σ ≥ 0 (the standard dual variables, which are the Lagrange multi-
pliers for the primal constraints): see, e.g., [44, (5.1)]. And supy L (the Lagrangian’s supremum over
the primal variables) cannot be evaluated without assuming a specific form for f and G (the primal
objective and constraint functions).
27Since the minimand hw | vi is not jointly convex in (w, v), w cannot serve as a primal parameter.
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shadow-pricing the fixed inputs:

(5.6) Given (p, k, w) , minimize hr | ki+ΠLR (p, r, w) over r.

Its optimal value is denoted by ΠSR (p, k, w) ≥ ΠSR (p, k, w), with equality when Sec-
tion 21 or 23 applies.28 The dual parameters are p and w.
The same programme for r–viz., (5.6) or (5.13)—(5.14) under c.r.t.s.–is also the dual

of the reduced SRP programme in (4.2), again with k as the primal parameter. That is,
the reduced and the full primal programmes have the same primal parameters and the
same dual programme. Of course, the duality relationships cannot be exactly the same
because the dual parameterizations are different: as has already been pointed out, the
reduced primal programme has fewer variables, and hence fewer dual parameters, than
the full programme (all of whose data are its primal and dual parameters). Since both
programmes have the same data, the reduced one has therefore a datum that is neither
a primal nor a dual parameter. In the case of the reduced SRP programme in (4.2), w is
such a datum: the only primal parameter is k, and the only dual parameter is p (since
y is the only primal variable). For comparison, in the full SRP programme (3.6)—(3.7)
both p and w are dual parameters (paired to the primal variables y and v).29

The LRP maximization programme (3.1)—(3.2) is, in this context, unusual because all
its data (p, r andw) are dual parameters: no datum can serve as a primal parameter. This
means that the dual has no decision variable; formally, it is: given (p, r, w), minimize
ΠLR (p, r, w). Having no variable, the dual minimand is a constant, and it equals the
primal value (ΠLR): since the dual is trivial, there can be no question of a duality gap in
this case.
By contrast, the other programme pairs can have duality gaps, especially when the

spaces are infinite-dimensional. But even then a gap can appear only at an exceptional
data point: the primal and dual values are always equal under the generalized Slater’s
Condition of [44, (8.12)] or the compactness-and-continuity conditions of [44, Example
4’ after (5.13)] and [44, Theorem 18’ (d) or (e)]. In the problem of profit-maximizing
operation of a plant with capacity constraints, Slater’s Condition requires only that the
capacities be strictly positive, i.e., that k À 0 (Sections 24 and 27). In other words, it
is always met unless the plant k lacks a component. See Lemma 23.1, Proposition 27.2
and Appendix A for further explanation.
Partial conjugacy relationships between the dual value functions (CSR, CLR, ΠSR, and

ΠLR = ΠLR) can be summarized in a diagram like (3.12) but with the arrows reversed

28As our notation indicates, we think of Π and C mainly as dual expressions for Π and C (although
duality of programmes is fully symmetric).
29A similar remark applies to the full and the reduced shadow-pricing programmes, (5.4) for (p, r) and

that in (6.10) for p alone. Both are parameterized by w and have the same dual, viz., the SRC programme
(3.10)—(3.11). All the vector data (y, k, w) are primal or dual parameters of the full programme (5.4)
programme. But the datum k is not a primal or dual parameter of the reduced programme in (6.10).
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and with bars added to the symbols Π and C):

(5.7)

w

ΠLR

r p

. &
k y

w ΠSR CLR w

p r

& .
y k

CSR

w .

For example, the arrow from the p next to ΠSR to the y next to CSR indicates that CSR
is, as a function of y, the convex conjugate of ΠSR as a function of p (with k and w fixed):
i.e., by definition,

(5.8) CSR (y, k, w) = sup
p

©
hp | yi−ΠSR (p, k, w)

ª
.

In any specific case, formation of the primal-dual programme pair requires formulae
for both Y and ΠLR. When the technology is given by a production set (Y), this requires
working out its support function (ΠLR). The task simplifies under c.r.t.s.: ΠLR is then
δ (· | Y◦), the 0-∞ indicator of the production cone’s polar (3.4). In other words, Y◦ is the
implicit dual constraint set and, by making the constraint explicit, the dual programmes
can be cast in the same form as the primals. For each primal, the general form of the
dual is specialized to the case of c.r.t.s. in the same way, viz., by adjoining the constraint
(p, r, w) ∈ Y◦ and deleting the now-vanishing term ΠLR from (5.4), etc. So the dual
programme is to impute optimal values to the given quantities by pricing them in a way
consistent with the other, given prices, i.e., so that the entire price system lies in Y◦.
Spelt out, under c.r.t.s., the dual to SRC minimization is the following programme of

maximizing the total output value less fixed-input value (OFIV) by shadow-pricing both
the outputs and the fixed inputs:

Given (y, k, w) , maximize hp | yi− hr | ki over (p, r)(5.9)

subject to (p, r, w) ∈ Y◦.(5.10)

The dual to LRC minimization is (with c.r.t.s.) the following programme of maximizing
the total output value (OV) by shadow-pricing the outputs:

Given (y, r, w) , maximize hp | yi over p(5.11)

subject to (p, r, w) ∈ Y◦.(5.12)
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The dual to SRP maximization is (under c.r.t.s.) the following programme of minimizing
the total fixed-input value (FIV) by shadow-pricing the fixed inputs:

Given (p, k, w) , minimize hr | ki over r(5.13)

subject to (p, r, w) ∈ Y◦.(5.14)

The dual to LRP maximization has no decision variable, and, with c.r.t.s., it may be
thought of as a price consistency check: its value is 0 if (p, r, w) ∈ Y◦, and +∞ otherwise.
Formally, the dual is:

(5.15) Given (p, r, w) , minimize 0 subject to (p, r, w) ∈ Y◦.
Thus, with c.r.t.s., the dual objectives are “automatic”, and formation of the dual pro-
grammes boils down to working out Y◦ from a specific cone Y. Two frameworks for this
are provided in Sections 14 and 25.
Like the primals, the dual programmes are henceforth named after their objectives,

OFIV, OV and FIV. Strictly speaking, this terminology fits only the case of c.r.t.s. for
the long run (i.e., the case of a production cone). But it is used also when c.r.t.s. are not
assumed (e.g., in Figure 2, Section 6 and Tables 1 and 2).

Comments:
(1) The dual can be similarly spelt out for a programme of a more general form, with

a parametric primal maximand

(5.16) hp | yi− I (y,−k)
where I: Y × K → R ∪ {+∞} is a bivariate convex function, y is the primal
variable, p and k are the data, of which k is the primal parameter. There is no
explicit constraint, but there is the implicit constraint (y,−k) ∈ dom I. The dual
minimand is then

(5.17) hr | ki+ I# (p, r)
where I#: Y ×K → R ∪ {+∞} is the total (bivariate) convex conjugate of I, r
is the dual variable, and p is the dual parameter. (So the dual and the primal
parameters are the coefficients of the primal and the dual decision variables.)

(2) If I is the 0-∞ indicator of a convex set Y, then I# is the support function of Y.
If additionally Y is a cone then I# is the indicator of Y◦, and the programme of
minimizing hr | ki over r subject to (p, r) ∈ Y◦ is dual to the primal programme
of maximizing hp | yi over y subject to (y,−k) ∈ Y (parameterized by k). This is
spelt out in the Proof of Proposition 18.1 (where (p, w) and (y,−v) take place of
the above p and y).

(3) The case of a finite LP, parameterized in the standard way, is obtained when

Y = {(y,−k) ∈ Rn ×Rm : Ay ≤ k} with Y◦ =
©
(p, r) ∈ Rn ×Rm : p = ATr, r ≥ 0

ª
where A is anm×n matrix. With general spaces, A: Y → K is a linear operation
with the adjoint A∗: R→ P , defined by hA∗r | yi := hr |Ayi, which replaces AT.
In other words, minimization of hr | ki over r subject to p = A∗r and r ≥ 0 is
dual to maximization of hp | yi over y subject to Ay ≤ k, with k as the primal
parameter vector.
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Figure 2. Decision variables and parameters for primal programmes (op-
timization of long-run profit, short-run profit, long-run cost, short-run cost)
and for dual programmes (price consistency check, optimization of: fixed-
input value, output value, output value less fixed-input value). In each
programme pair, the same prices and quantities–(p, y) for outputs, (r, k)
for fixed inputs, and (w, v) for variable inputs–are differently partitioned
into decision variables and data (which are subdivided into primal and dual
parameters). Arrows lead from programmes to subprogrammes.

6. Other primal-dual optimization systems

Our use of conjugate functions gives a characterization of the profit-maximizing in-
vestment in terms of its imputed values, i.e., it reformulates the investment-optimality
condition (4.1) as the valuation condition (4.4). The valuation programme in (4.4) is
subsequently identified as the dual (5.6), or (5.13)—(5.14) under c.r.t.s., to the short-run
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profit maximization programme (3.6)—(3.7), which appears in (4.2)—(4.3) in a split form.
Thus the use of conjugacy produces the system (4.2)—(4.5) of optimality conditions on
y, v and r; and the use of duality shows that this system means that (y, v) and r form
a pair of solutions to the SRP programme and its dual.30 Similar arguments lead to
characterizations of optimality in terms of the LRC or SRC programme with its dual,
i.e., each of the following three systems of conditions is equivalent to maximization of
long-run profit at prices (p, r, w) by an input-output bundle (y,−k,−v):
(1) (y,−v) maximizes the short-run profit at prices (p, w), and r minimizes the value

of the fixed-input k (plus maximum LRP if r.t.s. are decreasing), and the two
optimal values are equal (i.e., under c.r.t.s., maximum SRP equals minimum
FIV). Formally:

(y, v) solves the primal SRP programme (3.6)—(3.7), given (p, k, w) .(6.1)

r solves the dual (5.6), which is (5.13)—(5.14) under c.r.t.s., given (p, k, w) .(6.2)

ΠSR (p, k, w) = ΠSR (p, k, w) .(6.3)

(2) (k, v) minimizes the long-run cost at prices (r, w), and p maximizes the value
of output y (less maximum LRP under d.r.t.s.), and the two optimal values are
equal (i.e., under c.r.t.s., minimum LRC equals maximum OV). Formally:

(k, v) solves the primal LRC programme (3.8)—(3.9), given (y, r, w) .(6.4)

p solves the dual (5.5), which is (5.11)—(5.12) under c.r.t.s., given (y, r, w) .(6.5)

CLR (y, r, w) = CLR (y, r, w) .(6.6)

(3) v minimizes the short-run cost at price w, and (p, r)maximizes the value of output
y less that of fixed-input k (and less maximum LRP under d.r.t.s.), and the two
optimal values are equal (i.e., under c.r.t.s., minimum SRC equals maximum
OFIV). Formally:

(p, r) solves the dual (5.4), a.k.a. (5.9)—(5.10) under c.r.t.s., given (y, k, w) .(6.7)

v solves the primal SRC programme (3.10)—(3.11), given (y, k, w) .(6.8)

CSR (y, k, w) = CSR (y, k, w) .(6.9)

30These arguments exploit the subprogramme concept as well as that of duality, i.e., ΠSR is viewed
in two ways: (i) as the value of a subprogramme, and (ii) as the primal value. Both contexts give rise
to the conjugacy between ΠSR and ΠLR–and that is why there are two ways of deriving the valuation
programme in (4.4). In detail, since ΠSR is the value of the subprogramme of LRP maximization obtained
by fixing k, its (concave) conjugate w.r.t. k is −ΠLR as a function of r: this is (3.14). It follows, by
(C.24) and (C.32), that k solves the “conjugacy programme” in (4.1) if and only if r solves the “reverse”
one in (4.4) and (4.5) holds. The same programme for r can be derived independently as the dual to
SRP maximization parameterized by k, as is done in Proposition 18.1 (which also identifies p and w as
the dual parameters). Alternatively, it can be identified as the dual by using the conjugacy between ΠSR
and ΠLR: it is a foundation of duality for CPs that the (concave) conjugate of the primal maximum
value (as a function of the primal parameter) plus the primal parameter times the dual variable (here,
ΠLR (r) + hr | ki) is the dual minimand. See, e.g., [44, Theorem 7], which here must be applied to the
function ∆k 7→ ΠSR (k +∆k) as Rockafellar’s primal value (his is a function of the parameter increment,
rather than of the parameter point like ours, and this shifts the argument by k and adds the term hr | ki
to the conjugate).
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Additionally, one can split each of the joint programmes for two decision variables: just
as (3.6)—(3.7) has been split into (4.2) and (4.3), so the joint programme (5.4) for (p, r)
can be replaced by two programmes for p and r separately. Condition (6.7) is therefore
equivalent to:31

p maximizes h· | yi−ΠSR (·, k, w) on P (given y, k and w)(6.10)

r solves (5.6), given (p, k, w) .(6.11)

Thus the joint shadow-pricing programme (5.4) for (p, r) is reduced to an output-pricing
programme, for p alone, by first solving the fixed-input shadow-pricing programme (5.6)
for r and substituting its optimal value (ΠSR) for the term hr | ki+ΠLR (p, r, w) in (5.4).
In other words, two-stage solving means in this case:

(1) first minimizing hr | ki over r to find the solution set R̂ (p, k, w), or the solution
r̂ (p, k, w) if it is indeed unique, and the minimum value ΠSR (p, k, w), which is
hr̂ | ki;

(2) then maximizing hp | yi− ΠSR (p, k, w) over p to find the solution set P̌ (y, k, w),
or the solution p̌ (y, k, w), should it be unique. This gives every complete solution
(in terms of y, k and w) as a (p, r) such that p ∈ P̌ (y, k, w) and r ∈ R̂ (p, k, w).
Should the solution be unique, it is the pair p̌ (y, k, w) and r̂ (p̌ (y, k, w) , k, w).

Another proof of the equivalence, to LRP maximization, of the three systems (6.1)—
(6.3), (6.4)—(6.6) and (6.7)—(6.9) follows from a general inequality between the values of
a programme pair (taking for granted that (5.4) to (5.6) are indeed the relevant duals,
as is stated and proved in Sections 5 and 18). What is to be shown is that each system
is equivalent to (3.3), or to the Complementarity Conditions (3.5) in the case of c.r.t.s.
For each of the three programme pairs, (3.3) or (3.5) means: (i) primal feasibility, of
either (y, v) or (k, v) or v, (ii) dual feasibility, of either r or p or (p, r), and (iii) equality
of the primal maximand to the dual minimand, at the two points in question. So it
suffices to note that these FFE Conditions (which have already appeared as (5.3) in the
LP context) fully characterize a pair of solutions with equal values because the primal
maximand never exceeds the dual minimand (at feasible points).
Thus the data (p, r, w) and the solution (y,−k,−v) of the LRP programme (3.1)—(3.2)

can be permuted to form the data and solutions to any of the three subprogrammes with
its dual (when there is no duality gap). In each case, a pair of solutions gives three of
the six variables–one from each of the three price-quantity pairs (viz., (p, y) for outputs,
(r, k) for fixed inputs, and (w, v) for variable inputs)–in terms of the other three (which
are parameters, not decision variables).
The three systems (6.1)—(6.3), (6.4)—(6.6) and (6.7)—(6.9) can be called the SRP, LRC,

and SRC optimization systems, since each is put entirely in terms of solutions to the
named programme and its dual. Also, each system contains a joint programme, which
can be split to produce the corresponding split optimization system, viz.: (4.2)—(4.5), or
(11.11)—(11.14) spelt out in Section 11, or (6.8)—(6.11). We have chosen to introduce the
first of these, the split SRP system (4.2)—(4.5), before the programme for r in (4.4) could
be formally identified as the dual of the SRP programme (in Section 5). In (6.2), the

31The maximum value in (6.10) is CSR (y, k,w), by the definitions of ΠSR and CSR as the optimal
values of (5.6) and (5.4).
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same programme is referred to as the dual. So the split SRP optimization system can be
restated as the conjunction of (4.2)—(4.3) and (6.2)—(6.3).

Comment (alternative ways of applying LP algorithms): Under c.r.t.s., once both the
production cone Y and its polar polar Y◦ have been represented as intersections of half-
spaces,32 each profit or cost programme and its dual become LPs, which are finite if Y
is a polyhedral cone in a finite-dimensional commodity space. Then the FFE Condi-
tions, which are the Complementarity Conditions (3.5), become a finite system of linear
inequalities and equalities in finitely many variables. Like any such system, it can be
solved either directly by Fourier-Motzkin elimination (which gives all the solutions) or
indirectly by converting it into an auxiliary LP and applying the simplex method (or an-
other algorithm) to find at least one solution, and thus also the value of the original profit
or cost programme and its dual (any other solutions can then also be found). However, it
seems somewhat better to deal with the original LP than to solve the Complementarity
Conditions by either method. First, the Fourier-Motzkin elimination is far less efficient
than the simplex method (applied to the auxiliary LP); this is noted in, e.g., [11, p. 242].
Second, the original LP is smaller in size than the auxiliary LP.33

7. A saddle differential system for the short-run approach

In convex programming, optimality is fully expressed by the first-order condition. Fur-
thermore, by combining the FOC with the Inversion Rule for the derivative of a conjugate
function, the optimal solution can be interpreted as a marginal value. This derivative
property of the optimal-value function extends to the case of nonunique solutions. The
value is then nondifferentiable in the ordinary way, but it has a generalized, multi-valued
derivative. For a convex function, this is the subdifferential (a.k.a. the subgradient set),

32This requires switching from parametric equations to inequalities in coordinates: whenever the one
cone, say Y, is given by a system of homogeneous linear inequalities in coordinates, its polar (Y◦) is
readily given by a system of parametric equations, but these must be converted to coordinate inequalities.
Geometrically, Y is the intersection of a finite number of half-spaces if and only if their outer normal
vectors generate Y◦ (i.e., give it as the set of their nonnegative linear combinations); this is Farkas’s
Lemma. In symbols, Y consists of all those (y,−k) with Ay − Bk ≤ 0 if and only if Y◦ consists of all
those (p, r) with pT = σTA and rT = σTB for some σ ≥ 0. But what is needed is an equivalent system
of the form

£
pT, rT

¤
M ≤ 0. Such conversions (from a parametric to a coordinate description of a cone or

more generally a polyhedron, and vice versa) can be done in the way described in, e.g., [11, Chapters 16
and 18]. In the case considered later in this Comment, the conversion is immediate because B = I, and
so the representing parameter σ can be replaced by r (so the polar is given by the coordinate inequalities
and equalities pT = rTA and r ≥ 0).
33To see this (i.e., that the original is smaller than the auxiliary LP), let the original primal LP be

to maximize p · y over y ∈ Rn subject to Ay ≤ k, given arbitrary vectors p ∈ Rn and k ∈ Rm, and
an m × n matrix A. The dual LP is to minimize r · k over r ≥ 0 subject to rTA = pT. So the FFE
(Complementarity) Conditions on (y, r) are: Ay ≤ k, r ≥ 0, rTA = pT and p · y ≥ r · k (or, equivalently,
p · y = r ·k). This is a system with n+m variables and 2m+2n+1 inequalities (counting an equality as
two inequalities). Its auxiliary LP has n+m+ 1 decision variables, (viz., y, r and an artificial variable,
say z ≥ 0, as the minimand, whose minimum value is zero if and only if the FFE system is soluble)
and 2 (m+ n+ 1) inequality constraints (viz., z ≥ 0 and all the complementarity inequalities but with
z subtracted from the lesser side, i.e., p · y ≥ r · k− z, etc.): see [11, (16.2), p. 240]. So the auxiliary LP
has one more variable and one more constraint than the original primal and dual LPs together. Solving
the auxiliary LP by a primal-dual algorithm gives a solution to the original LP “in duplicate”.
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defined by (C.11) and denoted by ∂. The superdifferential of a concave function, denoted
here by b∂, is defined by (C.23). Each of the functions ΠSR, CSR and CLR is either convex
or concave jointly in two of its three variables, and it is concave or convex in the other
variable. For example, ΠSR (p, k, w) is jointly convex in (p,w), and concave in k (as is
ΠSR).
The split LRP optimization system (4.1)—(4.3) is thus transformed into the partial

subdifferential system that consists of the FOCs for (4.1) and (4.2) and of the derivative
property of CSR as the optimal value of (4.3), i.e., into the system

r ∈ b∂kΠSR (p, k, w)(7.1)

p ∈ ∂yCSR (y, k, w)(7.2)

v ∈ b∂wCSR (y, k, w) .(7.3)

We call it the SRC-P saddle differential system, since it uses ∂yCSR and b∂wCSR, the
partial sub/super-differentials of CSR as a saddle (convex-concave) function of (y,w), in
addition to using b∂kΠSR. A similar use of CSR, as a saddle function of (k, w), arises later
in the L-SRC system (11.8)—(11.10): the affices “L” and “P” in these names stand for
“long-run” and “profit”.

Comments (use of a differential condition to absorb a no-gap condition):

(1) The system (7.1)—(7.3) can be derived also from the split SRP optimization system
(4.2)—(4.5). The FOC for (4.2) and the derivative property of CSR as the value
function for (4.3) are used just as before. But, instead of the FOC for (4.1), this
time the third condition is the derivative property of ΠSR as the value function
for (4.4) or (5.6), i.e., that r ∈ b∂kΠSR (p, k, w). Taken together, this and (4.5)
mean exactly that r ∈ b∂kΠSR, since (4.5) means that ΠSR = ΠSR, at (p, k, w).

(2) The last argument is a case of absorbing a no-gap condition in a subdifferential
condition by changing the derivative from Type Two (here, b∂kΠSR) to Type One
(b∂kΠSR). This is done by changing the value function either from dual to primal
(if the parameter in question is primal like the k here), or vice versa. The optimal
solution is always equal to the marginal value of the programme being solved; this
is a derivative of Type Two. It is actually of Type One–i.e., it is the marginal
value of the programme dual to that being solved–if there is no duality gap. But
if there is a gap, the Type One derivative does not exist. In the above case of
fixed-input valuation, the set of solutions, for r, of (4.4) or (5.6) is always identical
to b∂kΠSR (which is a derivative of Type Two). It equals b∂kΠ (a derivative of Type
One) if ΠSR = ΠSR at the given (p, k, w). But if ΠSR 6= ΠSR then b∂kΠ = ∅ (the
empty set); so if r ∈ b∂kΠSR then ΠSR = ΠSR (at the given p, k and w).

8. Other subdifferential systems

Applied to the split SRC optimization system (6.8)—(6.11), the same methods–viz.,
the FOC for (6.10) and the derivative properties of CSR and ΠSR as the value functions
for (6.8) and (6.11), followed by changing ∂wCSR to ∂wCSR to absorb the no-gap condition
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(6.9)–yield the partial subdifferential system

r ∈ b∂kΠSR (p, k, w)(8.1)

y ∈ ∂pΠSR (p, k, w)(8.2)

v ∈ b∂wCSR (y, k, w) .(8.3)

We call it the FIV saddle differential system, since it uses ∂pΠSR and b∂kΠSR, the partial
sub/super-differentials of ΠSR as a saddle function of (p, k), in addition to using b∂wCSR.
Thus it uses only the dual value functions (ΠSR and CSR), whilst the system (7.1)—(7.3)
uses only the primal value functions (ΠSR and CSR).
The derivative property of the optimal value can also be used to transform the “unsplit”

optimization systems of Section 6. For example, by the derivative property applied twice,
the SRP optimization system (6.1)—(6.3) is equivalent to:

(y,−v) ∈ ∂p,wΠSR (p, k, w) , r ∈ b∂kΠSR (p, k, w) and ΠSR (p, k, w) = ΠSR (p, k, w) .

The no-gap condition can be absorbed in either subdifferential condition by changing
ΠSR to ΠSR or vice versa. This produces the SRP subdifferential system

(y,−v) ∈ ∂p,wΠSR (p, k, w)(8.4)

r ∈ b∂kΠSR (p, k, w)(8.5)

and the FIV subdifferential system

(y,−v) ∈ ∂p,wΠSR (p, k, w)(8.6)

r ∈ b∂kΠSR (p, k, w) .(8.7)

Similarly, the LRC optimization system (6.4)—(6.6) is equivalent to

(k, v) ∈ b∂r,wCLR (y, r, w) , p ∈ ∂yCLR (y, r, w) and CLR (y, r, w) = CLR (y, r, w)

and, hence, also to the LRC subdifferential system

(k, v) ∈ b∂r,wCLR (y, r, w)(8.8)

p ∈ ∂yCLR (y, r, w)(8.9)

as well as to the OV subdifferential system

(k, v) ∈ b∂r,wCLR (y, r, w)(8.10)

p ∈ ∂yCLR (y, r, w)(8.11)

Finally, the SRC optimization system (6.7)—(6.9) is equivalent to

v ∈ b∂wCSR (y, k, w) , (p,−r) ∈ ∂y,kCSR (y, k, w) and CSR (y, k, w) = CSR (y, k, w)

and, hence, also to the SRC subdifferential system

v ∈ b∂wCSR (y, k, w)(8.12)

(p,−r) ∈ ∂y,kCSR (y, k, w)(8.13)

as well as to the OFIV subdifferential system

v ∈ b∂wCSR (y, k, w)(8.14)
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(p,−r) ∈ ∂y,kCSR (y, k, w) .(8.15)

Comments (on the terminology):
(1) Like the names of valuation programmes, the name “FIV/OV/OFIV system” is

used only for brevity, i.e., without actually assuming c.r.t.s.
(2) The derivative properties of profit and cost as functions of prices–i.e., char-

acterizations of optimality such as (8.4), (8.10) and (8.12)–are known as the
Shephard-Hotelling Lemmas; their proofs are detailed in Section 19. Similarly,
long-run profit maximization is equivalent to: (y,−k,−v) ∈ ∂p,r,wΠLR (p, r, w).

9. Transformations of differential systems by the Subdifferential
Sections Lemma

So far, all the differential systems have been derived from optimization systems–and
this has to be so in convex analysis because it uses the FOC for maximization as the
very definition of the subdifferential: see (C.12). But this definition can be used to
transform one subdifferential condition into another. Once formulated, such results can
be applied to transform the differential systems into one another “directly”, i.e., without
going explicitly through the FOCs. In particular, partial subdifferential systems can be
derived from systems with joint subdifferentials: a condition involving a subdifferential
taken jointly in two groups of variables–such as ∂y,kCSR in (8.13) or ∂p,wΠSR in (8.6)–
can be recast in terms of partial subdifferentials (∂y, ∂k, ∂p, ∂w). This cannot, however, be
achieved simply by splitting the joint derivative into the partials (as in the differentiable
case) because a joint subdifferential does not usually factorize into the Cartesian product
of the partials: it is a general convex set, not a product set. In other words, the obvious
inclusions34

∂y,kCSR (y, k) ⊆ ∂yCSR (y, k)× ∂kCSR (y, k)(9.1)

∂p,wΠSR (p,w) ⊆ ∂pΠSR (p,w)× ∂wΠSR (p, w)(9.2)

are usually strict: see Appendix B for further explanation and examples. But the two
variables of differentiation can be split from each other in a way that parallels, and derives
from, the staged approach to optimization (introduced in Section 4). First, the joint
subdifferential is used to formulate a FOC for simultaneous optimization over the two
variables; this programme is then split into two successive optimization programmes for
one variable each, and each of these has a separate FOC that uses a partial subdifferential.
In the case of ∂y,kCSR, this argument consists in stating the FOCs for maximizing the
LRP over y and k simultaneously as well as for maximizing it over y and k successively.
The FOC for a maximum of hp | yi−hr | ki−CSR over (y, k) is that (p,−r) ∈ ∂y,kCSR. The
FOC for a maximum of hp | yi−CSR (y, k, w) over y is that p ∈ ∂yCSR; the maximum value
is ΠSR, and the FOC for a maximum of ΠSR (p, k, w) − hr | ki over k is that r ∈ b∂kΠSR.
Since the “joint” FOC is equivalent to the two “partial” FOCs together,35

(9.3) (p,−r) ∈ ∂y,kCSR (y, k, w)⇔
³
p ∈ ∂yCSR (y, k, w) and r ∈ b∂kΠSR (p, k, w)´ .

34Being fixed, the third variable (k or w) is suppressed here.
35Dually, (8.6) is equivalent to (8.2)—(8.3), i.e., (y,−v) ∈ ∂p,wΠSR if and only if both y ∈ ∂pΠSR and

v ∈ b∂wCSR.
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This is the Subdifferential Sections Lemma (SSL) for this context; it requires bring-
ing in another function (ΠSR), which is linked to the original function (CSR) by partial
conjugacy. This result is fully formalized in Appendix C (Lemma C.5).
The SSL is the basic tool for “splitting” joint subdifferentials, but there is also a couple

of derived techniques, viz., the Partial Inversion Rule and its dual variant (PIR and DPIR,
i.e., Corollaries C.6 and C.8). Each of these can be applied to the joint subdifferentials
of Section 8:
(1) With k fixed, the DPIR applies to CSR (·, k, ·) as a saddle function on Y ×W

which is a partial conjugate of the 0-∞ indicator of the short-run production set
YSR (k), defined formally by (21.1). The indicator is a convex function on Y ×V ,
and its total conjugate is ΠSR (·, k, ·) on P ×W . It follows that the condition
(y,−v) ∈ ∂p,wΠSR can be replaced by: p ∈ ∂yCSR and v ∈ b∂wCSR. Thus the
SRP subdifferential system (8.4)—(8.5) can be transformed into the SRC-P saddle
differential system (7.1)—(7.3).
The PIR gives the same result, though it requires an additional, preliminary

step, viz., using the SRP system’s implication that CSR is l.s.c. at y to invert the
conjugacy relationship (3.13), i.e., to show that the saddle function CSR (·, k, ·) is
indeed a partial conjugate of the convex function ΠSR (·, k, ·).
The same saddle system, (7.1)—(7.3), can also be derived from the SRC subd-

ifferential system (8.12)—(8.13). This is what (9.3) shows: with w fixed, the SSL
applies to ΠSR (·, ·, w) as a saddle function on P ×K which is (by definition) a
partial conjugate of CSR (·, ·, w), a convex function on Y ×K. So the condition
(p,−r) ∈ ∂y,kCSR can be replaced by: p ∈ ∂yCSR and r ∈ b∂kΠSR.

(2) Similarly, with w fixed, the DPIR applies to ΠSR (·, ·, w) as a saddle function on
P ×K which is a partial conjugate of ΠLR (·, ·, w). When Y is a cone, the latter
function is the indicator of Y◦w, the section of Y◦ through w. In any case, it is
a convex function on P × R, and its total conjugate is CSR (·, ·, w) on Y × K.
This shows that the condition (p,−r) ∈ ∂y,kCSR (y, k, w) can be replaced by:
y ∈ ∂pΠSR and r ∈ b∂kΠSR. Thus the OFIV subdifferential system (8.14)—(8.15)
can be transformed into the FIV saddle differential system (8.1)—(8.3).
The PIR gives the same result, though it requires an additional, preliminary

step, viz., using the OFIV system’s implication that ΠSR is l.s.c. at p to invert the
conjugacy relationship (5.8), i.e., to show that the saddle function ΠSR (·, ·, w) is
indeed a partial conjugate of the convex function CSR (·, ·, w).
The same saddle system, (8.1)—(8.3), can also be derived from the FIV sub-

differential system (8.6)—(8.7). This is because, with k fixed, the SSL applies
to CSR (·, k, ·) as a saddle function on Y × W which is (by definition) a par-
tial conjugate of ΠSR (·, k, ·), a convex function on P × W . So the condition
(y,−v) ∈ ∂p,wΠSR can be replaced by: y ∈ ∂pΠSR and v ∈ b∂wCSR.

10. Summary of systems characterizing a long-run producer optimum

Tables 1 and 2 summarize ten duality-based systems (and proofs of their equivalence,
which are detailed in Section 19). Since the top right entry of the one table is identical
to the bottom right of the other, the twelve entries include two repetitions. The ten
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distinct entries are all but three of the systems given so far–all except for the three
that use the LRC programme and its dual or their value functions. Those three, and
four more systems to appear in Section 11, are mirror images of the systems shown in
the two tables, from which they can be obtained by replacing ΠSR (p, k) with CLR (y, r)
and changing signs where needed. Thus the three systems, viz.: (8.8)—(8.9), (6.4)—(6.6)
and (8.10)—(8.11), correspond to those on the left in Table 1, and the four systems of
Section 11 come from the distinct systems on the right in Tables 1 and 2.36 In other
words, Tables 1 and 2 deal explicitly with the values and programmes in the left halves
of the conjugacy diagrams (3.12) and (5.7), but the analysis applies equally to the right
halves.
In differential systems, the Type One derivatives that exclude duality gaps are identi-

fied. In optimization systems, the various duals are referred to as “optimization of the
fixed quantities’ value”, although this name fits only the case of c.r.t.s. (which need not
be assumed). The constraint sets (Y and Y◦, under c.r.t.s.) are not shown.

Comments (partition into a short-run subsystem and a supplementary condition):

(1) All but three of the ten systems in Tables 1 and 2–all except for (6.7)—(6.9),
(8.12)—(8.13) and (8.14)—(8.15), which appear on the left in Table 2–contain a
condition on r and (p, k, w) that is either exactly or at least nearly equivalent to k
being a profit-maximizing investment at prices (p, r, w), i.e., to (4.1). The condi-
tion in question is: r ∈ b∂kΠSR, or r ∈ b∂kΠSR, or “r minimizes FIV”. Together, the
system’s other conditions–on p, y, w, v and k–are then essentially equivalent
to (4.2)—(4.3), i.e., to (y,−v) being a short-run profit-maximizing input-output
bundle at prices (p,w), given capital inputs k. This short-run subsystem is to be
solved for v and either y or p–given w and either p or y, as well as k. It may
be so simple that, as in Section 2, it can be solved on its own, separately from
the remaining supplementary condition (i.e., without recourse to duality). Apart
from being handy in such simple cases, the system’s partition (into a short-run
subsystem and a supplementary condition that involves r and essentially means
investment being at a profit maximum) is worth examining in detail to clarify
the various ways in which the complete systems exclude duality gaps. Most do
so within the subsystem, but some rely on the supplementary condition (when
it is that r ∈ b∂kΠSR, which is a Type One derivative). Therefore, the various
subsystems describe two “grades” of short-run profit maximum: the “plain” one
and the one without a duality gap. Only the latter kind can be a long-run profit
maximum (for some choice of capital-input prices).

(2) More formally, given (p,w) and k, a potential long-run profit maximizing bundle
is a (y,−v) such that (y,−k,−v) maximizes long-run profit at (p, w) and some
r. Obviously, every system can be turned into a characterization of potential
long-run optimality by binding r with an existential quantifier. But in the three
excepted systems ((6.7)—(6.9), (8.12)—(8.13) and (8.14)—(8.15)), the condition on
r involves also y (as well as p, k, w), and it expresses the optimality not only of k

36The three systems on the left in Table 2 do not yield new ones (when ΠSR is replaced by CLR)
simply because they do not involve ΠSR at all. So there are not ten but seven (3 already given and 4
yet to come) of the “mirror images”.
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but also of y: e.g., (8.13) is exactly equivalent to (4.1) and (4.2) together. That
is why these three systems cannot be partitioned by detaching an investment
optimality condition. By contrast, in each of the other seven systems in Tables 1
and 2 the condition on r involves only p, k and w (apart from r itself). The
subsystem consisting of all the other conditions describes either (i) a plain SRP
maximum, in the case of (7.2)—(7.3) or (8.4), or (ii) an SRP maximum without a
duality gap, in all the other five cases. A plain SRP maximum can have a duality
gap (see Appendix A), in which case it is not a potential LRP maximum. Where
a subsystem does exclude a gap between SRP maximization and its dual, it may
do so explicitly by the condition that ΠSR = ΠSR at (p, k, w), or implicitly by
the condition(s) involving one or two subdifferentials of Type One (∂p,wΠSR, or
∂pΠSR and b∂wCSR together). In one case, only the entire subsystem, (6.8)—(6.10),
excludes the gap.37

11. Extended Wong-Viner Theorem and other transcriptions from SRP
to LRC

The preceding analysis can be re-applied to SRC minimization as a subprogramme of
LRC minimization, instead of SRP maximization. As part of this, the Subdifferential
Sections Lemma (Lemma C.5) can be applied to CSR as the bivariate convex “parent”
function of the saddle function CLR, instead of the saddle function ΠSR as in (9.3). This
shows that, with w fixed and suppressed from the notation,

(11.1)
p ∈ ∂yCSR (y, k)

r ∈ b∂kΠSR (p, k)
)
⇔ (p,−r) ∈ ∂y,kCSR (y, k)⇔

(
p ∈ ∂yCLR (y, r)

r ∈ −∂kCSR (y, k)
.

This is the Extended Wong-Viner Theorem. Note that the condition that r ∈ −∂kCSR is
the FOC for k to yield the infimum in the definitional formula

(11.2) CLR (y, r, w) = inf
k
{hr | ki+ CSR (y, k, w)}

(which means that CLR is, as a function of r, the concave conjugate of −CSR as a function
of k, with y and w fixed).
For comparison, the usual Wong-Viner Envelope Theorem for differentiable costs gives

(11.3)
p = ∇yCSR (y, k)

r = −∇kCSR (y, k) i.e., k yields the inf in (11.2)

)
⇒ p = ∇yCLR (y, r) .

Comparisons with the two “outer” systems in (11.1) show that their equivalence is indeed
an extension of (11.3). This is because

(11.4) b∂kΠSR (p, k) ⊆ −∂kCSR (y, k) when p ∈ ∂yCSR (y, k)

37The subsystem’s condition that CSR = CSR at (y, k,w) excludes a different gap, and on its own
it does not imply that ΠSR = ΠSR at (p, k,w) when y maximizes short-run profit at (p, k, w): see
Appendix A for an example (in which CSR = CSR trivally because the technology has no variable
input).
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SRP subdiff. sys. (8.4)—(8.5)

(y,−v) ∈ ∂p,wΠSR (Type Two)

r ∈ b∂kΠSR (Type One)
Dual Part.

Inv. Rule
⇐⇒

SRC-P saddle diff. sys. (7.1)—(7.3)

p ∈ ∂yCSR

v ∈ b∂wCSR
r ∈ b∂kΠSR (Type One)

m
Deriv. Prop. of Opt. Val. (twice)

Absorption of No-Gap Cond.
m

First-Order Condition

Deriv. Prop. of Opt. Val. (twice)

Absorption of No-Gap Cond.

SRP opt. sys. (6.1)—(6.3)

(y, v) maxi’es short-run profit

r minimizes fixed-input value

ΠSR = ΠSR at (p, k, w)

Two-stage

solving
⇐⇒

split SRP opt. sys. (4.2)—(4.5)

y maximizes revenue less CSR

v minimizes short-run cost

r minimizes fixed-input value

ΠSR = ΠSR at (p, k, w)

m
Deriv. Prop. of Opt. Val. (twice)

Absorption of No-Gap Cond.

FIV subdiff. sys. (8.6)—(8.7)

(y,−v) ∈ ∂p,wΠSR (Type One)

r ∈ b∂kΠSR (Type Two)
Subdiff.

Sect. Lem.
⇐⇒

FIV saddle diff. sys. (8.1)—(8.3)

y ∈ ∂pΠSR

v ∈ b∂wCSR (Type One)
r ∈ b∂kΠSR

Table 1. The SRP optimization system with its split form, and four de-
rived differential systems (of which three follow directly by the DP and
FOC, and one indirectly by the SSL).

i.e., when y yields the supremum in (3.13).38 In the differentiable case, the inclusion
(11.4) reduces to the equality ∇kΠSR = −∇kCSR (when p = ∇yCSR), and thus (11.1)
becomes:

(11.5) if r = −∇kCSR (y, k) then (p = ∇yCSR (y, k)⇔ p = ∇yCLR (y, r))
which is the usual Wong-Viner Theorem.

Comment (failure of naive extension): The Wong-Viner Theorem cannot be extended
to the general, subdifferentiable case simply by transcribing the ∇’s to ∂’s in (11.5) or

38The inclusion (11.4) follows directly from (3.13) by Remark C.7 (applied to the saddle function ΠSR
as a partial conjugate of CSR).
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OFIV subdiff. sys. (8.14)—(8.15)

v ∈ b∂wCSR (Type One)
(p,−r) ∈ ∂y,kCSR (Type Two)

Dual Part.

Inv. Rule
⇐⇒

FIV saddle diff. sys. (8.1)—(8.3)

y ∈ ∂pΠSR

v ∈ b∂wCSR (Type One)
r ∈ b∂kΠSR

m
Deriv. Prop. of Opt. Val. (twice)

Absorption of No-Gap Cond.
m

First-Order Condition

Deriv. Prop. of Opt. Val. (twice)

Absorption of No-Gap Cond.

SRC opt. sys. (6.7)—(6.9)

v minimizes short-run cost

(p, r) maxs rev.− fix.-inp. val.
CSR = CSR at (y, k, w)

Two-stage

solving
⇐⇒

split SRC opt. sys. (6.8)—(6.11)

p maximizes revenue less ΠSR

v minimizes short-run cost

r minimizes fixed-input value

CSR = CSR at (y, k, w)

m
Deriv. Prop. of Opt. Val. (twice)

Absorption of No-Gap Cond.

SRC subdiff. sys. (8.12)—(8.13)

v ∈ b∂wCSR (Type Two)
(p,−r) ∈ ∂y,kCSR (Type One)

Subdiff.

Sect. Lem.
⇐⇒

SRC-P saddle diff. sys. (7.1)—(7.3)

p ∈ ∂yCSR

v ∈ b∂wCSR
r ∈ b∂kΠSR (Type One)

Table 2. The SRC optimization system with its split form, and four de-
rived differential systems (of which three follow directly by the DP and
FOC, and one indirectly by the SSL).

(11.3) because, even when r ∈ −∂kCSR (y, k),
(11.6) p ∈ ∂yCSR (y, k); p ∈ ∂yCLR (y, r) .

It is the reverse inclusion that always holds, i.e.,

(11.7) if r ∈ −∂kCSR (y, k) then ∂yCLR (y, r) ⊆ ∂yCSR (y, k)

but the inclusion is generally strict (i.e., ∂yCLR 6= ∂yCSR).39 Our extension (11.1) succeeds
because it strengthens the insufficient condition r ∈ −∂kCSR in (11.6) to r ∈ b∂kΠSR (this
is stronger because the inclusion in (11.4) is usually strict, when CSR is nondifferentiable).

39The inclusion (11.7) follows directly from (11.2) by Remark C.7 (applied to the saddle function CLR
as a partial conjugate of CSR).
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The peak-load pricing example of Section 2 provides a simple, yet extreme, illustration:
that r ∈ −∂kCSR (y, k, w) says merely that r ≥ 0, with r = 0 if k > supt y (t). By contrast,
the condition r = ∂ΠSR/∂k =

R
(p (t)− w)+ dt specifies r and is therefore much stronger

(if p ∈ ∂yCSR (y, k, w), i.e., if: y (t) = k when p (t) > w, and y (t) = 0 when p (t) < w).
That it is strong enough to ensure that p ∈ ∂yCSR (y, k)⇒ p ∈ ∂yCLR (y, r) can also, in
that example, be checked by calculating both subdifferentials explicitly.

It follows from (11.1) that LRP maximisation, being equivalent to (7.1)—(7.3), is also
equivalent to the system

p ∈ ∂yCLR (y, r, w)(11.8)

r ∈ −∂kCSR (y, k, w)(11.9)

v ∈ b∂wCSR (y, k, w) .(11.10)

We call it the L-SRC saddle differential system, since it uses ∂kCSR and b∂wCSR, the
partial sub/super-differentials of CSR as a saddle (convex-concave) function of (k,w), in
addition to using ∂yCLR. It is the “mirror image” of the SRC-P saddle differential system
(7.1)—(7.3), so it can be obtained by re-applying the same arguments (with LRC instead
of SRP). It can also be derived from (7.1)—(7.3), and also from the SRC subdifferential
system (8.12)—(8.13), by using (11.1).
When the producer is a public utility, LRMC pricing and LRC minimization–i.e.,

Conditions (11.8) to (11.10)–are often taken as the definition of a long-run producer
optimum. If the SRC function is simpler than the LRC function (as is usually the case),
and the SRP function is also simple, then the Extended Wong-Viner Theorem (11.1) can
facilitate the short-run approach by characterizing optimality in terms of the SRC and
SRP functions. This has been used in the introductory peak-load pricing example of
Section 2). In that problem, the cost-minimizing inputs were obvious, but the question
was how to ensure, by a simple condition put in terms of a short-run value function, that
an SRMC output price was actually an LRMC price, i.e., that it met (11.8). This was
achieved by employing the special case (2.2) of (7.1), i.e., of the condition that r ∈ b∂kΠSR.
Thus the argument was a case of the Extended Wong-Viner Theorem or, in other words,
of the equivalence of (7.1)—(7.3) to (11.8)—(11.10).

Like (7.1)—(7.3), the other split-optimization and partial-subdifferential systems of Sec-
tions 4 and 6—8 (shown on the right in Tables 1 and 2) can also be transcribed into
equivalent characterizations of a long-run producer optimum by replacing the SRP with
the LRC.40 Just as (7.1)—(7.3) transcribes into (11.8)—(11.10), so the other three systems
transcribe into:
(1) The split LRC optimization system (a transcription of (4.2)—(4.5)), which is

k minimizes hr | ·i+ CSR (y, ·, w) on K (given y, r and w).(11.11)

v solves (3.10)—(3.11), given (y, k, w) .(11.12)

p solves (5.5), given (y, r, w) .(11.13)

40In detail, this is done by swapping p with −r and y with k, and by replacing the function (p, k)
7→ ΠSR (p, k) with (y,−r) 7→ CLR (y, r).
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CLR (y, r, w) = CLR (y, r, w) .(11.14)

Here, two-stage solving means first minimizing hw | vi over v to find the solu-
tion v̌ and the minimum value CSR = hw | v̌i as functions of (y, k, w), and then
minimizing hr | ki + CSR (y, k, w) over k to find the solution ǩ (y, r, w). This
gives the complete solution (in terms of y, r and w) as the pair ǩ (y, r, w) and
v̌
¡
y, ǩ (y, r, w) , w

¢
.

(2) The OV saddle differential system (a transcription of (8.1)—(8.3)), which is

p ∈ ∂yCLR (y, r, w)(11.15)

k ∈ b∂rCLR (y, r, w)(11.16)

v ∈ b∂wCSR (y, k, w) .(11.17)

(3) The system

v solves (3.10)—(3.11), given (y, k, w) .(11.18)

r minimizes h· | ki− CLR (y, ·, w) on R (given y, k and w).(11.19)

p solves (5.5), given (y, r, w) .(11.20)

CSR (y, k, w) = CSR (y, k, w) .(11.21)

This may be called the reverse-split SRC optimization system, to distinguish it
from (6.8)—(6.11), of which it is a transcription. (The two systems differ only
in the order in which p and r are optimized when the joint programme (5.4) is
split in two stages: in (6.8)—(6.11), the first stage is to find r in terms of p and
calculate ΠSR, whereas in (11.18)—(11.21), the first stage is to find p in terms of
r and calculate CLR.)

12. Outline of the short-run approach to long-run general equilibrium

The preceding characterizations of long-run producer optimum can serve various pur-
poses; ours is the short-run approach to long-run general equilibrium (LRGE). This
means that the capital inputs k are kept fixed at the stage of calculating the equilibrium
in the products’ market. The variable-input prices w are assumed to be fixed throughout
our analysis (although this is not at all essential, and w might instead be determined in
equilibrium just like the output prices p). This leaves two alternative ways to handle the
supply side of the short-run general equilibrium (SRGE) problem, and hence two varieties
of the short-run approach to long-run producer optimum and general equilibrium:

(1) In the short-run profit approach, the output and variable-input quantities ŷ and
v̌, and the fixed-input values r̂, are derived from any given p, k and w (usually
by solving the SRP problem (3.6)—(3.7) and its dual (5.6) or (5.13)—(5.14) under
c.r.t.s.). The supply ŷ (p, k, w) is then equated to demand x̂ (p) to determine
the short-run equilibrium price system p?SR (k), which depends also on w. This
stage corresponds to the inner loop in Figure 3, if an iterative method is used
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to solve the demand-supply equation for p.41 The capital inputs’ marginal values
r̂ (p?SR (k, w) , k, w), imputed at the short-run equilibrium prices, are then equated
to their given, fixed rental prices rF to determine, by solving for k, the (long-run)
equilibrium capacities k?

¡
rF, w

¢
. This also gives the long-run equilibrium price

system p?LR
¡
rF, w

¢
= p?SR

¡
k?
¡
rF, w

¢
, w
¢
. This stage corresponds to the outer

loop in Figure 3, if an iterative method is used to solve the price-value equation
for k.

(2) In the short-run cost approach, the variable-input quantities v̌, and the shadow
prices for outputs and fixed inputs–i.e., a typically nonunique p ∈ P̌ (y, k, w)
with the associated, typically unique r̂ (p, k, w)–are derived from any given y, k
and w (usually by solving the SRC problem (3.10)—(3.11) and its dual (5.4) or
(5.9)—(5.10) under c.r.t.s.). To find the short-run equilibrium, inverse demand is
then required to equal one of the typically nonunique output price systems that
solve the short-run output-pricing programme in (6.10). This a subprogramme
of (5.4); its solution set P̌ (y, k, w) consists essentially of SRMCs (see (12.3) for
details). Finally, the long-run equilibrium capacities, and hence also the output
prices, are found just as in the profit approach.

In principle, the duality theory of convex programming can be brought to bear however
the commodities are divided into “variable” quantities with given prices and “fixed”,
unpriced quantities: in studying the producer optimum, the roles of prices and quantities
are formally symmetric. At an abstract level, therefore, there is no reason to prefer any
particular programme pair or the associated functional representation of the technology
(by ΠSR, CLR or CSR, etc.). But the classification of commodities as “fixed in the short
run” is not arbitrary and nominal but mostly real and objective: these are capital goods
and natural resources. Their quantities (k) must be taken as known throughout the short-
run analysis. Additionally, some of those quantities to be determined in the SRGE, such
as the outputs (y), might also be taken as known at the earlier stage of finding the
short-run producer optimum and the shadow prices: this would mean solving the SRC
programme (for v) with its dual (for p and r). But this is disadvantageous analytically
because, when the capital inputs (k) impose capacity constraints on a cyclic output (y),
it results in dual solutions so indeterminate that they form an unbounded set: if not
only r but also p are unknowns, then almost nothing can be said about capacity charges
(which are terms of p, and give r as their total over the cycle). Another disadvantage of
the SRC approach, which emerges only at the equilibrium stage, is that it entails working
with the inverse supply maps (P̌θ) and “equating” each of these to inverse demand to find
the SRGE output bundle (y?SR θ) of each individual producer θ–from the inclusion a.k.a.
“generalized equation” (12.2) below. This is usually much harder than simply adding
up all the direct supply maps (Ŷθ), equating their sum to demand, and solving (12.2)
for the single market price system (p?SR)–which is what the SRP approach requires. In
addition, unlike the multi-valued inverse supply map (P̌θ), the direct supply may well

41In finding p?SR by Walrasian tatonnement, a manageable difficulty arises from discontinuity of supply
when it is only an upper hemicontinuous correspondence (as in Figure 1a). With a continuous (single-
valued) demand map, this is not much of a complication.
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be a single-valued map (ŷθ), in which case the relevant inclusion (12.2) is an ordinary
equation.
In summary, it is better not to fix any more quantities than is necessary–and this

means using the SRP rather than the SRC approach. The profit approach is likely to
be more workable because it has two advantages over the cost approach: (i) determinacy
of solutions to the short-run producer problem and its dual, and (ii) reduction of the
number of unknowns in the subsequent equilibrium problem. Both are detailed next.
The first advantage is simply the convenience of dealing mostly with single-valued maps

rather than multi-valued correspondences. Solutions for (p, r) to the dual (5.4) of the
SRC problem are typically nonunique: indeed, the set of optimal (p, r)’s is unbounded
because, in pure SRC calculations, the capacity premium is completely indeterminate
(except when it vanishes because there is excess capacity). But the r associated with
a particular p may well be unique, and so may y and v (as we have tacitly assumed
by using the notation r̂ and ŷ in describing the short-run approach). That is, solutions
for r and (y, v) to the SRP problem (3.6)—(3.7) and its dual (5.6) can both be expected
to be unique or, at the very least, to form bounded sets. This can be illustrated with
an elementary but instructive example. Suppose for simplicity that there is no variable
input, and that Y is a cone. A long-run producer optimum is then described by the
Complementarity Conditions (3.5), i.e.,

(y,−k) ∈ Y, (p, r) ∈ Y◦ and hp | yi = hr | ki .

In the profit approach (given p and k), both inclusions are useful in solving this system
for y and r. But in the cost approach (given y and k), the first inclusion restricts only the
data–so, when it is met, it is of no help at all in solving for p and r. The simplest example
is Y = {(y,−k) ∈ R2 : y = k}; then Y◦ = {(p, r) ∈ R2 : p = r}. In the cost approach the
level of (p, r) is indeterminate, but in the profit approach both solutions are unique,
viz., (ŷ, r̂) = (k, p).42 This principle is also borne out by more significant and complex
examples such as peak-load pricing with storage, in which the optimum r̂ (p, k, w) or
ŷ (p, k, w) is shown to be unique if the TOU tariff p is, respectively, a continuous or
plateau-less function of time: see Section 16 here, or [21], [27, Sections 6 to 9] and [24].
The second, and more significant, advantage of the SRP approach over the SRC ap-

proach emerges, at the equilibrium stage, whenever there is a number of producers, with
technologies Yθ for θ ∈ Θ. In the profit approach, the short-run equilibrium is found
by equating the demand x̂ (p) to the profit-maximizing total output

P
θ ŷθ (p, kθ, w) and

solving for p; when the optimal output is nonunique, one solves for p the inclusion

(12.1) x̂ (p) ∈
X
θ

Ŷθ (p, kθ, w)

42When there are variable inputs whose cost-minimizing quantities v̌ are known functions of the data
(y, k, w), the condition (y,−k,−v) ∈ Y in (3.5) boils down to (y,−k,−v̌ (y, k,w)) ∈ Y, which is again
a pure restriction on the data with no information about the unknowns p and r. Of course, the profit
approach would have a similar comparative weakness in the condition (p, r, w) ∈ Y◦ if the fixed-input
values r̂ were easily calculated functions of the data (p, k, w). But the programme that we take to
be readily soluble, without using duality, is the SRC programme for v, and not the dual of the SRP
programme for r.
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where Ŷθ is the solution set for the reduced SRP programme in (3.13) and (4.2). For
comparison, the cost approach requires solving, for the output bundles (yθ), the inclusion

(12.2) epÃX
θ

yθ

!
∈
\
θ

P̌θ (yθ, kθ, w)

where ep is the inverse demand map and P̌θ (yθ, kθ, w) is the solution set for the short-run
output-pricing programme in (6.10), i.e., P̌θ is essentially ∂yCθ

SR, the multi-valued SRMC
of an individual plant. This route is likely to be more difficult because, with multiple
producers, it means having to solve for a number of variables (yθ) instead of the single
variable p, as well having to intersect the price sets

¡
P̌θ
¢
to start with. And these are

large, unbounded sets if the fixed inputs impose capacity constraints.

Comments (the relative complexity of the cost approach):
(1) It is not even easy just to identify all those output allocations (yθ) with

T
θ P̌θ

6= ∅ in (12.2), since this involves splitting the total output among the plants in a
cost-minimizing way, which can be a difficult problem (known as optimal system
despatch in the context of electricity generation). To see this in detail, note that

(12.3) if Cθ
SR = C

θ
SR at (yθ, kθ, w) then P̌θ ⊆ ∂yC

θ
SR at (yθ, kθ, w)

by Lemma 19.22.43 So
T

θ C
θ
SR is nonempty if

T
θ P̌θ is. Furthermore, the indus-

try’s SRC as a function of its total output x is

(12.4) inf
(yθ)θ∈Θ

(X
θ∈Θ

Cθ
SR (yθ, kθ, w) :

X
θ∈Θ

yθ = x

)
i.e., it is the infimal convolution of the individual plants’ operating cost func-
tions Cθ

SR (·, kθ, w), abbreviated to Cθ. With 4 denoting the convolution oper-
ator, one has p ∈

T
θ ∂C

θ (yθ) if and only if both p ∈ ∂
¡4θ C

θ
¢
(
P

θ yθ) and¡4θ C
θ
¢
(
P

θ yθ) =
P

θ C
θ (yθ): see, e.g., [36, 6.6.3 and 6.6.4]. The “only if” part

shows that if
T

θ ∂C
θ (yθ) 6= ∅, then (yθ) is a cost-minimizing split of the total

output
P

θ yθ among the plants with the given capacities (kθ) and technologies
(Yθ). This means that competitive profit maximization, by the choice of outputs
(yθ) at a common output price p, leads to such an optimal allocation of the total
output.

(2) Thus the decentralized, plant-by-plant derivation of the industry’s total supply
(given a common output price p) by-passes the problem of the cost-minimizing al-
location of any given total output x, which is usually much more complex than the
individual profit-maximizing operation problems. For example, cost-minimizing
despatch of a hydro-thermal electricity-generating system necessitates a CP with
no simple form for either the primal or the dual solution: see the policy con-
struction in [35, pp. 201—219]. By contrast, profit-maximizing operation of a
hydro plant (or a storage plant) is an LP whose solution has a relatively simple
structure: see Section 16 here, [24] and [21] or [27, Section 5].

43Also, even when P̌θ Ã ∂yC
θ
SR at (yθ, kθ, w), the two sets have the same intersection with the setn

p : Π
θ

SR (p, kθ, w) = Π
θ
SR (p, kθ, w)

o
, by Corollary 19.23.
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Our description of either variety, SRP or SRC, of the short-run approach assumes
the use of either the SRP or the SRC optimization system (or its split form). Of the
optimization systems, this is the one directly suited to the purpose; and when the tech-
nology is given by a production set (as in an engineering specification), there may be no
tractable formulae for the value functions, and hence no usable alternative among differ-
ential systems. A differential system is likely to be useful only when each of the profit
or cost functions it uses is either easy to calculate (by solving the relevant programme),
or is simply given as a definition of the technology (as in econometric uses of duality).
These remarks can be expanded as follows.

Comments (on choosing a system for a short-run approach):

(1) What defines a particular approach to the producer problem is which of its price
and quantity variables are treated as known and which as unknown. With three
groups of commodities, there are eight (23) possibilities: the knowns-unknowns
patterns of the SRP approach is (p, k, w)-(y, r, v), whilst that of the SRC approach
is (y, k, w)-(p, r, v). Either approach may use its “own” (SRP or SRC) optimiza-
tion system, but it might also use the LRC system for the same purpose, viz., to
determine r and v and either y or p from any known k, w and either p or y (thus
solving not a long-run problem, but a short-run profit or cost problem with its
dual). Indeed, either variety of the short-run approach may use whichever of the
equivalent systems is most convenient: in principle, it need not matter whether
a producer optimum is characterized in terms of short or long run, profit or cost,
optima or marginal values.

(2) Within optimization systems, every choice leads to the same analysis if duality is
used: all the systems lead to the same FFE Conditions (viz., Complementarity
(3.5)), and also to the same Kuhn-Tucker Conditions (once the constraint sets Y
and Y◦ are represented by systems of inequalities).44 When analyzed by either
of these duality methods (Kuhn-Tucker’s or FFE), all the optimization systems
become therefore identical–but even so it simplifies the terminology to start from
the approach’s “own” system, i.e., the one whose programme data and decisions
are, respectively, the knowns and the unknowns of the chosen approach. (In the
short-run profit approach, this means using the SRP optimization system, as is
done in Section 13.) Then “solving the programmes for their decisions” means
exactly the same as “solving the system for the unknowns of the approach”, which
is what is to be done.

(3) If a different, “non-own” pair of programmes were solved–for its decisions in
terms of its data–then the whole solution correspondence (data-to-decisions)
would have to be obtained and part-inverted to express the unknowns in terms
of the knowns (thus compensating for the mismatch between these and the data
and decisions). This may be worthwhile, but only when a “non-own” programme
is particularly easy to solve without using duality (since the use of duality leads
from any programme pair to the same Kuhn-Tucker or FFE system).

(4) When there is such a readily soluble programme and its value function is easy not
only to calculate but also to differentiate, it may be best to use the corresponding

44For c.f.c. techniques, the Kuhn-Tucker Conditions are spelt out in Section 24.
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differential system. This may be a “non-own” system, i.e., one in which the
arguments and the derivatives of the function do not correspond to the knowns and
the unknowns of the approach. In such a case, after calculating the subdifferential
correspondence, one must part-invert it as required. The method may be useful
when there is no explicit formula for the chosen approach’s “own” function (whose
arguments and derivatives are, respectively, the knowns and unknowns of the
approach), but there is a formula for another value function. For example, there
is no general formula for the SRP of a c.f.c. technique, but the SRP approach
might be based on a formula for the LRC (24.3) or the SRC (24.21). However,
this is worthwhile only if the input requirement functions (ǩ and v̌) are simple
enough. When they are not, it is better to use an optimization system.45

(5) It might seem that those (seven) systems are preferable which decompose in the
way discussed in Comments in Section 10. When such a system is used for the
SRP approach to LRGE, the calculation of SRGE requires only the subsystem
but not the supplementary condition–i.e., this stage requires solving the SRP
programme (3.6)—(3.7) for (y, v), but it need not include shadow-pricing the fixed
inputs by solving the dual programme (5.6), or (5.13)—(5.14) under c.r.t.s., for r
(or possibly by differentiating ΠSR or ΠSR w.r.t. k). But this does not save on
computation if, as is usual, the SRP programme has to be solved by a duality
method: the dual is then being solved together with the primal anyway.

13. A framework for the short-run profit approach to long-run
general equilibrium

The equilibrium framework set out next is designed to price a range of commodities
with joint costs of production. The product range can be a single good differentiated over
commodity characteristics, such as time. Such a differentiated good is usually produced
by a variety of techniques; this is so in the motivating application to the peak-load pricing
of electricity (Sections 15 to 17).
To concentrate on the issues of investment and pricing for the differentiated output

of a particular Supply Industry (SI), we simplify the equilibrium model by aggregating
commodities on the basis of some fixed relative prices. As a result, there are just two
consumption goods apart from the differentiated good–viz., the numeraire (measured
in $) and a produced final good which is a homogeneous composite representing those
commodities whose production requires an input of the differentiated good. The prices
for most of the SI’s inputs, including all the variable inputs, are also assumed to be given.
But, to keep the equilibrium capacities (and the variable inputs) as explicit entries of
the equilibrium allocation, we choose not to aggregate these inputs with the numeraire
(despite their fixed prices).
The Supply Industry’s technology consists of a finite number of production techniques,

each of which uses a different set of input commodities to produce the same set of output
commodities. For each technique θ ∈ Θ, its sets of the fixed and the variable inputs are

45This is how we choose to deal, in Sections 16 and 17, with the pumped-storage technique (15.4)
because the subdifferential of the storage capacity requirement function (15.6), calculated in [21], is not
particularly simple (even under the simplifying assumption of perfect energy conversion).
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Figure 3. Flow chart for iterative implementation of SR profit approach
to LR general equilibrium. For simplicity, all demand for outputs is taken
to be consumer demand that is independent of profit income, and all input
prices are fixed (in numeraire terms). Absence of duality gap and existence
of optima (r̂, ŷ) can be ensured by using the results of Sections 20 to 23.
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denoted by Φθ and Ξθ; and its long-run production set is taken to be a convex cone

(13.1) Yθ ⊂ Y ×RΦθ ×RΞθ .

Thus Yθ lies in a space that depends on θ. To be formally regarded as a subset of the
full commodity space, Yθ must be embedded in it as Yθ × {(0, 0, . . .)}, i.e., by inserting
zeros in the input-output bundle at the other positions.
Investment in technique θ is denoted by kθ ∈ RΦθ ; so the SI’s total investment in fixed

input φ is

(13.2)
X

θ:φ∈Φθ

kθφ for φ ∈ ΦΘ :=
[
θ∈Θ

Φθ

which is the SI’s set of fixed inputs. When the sets Φθ are pairwise disjoint, the sum
in (13.2) reduces to a single term (for each φ), and the notation can be simplified: see
(13.20), etc.
The set of all the fixed inputs of the SI, ΦΘ, is partitioned into two subsets: ΦFΘ con-

sisting of those with given prices, and ΦEΘ consisting of those whose prices are determined
only in long-run equilibrium. For a particular technique θ, its set of fixed inputs Φθ is
thus partitioned into two subsets

ΦEθ := ΦEΘ ∩ Φθ and ΦFθ := ΦFΘ ∩ Φθ.

An input φ ∈ ΦFΘ =
S

θ∈ΘΦFθ is supplied at a fixed unit cost r
F
φ (in terms of the numeraire),

so its total supply cost is linear. By contrast, the total supply cost of an input φ ∈ ΦEΘ
=
S

θ∈ΘΦEθ is given by a convex function, Gφ, of the supplied quantity kφ. Typically,
Gφ is a strictly convex and increasing, finite function on an interval

£
0, kφ

¤
, with Gφ (0)

= 0. But the case of an input in a fixed supply kφ (without free disposal) is captured by
settingGφ (kφ) equal to 0 for kφ = kφ and to+∞ otherwise (in which case the equilibrium
condition that rφ ∈ ∂Gφ (kφ) means merely that kφ = kφ). For examples in the electricity
supply industry (ESI), see Section 17 here, or [21] and [24].
This classification of inputs will not always be clear-cut, but as a rough rule, for

an industry supplying a good with a cyclical demand, its fixed inputs are those whose
adjustment takes longer than one demand cycle: even if the cycle is a year, this is
usually just a fraction of plant construction times. Variable inputs are those which can
be adjusted quickly to the time-varying output rate yθ (t). For example, fuel inputs are
assumed to be instantaneously adjustable in our model of thermal electricity generation:
see (15.1). The variable inputs are regarded as having fixed prices (wξ), e.g., by reason
of being internationally traded. Likewise, a typical fix-priced capital input φ ∈ ΦFΘ
is internationally traded equipment, and its rental price rFφ is the annuity consisting
of interest on the purchase price and depreciation.46 By contrast, an equilibrium-priced
capital input φ ∈ ΦEΘ–whose rental price r

E
φ is determined only in long-run equilibrium–

is typically a factor which can only be supplied locally and at an increasing marginal cost,
as a result of the fixity of some assets required for its supply (such as special sites or
other natural resources). Constancy of returns to scale for the SI’s technology need not
46Formally, the fixed prices rF and w are built into the standard competitive equilibrium model by

introducing a linear production set equal to the hyperplane perpendicular to the vector
¡
rF, w, 1

¢
and

passing through the origin in the space of the supplier’s fix-priced inputs and the numeraire.
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extend to its input supply, and in the application to peak-load pricing with storage the
reservoir capacity has an increasing marginal cost (Section 17).
For simplicity, all input demand for the SI’s products is taken to come from a single

Industrial User (IU), who produces a final good from inputs of the differentiated good
and the numeraire. The user’s production function F : Y+ × R+ → R, assumed to be
strictly concave and increasing, defines his production set

(13.3) YIU = {(−z;ϕ,−n) ∈ Y− ×R× R− : F (z, n) ≥ ϕ}
where Y+ is a convex cone that is P -closed (i.e., closed for some, and hence for every,
locally convex topology on Y that yields P as the continuous dual space). When, as in
superdifferentiation at the algebraic boundary points (non-core points) of Y+ × R+, the
function F must be regarded as defined on the whole space Y × R, it is extended by
setting its value to −∞ outside of Y+ ×R+.47
A complete commodity bundle, then, consists of: (i) the produced differentiated good,

(ii) the Supply Industry’s fixed and variable inputs, (iii) the Industrial User’s product,
and (iv) the numeraire. The quantities are always listed in this order; but those which are
irrelevant in a particular context (and can be set equal to zero) are omitted for brevity,
as in (13.1) and (13.3). A consumption bundle consists of quantities of the differentiated
good, the IU’s product and the numeraire; so it may be written as (x;ϕ,m) ∈ Y ×R2. A
matching consumer price system is (p; %, 1) ∈ P ×R2–whilst a complete price system is¡

p; rE, rF;w, %, 1
¢
=
³
p;
¡
rEφ
¢
φ∈ΦEΘ

,
¡
rFφ
¢
φ∈ΦFΘ

; (wξ)ξ∈ΞΘ , %, 1
´

(where ΞΘ :=
S

θ∈Θ Ξθ). There is a finite set, Ho, of households; and for each h ∈ Ho
its utility is a concave nondecreasing function Uh on the consumption set Y+ × R2+.48 It
is assumed to be nonsatiated in each of the two homogeneous goods (the IU’s product
and the numeraire), i.e., Uh (x;ϕ,m) is increasing in ϕ and in m; this guarantees that
both prices are positive in equilibrium. Each household’s initial endowment is a quantity
mEn
h > 0 of the numeraire only; and its share of profit from the supply of input φ ∈ ΦEΘ

is ςhφ ≥ 0, with
P

h ςhφ = 1. Similarly, ςh IU denotes household h’s share in the User
Industry’s profit.
The Supply Industry’s profit is zero in long-run equilibrium (because of c.r.t.s.), but

an exact short-run analysis requires specifying the households’ shares in the operating
profits from the SI’s plants–since the profit Πθ

SR in (13.10) is only approximately offset
by the liabilities rEF|θ · kθ, which represents plant depreciation and interest (on the debt
from which the plant is assumed to have been financed). A plant is specified by its type
θ and by its capacities (or, more generally, its quantities of the fixed inputs) kθφ, for

47This matters in calculating b∂F at a point that belongs to Y+ × R+ but not to its core (a.k.a.
algebraic interior). To spell this out, assume that F , as a function on its effective domain Y+×R+, has a
Mackey continuous concave extension FEx defined on all of Y ×R. Then b∂F = b∂FEx at any core points
of Y+ × R+, but in general b∂F (z, n) = b∂FEx (z, n) + {(µ, ν) ∈ P+ ×R+ : hµ | zi+ νn = 0} because F
= FEx − δ (· | Y+ ×R+).
48Consumer preference can of course be regarded as defined on the orthant in the full commodity

space L := Y × RΦΘ × RΞΘ × R2 by positing that the consumer has no use for the Supply Industry’s
inputs k and v: this means regarding a utility Uh on Y+ × R2+ as a function on Y+ × RΦΘ+ × RΞΘ+ × R2+
defined by (x; k, v;ϕ,m) 7→ Uh (x;ϕ,m).
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φ ∈ Φθ. We assume that every plant of a particular type θ has the same capacity ratios
(kθ1 : kθ2 : . . .); with c.r.t.s., this amounts to assuming that there is at most one plant of
each type. Though this is rarely so in a real industry which has evolved over time, the
condition is met in long-run equilibrium, the calculation of which is our main use for the
short-run model. It makes sense, then, to speak of profit shares in a technique: denoted
by $hθ (with

P
h$hθ = 1), household h’s share in the operating profit from technique θ

is
$hθ :=

X
i

βhiαiθ

where βhi is h’s share in producer i, and αiθ is i’s share in the plant of type θ. (In other
words, one can assume that all plants of a type are wholly owned by one and the same
producer.)

Notation: The restriction, to Ξθ, of a w: ΞΘ → R is w|Ξθ , abbreviated to w|θ.
Similarly, rE|θ and r

F
|θ mean the restrictions to ΦEθ and to ΦFθ of an r

E: ΦEΘ → R
and an rF: ΦFΘ → R, respectively. The pair

¡
rE, rF

¢
defines a case-function on ΦΘ

:= ΦEΘ ∪ ΦFΘ; it is occasionally denoted by rEF for brevity.

By definition, given price systems
¡
rF, w

¢
for the fix-priced capital inputs and the

variable inputs, a long-run competitive equilibrium consists of:

• a system of prices (p?, r?, %?) ∈ P+×RΦEΘ
+ ×R++ (all in terms of the numeraire) for:

the Supply Industry’s differentiated output good, the equilibrium-priced capital
inputs, and the Industrial User’s product

• an allocation made up of:
— a consumption bundle (x?h,ϕ

?
h,m

?
h) ∈ Y ×R×R for each household h

— an input-output bundle of the Industrial User (−z?, F (z?, n?) ,−n?) ∈ Y ×
R× R

— input-output bundles of the Supply Industry, (y?θ ,−k?θ ,−v?θ) ∈ Y ×RΦθ×RΞθ

for each technique θ

that meet the following definitional conditions:
(1) Producer optimum in Supply Industry: For each θ,

(y?θ ,−k?θ ,−v?θ) ∈ Yθ and
¡
p?,
¡
r?|θ, r

F
|θ
¢
, w|θ

¢
∈ Y◦θ(13.4)

hp? | y?θi =
¡
r?|θ, r

F
|θ
¢
· k?θ + w|θ · v?θ(13.5)

i.e., the equilibrium quantities and prices meet the Complementarity Conditions
(3.5), or any of the preceding equivalent systems of conditions. In other words,

(y?θ ,−k?θ ,−v?θ)maximizes (to zero) the long-run profit at prices
³
p?,
³
r?|θ, r

F
|θ

´
, w|θ

´
.

(2) Producer optimum in User Industry: (p?, 1) ∈ %?b∂F (z?, n?).
(3) Consumer utility maximization: For each h, (x?h,ϕ

?
h,m

?
h) maximizes Uh on the

budget set B
³
p?, %?, M̂LRh (p

?, r?, %?)
´
, where

B (p, %,M) := {(x,ϕ,m) ≥ 0 : hp |xi+ %ϕ+m ≤M}(13.6)

Πφ (r) := sup
k
(rk−Gφ (k)) for r ∈ R(13.7)
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ΠIU (p, %) := sup
z,n
(%F (z, n)− hp | zi− n)(13.8)

M̂LRh

¡
p, rE, %

¢
:= mEn

h + ςh IUΠIU (p, %) +
X
φ∈ΦEΘ

ςhφΠφ

¡
rEφ
¢
.(13.9)

(4) Market clearance:
P

θ y
?
θ = z

? +
P

h x
?
h and F (z

?, n?) =
P

h ϕ
?
h.

(5) MC pricing of SI’s fixed inputs: r?φ ∈ ∂Gφ

¡P
θ k

?
θφ

¢
for each φ ∈ ΦEΘ.

49

Comment: This is an instance of the usual equilibrium concept, except for being
specialized to the case of nonzero prices (%? and 1) for the two composite goods (in
particular, the above characterization of the IU’s profit maximum, Condition 2, relies
on the positivity of the output price %?). The usual definition captures also the case
of zero prices, but this cannot arise here because of our nonsatiation assumptions. In
other words, price positivity is actually a property of an equilibrium (and not part of the
concept itself).

The short-run profit approach to solving this system starts by fixing the SI’s capital
inputs (kθ)θ∈Θ. Given these quantities as well as prices (p, w) for the SI’s variable com-
modities, a suitably chosen system characterizing the long-run producer optimum is then
solved for: the plants’ outputs yθ, their variable inputs vθ and the values, rθ, imputed
to the fixed inputs in the plant of each type θ. The optimal outputs ŷθ

¡
p, kθ, w|θ

¢
are

then equated to demand to find the short-run equilibrium price system p?SR, which de-
pends on the kθ’s.50 Finally, to determine the capacities kθ, and the prices rE of any
equilibrium-priced capital inputs, the imputed value r̂θφ

¡
p, kθ, w|θ

¢
is equated either to

the given price rFφ (for φ ∈ ΦFΘ) or to the marginal supply cost dGφ/dkφ (for φ ∈ ΦEΘ). As
part of this long-run equilibrium condition, if any input φ is used by two or more plant
types θ0 and θ00, i.e., φ ∈ Φθ0 ∩Φθ00, then its values imputed in the different uses, r̂θ0φ and
r̂θ00φ, are required to be equal. (In a short-run equilibrium, the values of the same capital
input commodity in different uses may of course differ.) If done by iteration, the search
for p?SR corresponds to the inner loop in Figure 3, and the search for k

?
θ corresponds to

the outer loop in Figure 3.
Since the SI’s technology is specified by production sets (rather than profit or cost

functions), this approach generally uses, for a characterization of long-run producer op-
timum, the SRP optimization system (6.1)—(6.3) or its split form, which, with c.r.t.s.,
consists of (4.2)—(4.3) and (4.6)—(4.7). The split form can be convenient when the SRC
programme is readily solved. The cases in which other systems may be equally workable
are pointed to at the end of Section 12.
The two stages of calculating the long-run equilibrium are next described in detail.

The first stage is to find the short-run equilibrium, given plants with arbitrary capacities
k = (kθ)θ∈Θ, and given arbitrary prices r

E, which complement the fixed prices rF to a full
capital-input price system rEF =

¡
rE, rF

¢
. At this stage, rEF matters only in calculating

49The subdifferential ∂Gφ is an interval if the left and right derivatives of Gφ differ; this can be
the case only on a countable subset of

¡
0, kφ

¢
. Also, ∂Gφ (0) = [0, (dGφ/dk) (0+)] and ∂Gφ

¡
kφ
¢
=£

(dGφ/dk)
¡
kφ−

¢
,+∞

¢
.

50The corresponding input demand, v̌θ
¡
ŷθ
¡
p, kθ, w|θ

¢
, kθ, w|θ

¢
, would similarly have to be equated to

input supply, had the supply not been taken to be perfectly elastic (i.e., if the input prices w were not
fixed, and had to be determined).
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the total short-run income, which is

(13.10) M̂SRh

¡
p; rE, rF;w, % | k

¢
:= mEn

h +
X
θ∈Θ

$hθ

¡
Πθ
SR

¡
p, kθ, w|θ

¢
− rEF|θ · kθ

¢
+
X
φ∈ΦEΘ

ςhφ

⎛⎝rEφ X
θ:φ∈ΦEθ

kθφ −Gφ

⎛⎝ X
θ:φ∈ΦEθ

kθφ

⎞⎠⎞⎠+ ςh IUΠIU (p, %) .

Comment (on the composition of income in the short and long runs): The exact
expression for the short-run income (13.10) can be approximated by simpler ones. The
first sum over θ in (13.10) represents pure-profit income from the SI, and the sum over
φ is the profit income from supplying any equilibrium-priced inputs to the SI. In the
long run, these profits are competitively maximized over kθ and, as a result, the SI’s
profit is zero.51 The profit incomes from input supply usually remain positive in the long
run, and their sum over φ is a term of M̂LRh in (13.9). For the purpose of calculating
the long-run equilibrium by the short-run approach, one can therefore replace M̂SRh by
the simpler expression M̂LRh in the short-run consumer problem (13.14). This would
make the short-run consumer demand map identical to the long-run one. (The short-run
equilibria so calculated would differ from the exact ones, but not by very much unless
the short-run problem’s capacities were far from long-run equilibrium.) Also, since the
profit from input supply is likely to be relatively small in practice, it may be acceptable
to disregard it in calculating consumer demand (thus taking the consumer’s income to
be mEn

h + ςh IUΠIU, instead of M̂SRh or M̂LRh).

Given a k = (kθ)θ∈Θ as well as r
E, rF and w, the short-run general equilibrium (SRGE)

system to be solved consists of the following conditions on the other variables (viz., prices
p paired with quantities yθ, xh and z, price % paired with quantity ϕh, quantities vθ, and
amounts of numeraire mh and n):

yθ maximizes SRP, i.e., meets (4.2), for each θ(13.11)

vθ minimizes SRC, i.e., meets (4.3), for each θ(13.12)

(p, 1) ∈ %b∂F (z, n)(13.13)

(xh,ϕh,mh) maximizes Uh on B
³
p, %, M̂SRh

¡
p, rEF, w, % | k

¢´
(13.14) X

θ∈Θ
yθ = z +

X
h∈Ho

xh and F (z, n) =
X
h∈Ho

ϕh.(13.15)

The short-run equilibrium system (13.11)—(13.15) can be solved in steps:
(1) We take it to be easiest to start by solving the SRC programme in (4.3) to

determine the short-run conditional demand of each plant type θ for its variable
inputs. For a technology with conditionally fixed technical coefficients, i.e., for a

51Formally, this is because in long-run equilibrium rEF|θ = r̂θ as per (13.18), and because
¡
p, r̂θ, w|θ

¢
∈ Y◦θ for each θ by the dual constraint on rθ. For the same reason, in calculating the long-run equilibrium
one can restrict attention, already at the short-run stage, to those rEF’s with

³
p, rEF|θ , w|θ

´
∈ Y◦θ for each

θ.



60 ANTHONY HORSLEY AND ANDREW J. WROBEL

technology of the form (24.1), the conditional input demand v̌θ (yθ) depends only
on the plant’s output yθ. In general, it depends also on the fixed inputs kθ and
the variable-input prices w|θ.

(2) Since Cθ
SR is now a known function of

¡
yθ, kθ, w|θ

¢
–equal to w|θ · v̌θ if the SRC

programme is feasible, and to +∞ if not–the reduced SRP programme in (4.2)
can be solved next; it is an LP if v̌θ is linear in yθ.52 It generally has a multi-valued
solution set, Ŷθ

¡
p, kθ, w|θ

¢
.

(3) Consumer demands are found as functions (x̂h, ϕ̂h) of (p, %;M), and the known
value of Πθ

SR

¡
p, kθ, w|θ

¢
–viz., hp | yθi − Cθ

SR (yθ) for any yθ ∈ Ŷθ–is used to cal-
culate M̂SRh as per (13.10). Factor demands (of the User Industry) are found as
functions (ẑ, n̂) of (p, %) ∈ P+ ×R++, from (13.13).53

(4) Finally, the system

ẑ (p, %) +
X
h∈Ho

x̂h
³
p, %; M̂SRh

¡
p; rE, rF;w, % | k

¢´
∈
X
θ∈Θ

Ŷθ
¡
p, kθ, w|θ

¢
(13.16)

X
h∈Ho

ϕ̂h

³
p, %; M̂SRh

¡
p; rE, rF;w, % | k

¢´
= F (ẑ (p, %) , n̂ (p, %))(13.17)

is solved for p and %.

This gives the short-run equilibrium prices, p?SR (for the Supply Industry’s differentiated
output good) and %?SR (for the Industrial User’s product). It also gives, by back substi-
tution, the short-run equilibrium quantities, viz.: (i) the outputs and demands for the
differentiated good, with

P
θ y

?
SR θ = z

?
SR +

P
h x

?
SRh, (ii) the Supply Industry’s variable

inputs v?SR θ, (iii) the User Industry’s output ϕ
?
SR and input n

?
SR, and (iv) consumption of

the numeraire
P

hm
?
SRh. Generally, all of these are functions of the short-run equilibrium

problem’s data k and rE (as well as depending on the fixed prices rF and w).54

The second stage is to determine the long-run equilibrium, i.e., the equilibrium capaci-
ties and the prices of any equilibrium-priced capital inputs (i.e., those in ΦEΘ). Optimality
of investment kθ in each technique is achieved by satisfying the rest of the split SRP op-
timization system, viz., (4.6)—(4.7). For this, the solution set R̂θ

¡
p, kθ, w|θ

¢
of the FIV

minimization programme (5.13)—(5.14) with Yθ in place of Y, or the solution r̂θ if it is
unique, is calculated at p = p?SR

¡
k, rEF, w

¢
. Actually, r̂θ will usually have already been

found as the dual solution in the process of solving the SRP programme for yθ by a
duality method, i.e., as a by-product of Step 2 in solving (13.11)—(13.15). Finally, the
system of long-run equilibrium conditions¡

rE|θ, r
F
|θ
¢
∈ R̂θ

¡
p?SR

¡
k; rEF;w

¢
, kθ, w|θ

¢
i.e., rEF|θ meets (4.6) for each θ ∈ Θ(13.18)

rEφ ∈ ∂Gφ

Ã X
θ:φ∈Φθ

kθφ

!
for each φ ∈ ΦEΘ(13.19)

52For example, in thermal electricity generation, v̌θ (yθ) =
R
yθ (t) dt and so (16.1)—(16.3) is an LP.

53This step is independent of the preceding derivation of short-run supply.
54For simplicity, the short-run equilibrium is assumed to be unique.
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is solved for k = (kθ)θ∈Θ and r
E (given rF and w).55 Any solution (k?, r?) is a part of a

long-run equilibrium–provided that there is no duality gap between the SRP programme
and its dual (5.13)—(5.14) for any θ (i.e., if (4.7) or equivalently (13.5) holds). The rest of
the long-run equilibrium follows by substituting k? and r? into the short-run equilibrium
solution. In particular, in long-run equilibrium, consumer and factor demands for the
differentiated good, its total output and its price system are:X

h

x?LR,h =
X
h

x?SR,h
¡
k?; r?, rF;w

¢
z?LR = z

?
SR

¡
k?; r?, rF;w

¢X
θ

y?LR θ =
X
θ

y?SR θ

¡
k?; r?, rF;w

¢
p?LR = p

?
SR

¡
k?; r?, rF;w

¢
.

The SRGE system (13.11)—(13.15) together with the long-run conditions (13.18)—(13.19)
can be called the SRP programme-based LRGE system.

Comments:

(1) The SRGE system simplifies when there is no income effect on the differentiated
good (i.e., when x̂h is independent of M , in the relevant range): the solution
(p?SR, %

?
SR) to (13.16)—(13.17) is then independent of r

EF, as in Section 2.
(2) A production technique can usually be identified by its set of fixed inputs, i.e.,

Φθ0 6= Φθ00 for θ
0 6= θ00. Under the stronger assumption that different techniques

use disjoint sets of fixed inputs, i.e., that

(13.20) Φθ0 ∩ Φθ00 = ∅ for θ0 6= θ00,

the SI’s total investment in fixed input φ is simply kθφ for the one θ such that
Φθ 3 φ. In other words, it is the case-function (of φ) defined, piecewise, as equal
to the function kθ on each Φθ. Thus it can be identified with k = (kθ)θ∈Θ itself.
So, under (13.20), the total investment can be denoted by k: ΦΘ → R. The
investment in technique θ is then the restriction of k to Φθ, which is denoted
by k|Φθ

, abbreviated to k|θ. This is so in our model of the ESI’s technology
(Section 15).

(3) Assume that: (i) each input-cost function, Gφ, is differentiable on R++ := R+ \
{0}, (ii) the techniques use disjoint sets of capital inputs, i.e., (13.20) holds, and
(iii) a unique shadow price system r̂θ

¡
p, k|θ, w|θ

¢
exists at every k À 0 and p in

a subspace of P that is known to contain p?SR. (As we show in [28] for a class of
problems that includes peak-load pricing with storage, this is so for the space of
continuous real-valued functions C [0, T ], as a price subspace of P = L1 [0, T ].) If
a long-run equilibrium with k? À 0 is sought, then Conditions (13.18)—(13.19) on
k reduce to the following equations for k (a strictly positive vector in RΦΘ):

55As a basic check, note that the number of “generalized equations” in this system (each d-dimensional
vector inclusion counting as d “equations”) is the same as the number of unknowns (viz.,

P
θ∈Θ cardΦθ+

cardΦEΘ).
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(13.21) r̂θφ

Ã
p?SR

Ã
k;

½
dGφ

dk
(kφ)

¾
φ∈ΦEΘ

, rF;w

!
, k|θ, w|θ

!

=

(
dGφ

dk
(kφ) if φ ∈ ΦEθ

rFφ if φ ∈ ΦFθ

for each θ and φ ∈ Φθ.
(4) This investment problem has a partial-equilibrium version in which a given p

replaces the p?SR in the system (13.21), for a particular production technique θ.
We study it in [22], and in [27, Section 11] for the case of pumped storage.

(5) All of the SI’s inputs have been assumed to be homogeneous goods, but in some
cases an input is a differentiated good. If it is also an equilibrium-priced fixed
input, then its supply cost Gφ is a joint-cost function of the commodity bundle
kφ ∈ Kφ. The short-run approach readily accommodates such inputs (the only
difference is that ∂Gφ is not an interval of R, but a convex subset of the price
space Rφ paired with Kφ). An example is the river flow e ∈ L∞ [0, T ] for hydro-
electric generation in Theorem 17.2, but in that case Condition (13.19) imposes
no restriction on the water price function ψ because e is fixed (even in the long
run).

14. Duality for linear programmes with nonstandard parameters in
constraints

Once the production set Y has been represented as an intersection of half-spaces,
each of the profit or cost programmes of Section 3 becomes an LP, i.e., a programme
of optimizing a linear function subject to linear inequality or equality constraints. It is
a parametric LP, with the fixed quantities k as its primal parameters (Section 5). The
fixed quantities need not, of course, be the standard “right-hand side” parameters. But
the marginal effects of any nonstandard parameters can be expressed in terms of those
of the standard parameters, i.e., in terms of the standard dual solution σ, which consists
of the usual Lagrange multipliers for the constraints. This is done in (14.12) below.
To start with, this formula is given for the case of a finite LP, i.e., an LP with finite

numbers of decision variables, parameters and constraints. We focus on the SRP pro-
gramme of a production technique with c.r.t.s. To simplify the notation, we assume that
there is no variable input (i.e., Ξ = ∅). As well as being met literally by some techniques
(e.g., the storage techniques of Section 15), the assumption is not at all restrictive be-
cause the output bundle y can always be reinterpreted as the bundle of all the variable
commodities (i.e., outputs and variable inputs).
For now, Y is therefore a polyhedral cone in the finite-dimensional space Y × K =

RT ×RΦ, where T and Φ are the sets of output and fixed-input commodities. Its polar,
Y◦, is a finitely generated convex cone in the price space P × R = RT × RΦ. It can be
represented as the sum of a linear subspace spanned by a finite set G00 and a line-free
convex cone generated by a finite set G0, i.e.,

Y◦ = cone convG0 + spanG00
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for some positively independent, finite set G0 and another finite set G00 (which can be
chosen to be linearly independent).56 The generators G0 and the spanning vectors G00 can
serve as the rows of partitioned matrices [A0B0] and [A00B00] that give57

(14.1) Y =
©
(y,−k) ∈ RT × RΦ : A0y −B0k ≤ 0 and A00y −B00k = 0

ª
.

The primal LP (of short-run profit maximization) is: given (p, k) ∈ RT ×RΦ,

maximize p · y over y ∈ RT(14.2)

subject to: A0y ≤ B0k(14.3)

A00y = B00k.(14.4)

Its optimal value is ΠSR (p, k), abbreviated to Π (p, k). As in Section 5, the vector k is
called the intrinsic primal parameter, and its increment ∆k is an intrinsic perturbation
of (14.2)—(14.4).
The corresponding standard parametric LP has primal parameters s0 and s00, ranging

over RG0 and RG00, in place of the B0k and B00k in (14.3)—(14.4). Its optimal value is
the standard primal value, denoted by eΠ (p, s), where s = (s0, s00). So by definition, for
every (p, k),

(14.5) Π (p, k) = eΠ (p,Bk) where B :=

"
B0

B00

#
.

The standard perturbation consists in relaxing (or tightening) the inequality constraints
by adding an arbitrary vector ∆s = (∆s0,∆s00) ∈ RG0 ×RG00 to the r.h.s. of (14.3)—(14.4),
i.e., it uses a separate scalar increment for each constraint. This produces the standard
dual of (14.2)—(14.4), which is: given the same (p, k) ∈ RT ×RΦ,

minimize σTBk = σ0TB0k + σ00TB00k over σ = (σ0,σ00) ∈ RG0 ×RG00(14.6)

subject to: σ0 ≥ 0(14.7)

p = ATσ := A0Tσ0 +A00Tσ00(14.8)

where ·T denotes transposition. The variable σ is paired with ∆s (not ∆k)–this is the
dual of the standard primal LP, which is parametrized by s. It is only after forming
the dual that Bk is substituted for s to give σTBk in (14.6). The standard dual value,

denoted by eΠ (p, s), is the optimal value of the LP (14.6)—(14.8) with s instead of Bk, i.e.,
56Although it follows that Y◦ is the convex cone generated by G0 ∪G00 ∪ (−G00), it is better to keep G0

and G00 separate when it comes to parameterizing the programme (14.2)—(14.4) in the standard way. For
this purpose, an equality constraint should not be converted to a pair of opposite inequalities. To do so
would always complicate the dual solution by making it nonunique and unbounded: a primal equality
constraint (say a · y = 0) may have a unique multiplier λ, but if it were replaced by a pair of inequalities
(a · y ≤ 0 and −a · y ≤ 0), then a corresponding multiplier pair would be any (σ1,σ2) ≥ 0 with σ1 − σ2
= λ, i.e., any point of a half-line. Its unboundedness expresses the fact that the programme would
become immediately infeasible if one inequality constraint of the pair were tightened without relaxing
the other by the same amount (i.e., if the constraints were perturbed to a · y ≤ s1 and 0 and −a · y ≤ s2
for s1 < −s2).
57Formally, A and B are the G ×T and G ×Φ matrices with entries Agt = gt and Bgφ = gφ for t ∈ T ,

φ ∈ Φ and g ∈ G = G0 ∪ G00.
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before the substitution. Its solution, the standard dual solution, is denoted by σ̂ (p, s)

when it is unique; in general, the solutions form a set Σ̂ (p, s). The solution set of (14.6)—

(14.8) is therefore Σ̂ (p,Bk); when unique, the solution is σ̂ (p,Bk). Its value is eΠ (p,Bk).
This is always equal to the fixed-input value as calculated from (5.13)—(5.14), i.e.,58

(14.9) eΠ (p,Bk) = Π (p, k) for every (p, k) .

In other words, the standard dual LP has the same value as the intrinsic dual; here, the
two duals are (14.6)—(14.8) and (5.13)—(5.14). For their solution sets, Σ̂ and R̂, it follows
that

R̂ (p, k) = b∂kΠ (p, k) = BT b∂seΠ (p, s)¯̄̄
s=Bk

= BTΣ̂ (p,Bk)(14.10)

:=
n
BTσ : σ ∈ Σ̂ (p,Bk)

o
by applying the Chain Rule to (14.9),59 and by using (twice) the identity of the dual
solution and the marginal value of Type Two.60 Thus the intrinsic dual solution (R̂) is
expressed as the linear image of the standard dual solution (Σ̂) under the adjoint (BT·)
of the operation that maps the intrinsic to the standard primal parameters (s = Bk).
When Π = Π at (p, k), the marginal value is actually of Type One by Remark 19.8,

i.e.,

(14.11) b∂kΠ (p, k) = b∂kΠ (p, k) = BTΣ̂ (p,Bk) .
This always applies to finite LPs because their primal and dual values are equal, unless
both programmes are infeasible (in which case their values are oppositely infinite).61 If
additionally the dual solution is unique, then

(14.12) ∇kΠ (p, k) = BTσ̂ (p,Bk) .
This gives the marginal values of the generally nonstandard intrinsic parameters (k) in
terms of the standard dual solution (σ̂).

Comment (on standard and intrinsic perturbations): If B were the unit matrix I, the
two perturbation schemes would obviously be the same (and ∆s could be renamed to
∆k). This would be so if the short-run production constraints corresponded, one-to-one,
to the fixed inputs, i.e., if Y were defined by a system of inequalities (or equalities) of

58The identity (14.9) reduces to (14.5) when the primal and dual values are equal, i.e., when eΠ = eΠ
and Π = Π at (p, k). This always applies to (feasible) finite LPs, but not always to infinite LPs. To
prove (14.9) without relying on the absence of a duality gap, note that the constraint (p, r) ∈ Y◦ in
(5.14) means here that ATσ = p and BTσ = r for some σ = (σ0,σ00) with σ0 ≥ 0 (since the rows of
[AB] generate or span Y◦). So the change of variable from r to BTσ transforms (5.13)—(5.14) into
(14.6)—(14.8). This argument extends to infinite LPs (and it applies also when there is a duality gap).
59For the Chain Rule for subdifferentials, see, e.g., [4, 4.3.6 a], [32, 4.2: Theorem 2], [42, 23.9] or [44,

Theorem 19].
60First noted at the end of Section 7, the identity is detailed in Section 19 (Lemma 19.2).
61See, e.g., [11, 5.1 and 9.1] or [44, Example 1’, p. 24] for proofs based on the simplex algorithm or on

polyhedral convexity, respectively. This is not so with a pair of infinite LPs: both can be feasible without
having the same value (i.e., the primal and dual values can both be finite but different). Appendix A
gives an example.



SHORT-RUN APPROACH TO LONG-RUN EQUILIBRIUM 65

the form (Ay)φ ≤ kφ, one for each φ ∈ Φ. But such a correspondence generally fails to
exist, for three reasons. First, two fixed inputs may appear in one constraint (say a · y
≤ k1 + k2). Second, a constraint may involve only the outputs (a · y ≤ 0, e.g., yt ≥ 0).
Third, each fixed quantity kφ may impose more than one constraint on y (say (Ay)1
≤ kφ, (Ay)2 ≤ kφ, . . . ). Indeed, this is so whenever kφ is a capacity: staying constant
over a time period, it is a scalar but it imposes as many inequality constraints as there
are time instants (e.g., yt ≤ kφ for each t).62 In such a case, B is a 0-1 matrix whose unit
entries appear just once in a row, but more than once in a column. When additionally

k is a scalar, B is the single column
h
1 . . . 1

iT
; and an intrinsic perturbation of the

constraint system Ay ≤
h
k k . . .

iT
relaxes all the constraints by the same amount,

to Ay ≤
h
k +∆k k +∆k . . .

iT
. By contrast, a standard perturbation relaxes each

constraint by a different amount, to Ay ≤
h
k +∆s1 k +∆s2 . . .

iT
. In this sense, the

standard perturbation scheme is the finest; and, with this B, the intrinsic perturbation
scheme is the coarsest. Once the scalar k is identified with the vector (k, k, . . .), the
standard value function eΠ (p, ·) becomes an extension of the intrinsic value function
Π (p, ·) from the subspace of constant tuples to all of RG0∪G00 (with G00 empty if there
is no equality constraint), and the intrinsic dual solution (a scalar) is simply the total

sum of the standard dual solution, i.e., r̂ =
h
1 . . . 1

i
σ̂ = σ̂1 + σ̂2 + . . .. In other

words, the scalar parameter’s marginal value is the sum of the marginal values of relaxing
all the constraints in which it appears. This arises in the peak-load pricing application
to give the total capacity values as the integrals of the rent flows over the period, in
(16.10), (16.23)—(16.24), and (16.44)—(16.45). Also, since eΠ is an extension of Π, it can
be convenient to use the same letter k as the second variable of both functions (i.e., to
use k instead of the s in eΠ (p, s)), provided that it is always made clear whether k is a
scalar or a vector. We do so in the context of hydro and energy storage (where s signifies
the water or energy stock and is not a parameter).

Finally, the standard dual can be reformulated by including the intrinsic dual variable
r, which is paired with k and constrained to equal BTσ; thus r is wholly dependent on
σ. The objective, σTBk, may then be rewritten concisely as r · k. This produces the
following LP: given (p, k) ∈ RT ×RΦ,

minimize r · k over r ∈ RΦ and σ = (σ0,σ00) ∈ RG0 ×RG00(14.13)

subject to: σ0 ≥ 0, p = ATσ and r = BTσ.(14.14)

This may be called the inclusive standard dual–an LP for both r and σ. It is the dual
that derives from simultaneous standard and intrinsic perturbations, i.e., from perturbing
Bk on the r.h.s. of (14.2)—(14.4) to ∆s + B (k +∆k). Its solution gives both sets of
marginal values explicitly (σ̂ and r̂), but it is in substance equivalent to the standard dual
solution σ̂. It can be more convenient to use a partly inclusive form of the standard dual,

62Also, a nonnegativity constraint on kφ makes it appear a second time even if it imposes just one
constraint on y (i.e., 0 ≤ kφ in addition to a · y ≤ kφ for some a 6= 0).
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which includes only some of the intrinsic dual variables, leaving out those coordinates of
r which correspond to “the simplest” columns of B–e.g., to the columns with 0-1 entries
as in the Comment above. For example, the programme of valuing the hydro inputs
(16.37)—(16.43) includes the TOU shadow price of water ψ but not the total capacity
values rSt and rTu, which are simply the totals of the standard dual variables κSt and
κTu.

Expressing general dual variables (r) in terms of the standard ones (σ) can be extended
to infinite LPs. This requires using suitable cones in infinite-dimensional spaces of vari-
ables and parameters to formulate infinite systems of constraints on, generally, an infinity
of variables. Such a framework is provided in, e.g., [12, 4.2], [36, 7.9] and [44, Examples
4, 4’, 4”]. The assumptions we make here to adapt it are not the weakest possible; they
are selected for simplicity and adequacy to our applications (Section 16). The output
and fixed-input spaces, Y and K, are now taken to be general Banach spaces, i.e., com-
plete normed spaces (instead of RT and RΦ). The norm-duals, Y ∗ and K∗, serve as the
corresponding price spaces, P and R. For the primal programme of SRP maximization,
Y is the primal-variable space paired with the dual parameter space P , and K is the
primal-parameter space paired with the dual-variable space R. The production cone is
given by (14.1) in terms of two norm-to-norm continuous linear operations: (i) A0: Y → L
and B0: K → L, whose common codomain L is a Banach lattice (with a vector order
≤ and the corresponding nonnegative cone L+), and (ii) A00: Y → X and B00: K → X,
whose codomain X is a Banach space. The spaces L and X replace RG0 and RG00 as the
spaces for standard perturbations (∆s0, ∆s00). Their norm-duals, L∗ and X∗, serve as
the spaces for standard dual variables (σ0, σ00). It is best to keep L and X small, but
obviously L must contain the ranges of both A0 on Y and B0 on K (and similarly X must
contain both A00Y and B00K ).
As for the choice of topologies, this must be consistent with the pairing of spaces.

Furthermore, the norm topology has to be put on the primal parameter space L if the
generalized Slater’s Condition of [44, (8.12)] is to be met for the SRP programme (14.2)—
(14.4), i.e., if a y is to exist such that A0y − B0k ∈ − int (L+) and A00y − B00k = 0X .
Topologies on Y ,K, L andX must make the maximand u.s.c. and the constraint relations
closed; here, this means making hp | ·i, A and B continuous. So the norm topologies on
Y (the primal-variable space) and on K, L and X (the primal-parameter spaces) will do.
On the dual-variable spaces K∗, L∗ and X∗, the weak* topologies will do.63 On Y ∗ (the
dual parameter space), the Mackey topology m(Y ∗, Y ) is the best choice if continuity
of the dual value function is sought. When Y has a Banach predual Y 0, it can also be
useful to pair Y with Y 0 as a dual parameter space that is generally smaller than Y ∗; the
restriction of m(Y ∗, Y ) to Y 0 is the norm topology of Y 0. The pairing of Y with Y 0 is
adequate when p ∈ Y 0, but not when p ∈ Y ∗ \ Y 0.
There are at least two sources for the linear operations A and B that describe Y by

(14.1). First, such a formula may be the original definition of Y–in which case A and

63The weak topologies do not enter the analysis explicitly, but they make the adjoint operators
continuous: see, e.g., [18, 16C].
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B can simply be read off. This is so in our application to the ESI: the production sets
(15.1), (15.4) or (15.9) are all of the form (14.1).64

Second, A0 and B0 (with no A00 or B00, i.e., with the zero space as X) can also be
constructed from a weakly* compact convex base, ∆, for Y◦, which exists if and only if
Y is solid (i.e., has a nonempty interior) for the norm on Y ×K: see, e.g., [3, Theorem
3.16]. An interior point

¡
yS,−kS

¢
defines the base

(14.15) ∆ :=
©
(p, r) ∈ Y◦ :


p | yS

®
−

r | kS

®
= −1

ª
.

Such a ∆ can serve as a replacement for the finite set G0 that generates Y◦ when Y is
a solid polyhedral cone in a finite-dimensional space. The Banach lattice of all weakly*
continuous functions on ∆, denoted by C (∆), replaces RG0 and serves as the codomain
(L) for the operations A0 and B0. These are specified by65

(14.16) (A0y −B0k) (p, r) := hp | yi− hr | ki for (p, r) ∈ ∆.

So C (∆) is the space of standard perturbations, and the space of standard dual variables
(the constraints’ multipliers) is the space of all finite Borel measuresM (∆) = C∗ (∆) by
Riesz’s Representation Theorem. Some points of ∆ are convex combinations of others.
This redundancy can be lessened by replacing ∆ with any closed, and hence compact,
subset G0 such that cl convG0 = ∆. When the set of extreme points ext∆ is closed, it is
the best choice of G0 (and all the redundancy is thus removed). But generally ext∆ need
not be closed, even if ∆ is finite-dimensional.

Comments (on the construction of (A0, B0) from a base ∆ for Y◦):
(1) When Y is a solid polyhedral cone in a finite-dimensional space RT × RΦ, the

operations A0 and B0 constructed from a base ∆ for Y◦ are at least as good as the
A0 and B0 read off from any original formula for Y. This is because ext∆ is then
a finite set generating Y◦, and when its elements are put together as rows of a
matrix [A0B0], it gives the simplest representation of Y in the form (14.1)–with
the matrix [A00B00] empty because Y is solid.

(2) But in the infinite case the original A0 and B0 can be simpler than those con-
structed from ∆, though the two can also turn out to be exactly the same. This
can depend on the details of space specifications. For example, consider

(14.17) Y := {(y,−k) ∈ Y ×R : y ≤ k}

64The output space is Y = L∞ [0, T ], which has a predual Y 0 = L1 [0, T ]. The fixed-input space
K depends on the technique: it is either R for a thermal technique, or R2 for pumped storage, or
R2 × L∞ [0, T ] for hydro. As for L (the space of standard perturbations of inequality constraints), it is
either L∞ [0, T ] or its Cartesian product with C [0, T ] when, in the case of an energy storage technique,
there are reservoir constraints in addition to generation constraints. And the balance constraint of a
storage techniques has R as X (the space of standard perturbations of the equality constraint).
65Formula (14.16) adapts [12, p. 154, line 11 f.b.], where the construction is mistakenly proposed as

a possible way of dealing with a non-solid cone (in such a case the polar cannot have a compact base, so
the analysis does not apply). The construction can, however, be extended to the case that Y is relatively
solid, i.e., has a nonempty interior in the linear subspace Y− Y (assumed to be closed in Y ×K); the
polar Y◦ is then the sum of the annihilator (Y− Y)⊥ and a cone with a compact base ∆.
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with either C [0, T ] or L∞ [0, T ] as the output space Y . (This is a simpler version
of the technology (15.1), stripped of the variable input and without the nonneg-
ativity constraint.)
(a) For now, Y = C [0, T ]. The original operations defining this Y by means of

(14.1) are: the identity map A0y = y for y ∈ C [0, T ], and the embedding of R
in C [0, T ] by mapping scalars to constant functions, i.e., B0k = k[0,T ] ∈ C for
k ∈ R (with no A00 or B00 because Y is solid). The interior point

¡
0[0,T ],−1

¢
∈ Y defines, by (14.15), the compact base

(14.18) ∆ = {p ∈M [0, T ] : p ≥ 0, p [0, T ] = 1} × {1} .
Its set of extreme points is

ext∆ = ext {p ∈M+ [0, T ] : p [0, T ] = 1} × {1}
= {εt : t ∈ [0, T ]} × {1} ' [0, T ]

where εt is the Dirac measure at t (i.e., a unit mass concentrated at the
single point t). Each εt is identified with t itself; and with ∆ replaced by
ext∆ ' [0, T ], Formula (14.16) reproduces the original operations A0 and B0
exactly by giving

(A0y −B0k) (t) ' (A0y −B0k) (εt, 1) := hεt | yi− k = y (t)− k for t ∈ [0, T ] .
(b) This is not quite so once the space Y in (14.17) is enlarged from C [0, T ] to

L∞ [0, T ], the space of all essentially bounded functions. Although ∆ is still
the nonnegative part of the unit sphere, the sphere is now that of L∞∗ rather
than of M as in (14.18). In either case, its extreme points can be charac-
terized as scalar-valued lattice-homomorphisms on L∞ or C (into R) of unit
norm, and also as nonzero multiplicative linear functionals (i.e., scalar-valued
algebra-homomorphisms) on L∞ or C: see, e.g., [2, 12.27] and [46, 11.32], re-
spectively. More precisely, ext∆ = H × {1}, where H is the set of all such
homomorphisms on either L∞ or C. But the homomorphisms on L∞ [0, T ] are
not as simple as those on C [0, T ], which are Dirac measures and thus corre-
spond to points of [0, T ]. In the case of L∞, H is an extremally disconnected
weakly* compact subset of L∞∗, and C (H) is isomorphic (both as a normed
lattice and as a normed vector algebra) to L∞ [0, T ]. In other words, the
construction amounts to representing equivalence classes of bounded mea-
surable functions on [0, T ] as continuous functions on another, much more
complicated, compact set. The “almost everywhere” inequality constraint,
y (t) ≤ k for a.e. t, is thus replaced by an infinite system of scalar inequalities,
viz., hp | yi ≤ k for every p ∈ H. But, since the indexing set H is far from
simple, such a reformulation may not be worthwhile.

15. Technologies for electricity generation and energy storage

The rudimentary peak-load pricing example of Section 2 is next developed into a
continuous-time equilibrium model of electricity pricing. This requires a fuller descrip-
tion of the industry’s technology to start with. A typical electricity supply industry uses a
combination of thermal generation, hydro, pumped energy storage, and other techniques.
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A thermal plant can be classified by fuel type as, e.g., nuclear, coal-, oil- or gas-fired. A
hydro plant can be classified by head height as high-, medium-, or low-head. A pumped-
storage plant can be classified by its medium for energy storage as, e.g., a pumped-water
or compressed-air plant (PWES or CAES plant), a superconducting magnetic coil (SMES
plant) or a battery. Each type can be further subdivided by the relevant design charac-
teristics, which all affect the plant’s unit input costs as well as its technical performance
parameters (such as response time and efficiency of energy conversion). But the structure
of feasible input-output bundles is nearly the same for all the techniques within each of
the three main types (thermal, hydro and pumped storage). To simplify these technology
structures, we ignore some of the cost complexities and technical imperfections:

(1) A thermal plant is assumed to have a constant technical efficiency η, i.e., a con-
stant heat rate (both incremental and average) of 1/η.66 So the plant has a
constant unit running cost w (in $/kWh, say) over the entire load range from
zero to the plant’s capacity.67

(2) A hydro plant is assumed to have a constant head, and a turbine-generator of a
constant technical efficiency.68

(3) In a pumped-storage plant, the energy converter is taken to be perfectly efficient
and symmetrically reversible (i.e., capable of converting both ways, and at the
same rate).69

(4) All plant types are assumed to have no startup or shutdown costs or delays.70

(5) Like operation, investment is assumed to be divisible.

Some of these conditions–viz., perfect conversion in pumped storage and constant
head in hydro–are imposed purely to simplify this presentation, and can be removed by
using the results of [21] and [30]. As for indivisibility, it does not loom large in large-scale
systems (nor does the sunk operating cost of a thermal plant, i.e., the no-load fuel cost

66A steam plant’s efficiency is the product of the boiler’s and turbine-generator’s efficiencies, which
is about 0.85× 0.45 ≈ 38% (i.e., the heat rate is about 1/0.38× 3600 kJ/kWh≈ 9500 kJ/kWh).
67In reality, the minimum operating load is 10% to 25% of the maximum, and the incremental rate

rises with load by up to 5% to 15%. Also, there is a no-load heat input (which is a sunk operating cost
per unit time of being on line). See, e.g., [38, Figures 8.2 and 8.3, and Table 8.3].

68In reality, a turbine’s efficiency varies with the load (from about 85% to 95% for movable-blade
types, or 70% to 95% for fixed-blade types). Also, a plant’s head varies with the water stock. The
variation tends to be larger in lower-head plants, but it much depends on the particular plant: e.g., with
a typical medium head (say about 150m), the variation is 3% of the maximum in some plants, but over
30% in others. For a variable-head plant, we study the operation and valuation problems in [30].

69In reality, the round-trip conversion efficiency ηRo is close to 1 in SMES (over 95%). In PWES and
CAES, ηRo is around 70% to 75% (i.e., 0.7 kWh of electricity is recovered from every kWh used up). The
case of ηRo < 1 is included in our model of pumped storage [21], as are the cases of converter asymmetry
or nonreversibility (although reversibility is usual, some high-head PWES plants do use nonreversible
multi-stage pumps).

70In reality, startup times range from nearly zero for some energy storage plants (SMES coils and
batteries can switch from charging to discharging in 4 to 20 miliseconds), through a few minutes (1—10
min) for other storage plants (PWES or CAES) as well as gas turbines and hydro plants, to hours for
nuclear or fossil (coal, oil, gas) steam-plants (whose long startup times must of course be distinguished
from the very much shorter loading times applicable to the spinning reserves): see, e.g., [38, Table 8.2]
and [40] or [10].
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of its being on line). Also, the model can be extended to include transmission costs and
constraints.
The one restriction that cannot be relaxed without changing some of the model’s

mathematical foundations is the assumption of immediate startup at no cost. This con-
dition means that the thermal operating cost is additively separable over time; it also
means that both short-run and long-run thermal generation costs are symmetric (a.k.a.
rearrangement-invariant) functions of the output trajectory over the cycle. These prop-
erties are fundamental to the integral formulae for the short-run and long-run thermal
costs,71 and hence also to our method of calculating the long-run marginal cost of thermal
generation [19]. The symmetry property, and its weaker variants for other techniques,
underlies also our time-continuity result for the equilibrium price function [28]. And price
continuity is what guarantees that the two capacities of a pumped-storage plant (viz.,
the reservoir and the energy converter) have well-defined and separate profit-imputed
marginal values, despite their “perfect complementarity”: see [21] or [27]. In the case of
a hydro plant, it also guarantees that the river flows have well-defined marginal values
(as do the reservoir and turbine capacities): see [24].
But the assumption of no startup costs can be rather less distorting than it may seem.

This is because the slow-starting plants tend to have low unit running costs, and the
quick-starting plants tend to have high unit running costs. To minimize the operating
cost, one allocates the base load to the lowest-cost plants, and the near-peak loads to the
highest-cost plants. Thus the slowest starters end up serving mainly the constant load
levels (the base load), and the quickest starters end up serving the most intermittent
load levels (the near-peaks)–even if the differences in startup times are disregarded in
the despatch policy.
The complete generating technology consists, then, of the various thermal, hydro and

pumped-storage techniques, which form three sets: ΘTh, ΘH and ΘPS. However, what
we consider here is a smaller model with a number of thermal techniques and just one
other, viz., either a pumped-storage technique or a hydro technique. So the single non-
thermal technique can be denoted simply by PS or H, and the set of thermal techniques
by {1, 2, . . . ,Θ}, where Θ means the number of thermal techniques. In other words, the
ESI’s set of techniques is henceforth either {1, 2, . . . ,Θ; PS} or {1, 2, . . . ,Θ; H}. It plays
the role of the abstract set Θ of Sections 12 and 13.
The output space Y is here L∞ [0, T ], which is the vector space of all essentially

bounded real-valued functions on the interval [0, T ] that represents the cycle. Func-
tions equal almost everywhere, w.r.t. the Lebesgue measure (meas), are identified with
one another. With the usual order ≤ and the supremum norm

kyk∞ := EssSup |y| = ess sup
t∈[0,T ]

|y (t)|

L∞ is a dual Banach lattice.72 Its Banach predual is L1 [0, T ], the space of all integrable
functions. When, as here, it serves as the price space P , a TOU electricity price is a
density function, i.e., a time-dependent rate p (t) in $/kWh. The price space L1 [0, T ] is

71For a one-station technology, the thermal SRC and LRC are given by (2.5) and (2.6). The formulae
are extended to a multi-station technology in, e.g., [23, (22)—(26)] and [24].
72For Banach-lattice theory, see, e.g., [2, Chapter 4], [8, XV.12] and [33, Chapter X].
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sufficient in the case of interruptible demand because capacity charges are then spread
out over a flattened peak: see [26]. A larger price space is needed to accommodate the
instantaneous capacity charge that arises in the case of a firm, pointed peak.73

A thermal technique, θ, generates an output flow y ∈ L∞+ [0, T ] from two input quan-
tities: kθ (in kW) of generating capacity of type θ, and vθ (in kWh) of fuel of the
appropriate kind, eξθ. Its long-run production set is the convex cone
(15.1) Yθ :=

½
(y;−kθ,−vθ) : y ≤ kθ,

1

ηθ

Z T

0

y (t) dt ≤ vθ, y ≥ 0
¾

where the constant ηθ is the efficiency of energy conversion (the ratio of electricity output
to heat input). Viewed as a subset of L∞+ ×R2−, the set Yθ looks independent of θ (except
for the coefficient ηθ), i.e., all thermal techniques have the same structure. But each uses

its own input commodities: in terms of (13.1), Φθ = {θ}, Ξθ =
neξθo, and Yθ is formally

a subset of L∞+ [0, T ]× R
{θ,ξθ}
− , a space that depends on θ.74

The unit fuel cost ewθ (in $ per kWh of electricity output) is, for each plant type θ,
its heat rate 1/ηθ times its fuel’s price wξθ

(in $ per kWh of heat input). To simplify

the notation, we assume that different types of plants use different fuels (i.e., that eξθ0
6= eξθ00 for θ0 6= θ00): fuel of kind eξθ can then be unambiguously measured in kWh of
electricity generated by plant type θ (instead of being measured as the heat input). Such
measurement redefines the plant’s efficiency ηθ as 1, and so it equates the plant’s unit
fuel cost ewθ to its fuel’s price wξθ

, which can be abbreviated to wθ. In the case of different
types of plant using the same kind of fuel, the wθ (in this and the next two sections),
must be replaced by ewθ = wξθ

/ηθ, but no other change is needed.
75

Henceforth, wθ is actually taken to represent all of the unit running cost (a.k.a. op-
erating or variable cost).76 Also, the thermal techniques are numbered in the order of

73An instantaneous charge can be represented by a point measure; in the context of electricity pricing,
this is a capacity charge in $ per kW of power taken at the peak instant, and it is additional to the
marginal fuel charge, which is a price density in $ per kWh of energy at any time. A general singular
measure can be interpreted as a concentrated charge. As we point out in [26, Sections 1 and 2], the
Banach dual L∞∗ can be useful in arriving at such a price representation when the equilibrium allocation
lies actually in the space of continuous functions C [0, T ] ⊂ L∞ [0, T ]. This is because the restriction,
to C, of a linear functional p ∈ L∞∗ has the Riesz representation by a (countably additive) measure
pC ∈ M = C∗, which can have a singular part as well as a density part. The failure of L∞∗ itself to
have a tractable mathematical form is thus side-stepped without restricting the analysis to the case of
price densities. (The alternative of working entirely within C andM as the commodity and price spaces
is suitable when all demand is uninterruptible [20]. When all demand is harmlessly interruptible, the
equilibrium price is a density [26].)
74As in Section 13, each Yθ is embedded in the full commodity space as Yθ×{(0, 0, . . .)}, by inserting

zeros in the input-output bundle at all the positions other than θ, eξθ and the t’s.
75This is because our assumption of fixed fuel prices is equivalent to that of fixed unit fuel costs. In

any analysis with variable fuel prices, the only implication of the same fuel being used by multiple plant
types would be that their unit fuel costs could change only in a fixed proportion.
76The other components of unit running cost (extra maintenance, etc.) can be accounted for by a

levy on fuel (i.e., by increasing the original wθ).
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increasing unit operating cost, i.e.,

w1 ≤ w2 ≤ . . . ≤ wΘ.

Known as the merit order, it is the main conceptual reason for including several thermal
techniques in the model. By contrast, inclusion of several storage or hydro techniques
would not add new features to the analysis.

Comment: Thermal generation is a technique with conditionally fixed coefficients, i.e.,
its conditional input demands depend on the output bundle y, but not on the input
prices. Formally, Yθ is a case of (24.1) with Y0 = L∞+ [0, T ] and with

ǩθ (y) = EssSup (y) := ess sup
t∈[0,T ]

y (t)(15.2)

v̌θ (y) =

Z T

0

y (t) dt(15.3)

which are the capacity and fuel requirement functions.

Pumped storage produces a signed output flow y ∈ L∞ [0, T ] from the inputs of storage
capacity kSt (in kWh) and conversion capacity kCo (in kW). Energy is moved in and out of
the reservoir with a converter, which is taken to be perfectly efficient and symmetrically
reversible: this means that, in unit time, a unit converter can either turn a unit of
electricity into a unit of the storable energy, or vice versa. So the output from storage,
y = y+ − y−, equals the rate of energy flow of from the reservoir, −ṡ = −ds/dt (where
s (t) is the energy stock at time t). Energy can be held in storage at no running cost (or
loss of stock). The long-run production set is, therefore, the convex cone

(15.4) YPS :=
½
(y;−kSt,−kCo) ∈ L∞ [0, T ]× R2− : |y| ≤ kCo,

Z T

0

y (t) dt = 0

and ∃s0 ∈ R ∀t ∈ [0, T ] 0 ≤ s0 −
Z t

0

y (τ) dτ ≤ kSt
¾
.

Comment: This is also a technique with conditionally fixed coefficients, which means
that YPS has the form (24.1). In this case

(15.5) Y0 = L
∞
0 [0, T ] :=

½
y ∈ L∞ :

Z T

0

y (t) dt = 0

¾
and the requirements for storage capacity and conversion capacity, when the (signed)
output from storage is y ∈ L∞0 , are:

ǩSt (y) = max
t∈[0,T ]

Z t

0

y (t) dt+ max
t∈[0,T ]

Z T

t

y (t) dt(15.6)

ǩCo (y) = kyk∞ = ess sup
t∈[0,T ]

|y (t)| .(15.7)

In these terms, (y,−kSt,−kCo) ∈ YPS if and only if:

(15.8)
Z T

0

y (t) dt = 0, ǩSt (y) ≤ kSt and ǩCo (y) ≤ kCo.

Formula (15.6) is derived in [21].
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Hydro generation produces an output flow y ∈ L∞+ [0, T ] from the inputs of storage
capacity kSt (in kWh), turbine capacity kTu (in kW) and river flow e ∈ L∞+ [0, T ], whose
rate e (t) can also be measured in units of power (instead of volume per unit time). This
is because the height at which water flows in and is stored, called the head, is taken to
be constant. So the potential energy of water is in a constant proportion to its volume,
and the energy can be referred to as “water”. Since the turbine-generator’s efficiency ηTu
is also taken to be constant, water can be measured as the output it actually yields on
conversion (i.e., in kWh of electric energy). This redefines ηTu as 1, i.e., in unit time, a
unit turbine can convert a unit of stock into a unit of output.
A hydroelectric water storage policy generally consists of an output y (t) ≥ 0 and a

spillage σ (t) ≥ 0. The resulting net outflow from the reservoir is −ṡ = y − e+ σ (where
s (t) is the water stock at time t, and e (t) is the rate of river flow). Water can be held
in storage at no running cost (or loss of stock). The long-run hydro production set is,
therefore, the convex cone

(15.9) YH :=
n
(y;−kSt, kTu;−e) ∈ L∞+ [0, T ]×R2− × L∞− [0, T ] : 0 ≤ y ≤ kTu

and ∃σ ∈ [0, e]
µZ T

0

(y (t)− e (t) + σ (t)) dt = 0 and

∃s0 ∈ R ∀t 0 ≤ s0 −
Z t

0

(y (τ)− e (τ) + σ (τ)) dτ ≤ kSt
¶¾

.

Comments (on hydro and pumped storage):

(1) If kTu ≥ e then there is no need for spillage and, furthermore, it is feasible for the
hydro plant to “coast”, i.e., to generate at the rate y (t) = e (t). In this case, all
the incentive to use the reservoir comes from a time-dependent output price: if p
were a constant, the plant might as well coast all the time.

(2) In both pumped storage and hydro generation, the flows to and from the reservoir
are required to balance over the cycle (

R T
0
ṡdt = 0), i.e., the stock must be

a periodic function of time. But its level at the beginning or end of a cycle
is taken to be a costless decision variable, s0. In other words, when it is first
commissioned, the reservoir comes filled up to any required level at no extra cost,
but its periodic operation thereafter is taken to be a technological constraint. For
a brief comparison with the case of a given s0, or a variable but costly s0, see [21].

(3) In some ways, the hydro technology is analytically similar to pumped storage.
But, unlike pumped storage, hydro is not a technique with conditionally fixed
coefficients: although the conditional input demand for the turbine depends on
nothing but the output (it is ǩTu (y) = EssSup (y)), various combinations of an
inflow function and a reservoir capacity can yield the same output y (e.g., any e
with

R T
0
e dt =

R T
0
y dt and a high enough kSt will do).77

77Also, though this is only a technicality, the hydro technique has an infinity of input variables
(e (t))t∈[0,T ], unlike a c.f.c. technique as defined in Section 24.
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16. Operation and valuation of electric power plants

For each of the plant types described in Section 15, the problem of profit-maximizing
operation can be formulated as a doubly infinite linear programme for the output rate
y (t) at each time t (in kW), given a TOU electricity price rate p (t) for each time t (in
$/kWh).
For a thermal plant of capacity kθ with a unit running cost wθ, the operation LP

(reduced by working out the short-run cost as wθ

R T
0
y dt) is:

Given (p, kθ, wθ) ∈ L1 [0, T ]×R+ ×R+(16.1)

maximize
Z T

0

(p (t)− wθ) y (t) dt over y ∈ L∞ [0, T ](16.2)

subject to: 0 ≤ y (t) ≤ kθ for a.e. t.(16.3)

Every optimal output is given by

(16.4) y (t) ∈

⎧⎪⎪⎨⎪⎪⎩
{0} for p (t) < wθ

[0, kθ] for p (t) = wθ

{kθ} for p (t) > wθ

i.e., measurable functions satisfying (16.4) form the solution set Ŷθ (p, kθ, wθ). So the
plant’s operating profit is Πθ

SR (p, kθ, wθ) = kθ
R T
0
(p (t)− wθ)

+ dt, and its unit rental
value (in $/kW) is

(16.5) r̂θ (p, kθ, wθ) =
∂Πθ

SR

∂kθ
(p, kθ, wθ) =

Z T

0

(p (t)− wθ)
+ dt if kθ > 0.

Differentiation is the simplest way to value a unit of thermal capacity because the
operation problem is so simple that its solution and value function can be calculated
directly (i.e., without using a duality method). Of course, r̂θ can also be calculated by
solving the dual problem of capacity valuation. The standard dual of the operation LP
is the following programme for the flow of rent κθ (whose total for the cycle is rθ), with
νθ as the Lagrange multiplier for the nonnegativity constraint on y in (16.3):

Given (p, kθ, wθ) as in (16.1)(16.6)

minimize kθ

Z T

0

κθ (t) dt over κθ ∈ L1 [0, T ] and νθ ∈ L1 [0, T ](16.7)

subject to: κθ ≥ 0, νθ ≥ 0(16.8)

p (t)− wθ = κθ (t)− νθ (t) for a.e. t.(16.9)

The standard dual’s inclusive form, introduced in (14.13)—(14.14), has also the dependent
decision variable

(16.10) rθ =

Z T

0

κθ (t) dt
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which is the thermal plant’s unit rental value. The standard dual solution, unique if
kθ > 0, is

(16.11) κ̂θ = (p− w)+ and ν̂θ = (p− w)−

and hence, again,

r̂θ =

Z T

0

κ̂θ (t) dt =

Z T

0

(p (t)− w)+ dt.

Comments (comparison of standard and intrinsic duals of the thermal plant operation
programme):
(1) The standard perturbation of the primal LP (16.1)—(16.3), which produces the

dual LP (16.6)—(16.9), consists in adding cyclically varying increments (∆kθ (t),
∆nθ (t)) to the constants (kθ, 0) ∈ R × R in (16.3). The resource increments,
(∆kθ,−∆nθ) ∈ L∞×L∞, are paired with Lagrange multipliers (κθ, νθ) ∈ L1×L1.

(2) By giving the unit rent’s distribution over time, κθ–rather than only its total for
the cycle, rθ–the standard dual LP is the “fine” form of the valuation problem
(in the sense of the first Comment in Section 14, with the integral κ 7→

R
κ (t) dt

as the adjoint operation σ 7→ BTσ). The “coarse” form of valuation is a case of
the intrinsic dual (5.13)—(5.14), which can be reformulated by substituting the
input requirement functions (15.2) and (15.3) for ǩ and v̌, and L∞+ for Y0, in
either (24.12)—(24.15) or (28.6)—(28.9). The latter programme is then an LP for
the single variable rθ.

(3) In terms of our general duality scheme (Sections 5 and 14), rθ is the intrinsic dual
variable. Correspondence of notation between that scheme and its applications
to the ESI is spelt out in Table 3.

For a pumped-storage plant with capacities (kSt, kCo), the operation LP is:

Given (p; kSt, kCo) ∈ L1 [0, T ]×R+ ×R+(16.12)

maximize
Z T

0

p (t) y (t) dt over y ∈ L∞ [0, T ] and s0 ∈ R(16.13)

subject to: − kCo ≤ y (t) ≤ kCo for a.e. t(16.14) Z T

0

y (t) dt = 0(16.15)

0 ≤ s0 −
Z t

0

y (τ) dτ ≤ kSt for every t.(16.16)

Unlike the case of Πθ
SR, there is no explicit formula for Π

PS
SR (p, kSt, kCo), the operating

profit of a pumped-storage plant; and both operation and rental valuation of a storage
plant are best approached through the dual problem of capacity valuation. The standard
dual of the operation LP is the following programme for: (i) the flow of reservoir’s rent
κSt, and (ii) the flow of converter’s rents κCo = κPu+κTu, which it earns in its two modes
of work, viz., charging the reservoir as a “pump” and discharging it as a “turbine”. Their
totals for the cycle are the unit rental values: (i) of the reservoir rSt (in $/kWh), and
(ii) of the converter rCo (in $/kW). The dual variables κPu and κTu range over L1 [0, T ],
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intrinsic
primal
param.

intrinsic
dual
vbles

std
primal
param.

std
dual
vbles

relationship
between
intrinsic
and standard
dual vbles

GS k [vect] r [vect] s [vect] σ [vect] r = BTσ

Th kθ [scal] rθ [scal]
kθ (·)
nθ (·)

κθ (·)
νθ (·)

rθ =
R
κθ dt

PS
kSt [scal]

kCo [scal]

rSt [scal]

rCo [scal]

kSt (·)
nSt (·)
kTu (·)
kPu (·)

ζ

κSt (d·)
νSt (d·)
κTu (·)
κPu (·)

λ

rSt =
R
κSt (dt)

rCo =
R
(κTu + κPu) dt

Hy

kSt [scal]

kTu [scal]

e (·)

rSt [scal]

rTu [scal]

ψ (·)

kSt (·)
nSt (·)
kTu (·)
nTu (·)

ζ

κSt (d·)
νSt (d·)
κTu (·)
νTu (·)

λ

rSt =
R
κSt (dt)

rTu =
R
κTu dt

ψ (t) = λ+ (κSt − νSt) [0, t]

Table 3. Correspondence of notation between the general duality scheme
(Sections 5 and 15) and its applications to the ESI (Section 17). The ab-
breviations read: (i) in the leftmost column: GS = general scheme, Th =
thermal generation, PS = pumped storage, Hy = hydro generation; (ii) else-
where: St = storage reservoir, Co = converter, Pu/Tu = pump/turbine
(two working modes of a reversible PS converter), Tu = hydro turbine.
Functions of time are marked with a (·), and measures on the time interval
are marked with a (d·). In the general scheme, s and σ mean the standard
parameters and Lagrange multipliers. But in the context of storage (both
PS and Hy), s means the energy stock (and σ means spillage in Hy). Also,
the intrinsic parameters and dual variables of the general scheme, r and k,
correspond to (r,ψ) and (k, e) in the hydro problem.

like the κθ in (16.7). The space for κSt isM [0, T ], the space of Borel measures on [0, T ],
which is the norm-dual of the space of continuous functions C [0, T ]. This is also the
space for the multiplier νSt for the nonnegativity constraint in (16.16). The multiplier
for the balance constraint (16.15) is a scalar λ. So the LP of capacity valuation is:

Given (p; kSt, kCo) as in (16.12)(16.17)

minimize kSt

Z
[0,T ]

κSt (dt) + kCo

Z T

0

(κTu + κPu) (t) dt(16.18)

over λ ∈ R and (κSt, νSt,κPu,κTu) ∈M×M× L1 × L1(16.19)

subject to: (κSt, νSt,κPu,κTu) ≥ 0(16.20)

κSt [0, T ] = νSt [0, T ](16.21)
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p (t) = λ+ (κSt − νSt) [0, t] + κTu (t)− κPu (t) for a.e. t.(16.22)

The standard dual’s inclusive form has also the dependent decision variables

rSt =

Z T

0

κSt (dt) = κSt [0, T ](16.23)

rCo =

Z T

0

(κPu (t) + κTu (t)) dt(16.24)

as per the last constraint of (14.14).

Comments (comparison of standard and intrinsic duals of the pumped-storage plant
operation programme):

(1) The standard perturbation of the primal LP (16.12)—(16.16), which produces the
dual LP (16.17)—(16.22), uses cyclically varying increments (∆kSt (t), ∆nSt (t)) to
the constants (kSt, 0) in (16.16). It also uses two separate increments (∆kPu (t),
∆kTu (t)) to the two occurrences of kCo in (16.14)–i.e., (16.14) is perturbed to:

−kCo −∆kPu (t) ≤ y ≤ kCo +∆kTu (t) .

Additionally, a scalar ∆ζ is used as an increment to the 0 on the r.h.s. of (16.15).
The resource increments ∆kSt ∈ C, −∆nSt ∈ C, ∆kTu ∈ L∞, ∆kPu ∈ L∞ and
∆ζ ∈ R are paired with the Lagrange multipliers κSt ∈M, νSt ∈M, κTu ∈ L1,
κPu ∈ L1 and λ ∈ R. This perturbation scheme is described in detail in [21] and
[27, Section 5].

(2) By giving the unit rents’ distributions over time (and over the two conversion
modes), κSt and κPu + κTu–rather than only their totals for the cycle, rSt and
rCo–the standard dual LP is the “fine” form of the valuation problem (in the
sense of the first Comment in Section 14). The “coarse” form of valuation is a
case of the intrinsic dual (5.13)—(5.14) which can be reformulated by substituting
the input requirement functions (15.6)—(15.7) for ǩ, and (15.5) for Y0, in either
(24.12)—(24.15) or (28.6)—(28.9) with no v̌. The latter programme is then a semi-
infinite LP for the variables rSt and rCo (with an infinity of constraints).

The storage-plant valuation LP (16.17)—(16.22) can be transformed into an uncon-
strained convex programme by changing the variables from λ, κSt (dt) and νSt (dt) to

(16.25) ψ (t) = λ+ (κSt − νSt) [0, t] for t ∈ (0, T )

and by substituting (p− ψ)+ and (p− ψ)− for κTu and κPu to eliminate these variables:
see [21] or [27, Section 7] for details.78 The new continuum of variables, ψ, is a function
of bounded variation that can be interpreted as the TOU marginal value of the energy
stock, i.e., its shadow price.

78This is done by using the constraints (16.21)—(16.22) and the disjointness conditions κTu ∧ κPu = 0
and κSt ∧ νSt = 0, which are met by any solution to (16.17)—(16.22) if kSt > 0 and kCo > 0; i.e., it is not
optimal for the dual variables to overlap and partly cancel each other out in (16.22). Note that κSt and
νSt are disjoint as measures on the circle, i.e., min {κSt {0, T} , νSt {0, T}} = 0 in addition to κSt ∧ νSt
= 0 in the latticeM [0, T ].
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Notation: The space BV (0, T ) consists of all functions ψ of bounded variation on
(0, T ) with ψ (t) lying between the left and right limits, ψ (t−) = limτ%t ψ (τ) and
ψ (t+) = limτ&t ψ (τ).79 A ψ ∈ BV (0, T ) is extended by continuity to [0, T ]; i.e.,
ψ (0) := ψ (0+) and ψ (T ) := ψ (T−). The cyclic positive variation of ψ is

(16.26) Var+c (ψ) := Var
+ (ψ) + (ψ (0)− ψ (T ))+

where Var+ (ψ) is the total positive variation (a.k.a. upper variation) of ψ, i.e.,
the supremum of

P
m (ψ (τm)− ψ (τm))

+ over all finite sets of pairwise disjoint
subintervals (τm, τm) of (0, T ): see, e.g., [16, Section 8.1] for details.

80

In these terms, the capacity valuation problem (for a pumped-storage plant) becomes
the following programme for shadow-pricing the energy stock:

Given (p; kSt, kCo) ∈ L1 [0, T ]×R+ ×R+(16.27)

minimize kStVar+c (ψ) + kCo

Z T

0

|p (t)− ψ (t)| dt over ψ ∈ BV (0, T ) .(16.28)

Its main feature is the trade-off between minimizing the variation (which on its own
would require setting ψ at a constant value) and minimizing the integral (which on its
own would require setting ψ equal to p). This trade-off is what determines the extent to
which local peaks of p should be “shaved off” and the troughs “filled in” to obtain the
optimum shadow price ψ̂PS, at least in the case of a piecewise strictly monotone p. The
solution, shown in Figure 4a, is determined by constancy intervals of ψ̂PS around a local
peak or trough of p. Unless kSt/kCo is relatively long, these intervals do not abut, and
must all be of that length.81 The optimal output has the “bang-coast-bang” form

(16.29) ŷPS (t) = kCo sgn
³
p (t)− ψ̂PS (t)

´
i.e., ŷPS (t) equals kCo, 0 or −kCo if, respectively, p (t) > ψ̂PS (t), p (t) = ψ̂PS (t) or
p (t) < ψ̂PS (t): see Figure 4b. The lowercase notation, ŷ or ψ̂, is used only when the
solution is unique. In general, the solution sets for (16.12)—(16.16) and (16.27)—(16.28)
are denoted by ŶPS (p; kSt, kCo) and Ψ̂PS (p; kSt, kCo). More precisely, y ∈ ŶPS means that
y together with s0 = maxt

R t
0
y (τ) dτ (which the lowest initial stock needed for the stock

s0 −
R t
0
y (τ) dτ never to fall below 0) solves (16.12)—(16.16).

The stock-pricing programme (16.27)—(16.28) has a solution for every kSt > 0 and
kCo > 0 (by Lemma 23.1 or Part 2 of Proposition 27.2).82 If p is continuous, i.e.,
p ∈ C [0, T ], then there is a unique solution ψ̂PS (p; kSt, kCo). It follows that the plant’s
operating profit ΠPSSR is differentiable in (kSt, kCo); equivalently, with this technology the
79The one-sided limits exist at every t and are equal nearly everywhere (n.e.), i.e., everywhere except

for a countable set. Specification of ψ (t) between ψ (t−) and ψ (t+) is unnecessary.
80The other term, (ψ (0)− ψ (T ))+, represents a possible jump of ψ at the instant separating two

consecutive cycles.
81Matters complicate when the ratio kSt/kCo is comparable to the durations between the successive

local peaks and troughs of p, so that the neighbouring constancy intervals of ψ̂ start to abut; but a
similar optimality rule applies to such clusters: see [21].
82When kSt > 0 but kCo = 0, any constant ψ is a solution. When kCo > 0 but kSt = 0, a solution

exists if and only if p ∈ BV, in which case it is unique, viz., ψ̂PS = p.
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programme (5.13)—(5.14) or (24.12)—(24.15) has a unique solution r̂. In terms of ψ̂PS, the
unit rental values of the reservoir and the converter (in $/kWh and $/kW, respectively)
are:

∂ΠPSSR
∂kSt

= r̂St (p, kSt, kCo) =

Z T

0

κ̂St (dt) = Var
+
c

³
ψ̂PS

´
(16.30)

∂ΠPSSR
∂kCo

= r̂Co (p, kSt, kCo) =

Z T

0

(κ̂Pu + κ̂Tu) (t) dt =

Z T

0

¯̄̄
p (t)− ψ̂PS (t)

¯̄̄
dt.(16.31)

For proofs, see [21] or [27, Sections 6 and 9].
As for the operation problem (16.12)—(16.16), it has a solution for any p ∈ L1 [0, T ]

and every (kSt, kCo) ≥ 0, by Proposition 22.1 or 27.1 (Part 2). If p has no plateau (i.e.,
meas {t : p (t) = p} = 0 for every p ∈ R), then there is a unique solution ŷPS (p; kSt, kCo).
It is given either by (16.29) itself (if (kSt, kCo) À 0 and p ∈ C), or by (16.29) with any
ψ ∈ Ψ̂PS instead of ψ̂PS (if (kSt, kCo)À 0 but p /∈ C). For proofs, see [21] or [27, Section
8].

Comments (interpretation of ψ, and assumptions on p in the pumped-storage problem):

(1) ψ (t) has the interpretation of the shadow price of energy stock at time t. Heuris-
tically, this follows from (16.25) and the marginal interpretations of κ, ν and
λ, which are that: (i) κSt, as the multiplier for the upper reservoir constraint,
represents the reservoir capacity value, (ii) the multiplier νSt has a similar inter-
pretation for the lower reservoir constraint, and (iii) λ is the stock value at the
beginning of cycle.

(2) This interpretation of ψ can be formalized as a rigorous marginal-value result by
introducing a hypothetical inflow to the reservoir, e ∈ L∞, as a primal parameter
with its own dual variable ψ. This means that (16.15) and (16.16) are perturbed
by replacing y with y − ∆e. Then (16.25) becomes a constraint of the dual
problem, whose solution ψ̂ equals ∇eΠPSSR at e = 0. (This is formally similar to
the hydro case (16.51), in which e is the river flow, and ψ̂ equals ∇eΠHSR at the
given, positive e.)

(3) Time-continuity of the electricity tariff p, which guarantees uniqueness (and time-
continuity) of the optimal price for energy stock ψ, is acceptable as an assumption
for operation and valuation of storage plants because it can be verified for the
general competitive equilibrium: see [28].

(4) Unlike price continuity, the no-plateau condition on the tariff p is rather ques-
tionable: it cannot hold in an equilibrium with continuous quantity trajectories
(since it leads to the unique optimum ŷPS, which is discontinuous because it takes
only the three values ±kCo and 0, as per (16.29)).83 Such an equilibrium is made

83Furthermore, a time-continuous optimal output from storage cannot be unique (unless kSt = 0 or
kCo = 0). To see this in detail, take any y ∈ C [0, T ] ∩ ŶPS (p; kSt, kCo). With (kSt, kCo) À 0, if p is
nonconstant on [0, T ] then 0 /∈ ŶPS: see [21]. And if p is a constant then y can be chosen to be nonzero
(since every feasible y is then optimal). So the open set {t : 0 < y (t) < kCo} is nonempty; let A be one
of its component intervals. Then p = ψ = const. on A for each ψ ∈ Ψ̂PS because: (i) y (t) = ±kCo
whenever p (t) 6= ψ (t), and (ii) 0 < s < kSt on A, which implies that ψ = const. on A. (Both (i) and
the implication in (ii) are Complementary Slackness Conditions: see [21] or [27, Section 6].) Since p|A
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possible only by the presence of intervals on which an optimal y can gradually
change from 0 to ±kCo because p = ψ = const. But all this means is that, at a
price system consistent with output continuity, the storage operation problem is
not fully solved by stock pricing alone.

For a hydro plant with capacities (kSt, kTu) and an inflow e (t) ≤ kTu (for a.e. t), the
operation LP is:

Given (p; kSt, kTu; e) ∈ L1+ [0, T ]× R+ ×R+ × L∞+ [0, T ] with kTu ≥ e(16.32)

maximize
Z T

0

p (t) y (t) dt over y ∈ L∞ [0, T ] and s0 ∈ R(16.33)

subject to: 0 ≤ y (t) ≤ kTu for a.e. t(16.34) Z T

0

(y (t)− e (t)) dt = 0(16.35)

0 ≤ s0 −
Z t

0

(y (τ)− e (τ)) dτ ≤ kSt for every t.(16.36)

As with pumped storage, there is no explicit formula for the hydro plant’s operating
profit ΠHSR (p; kSt, kTu; e), and both operation and rental valuation of a hydro plant are
best approached through the dual problem of fixed-input valuation, which is an LP for:
(i) the flow of reservoir’s unit rent κSt, (ii) the flow of turbine’s unit rent κTu, and (iii) the
river’s unit rent, i.e., the shadow price of water ψ. By including ψ but not r among the
dual variables, this is a partly inclusive form of the standard dual LP. The fully inclusive
form has also rSt and rTu, the rental values of the reservoir (in $/kWh) and of the turbine
(in $/kW), but these are simply the totals of κSt and κTu for the cycle. The dual variable
κTu ranges over L1 [0, T ], and the space for κSt is the space of measuresM [0, T ], as in
pumped storage. The space for ψ can be L1 [0, T ] formally, but actually ψ is constrained
to BV (0, T ) by (16.43). The multipliers for the nonnegativity constraints in (16.34) and
(16.36) are νTu ∈ L1 [0, T ] and νSt ∈M [0, T ]. The multiplier for the balance constraint
(16.35) is a scalar λ. So the LP of fixed-input valuation is:

Given (p; kSt, kTu; e) as in (16.32)(16.37)

minimize kSt

Z
[0,T ]

κSt (dt) + kTu

Z T

0

κTu (t) dt+

Z T

0

ψ (t) e (t) dt(16.38)

over λ ∈ R, ψ ∈ L1 [0, T ] and (κSt, νSt;κTu, νTu) ∈M×M× L1 × L1(16.39)

subject to: (κSt, νSt;κTu, νTu) ≥ 0(16.40)

κSt [0, T ] = νSt [0, T ](16.41)

p (t) = ψ (t) + κTu (t)− νTu (t) for a.e. t(16.42)

ψ (t) = λ+ (κSt − νSt) [0, t] for a.e. t.(16.43)

= const., y can be modified on A, without loss of optimality, to any y0 such that
R
A
y0 dt =

R
A
y dt and 0

≤ y0 ≤ kCo on A (with y0 = y outside of A). A similar argument applies to the set {t : −kCo < y (t) < 0}.
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The dual’s fully inclusive form has also the remaining dependent decision variables

rSt =

Z T

0

κSt (dt)(16.44)

rTu =

Z T

0

κTu (t) dt.(16.45)

Comments (comparison of the partly inclusive standard, standard, and intrinsic duals
of the hydro plant operation programme):

(1) The perturbation that produces (16.37)—(16.43) as the dual of (16.32)—(16.36)
includes an increment ∆e (t) in addition to the standard perturbation (which
uses cyclically varying increments (∆kSt (t), ∆nSt (t); ∆kTu (t), ∆nTu (t)) to the
constants (kSt, 0; kTu, 0) in (16.36) and (16.34), as well as a scalar ∆ζ as an
increment to the 0 on the r.h.s. of (16.35)). The resource increments ∆e ∈ L∞,
∆kSt ∈ C, −∆nSt ∈ C, ∆kTu ∈ L∞, −∆nTu ∈ L∞ and ∆ζ ∈ R are paired with
the dual variables ψ ∈ L1, κSt ∈M, νSt ∈M, κTu ∈ L1, νTu ∈ L1 and λ ∈ R.
This perturbation scheme is described in detail in [24].

(2) Though it is more transparent to have an explicit dual variable for each parameter,
the nonstandard dual variable ψ (paired with e) can be eliminated by replacing it
in (16.38) and (16.42) with its equivalent in terms of the standard dual variables
(16.43). This reduces the valuation LP (16.37)—(16.43) to the standard dual of
the hydro operation LP (16.32)—(16.36), i.e., to the dual arising from the same
perturbation as above but without ∆e.

(3) By giving the unit rents’ distributions over time, κSt and κTu–rather than only
their totals for the cycle, rSt and rTu–the above dual LP is the “fine” form of the
valuation problem. The “coarse” form of valuation is a case of the intrinsic dual
(5.13)—(5.14); it is a programme for rSt, rTu and ψ.

The hydro-plant valuation LP (16.37)—(16.43) can be transformed into an uncon-
strained convex programme for the water price ψ by using the constraints (16.42) and
(16.43) to substitute: (p− ψ)+ and (p− ψ)− for κTu and νTu, (dψ)

+ and (dψ)− for κSt
and νSt, and any number between ψ (0+) and ψ (T−) for λ: see [24] for details. In these
terms, the fixed-input valuation problem (for a hydro plant) becomes:

Given (p; kSt, kTu; e) ∈ L1+ [0, T ]× R+ ×R+ × L∞+ [0, T ] with kTu ≥ e(16.46)

minimize kStVar+c (ψ) + kTu

Z T

0

(p (t)− ψ (t))+ dt+

Z T

0

ψ (t) e (t) dt(16.47)

over ψ ∈ BV (0, T ) .(16.48)

Recall that Var+c (ψ), defined by (16.26), is the total of all rises of ψ over the cycle.
If kTu > e (t) > 0 for every t, then the sum of the two integrals in (16.47) has a

minimum at (and only at) ψ = p. Therefore, the programme’s main feature is the
trade-off between minimizing the variation (which on its own would require setting ψ at
a constant value) and minimizing the sum of integrals (which on its own would require
setting ψ equal to p). This trade-off is what determines the extent to which the local peaks
of p should be “shaved off” and the troughs “filled in” to obtain the optimum shadow
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price ψ̂H, at least in the case that p is piecewise strictly monotone and kTu > e > 0 at
all times. The solution is determined by constancy intervals of ψ̂H. If kSt/Sup (e) and
kSt/ (kTu − Inf (e)), which are upper bounds on the times needed to fill up and to empty
the reservoir, are sufficiently short, then the constancy intervals do not abut. Around
a trough of p there is an interval

¡
t, t
¢
characterized by

R t
t
e (t) dt = kSt, on which p (t)

< ψ̂H throughout. Around a local peak of p there is an interval
¡
t, t
¢
characterized byR t

t
(kTu − e (t)) dt = kSt on which p (t) > ψ̂H throughout. The optimal output has the

“bang-coast-bang” form

(16.49) ŷH (t) =

⎧⎪⎪⎨⎪⎪⎩
kTu if p (t) > ψ̂H (t)

e (t) if p (t) = ψ̂H (t)

0 if p (t) < ψ̂H (t)

.

The lowercase notation, ŷ or ψ̂, is used only when the solution is unique. In general, the
solution sets for (16.32)—(16.36) and (16.46)—(16.48) are denoted by ŶH (p; kSt, kTu; e) and
Ψ̂H (p; kSt, kTu; e).
The shadow-pricing programme (16.46)—(16.48) has a solution by Lemma 23.1, if

(16.50) kSt > 0 and kTu > EssSup (e) ≥ EssInf (e) > 0.
If additionally p is continuous, i.e., p ∈ C+ [0, T ], then there is a unique solution

(16.51) ψ̂H (p; kSt, kTu; e) = ∇eΠHSR (p; kSt, kTu; e) .
This is the TOU price of water (unit value of the river flow). It follows that the plant’s
operating profit ΠHSR is also differentiable in (kSt, kTu). In terms of ψ̂H, the unit rental
values of the reservoir and the turbine (in $/kWh and $/kW, respectively) are:

r̂St (p; kSt, kTu; e) =
∂ΠHSR
∂kSt

= Var+c

³
ψ̂H

´
(16.52)

r̂Tu (p; kSt, kTu; e) =
∂ΠHSR
∂kTu

=

Z T

0

³
p (t)− ψ̂H (t)

´+
dt.(16.53)

For proofs, see [24].
As for the operation problem (16.32)—(16.36), it has a solution for any p ∈ L1+ [0, T ]

and every (kSt, kTu) ≥ 0 and e ≤ kTu, by Proposition 22.1. If p has no plateau (i.e.,
meas {t : p (t) = p} = 0 for every p ∈ R), then there is a unique solution ŷH (p; kSt, kTu; e).
It is given either by (16.49) itself (if (16.50) holds and p ∈ C), or by (16.29) with any
ψ ∈ Ψ̂H instead of ψ̂H (if (16.50) holds but p /∈ C). For proofs, see [24].
Comments (on assumptions on p and properties of water value ψ in the hydro problem):

(1) As in the case of thermal generation with pumped storage, time-continuity of
the electricity tariff p, which guarantees uniqueness and continuity of the optimal
water price ψ, can be verified for the general competitive equilibrium with hydro-
thermal generation. The much less important condition that p have no plateau
is, again, questionable: it cannot hold in an equilibrium with continuous quantity
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trajectories (since it leads to the unique optimum ŷH, which is discontinuous under
(16.50) because it takes only the values kTu, e (t), and 0, as per (16.49)).

(2) When e £ kTu (i.e., when the policy of pure “coasting”, y = e with no spillage, is
infeasible), the hydro operation and valuation LPs must be modified in the way
indicated in [24]. This complicates the solution, and an optimal water price ψ
need not then be unique or continuous over time (despite the continuity of the
electricity price p).

Comments (on choice of space for dual variables):

(1) For “automatic” proofs of the dual LPs’ solubility, which are based on Slater’s
Condition, the dual-variable spaces must be the norm-duals of the corresponding
primal perturbation spaces (L∞ and C). This means using L∞∗, instead of L1,
as the space for each of the dual variables paired to those primal perturbations
that range over L∞ (viz., for κθ and νθ in (16.6)—(16.9), for κTu and κPu in
(16.17)—(16.22), and for ψ, κTu and νTu in (16.37)—(16.43))–just as M = C∗
serves as the space for the dual variables paired to perturbations that range over
C (viz., for κSt and νSt). This is because, like C+, the nonnegative cone L∞+
has a nonempty norm-interior, and so positivity of the capacities kθ, (kSt, kCo) or
(kSt, kTu), together with (16.50) for the hydro plant, imply that Slater’s Condition,
as generalized in [44, (8.12)] to infinite-dimensional inequality constraints, holds
with the supremum norm topology on the primal parameter spaces L∞ and C.
This ensures the existence of a dual optimum in the norm-dual spaces (i.e., κθ
and νθ in L∞∗, κTu and κPu in L∞∗, κSt and νSt in M, and ψ, κTu and νTu in
L∞∗). Density representation of the dual variables other than κSt and νSt comes
only from the problems’ structures and the assumption that p is a density: since
p ∈ L1, every optimal κθ and νθ (for a thermal plant) is actually in L1 by (16.11),
as is every optimal κTu and κPu (for a storage plant), and every optimal κTu and
νTu (for a hydro plant). And every feasible ψ is in BV ⊂ L1 by (16.43). This is
what justifies the use of L1 (rather than L∞∗) in the above formulations of the
dual LPs (when p ∈ L1).

(2) In the more general case of a p ∈ L∞∗, the generating capacity’s optimal rent
flow, κθ or κTu, are in L∞∗ (although the corresponding νθ and κPu or νTu are
in L1 because p ≥ 0). Also, when p ∈ L∞∗, the degenerate case of zero storage
capacity (with a positive conversion capacity) provides an example of a duality
gap (Appendix A).

17. Peak-load pricing of electricity with pumped storage or hydro
generation

Our introductory application of the short-run approach to electricity pricing, in Sec-
tion 2, is made simple by cross-price independence of short-run supply and the assumed
cross-price independence of demand. In such a case, the short-run general equilibrium
(SRGE) can be found separately for each time instant (by intersecting the demand and
supply curves). It is equally simple to calculate the unit operating profit, and use it as
an imputed capacity value to work out the long-run general equilibrium (LRGE).
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Figure 4. Trajectories of: (a) shadow price of stock ψ̂, and (b) out-
put of pumped-storage plant (optimum storage policy) ŷPS in Section 16,

and in Theorem 17.1. Unit rent for storage capacity is Var+c
³
ψ̂
´
=³

dψ̂
´0
+
³
dψ̂
´00
, the sum of rises of ψ̂. Unit rent for conversion capac-

ity is
R T
0

¯̄̄
p (t)− ψ̂ (t)

¯̄̄
dt, the sum of grey areas. By definition, τ̂PS =

kSt/kCo.

That analysis is now extended to apply to cross-price dependent demand and to include
storage or hydro plants, whose profit-maximizing output is also cross-price dependent.
Though the resulting general equilibrium problem cannot be solved by explicit formulae,
the short-run approach does make it tractable: first, short-run supply can be determined
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by solving the plant operation LPs; then an iterative procedure (such as Walrasian taton-
nement) can be used to find the short-run equilibrium; and finally plant valuations, ob-
tained from dual LP solutions, can be used to find the long-run equilibrium by another
iteration (as is indicated in Figure 3). A system of equilibrium conditions required for this
approach is obtained by placing the operation and valuation results for the ESI’s plants
into the SRP programme-based LRGE system, (13.11)—(13.15) with (13.18)—(13.19). We
do this first for an electricity supply technology that combines thermal generation with
pumped storage.
Except for the storage capacity, all the ESI’s inputs are taken to have fixed prices:

rFTh =
¡
rF1 , . . . , r

F
Θ

¢
for the thermal generating capacities, w = (w1, . . . , wΘ) for the cor-

responding fuels, and rFCo for the storage plant’s converter. There is a location where
an energy reservoir of capacity kSt can be constructed at a cost G (kSt). Usually, the
marginal cost is increasing, i.e., the construction cost is a strictly convex and increasing
function, G:

£
0, kSt

¤
→ R+ with G (0) = 0.84 (This is especially so with the PWES

and CAES techniques, which utilize special geological features.) In the terminology of
Section 13, the reservoir is the single equilibrium-priced capital input; all the others have
fixed prices. Formally, ΦEPS = {St}, ΦFPS = {Co}, and ΦFθ = Φθ = {θ} for each θ ∈ Θ (the
set of thermal plant types).
All input demand for electricity is taken to come from a single Industrial User, who

produces a final good from inputs of electricity and the numeraire, z and n. His pro-
duction function, (z, n) 7→ F (z, n), is assumed to be strictly concave and increasing,
and Mackey continuous, i.e., m(L∞ ×R, L1 × R)-continuous on L∞+ [0, T ] × R+. One
example is the additively separable form for F (·, n), i.e., the integral functional F (z, n)
=
R T
0
f (t, z (t) , n) dt, where f meets the conditions of [7, p. 535].85

A complete commodity bundle consists, then, of electricity (differentiated over time),
the ESI’s inputs (viz., the thermal capacities, the fuels, and the storage and conversion
capacities), the produced final good and the numeraire. These quantities and their prices
are always listed in this order, but those which are irrelevant in a particular context
are omitted (as in Section 13). So a complete price system is (p; rTh;w; rPS; %, 1) with
rPS = (rSt, rCo), but a consumer price system is just (p; %, 1) ∈ L1 [0, T ] × R2–since a
consumption bundle consists of electricity, the produced final good and the numeraire,
denoted by (x;ϕ,m) ∈ L∞ [0, T ] × R2. The utility function, Uh for household h, is
also assumed to be Mackey continuous, i.e., m(L∞ ×R2, L1 ×R2)-continuous on the
consumption set L∞+ [0, T ]×R2+. Each household’s initial endowment is a quantity of the

84A typical non-convex G is one that is concave on an “initial” interval
h
0,eki, and convex on ³ek, ki.

A limiting case of this arises from a nonzero setup cost G (0+) > 0, with G convex on
¡
0, k
¤
. Supply (of

storage capacity) is then discontinuous at the price equal to the minimum average cost, which is attained
at some k greater than the point of inflection ek, i.e., at the price r := mink (G (k) /k) =: G (k) /k. The
profit-maximizing supply is 0 at r < r, but it exceeds k at r > r. At r = r, it takes the two values {0, k},
but none of the intermediate values. The total supply curve for this form of marginal and average costs
is discussed in, e.g., [17, 4-4: Figure 4-5].
85That is, the function t 7→ f (t, z, n) is integrable on [0, T ] for each (z, n) ∈ R2+, and the function

(z, n) 7→ f (t, z, n) is concave, increasing and continuous on R2+, with f (t, 0, 0) = 0 for every t ∈ [0, T ].
For a short proof of the Mackey continuity of F , see [25].
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numeraire mEn
h > 0. The household’s share in the User Industry’s profit is ςh IU, and its

share of profit from supplying the storage capacity is ςhSt.
By feeding the programming results summarized in Section 16 into the framework of

Section 13, we next characterize long-run equilibrium by optimality of the ESI’s invest-
ments in addition to the SRGE system, which is either (17.4)—(17.9) for pumped storage
or (17.14)—(17.19) for hydro-thermal generation. For simplicity, we assume that all the
equilibrium capacities are positive, i.e., that each type of plant is built (in general, some
plant types might not be built because of their costs).

Theorem 17.1 (Characterization of long-run equilibrium with pumped storage). As-
sume that the ESI’s technology consists of thermal generation techniques (Θ) and a
pumped storage technique. Then a price system made up of:

• a time-continuous electricity tariff p? ∈ C [0, T ]
• a rental price for storage capacity r?St
• a price %? > 0 for the produced final good
• the given prices for fuel and the generating capacities (viz., rFθ for thermal capacity
of type θ and wθ for its fuel, and rCo for the converter capacity)

and an allocation made up of:

• an output y?θ ∈ L∞+ [0, T ] from the thermal plant of type θ with
— a capacity k?θ > 0
— a fuel input v?θ (for each θ)

• an output y?PS ∈ L∞ [0, T ] from a pumped-storage plant with
— a storage capacity k?St > 0
— a conversion capacity k?Co > 0

• a consumption bundle (x?h,ϕ?h,m?
h) ∈ L∞+ [0, T ]×R+ ×R+ for each household h

• an input-output bundle of the User Industry (−z?, F (z?, n?) ,−n?) ∈ L∞− [0, T ]×
R+ × R−

form a long-run competitive equilibrium if and only if:

(1) (a) (Equality of ESI’s capital-input prices to profit-imputed marginal values) For
each θ = 1, . . ., Θ

rFθ =

Z T

0

(p? (t)− wθ)
+ dt(17.1)

r?St = Var
+
c (ψ

?)(17.2)

rCo =

Z T

0

|p? (t)− ψ? (t)|dt(17.3)

where ψ? := ψ̂PS (p
?, k?St, k

?
Co) is the optimal price of energy stock, i.e., the

unique solution to the programme (16.27)—(16.28) with (p?; k?St, k
?
Co) as data.

86

86Since p? ∈ C [0, T ], the optimal ψ is indeed unique [27, Lemma 8].
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(b) (Operating profit maximization by ESI) For each θ

y?θ (t) ∈ S (p? (t) , k?θ , wθ) :=

⎧⎪⎪⎨⎪⎪⎩
{0} if p? (t) < wθ

[0, k?θ ] if p
? (t) = wθ

{k?θ} if p? (t) > wθ

for a.e. t(17.4)

v?θ =

Z T

0

y?θ (t) dt.(17.5)

And, with (p?; k?St, k
?
Co) as the data,

(17.6) y?PS solves the linear programme (16.12) to (16.16)

(which implies that y?PS (t) = kCo when p? (t) > ψ? (t) and y?PS (t) = −kCo
when p? (t) < ψ? (t)).

(2) (Profit maximization by User Industry)87

(17.7) (p?, 1) ∈ %?b∂F (z?, n?) .
(3) (Consumer utility maximization) For each h, (x?h,ϕ

?
h,m

?
h) maximizes Uh on the

budget set½
(x,ϕ,m) ≥ 0 :

Z T

0

p? (t)x (t) dt+ %?ϕ+m ≤ M̂h (p
?, r?St, %

?)

¾
where

(17.8) M̂h (p, rSt, %) = m
En
h + ςhSt sup

kSt

(rStkSt −G (kSt))

+ ςh IU sup
z,n

µ
%F (z, n)−

Z T

0

p (t) z (t) dt− n
¶
.

(4) (Market clearance)

(17.9) y?PS +
X
θ

y?θ = z
? +

X
h

x?h and F (z?, n?) =
X
h

ϕ?h.

(5) (MC pricing of storage capacity)

(17.10) r?St ∈ ∂G (k?St) .

Proof. Given the results of Section 16, this is a formality–except for verifying the ab-
sence of a duality gap. Note first that Conditions 2 to 5 of the theorem are simply
specializations, to the ESI case, of the corresponding parts of the definition of a long-run
equilibrium (Section 13). What has to be shown is the equivalence of the theorem’s
Condition 1 (optimal operation and valuation of the ESI’s plants) to the definition’s
Condition 1 (LRP maximization). As a general principle, this has been established in
87Since F is taken to be −∞ outside of L∞+ ×R+, b∂F contains a term arising from this nonnegativity

constraint. To spell this out, assume that F , as a function on its effective domain L∞+ × R+, has a
Mackey continuous, concave and Gateaux differentiable extension FEx defined on all of L∞ × R. Then
(17.7) means that (z?, n?) ≥ 0 and (1/%?) p? = ∇zFEx (z?, n?) + µ and 1/%? =

¡
∂FEx/∂n

¢
(z?, n?) + ν

for some µ ∈ L1+ vanishing a.e. on the set {t : z? (t) > 0}, with ν = 0 if n? > 0. (If p? were in L∞∗ but
not in L1 then µ would be an element of L∞∗+ concentrated on {t : z? (t) ≤ ²} for each ² > 0.)
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Section 4 and restated in Section 6 (by taking account of Section 5). Its substance is
that, in the long run, competitive profit maximization is equivalent–as a system of con-
ditions on both quantities and prices–to the conjunction of: (i) maximization of the
operating profit (short-run profit), which includes minimization of the operating cost,
(ii) minimization of the fixed-input value by shadow pricing (which is identified as the
dual programme), and (iii) equality of the maximum SRP to the minimum FIV (absence
of a duality gap). For each of the ESI’s plants, the SRP and FIV programmes are spelt
out in Section 16, and it remains only to show that their values are equal. (In formal
terms, (13.4)—(13.5) is (3.5) at equilibrium prices, which, as is noted before the Comment
in Section 6, is equivalent to the conjunction of (4.2)—(4.3), (6.2) and (6.3). And, for the
ESI’s technology, (4.2)—(4.3) and (6.2) can be put as (17.4)—(17.6) and (17.1)—(17.3). It
remains only to prove (6.3) for each of the ESI’s plants.)
To this end, note first that the thermal operation LP (16.1)—(16.3) and its dual (16.6)—

(16.9) always have the same value: it is kθ
R T
0
(p (t)− wθ)

+ dt for each (p, kθ, wθ), by
(16.4) and by (16.5) or (16.10). For pumped storage, however, the equality of values of
the operation LP (16.12)—(16.16) and its dual–in the form of either the standard dual
LP (16.17)—(16.22) or the equivalent CP (16.27)—(16.28)–relies on the properties of its
data in the general equilibrium, (p?; k?St, k

?
Co). It can be proved in two ways because

it follows from either of two assumptions: that (k?St, k
?
Co) À 0 and that p? ∈ L1 [0, T ].

Strict positivity of the fixed-input bundle (kSt, kCo) is a case of the generalized Slater’s
Condition for infinite-dimensional inequality constraints, formulated in [44, (8.12)]. A
fortiori, it is a case of Slater’s Condition for generalized perturbed CPs, formulated in
[44, Theorem 18 (a)]. So it guarantees the continuity of ΠPSSR (p, ·) on a neighbourhood of
(kSt, kCo), for every p ∈ L∞∗: see Part 1 of Lemma 23.1 for details. (The same argument
applies more generally to c.f.c. techniques: see Proposition 27.2.) The other, alternative
proof derives upper semicontinuity of ΠPSSR (p, ·) from the assumption that p ∈ L1. This
is a case of a price system in the predual of the commodity space: here, L1 is the Banach
predual of L∞ [0, T ]. The maximand hp | ·i is therefore continuous for the weak* topology
w (L∞, L1), and one can show that the maximum value, ΠPSSR (p, ·), is u.s.c. by exploiting
the weak*-compactness of the short-run production set

{y ∈ L∞ [0, T ] : (y;−kSt,−kCo) ∈ YPS} ⊆ {y ∈ L∞ : |y| ≤ kCo}

where YPS is given by (15.4); formally, Lemma 21.3 applies.88 (A stronger result can be
obtained by applying the dual-value continuity criterion of [44, Theorem 18’ (e)]: this
shows that the convex function Π

PS

SR (·, kSt, kCo) is norm-continuous on L1, which implies
that the concave function ΠPSSR (p, ·) is upper semicontinuous at (kSt, kCo) for each p ∈ L1,
by Lemma 20.1.) Finally, Lemma 20.1 shows that the equality Π

PS

SR = ΠPSSR at (p; kSt, kCo)
follows from upper semicontinuity, and a fortiori from continuity, ofΠPSSR (p, ·) at (kSt, kCo).
Since p? ∈ L1 and (k?St, k?Co)À 0, either method applies to this data point. ¤

88For this technology, the Proof of Lemma 21.3 simplifies to a direct application of Berge’s Maximum
Theorem [6, VI.3: Theorem 2]. This is because K is the finite-dimensional space R2, and because the
set

S
k∈B YSR (k) is itself bounded when B is (i.e., the operation vmax is not needed). The same applies

more generally to c.f.c. techniques: see Proposition 27.2.
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We next present a similar result with hydroelectric generation (H) instead of pumped
storage (PS). The thermal technology remains the same, and its inputs have fixed prices,
rFTh =

¡
rF1 , . . . , r

F
Θ

¢
and w = (w1, . . . , wΘ). The hydro turbine also has a fixed price, rFTu.

There is a river with a single location where a dam can be constructed to create a water
reservoir of a capacity kSt, at a cost G (kSt). The river has a fixed, periodic flow, e (t)
at time t ∈ [0, T ], which (on the assumption of a constant head) means a given energy
inflow.89 Its price, ψ (t) at time t, is determined in the long-run equilibrium.90 The river’s
total rent is

R T
0
ψedt, and household h’s share of the rent is ςhRi. Its share of profit from

supplying the storage capacity is ςhSt. As before, there is a single Industrial User of
electricity (whose production function is F ), and the household’s share in his profit is
ςh IU.

Theorem 17.2 (Characterization of long-run equilibrium with hydro-thermal genera-
tion). Assume that the ESI’s technology consists of thermal generation techniques (Θ)
and a hydroelectric technique. Then a price system made up of:

• a time-continuous electricity tariff p? ∈ C [0, T ]
• a rental price for the hydro reservoir capacity r?St
• a price %? for the produced final good
• the given prices for fuel and the generating capacities (viz., rFθ for thermal capacity
of type θ and wθ for its fuel, and rFTu for the turbine capacity)

and an allocation made up of:

• an output y?θ ∈ L∞+ [0, T ] from the thermal plant of type θ with
— a capacity k?θ > 0
— a fuel input v?θ (for each θ)

• an output y?H ∈ L∞ [0, T ] from a hydro plant with
— reservoir and turbine capacities k?St > 0 and k

?
Tu > 0

— the given river flow e ∈ L∞+ [0, T ], which is assumed to meet Condition
(16.50)91

• a consumption bundle (x?h,ϕ?h,m?
h) ∈ L∞+ [0, T ]×R+ ×R+ for each household h

• an input-output bundle of the User Industry (−z?, F (z?, n?) ,−n?) ∈ L∞− [0, T ]×
R+ × R−

form a long-run competitive equilibrium if and only if:

(1) (a) (Equality of ESI’s capital-input prices to their profit-imputed marginal val-
ues) For each θ = 1, . . ., Θ

rFθ =

Z T

0

(p? (t)− wθ)
+ dt(17.11)

r?St = Var
+
c (ψ

?)(17.12)

89More generally, it might be possible to improve the watershed to obtain a river flow e at a cost
GRi (e), a convex function of e. The case of a fixed, unimprovable river flow e can be obtained by setting
GRi (e) equal to 0 for e = e and +∞ otherwise.
90A complete price system is (p; rTh;w; rH,ψ; %, 1) with rH = (rSt, rTu).
91The assumption can be dropped, but this complicates the problem and, as a result, an optimal

water price function need not be unique or continuous: see [24].
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rFTu =

Z T

0

(p? (t)− ψ? (t))+ dt(17.13)

where ψ? := ψ̂H (p
?; k?St, k

?
Tu; e) is the optimal price of water, i.e., the unique

solution to the programme (16.46)—(16.48) with (p?; k?St, k
?
Tu; e) as the data.

(b) (Operating profit maximization by ESI) For each θ

y?θ (t) ∈ S (p? (t) , k?θ , wθ) :=

⎧⎪⎪⎨⎪⎪⎩
{0} if p? (t) < wθ

[0, k?θ ] if p
? (t) = wθ

{k?θ} if p? (t) > wθ

for a.e. t(17.14)

v?θ =

Z T

0

y?θ (t) dt(17.15)

and, with (p?; k?St, k
?
Tu; e) as the data,

(17.16) y?H solves the linear programme (16.32) to (16.36)

(which implies that y?H (t) = kTu when p? (t) > ψ? (t) and y?H (t) = 0 when
p? (t) < ψ? (t)).

(2) (Profit maximization by User Industry)

(17.17) (p?, 1) ∈ %?b∂F (z?, n?) .
(3) (Consumer utility maximization) For each h, (x?h,ϕ

?
h,m

?
h) maximizes Uh on the

budget set½
(x,ϕ,m) ≥ 0 :

Z T

0

p? (t) x (t) dt+ %?ϕ+m ≤ M̂h (p
?, r?St,ψ

?, %?)

¾
where

(17.18) M̂h (p, rSt, %,ψ) = m
En
h + ςhSt

µ
sup
kSt

(rStkSt −G (kSt))
¶

+ ςh IU

µ
sup
z,n

µ
%F (z, n)−

Z T

0

p (t) z (t) dt− n
¶¶

+ ςhRi

Z T

0

ψ (t) e (t) dt.

(4) (Market clearance)

(17.19) y?H +
X
θ

y?θ = z
? +

X
h

x?h and F (z?, n?) =
X
h

ϕ?h.

(5) (MC pricing of reservoir capacity)

(17.20) r?St ∈ ∂G (k?St) .

Proof. This is proved like Theorem 17.1 (taking into account the last Comment in Sec-
tion 13). ¤

Remark 17.3 (Value of site for reservoir). The rental value of the hydro or storage site
is r∗Stk

∗
St −G (k∗St) per cycle (the reservoir’s value less its construction cost).
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Comments (multiple sites): A similar analysis applies when there is a number of stor-
age sites (or hydro sites) with different development costs, Gl for location l. Reservoir
capacity is then a good differentiated by its location, and so is the river flow in the case
of hydro. Therefore, some of the long-run equilibrium prices and quantities may depend
on l:
(1) Consider first the case of pumped storage. Since

¡
∂ΠPSSR/∂kCo

¢ ¡
k?St,l, k

?
Co,l

¢
equals

rFCo, which is independent of l, and since the derivative is homogeneous of degree
0 in (kSt, kCo), the equilibrium capacity ratio k?St,l : k

?
Co,l is independent of l.

Therefore, the equilibrium price of storage capacity r?St is also the same for each l
(since it equals ∂ΠPSSR/∂kSt, which is also homogeneous of degree 0). And this is so
because the production technique has just one input whose supply cost depends
on the location. However, the plant’s size depends on l, since k?St,l meets the
condition r?St ∈ ∂Gl

¡
k?St,l

¢
. The site’s rent, r∗Stk

?
St,l −Gl

¡
k?St,l

¢
, also depends on l.

(2) In hydro generation, both the reservoir construction cost function Gl and the
fixed river flow el depend on the location l. So, in hydro, the equilibrium capacity
ratio k?St,l/k

?
Tu,l, the price of reservoir capacity r

?
St,l and the shadow price of water

ψ?l do all depend on l. (So do the reservoir’s size k
?
St,l and the site’s rent r

∗
Stk

?
St,l−

Gl
¡
k?St,l

¢
.)

Comment (optimum of thermal output in terms of SRMC): Competitive profit max-
imization by the thermal plants can be reformulated as SRMC pricing by the thermal
generating system, i.e., by using the system’s instantaneous SRMC curve. With a finite
number of plant types, Θ, this curve is actually a “right-angled” broken line:92 it consists
of (i) Θ “horizontal” segments

[k1 + . . .+ kθ−1, k1 + . . .+ kθ]× {wθ} for θ = 1, . . . ,Θ

(with k0 := 0) and (ii) Θ+ 1 “vertical” segments

{k1 + . . .+ kθ} × [wθ, wθ+1] for θ = 0, 1, . . . ,Θ

(with wΘ+1 := +∞, and with w0 := −∞ unless free disposal is included). Formally,
Condition (17.4) or (17.14) for each θ is equivalent to:

p? (t) ∈ ∂ycSR (y
? (t) , k?Th, w) for a.e. t

where k?Th = (k
?
1, . . . , k

?
Θ) and cSR is the instantaneous short-run cost per unit time. With

1A denoting the 0-1 indicator of a set A (1 on A and 0 outside), the instantaneous SRC
can be given as

cSR (y, kTh, w) :=

Z y

0

ΘX
θ=1

wθ1[k1+...+kθ−1,k1+...+kθ] (q) dq(17.21)

= w1y +
Θ−1X
θ=1

(wθ+1 − wθ) (y − (k1 + . . .+ kθ))+

92In a model with a “continuum” of plant types, the SRMC curve is a general “complete nondecreasing
curve”, in the terminology of [42, 24.3]. But even the continuum model does not make the SRC curve
differentiable: it still has a kink at the peak output, and typically it has offpeak kinks, too–see [24].
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if 0 ≤ y ≤
PΘ

θ=1 kθ (otherwise cSR = +∞). This is an increasing and convex (though
piecewise linear) function of y ∈

h
0,
PΘ

θ=1 kθ
i
, with cSR (0) = 0. The SRMC curve is the

graph of the subdifferential correspondence y 7→ ∂cSR (y), in the instantaneous quantity-
price plane. When kTh À 0 (i.e., kθ > 0 for each θ),

(17.22) ∂ycSR (y, kTh, w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(−∞, w1] if y = 0

{wθ} if y ∈ (k1 + . . .+ kθ−1, k1 + . . .+ kθ)
[wθ, wθ+1] if y = k1 + . . .+ kθ and 1 ≤ θ ≤ Θ− 1
[wΘ,+∞) if y =

PΘ
θ=1 kθ

∅ if y >
PΘ

θ=1 kθ or y < 0

.

(For the case of Θ = 1, the SRMC and SRC curves have been used in Section 2 and are
shown in Figures 1a and c; the supply and subdifferential correspondences, p 7→ S (p)
and y 7→ ∂cSR (y), are inverse to each other.)

18. Derivation of the dual programmes (proofs for Section 5)

The dual programmes are next derived formally by using the framework of [44].
Proposition 18.1 (Dual to SRP programme). The dual of the short-run profit maxi-
mization programme (3.6)—(3.7), with k as the primal parameter ranging over the space
K paired with R as the range for the dual variable r, is the fixed-input shadow-pricing
programme (5.6), or equivalently (5.13)—(5.14) when Y is a cone. The dual parameter is
(p,w).

Proof. Given (p, k, w), the parametric primal constrained maximand is hp | yi − hw | vi
minus δ (y,−k,−v | Y), where y and v are the primal decision variables, and k is the
primal parameter (paired with the dual decision variable r). Let d0 and d00 denote the
dual perturbations (paired with y and −v). By [44, (4.17)] with the primal problem
reoriented to maximization, the (perturbed) dual constrained minimand is, as a function
of r and (d0, d00),

sup
y,v;∆k

{hd0, d00 | y,−vi− hr |∆ki+ hp | yi− hw | vi− δ (y,−k −∆k,−v | Y)}

= hr | ki+ sup
y,v,∆k

{hp+ d0, r, w + d00 | y,−k −∆k,−vi : (y,−k −∆k,−v) ∈ Y}

= hr | ki+ sup
y,v,k

{hp+ d0, r, w + d00 | y,−k,−vi : (y,−k,−v) ∈ Y}

= hr | ki+ΠLR (p+ d
0, r, w + d00) .

So, by setting d0 = 0 and d00 = 0, the dual programme is (5.6); and when Y is a cone, the
dual is to minimize hr | ki+ δ (p, r, w | Y◦) over r (since ΠLR = δ# (· | Y) = δ (· | Y◦), i.e.,
the support function of a cone is the indicator function of the polar cone). Finally, d0 and
d00 perturb the dual like increments to p and w, which therefore are the dual parameters
(and so d0 and d00 may be renamed to ∆p and ∆w). ¤
The other duals are derived in the same way; the dual of the SRC programme is spelt

out.
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Proposition 18.2 (Dual to SRC programme). The dual of the short-run cost minimiza-
tion programme (3.10)—(3.11), with (y, k) as the primal parameter ranging over the space
Y ×K paired with P ×R as the range for the dual variable (p, r), is the output-and-fixed-
input pricing programme (5.4), or equivalently (5.9)—(5.10) when Y is a cone. The dual
parameter is w.

19. Shephard-Hotelling Lemmas and their dual counterparts
(expansion and proofs for Sections 4, 6, 7, 8 and 11)

Programme solutions can always be characterized as marginal values of Type Two,
i.e., the primal solution set is equal to the subdifferential of the primal optimal value
as a (convex) function of the dual parameter. Likewise, the dual solution set is equal
to the superdifferential of the dual optimal value as a (concave) function of the primal
parameter (when the primal is to maximize, and the dual is to minimize). This derivative
property is next stated for the profit or cost optimization programmes and their duals.
All six results are obtained by applying either the Inversion Rule (Theorem C.2) and
the FOC (C.12) or (C.24) or the Derivative Property of the Conjugate (C.33), which
combines the Inversion Rule and the FOC. The same techniques apply to the reduced
programmes: see the end of this section.

Notation: As a superscript, the symbol # indicates the Fenchel-Legendre convex
conjugate (of a convex function), defined by (C.1) in Appendix C. As a subscript,
# indicates the concave conjugate (of a concave function), defined by (C.20). In
either position, # means the total conjugate, i.e., the conjugate w.r.t. all of the
function’s arguments (except for those indicated as fixed). Partial conjugates
w.r.t. one variable (say, the first or the second variable) are denoted by #1, #2, ,
etc.; these are defined by (C.6). The partial conjugate w.r.t. the first and second
variables together is denoted by #1,2 (for a bivariate function, this means the
same as #).

Lemma 19.1 (Hotelling’s Lemma for the short run). Assume that Y is closed. Then
(y,−v) ∈ ∂p,wΠSR (p, k, w) if and only if (y, v) solves the short-run profit maximization
programme (3.6)—(3.7).

Proof. By definition, ΠSR (·, k, ·) is δ# (· | YSR (k)), i.e., it is the support function of the
section of Y through−k. This is a closed convex subset of Y ×V ; so if it is also nonempty,
then

∂p,wΠSR (p, k, w) = {(y,−v) ∈ YSR (k) : hp | yi− hw | vi = ΠSR (p, k, w)}
by (C.36). Even in the degenerate case of YSR (k) = ∅, the subdifferential and the solution
set are equal: each is Y ×V (since every vector is then a subgradient of Π (·, k, ·) = −∞,
and since every point solves, albeit improperly,93 the then infeasible programme (3.6)—
(3.7)). ¤

Lemma 19.2 (Dual of SR Hotelling’s Lemma). r ∈ b∂kΠSR (p, k, w) if and only if r solves
the fixed-input pricing programme (5.6).

93See the Comment on proper and improper solutions in Appendix C, after (C.36)—(C.38).
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Proof. By the definition of ΠSR as the optimal value of (5.6), and by (3.14),

(19.1) ΠSR = (−ΠLR)#2 and −ΠLR = ΠSR#2

(in other words, ΠSR (p, ·, w) = (−ΠLR (p, ·, w))# and −ΠLR (p, ·, w) = ΠSR (p, ·, w)#).
From the second equality of (19.1), (−ΠLR)#2#2 = −ΠLR (i.e., (−ΠLR (p, ·, w))## =
−ΠLR (p, ·, w)) by using (C.22). This and the first equality of (19.1) mean that the
Inversion Rule (C.32) can be applied (to ΠLR (p, ·, w) in place of Π) to give

r ∈ b∂kΠSR (p, k, w)⇔ −k ∈ ∂rΠLR (p, r, w)

⇔ r minimizes ΠLR (p, ·, w) + h· | ki
by the FOC (C.12). Alternatively, apply the Derivative Property (C.33) to conflate the
two steps. ¤
Alternative Proof of Lemma 19.2 (under c.r.t.s.) If Y is a cone, this can be proved like
Lemma 19.1: ΠSR (p, ·, w) is then the inf-support function of the polar cone’s section
(19.2) Y◦p,w := {r : (p, r, w) ∈ Y◦}
and so (C.38) applies. ¤
Lemma 19.3 (Shephard’s Lemma for the short run). Assume that Y is closed. Then
(k, v) ∈ b∂r,wCLR (y, r, w) if and only if (k, v) solves the long-run cost minimization pro-
gramme (3.8)—(3.9).

Proof. Like Lemma 19.1, this is a case of differentiating a support function: CLR (y, ·, ·)
is the inf-support function of the section of Y through y, so (C.38) applies. ¤
Lemma 19.4 (Dual of SR Shephard’s Lemma). p ∈ ∂yCLR (y, r, w) if and only if p solves
the long-run output-pricing programme (5.5).

Proof. Like Lemma 19.2, this follows from the definitional relationships between ΠLR,
the value function being differentiated and the value dual to it–i.e., from

(19.3) CLR = Π#1LR and ΠLR = C
#1
LR

(in other words, from CLR (·, r, w) = ΠLR (·, r, w)# and ΠLR (·, r, w) = CLR (·, r, w)#)
by applying the Inversion Rule (C.31) and the FOC (C.12). Alternatively, apply the
Derivative Property (C.33) to conflate the two steps. ¤
Alternative Proof of Lemma 19.4 (under c.r.t.s.) If Y is a cone then CLR (·, r, w) is the
support function of {p : (p, r, w) ∈ Y◦}, and so (C.36) applies. ¤
Lemma 19.5 (Shephard’s Lemma for the long run). Assume that Y is closed. Then
v ∈ b∂wCSR (y, k, w) if and only if v solves the short-run cost minimization programme
(3.10)—(3.11).

Proof. Like Lemmas 19.1 and 19.3, this is a case of differentiating a support function:
here, CSR (y, k, ·) is the inf-support function of the section of Y through (y,−k), so (C.38)
applies. ¤
Lemma 19.6 (Dual of LR Shephard’s Lemma). (p,−r) ∈ ∂y,kCSR (y, k, w) if and only
if (p, r) solves the output-and-fixed-input pricing programme (5.4).
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Proof. Like Lemmas 19.2 and 19.4, this follows from the definitional relationships between
ΠLR, the value function being differentiated and the value dual to it–i.e., from

(19.4) CSR (y, k, w) = Π
#1,2
LR (y,−k, w) and ΠLR (p, r, w) = C#1,2SR (p,−r, w)

by applying the Inversion Rule (C.31) and the FOC (C.12). Alternatively, apply the
Derivative Property (C.33) to conflate the two steps. ¤

Alternative Proof of Lemma 19.6 (under c.r.t.s.) If Y is a cone then CSR (·, ·, w) is the
support function of {(p,−r) : (p, r, w) ∈ Y◦}, and so (C.36) applies. ¤

The two marginal values of Type Two are actually of Type One if (and only if) there
is no duality gap. This is next applied (thrice) to complement the preceding six lemmas.

Remark 19.7. (y,−v) ∈ ∂p,wΠSR (p, k, w) if and only if (y,−v) ∈ ∂p,wΠSR (p, k, w) and
ΠSR (p, k, w) = ΠSR (p, k, w).

Remark 19.8. r ∈ b∂kΠSR (p, k, w) if and only if r ∈ b∂kΠSR (p, k, w) and ΠSR (p, k, w)
= ΠSR (p, k, w).

Remark 19.9. (k, v) ∈ b∂r,wCLR (y, r, w) if and only if (k, v) ∈ b∂r,wCLR (y, r, w) and
CLR (y, r, w) = CLR (y, r, w).

Remark 19.10. p ∈ ∂yCLR (y, r, w) if and only if p ∈ ∂yCLR (y, r, w) and CLR (y, r, w)
= CLR (y, r, w).

Remark 19.11. v ∈ b∂wCSR (y, k, w) if and only if v ∈ b∂wCSR (y, k, w) and CSR (y, k, w)
= CSR (y, k, w).

Remark 19.12. (p,−r) ∈ ∂y,kCSR (y, k, w) if and only if (p,−r) ∈ ∂y,kCSR (y, k, w) and
CSR (y, k, w) = CSR (y, k, w).

Since the primal and dual values are assumed to be equal only at a particular data
point (and not on a whole neighbourhood of it), Remarks 19.7—19.12 do require a proof.
This can be based on (C.18), which is a criterion of subdifferentiability in terms of the
function’s second conjugate. It applies because the dual value (in this context, and
under c.r.t.s., the imputed value of the given quantities) is the second conjugate of the
primal value (profit or cost) as a function of the primal parameters (the quantity data).
Likewise, the primal value is the second conjugate of the dual value as a function of the
dual parameters (the price data). For example, ΠSR is the second concave conjugate of
ΠSR as a function of k, with (p,w) fixed. Dually, ΠSR is the second convex conjugate of
ΠSR as a function (p,w), with k fixed. (Similarly, CLR and CSR are the second convex
conjugates ofCLR andCSR as functions of, respectively, y and (y, k), with (r, w) orw fixed.
Dually, CLR and CSR are the second concave conjugates of CLR and CSR as functions of,
respectively, (r, w) and w, with y or (y, k) fixed.) These bi-conjugacy relationships are
next recorded for use in proving Remarks 19.7—19.12.

Lemma 19.13. If Y is closed then ΠSR = Π
#1,3#1,3
SR (i.e., ΠSR (·, k, ·) = ΠSR (·, k, ·)## on

Y ×W for each k ∈ K).

Proof. Since ΠSR (·, k, ·) is by definition the conjugate of δ (· | YSR (k)), it suffices to show
that this is, in turn, the conjugate of ΠSR (·, k, ·). Since Y is closed (and convex), the
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definitional relationship ΠLR := δ# (· | Y) can be inverted to give
δ (y,−v | YSR (k)) := δ (y,−k,−v | Y) = Π#LR (y,−k,−v)(19.5)

:= sup
p,r,w

(hp | yi− hr | ki− hw | vi−ΠLR (p, r, w))

= sup
p,w

¡
hp | yi− hw | vi−ΠSR (p, k, w)

¢
since ΠSR is the optimal value of (5.6). ¤
Lemma 19.14. ΠSR = ΠSR#2#2 (i.e., ΠSR (p, ·, w) = ΠSR (p, ·, w)## on K for each
(p,w) ∈ P ×W ).
Proof. Combine the definitional relationships (19.1) between ΠLR and each of the two
functions (ΠSR and ΠSR). ¤
Lemma 19.15. If Y is closed then CLR = CLR (y, ·, ·)#2,3#2,3 (i.e., CLR (y, ·, ·) =
CLR (y, ·, ·)## on R×W for each y ∈ Y ).
Proof. Like Lemma 19.13, this is proved by iterating conjugacy (using the second equality
of (19.5) in the process). ¤
Lemma 19.16. CLR = C

#1#1
LR (i.e., CLR (·, r, w) = CLR (·, r, w)

## on Y for each (r, w) ∈
R×W ).
Proof. Like Lemma 19.14, this follows from the definitional relationships (19.3) between
ΠLR and each of the two functions (here, CLR and CLR). ¤
Lemma 19.17. If Y is closed then CSR = CSR#3#3 (i.e., CSR (y, k, ·) = CSR (y, k, ·)##
on W for each (y, k) ∈ Y ×K).
Proof. Like Lemmas 19.13 and 19.15, this can be proved by iterating conjugacy (using
the second equality of (19.5) in the process). ¤
Lemma 19.18. CSR = C

#1,2#1,2
SR (i.e., CSR (·, ·, w) = CSR (·, ·, w)

## on Y ×K for each
w ∈W ).
Proof. Like Lemmas 19.14 and 19.16, this follows from the definitional relationships (19.4)
between ΠLR and each of the two functions (here, CSR and CSR). ¤
Remarks 19.7—19.12 can now be deduced (all in the same way).

Proof of Remark 19.7. Fix any k, and abbreviate ΠSR (·, k, ·) to Π. Then Π = Π
##

(on
P ×W ) by Lemma 19.13. So, for each (p,w),

(y,−v) ∈ ∂Π (p,w)⇔
¡
(y,−v) ∈ ∂Π (p,w) and Π (p, w) = Π (p, w)

¢
by (C.18). ¤
Proof of Remark 19.8. Fix any (p,w), and abbreviate ΠSR (p, ·, w) to Π. Then Π = Π##
(on K) by Lemma 19.14. So, for each k,

r ∈ b∂Π (k)⇔ ³
r ∈ b∂Π (k) and Π (k) = Π (k)

´
by (C.26). ¤
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Proof of Remark 19.9. Fix any y, and abbreviate CLR (y, ·, ·) to C. Then C = C## (on
R×W ) by Lemma 19.15. So, for each (r, w),

(k, v) ∈ b∂C (r, w)⇔ ³
(k, v) ∈ b∂C (r, w) and C (r, w) = C (r, w)´

by (C.26) ¤
Proof of Remark 19.10. Fix any (r, w), and abbreviate CLR (·, r, w) to C. Then C = C##
(on Y ) by Lemma 19.16. So, for each y,

p ∈ ∂C (y)⇔ (p ∈ ∂C (y) and C (y) = C (y))

by (C.18). ¤
Proof of Remark 19.11. Fix any (y, k), and abbreviate CSR (y, k, ·) to C. Then C = C##
(on W ) by Lemma 19.17. So, for each w,

v ∈ b∂C (w)⇔ (v ∈ ∂C (y, k) and C (v) = C (v))

by (C.26). ¤
Proof of Remark 19.12. Fix any w, and abbreviate CSR (·, ·, w) to C. Then C = C##

(on Y ×K) by Lemma 19.18. So, for each (y, k),
(p,−r) ∈ ∂C (y, k)⇔ ((p,−r) ∈ ∂C (y, k) and C (y, k) = C (y, k))

by (C.18). ¤
When there is no duality gap, programme solutions are therefore equal to marginal

values of Type One: the dual solution is then equal to the primal value’s derivative w.r.t.
the primal parameter, and, similarly, the primal solution is the dual value’s derivative
w.r.t. the dual parameter. A pair of solutions with equal values is therefore the same as
a pair of sub/super-gradients, w.r.t. primal and dual parameters, of just one of the two
value functions (either primal or dual). Here, this means that Π and C can replace Π
and C in Lemmas 19.2, 19.4 and 19.6–which can then be combined with Lemmas 19.1,
19.3 and 19.5 (respectively) to form subdifferential systems purely in terms of either Π
or C (i.e., without Π or C). Similarly, Π and C can replace Π and C in Lemmas 19.1,
19.3 and 19.5–which can then be combined with Lemmas 19.2, 19.4 and 19.6 to form
subdifferential systems purely in terms of either Π or C (i.e., without Π or C). This is
next stated formally.
Corollary 19.19 (Equivalence of subdifferential and solution systems). Assume that Y
is closed. Then:
(1) The following are equivalent to one another:

(a) the SRP subdifferential system (8.4)—(8.5)
(b) the SRP optimization system (6.1)—(6.3)
(c) the FIV subdifferential system (8.6)—(8.7).

(2) The following are equivalent to one another:
(a) the LRC subdifferential system (8.8)—(8.9)
(b) the LRC optimization system (6.4)—(6.6)
(c) the OV subdifferential system (8.10)—(8.11).

(3) The following are equivalent to one another:
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(a) the SRC subdifferential system (8.12)—(8.13)
(b) the SRC optimization system (6.7)—(6.9)
(c) the OFIV subdifferential system (8.14)—(8.15).

Therefore, each of these systems fully characterizes a long-run producer optimum, i.e.,
is equivalent to (3.3).

Proof. For Part 1, to prove that 1b is equivalent to 1a: (i) use Lemma 19.1, and (ii) com-
bine Lemma 19.2 with Remark 19.8. To prove that 1b is equivalent to 1c: (i) use
Lemma 19.2, and (ii) combine Lemma 19.1 with Remark 19.7.
For Part 2, to prove that 2b is equivalent to 2a: (i) use Lemma 19.3, and (ii) combine

Lemma 19.4 with Remark 19.10. To prove that 2b is equivalent to 2c: (i) use Lemma 19.4,
and (ii) combine Lemma 19.3 with Remark 19.9.
For Part 3, to prove that 3b is equivalent to 3a: (i) use Lemma 19.5, and (ii) combine

Lemma 19.6 with Remark 19.12. To prove that 3b is equivalent to 3c: (i) use Lemma 19.6,
and (ii) combine Lemma 19.5 with Remark 19.11.
Finally, each of the three optimization systems (1b, 2b, 3b) is equivalent to (3.3), as

has been noted in Section 6. ¤

The same derivative properties of cost and profit functions, and the FOCs, serve to
transform split optimization systems into their saddle differential equivalents.

Corollary 19.20 (Equivalence of saddle differential and solution systems). Assume that
Y is closed. Then:
(1) The following are equivalent to one another:

(a) the SRC-P saddle differential system (7.1)—(7.3)
(b) the split SRP optimization system (4.2)—(4.5)
(c) the SRP optimization system (6.1)—(6.3).

(2) The following are equivalent to one another:
(a) the L-SRC saddle differential system (11.8)—(11.10)
(b) the split LRC optimization system (11.11)—(11.14)
(c) the LRC optimization system (6.4)—(6.6).

(3) The following are equivalent to one another:
(a) the FIV saddle differential system (8.1)—(8.3)
(b) the split SRC optimization system (6.8)—(6.11)
(c) the SRC optimization system (6.7)—(6.9).

(4) The following are equivalent to one another:
(a) the OV saddle differential system (11.15)—(11.17)
(b) the reverse-split SRC optimization system (11.18)—(11.21)
(c) the SRC optimization system (6.7)—(6.9).

Therefore, each of these systems fully characterizes a long-run producer optimum, i.e.,
is equivalent to (3.3).

Proof. First note that, in all four parts, it is obvious that the optimization system is
equivalent to the split optimization system (1b to 1c, 2b to 2c, 3b to 3c, and 3b to 3c):
this is two-stage solving.
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Next, for Part 1, to prove that 1b is equivalent to 1a: (i) use Lemma 19.5, (ii) combine
Lemma 19.2 with Remark 19.8, and (iii) apply the FOC (C.12) to CSR (as a function of
y).
For Part 2, to prove that 2b is equivalent to 2a: (i) use Lemma 19.5, (ii) combine

Lemma 19.4 with Remark 19.10, and (iii) apply the FOC (C.12) to CSR (as a function
of k).
For Part 3, to prove that 3b is equivalent to 3a: (i) use Lemma 19.2, (ii) combine

Lemma 19.5 with Remark 19.11, and (iii) apply the FOC (C.12) to ΠSR (as a function
of p).
For Part 4, to prove that 4b is equivalent to 4a: (i) use Lemma 19.4, (ii) combine

Lemma 19.5 with Remark 19.11, and (iii) apply the FOC (C.24) to CLR (as a function
of r).
Finally, as in the Proof of Corollary 19.19, each of the three optimization systems (1c,

2c and 3c, repeated as 4c) is equivalent to (3.3). ¤

Together, Corollaries 19.19 and 19.20 establish the equivalence of all the various sys-
tems of Sections 4, 6—8 and 11. This includes the subdifferential and saddle-differential
systems, whose equivalence is thus shown indirectly, through optimization systems ((“di-
rect” proofs by the relevant rules of convex calculus have been given in Section 9).

For the reduced short-run programmes–viz., the reduced SRP programme for y in
(3.13) and (4.2) and the short-run output reduced shadow-pricing programme for p in
(5.8) and (6.10), whose solution sets are denoted by Ŷ (p, k, w) and P̌ (y, k, w)–there
are the following “reduced” versions of Shephard-Hotelling Lemmas: a version of the
short-run Hotelling’s Lemma that is limited to output quantities, and a version of the
dual to the short-run Shephard’s Lemma that is limited to output prices.

Lemma 19.21 (SR Hotelling’s Lemma for outputs only). The following conditions are
equivalent to each other:

(1) y ∈ Ŷ (p, k, w), i.e., y yields the supremum in (3.13), which is ΠSR (p, k, w).
(2) y ∈ ∂pΠSR (p, k, w) and CSR (y, k, w) = Π#1SR (y, k, w), i.e., CSR = C#1#1SR at

(y, k, w).

The last equality holds if CSR = CSR at (y, k, w). Also, if ΠSR = ΠSR at (p, k, w) and
y ∈ ∂pΠSR (p, k, w) then y ∈ ∂pΠSR (p, k, w).

Proof. Apply the Inversion Rule (Theorem C.2) and the FOC (C.12) to CSR and its
conjugate ΠSR as functions of y and p (with k and w fixed); alternatively, apply the
Derivative Property (C.33) to conflate the two steps. This shows that Condition 1 and
2 are equivalent.
Fix any w and recall that CSR = C

#1,2#1,2
SR by Lemma 19.18. So CSR = CSR at (y, k, w)

if and only if C#1,2#1,2SR = CSR at (y, k, w), and then a fortiori C
#1#1
SR = CSR at (y, k, w)

by Remark C.1.94

94For an alternative proof of this, note that: (i) by (5.8), CSR = Π
#1

SR ≤ Π
#1

SR = C
#1#1

SR by (3.13), with
the inequality holding because ΠSR ≥ ΠSR, and (ii) C#1#1

SR ≤ CSR by (C.4) without the middle term.
So CSR ≤ C

#1#1

SR ≤ CSR everywhere.
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Finally, recall that ΠSR ≥ ΠSR everywhere (on P × K × W ). So if ΠSR = ΠSR
at (p, k, w) and y ∈ ∂pΠSR (p, k, w) then also y ∈ ∂pΠSR (p, k, w) by the subgradient
inequality (C.11). ¤
Lemma 19.22 (Dual of SR Shephard’s Lemma for outputs only). The following condi-
tions are equivalent to each other:
(1) p ∈ P̌ (y, k, w), i.e., p yields the supremum in (5.8), which is CSR (y, k, w).
(2) p ∈ ∂yCSR (y, k, w) and ΠSR (p, k, w) = C#1SR (p, k, w), i.e., ΠSR = Π

#1#1
SR at

(p, k, w).

The last equality holds if ΠSR = ΠSR at (p, k, w). Also, if CSR = CSR at (y, k, w) and
p ∈ ∂yCSR (y, k, w) then p ∈ ∂yCSR (y, k, w).

Proof. Being a “mirror image” of Lemma 19.21, this is proved by the same arguments,
with CSR (y), ΠSR (p) and ΠSR (p) in place of ΠSR (p), CSR (y) and CSR (y), respectively.
To spell this out, apply the Inversion Rule (Theorem C.2) and the FOC (C.12) to ΠSR
and its conjugate CSR as functions of p and y (with k and w fixed); alternatively, apply
the Derivative Property (C.33) to conflate the two steps. This shows that Condition 1
and 2 are equivalent.
Fix any k and recall that ΠSR = Π

#1,3#1,3
SR by Lemma 19.13. So ΠSR = ΠSR at (p,w)

if and only if Π
#1,3#1,3
SR = ΠSR at (p,w), and then a fortiori Π

#1#1
SR (p,w) = ΠSR (p,w) by

Remark C.1.
Finally, recall that CSR ≥ CSR everywhere (on Y × K × W ). So if CSR = CSR

at (y, k, w) and p ∈ ∂yCSR (y, k, w) then also p ∈ ∂yCSR (y, k, w) by the subgradient
inequality (C.11). ¤

Corollary 19.23. Assume both that CSR = CSR at (y, k, w) and that ΠSR = ΠSR at
(p, k, w). Then the following conditions are equivalent to one another:

(1) y ∈ Ŷ (p, k, w), i.e., y yields the supremum in (3.13), which is ΠSR (p, k, w).
(2) p ∈ ∂yCSR (y, k, w).
(3) y ∈ ∂pΠSR (p, k, w).
(4) p ∈ P̌ (y, k, w), i.e., p yields the supremum in (5.8), which is CSR (y, k, w).
(5) y ∈ ∂pΠSR (p, k, w).
(6) p ∈ ∂yCSR (y, k, w).

Proof. Lemmas 19.21 and 19.22 state that Conditions 1, 3, 4 and 6 are equivalent; to
add Conditions 2 and 5, recall from the Proofs that these are the FOCs for the optima
in Conditions 1 and 4. ¤

20. Preclusion of duality gaps by semicontinuity of optimal values

Once a pair of solutions (to a primal-dual programme pair) is found, a direct compar-
ison of their values shows whether there is a duality gap. But there is also a method of
checking for a gap at the outset–before solving the programmes. Namely, absence of
a duality gap is equivalent to Type One semicontinuity of either optimal value, primal
or dual (i.e., to the semicontinuity of primal value w.r.t. primal parameters, or of dual
value w.r.t. dual parameters). This well-known result is next stated for the SRP, LRC
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and SRC problems. It is later complemented by sufficient criteria for value semiconti-
nuity or continuity (Sections 21 and 23), which apply to profit or cost as functions of
the quantities–ΠSR of k, CLR of y, and CSR of (y, k). Together, these results can serve
to preclude duality gaps. (By contrast, semicontinuity of profit or cost in prices–ΠSR
in (p, w), CLR in (r, w), and CSR in w–is an automatic Type Two property that does
not rule out a duality gap: the primal value is always semicontinuous w.r.t. the dual
parameter.)

Lemma 20.1 (Continuity conditions for equality of SRP to dual value). Assume that Y
is closed. Then, for each (p,w) ∈ P ×W , the following conditions are equivalent to one
another:

(1) ΠSR (p, k, w) = ΠSR (p, k, w).
(2) The concave function ΠSR (p, ·, w) is upper semicontinuous at k, and the primal

(3.6)—(3.7) and the dual (5.6) are not both infeasible.95

(3) The convex function ΠSR (·, k, ·) is lower semicontinuous at (p,w), and the primal
(3.6)—(3.7) and the dual (5.6) are not both infeasible.

Proof. To prove that Conditions 1 and 2 are equivalent, let Π and Π mean ΠSR (p, ·, w)
and ΠSR (p, ·, w), which are functions on K. Recall that
(20.1) Π ≤ uscΠ ≤ Π## = Π

by (C.21) and Lemma 19.14. The second inequality in (20.1) is strict if and only if its
sides are oppositely infinite. So Π (k) = Π (k) if and only if: (i) Π (k) = uscΠ (k), and
(ii) Π (k) > −∞ or Π (k) < +∞ (i.e., it is not the case that both Π (k) = −∞ and Π (k)
= +∞).
The equivalence of Conditions 1 and 3 is proved similarly: now let Π and Π mean

ΠSR (·, k, ·) and ΠSR (·, k, ·), which are functions on P ×W . Then

(20.2) Π ≥ lscΠ ≥ Π
##
= Π

by (C.4) and Lemma 19.13. So Π (p,w) = Π (p,w) if and only if: (i) Π (p,w) =
lscΠ (p, w), and (ii) Π (p, w) < +∞ or Π (p, w) > −∞. ¤
Lemma 20.2 (Continuity conditions for equality of LRC to dual value). Assume that Y
is closed. Then, for each (r, w) ∈ R×W , the following conditions are equivalent to one
another:

(1) CLR (y, r, w) = CLR (y, r, w).
(2) The convex function CLR (·, r, w) is lower semicontinuous at y, and the primal

(3.8)—(3.9) and the dual (5.5) are not both infeasible.
(3) The concave function CLR (y, ·, ·) is upper semicontinuous at (r, w), and the primal

(3.8)—(3.9) and the dual (5.5) are not both infeasible.

Proof. This can be proved like Lemma 20.1: to prove that Conditions 1 and 2 are equiv-
alent, let C and C mean CLR (·, r, w) and CLR (·, r, w), which are functions on Y . Recall
95The primal (3.6)—(3.7) or the dual (5.6) is feasible if and only if YSR (k) 6= ∅ or ΠLR (p, ·, w) 6= +∞,

respectively. When Y is a cone (i.e., under c.r.t.s.), this means that YSR (k) 6= ∅ or Y◦p,w 6= ∅; the two
sections are defined by (21.1) and (19.2).
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that

(20.3) C ≥ lscC ≥ C## = C
by (C.4) and Lemma 19.16. The second inequality in (20.3) is strict if and only if its
sides are oppositely infinite. So C (y) = C (y) if and only if: (i) C (y) = lscC (y), and
(ii) C (y) < +∞ or C (y) > −∞.
The equivalence of Conditions 1 and 3 is proved similarly: now let C and C mean

CLR (y, ·, ·) and CLR (y, ·, ·), which are functions on R×W . Then
(20.4) C ≤ uscC ≤ C## = C
by (C.21) and Lemma 19.15. So C (r, w) = C (r, w) if and only if: (i) C (r, w) =
uscC (r, w), and (ii) C (r, w) > −∞ or C (r, w) < +∞. ¤
Lemma 20.3 (Continuity conditions for equality of SRC to dual value). Assume that Y
is closed. Then, for each w ∈W , the following conditions are equivalent to one another:
(1) CSR (y, k, w) = CSR (y, k, w).
(2) The convex function CSR (·, ·, w) is lower semicontinuous at (y, k), and the primal

(3.10)—(3.11) and the dual (5.4) are not both infeasible.
(3) The concave function CSR (y, k, ·) is upper semicontinuous at w, and the primal

(3.10)—(3.11) and the dual (5.4) are not both infeasible.

Proof. This can be proved like Lemmas 20.1 and 20.2: to prove that Conditions 1 and
2 are equivalent, let C and C mean CSR (·, ·, w) and CSR (·, ·, w), which are functions on
Y ×K. Recall that
(20.5) C ≥ lscC ≥ C## = C
by (C.4) and Lemma 19.18. The second inequality in (20.5) is strict if and only if its
sides are oppositely infinite. So C (y) = C (y) if and only if: (i) C (y, k) = lscC (y, k),
and (ii) C (y, k) < +∞ or C (y, k) > −∞.
The equivalence of Conditions 1 and 3 is proved similarly: now let C and C mean

CSR (y, k, ·) and CSR (y, k, ·), which are functions on W . Then
(20.6) C ≤ uscC ≤ C## = C
by (C.21) and Lemma 19.17. So C (w) = C (w) if and only if: (i) C (w) = uscC (w), and
(ii) C (w) > −∞ or C (w) < +∞. ¤
Comment: Profit and cost are always semicontinuous in prices (as are the dual values

in quantities), i.e., for every p, y, r, k, w and v:
(1) (i) ΠSR (·, k, ·) is l.s.c. convex on P×W , (ii) CLR (y, ·, ·) is u.s.c. concave on R×W ,

and (iii) CSR (y, k, ·) is u.s.c. concave on W .
(2) (i) ΠSR (p, ·, w) is u.s.c. concave on K, (ii) CLR (·, r, w) is l.s.c. convex on Y , and

(iii) CSR (·, ·, w) is l.s.c. convex on Y ×K.
These Type Two results (which are part of Lemmas 19.13—19.18) follow directly from

the definitions: e.g., ΠSR (·, k, ·) is the pointwise supremum of a family of continuous
(and linear) functions on P ×W (and likewise ΠSR (p, ·, w) is the pointwise infimum of
such functions on K). This also shows that ΠSR is proper convex in (p,w), and that
ΠSR is proper concave in k, unless the one or the other is an infinite constant. (What is
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more, ΠSR (·, k, ·) and ΠSR (p, ·, w) are second conjugates of ΠSR (·, k, ·) and ΠSR (p, ·, w),
respectively, by Lemmas 19.13 and 19.14.)

21. Semicontinuity of cost or profit in the quantity variables
(complement to Sections 4, 5 and 20)

As Section 20 shows, to preclude duality gaps between the SRP or SRC programme
and its dual–which are used in the short-run approach (Sections 12 and 13)–one needs
to ensure that ΠSR (p, k, w) is u.s.c. in k, or that CSR (y, k, w) is l.s.c. in (y, k). A setting
that, by itself, guarantees this Type One semicontinuity of the optimal value is finite
linear programming: see, e.g., [44, Example 1’, p. 24] for a proof based on polyhedral
convexity. So finite LPs can have no duality gaps, except when both the primal and the
dual are actually infeasible (i.e., when their values are oppositely infinite); hence, any
paired solutions have equal values.96 Here, this applies when all the spaces (Y , etc.) are
finite-dimensional and the constraint set is polyhedral (i.e., when Y is the intersection
of a finite number of finite-dimensional closed half-spaces). But this does not extend
to infinite LPs (see Appendix A), which therefore require other methods of ensuring
semicontinuity (and thus ruling out a gap and ensuring that the marginal values are of
Type One).
One way to obtain such results for general convex programmes in infinite-dimension-

al spaces is to apply Berge’s Theorem under a suitable compactness condition on the
constraint set. Here, such a condition is met when the relevant subsets of the production
set Y are bounded and the commodity space is the dual of a completely normed vector
lattice, i.e., a dual Banach lattice (with a norm k·k and a vector order ≤). Therefore, Y ,
K, and V are henceforth taken to be duals of Banach lattices: (Y, k·k ,≤) is the dual of
some

¡
Y 0, k·k0 ,≤

¢
, etc., the nonnegative cones in Y and Y 0 are denoted by Y+ and Y 0+,

and P is either Y 0 or Y ∗–except for Sections 24, 25 and 28, in which P is any space
paired with Y (which need not be a dual Banach space or a lattice).

Notation and definitions: Every nonnegative linear functional on a Banach lat-
tice is norm-continuous (Birkhoff’s Theorem): see, e.g., [2, 12.5], [8, XV: Theorem
18] or [39, 1.3.7]. In other words, the norm-dual and the order-dual of a Banach
lattice are equal–so both can be called the Banach dual. The Banach dual of Y ,
denoted by (Y ∗, k·k∗ ,≤), contains the Banach predual of Y , i.e., Y ∗ = Y 0∗∗ ⊇ Y 0,
but Y ∗ can be larger than Y 0. Either can serve as the price space P , and the
general equilibrium price system may belong to Y 0 or to Y ∗, depending on the
assumptions: see [7] and [26].
The weak and the Mackey topologies on Y for its pairing with P (which is either

Y 0 or Y ∗) are denoted by w (Y, P ) and m(Y, P ). These are the weakest and the
strongest of those locally convex topologies on Y which yield P as the continuous
dual space. Since every convex m(Y, P )-closed set is w (Y, P )-closed,97 a convex
function on Y (with values in R∪{±∞}) is m(Y, P )-lower semicontinuous if and
only if it is w (Y, P )-l.s.c. So these properties can be simply called P -closedness

96This can also be proved by using the simplex algorithm: see, e.g., [11, 5.1 and 9.1].
97This is a corollary to the Hahn-Banach Separation Theorem: see, e.g., [18, 12A: Corollary 1].
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(of a convex subset of Y ) and P -lower semicontinuity (of a convex function on
Y ).
When P = Y 0, the notation w (Y, Y 0) = w (P ∗, P ) and m(Y, Y 0) = m(P ∗, P )

is abbreviated to w∗ and m∗, and these are called the weak* and the Mackey
topologies. For comparison, w (Y, Y ∗) is simply called the weak topology, whilst
m(Y, Y ∗) is identical to the norm topology of Y .
The bounded weak* topology on Y , denoted by bw∗, is a locally convex topol-

ogy stronger than w∗, but weaker than m∗. It can be defined as the topology
of uniform convergence on norm-compact subsets of Y 0, or by stipulating that a
subset of Y is bw∗-closed if and only if its intersection with any closed ball in Y
is w∗-closed (or, equivalently, w∗-compact): see, e.g., [18, 18D: Corollary (b)].

From here on, conditions on production set Y are selected from those listed below. To
capture any long-run constraint on producible outputs, we use the projection of Y on Y ,
which is98

projY (Y) := {y ∈ Y : ∃ (k, v) (y,−k,−v) ∈ Y} .
Some of the conditions use sections of Y, viz., the short-run production set
(21.1) YSR (k) := {(y,−v) : (y,−k,−v) ∈ Y}
(which is the section through −k), and the long-run and short-run input requirement
sets

ILR (y) := {(k, v) : (y,−k,−v) ∈ Y}
ISR (y, k) := {v : (y,−k,−v) ∈ Y} .

When Z is one of these sets, denote by

vmaxZ and vminZ

the sets of all the maximal and the minimal points for the vector order ≤ restricted to
Z. Such points represent the efficient output or input bundles. These are next assumed
to form norm-bounded sets–which, for brevity, are called bounded (but need not be
order-bounded, unless the space is L∞ with the supremum norm k·k∞).
Production Set Assumptions (PSAs). Five assumptions are maintained from here on

(though not all are always needed):
(1) Y is a cone (with a vertex at 0).
(2) Y is convex.
(3) Y is weakly* closed, i.e., w(Y ×K × V, Y 0 ×K 0 × V 0)-closed.
(4) Y includes free disposal of inputs and of producible outputs; i.e., if k ≤ ek, v ≤ ev,

y ≥ ey ∈ projY (Y) and (y,−k,−v) ∈ Y, then ³ey,−ek,−ev´ ∈ Y.
(5) ILR (y) ⊆ K+ × V+ (i.e., Y ⊆ Y ×K+ × V+).

The following assumptions are made selectively where needed:
(6) For every (k, v) ∈ ILR (y), there exists a

³ek,ev´ ∈ vmin ILR (y) with ³ek,ev´ ≤
(k, v).

98projY (Y) need not be comprehensive downwards (i.e., it need not contain Y− = −Y+).
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(7) For every bounded set B ⊂ Y , the set
S
y∈B vmin ILR (y) is also bounded.

99

(8) For every (y,−v) ∈ YSR (k), there exists a (ey,−ev) ∈ vmaxYSR (k) with (ey,−ev) ≥
(y,−v).

(9) For every bounded set B ⊂ K, the set
S
k∈B vmaxYSR (k) is also bounded.

(10) For every v ∈ ISR (y, k), there exists a ev ∈ vmin ISR (y, k) with ev ≤ v.
(11) For every bounded set B ⊂ Y ×K, the set

S
(y,k)∈B vmin ISR (y, k) is also bounded.

(This follows from either of PSAs 7 and 9.)

Our PSAs are similar to the conditions of [13, p. 134] and [14, p. 580] for the finite-
dimensional case (see also the end of this section for further comments). When the
commodity space is Rn or, more generally, a dual Banach lattice (e.g., L∞ or L% with
% > 1), the assumptions that efficient points exist (PSAs 6, 8 and 10) can be derived
from simpler conditions by using the following lemma.
Lemma 21.1 (Existence of maximal points). Let (L, k·k ,≤) be the dual of a Banach
lattice

¡
L0, k·k0 ,≤

¢
. If B is a norm-bounded and w (L,L0)-closed nonempty subset of L,

then the restriction, to B, of the lattice order ≤ has a maximal element.

Proof. Given any chain H in B (i.e., a subset of B that is totally ordered by ≤), define
a linear functional yH on L0 by100

hp | yHi := sup
y∈H

hp | yi for p ∈ L0+

where the supremum is finite because supy∈H kyk ≤ supy∈B kyk < +∞. Then yH ∈ L (in
other words, yH is the supremum of H in the lattice L). This can be shown in two ways:
(i) yH − y ≥ 0 for any y ∈ H, and every nonnegative linear functional on L0 belongs to
L, and (ii) kyHk ≤ supy∈H kyk. Next, to show that yH ∈ B, note that

hp | yHi := sup
y∈H


p+ | y

®
− sup
y∈H


p− | y

®
= lim

y%, y∈H
hp | yi

for each p ∈ L0. This exhibits yH as the w (L,L0)-limit of a net in B (the identity map on
H can serve as such a net). So yH ∈ B (since B is weakly* closed). Thus the assumption
of Zorn’s Lemma is verified for ≤ as a partial order on B (and so a maximal point
exists). ¤
Corollary 21.2 (Existence of efficient points). Assume PSA 3. Then:
(1) PSA 8 holds if the set

(21.2) YSR (k) ∩ ((y,−v) + (Y+ × V+))
is bounded, for each y, k and v.

(2) Similarly, PSAs 6 and 10 follow from PSA 5.

Proof. For Part 1, apply Lemma 21.1 to the bounded set (21.2), which is w(Y × V,
Y 0 × V 0)-closed by PSA 3.
99If L∞ is the space Y in PSA 7, or K in PSA 9, or Y ×K in PSA 11, then it obviously suffices to

make this assumption for each singleton set (instead of B).
100This construction is used for proving related but different results in, e.g., [2, 14.11] and [33, X.4:

Theorem 6].
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For Part 2, apply Lemma 21.1 to the negatives of the sets

(21.3) ILR (y) ∩ ((k, v)− (K+ × V+)) and ISR (y, k) ∩ (v − V+)
which are bounded (and even order-bounded) by PSA 5, and are weakly* closed by
PSA 3. ¤

To exploit weak* compactness of the efficient boundary of the short-run production
set (PSA 8), the maximand hp, w | ·, ·i must be weakly* continuous (i.e., p and w must be
in Y 0 and in V 0). As is shown next, this guarantees that ΠSR is u.s.c. in k (and obviously
the condition on p and w is restrictive only when the spaces are infinite-dimensional and
nonreflexive, i.e., when Y 0 6= Y ∗ or V 0 6= V ∗).
Lemma 21.3 (Semicontinuity of SRP in fixed inputs). Under the PSAs 8 and 9 in
addition to PSAs 2 and 3, the concave function ΠSR (p, ·, w) : K → R ∪ {−∞} is K 0-
upper semicontinuous (on K), for each (p, w) ∈ Y 0+ × V 0+.101

Proof. That Π (k) < +∞ for every k follows from PSAs 8 and 9 for B = {k}, with
Π meaning ΠSR (p, ·, w). Next, since Π is concave, it suffices to prove that it is u.s.c.
for the bounded weak* topology, i.e., that Π is weakly* u.s.c. on any norm-bounded set
B ⊂ K = K 0∗. (This is because every bw∗-closed convex set is w∗-closed, by the Krein-
Smulian Theorem: see, e.g., [18, 18E: Corollary 2].) And a bound on k implies a bound
on the efficient combinations of y and v (which are the only ones that matter because
(p,w) ≥ 0). In precise terms, the set

A := clw(Y×V,Y 0×V 0)
[
k∈B

vmaxYSR (k)

is w (Y × V, Y 0 × V 0)-compact by PSA 9 and the Banach-Alaoglu Theorem; and for every
k ∈ B
(21.4) ΠSR (k) = sup

y, v
{hp | yi− hw | vi : (y,−v) ∈ YSR (k) ∩A}

by PSA 8. Since (p,w) ∈ Y 0 × V 0, the maximand in (21.4) is w (Y × V, Y 0 × V 0)-u.s.c.
(and actually continuous) in (y, v) jointly. In addition, since Y is w(Y × K × V, Y 0 ×
K 0 × V 0)-closed (and A is compact), the constraint correspondence k 7→ YSR (k) ∩ A is
compact-valued and upper hemicontinuous (w (K,K 0)-to-w (Y × V, Y 0 × V 0)): see, e.g.,
[34, 7.1.16]. So ΠSR is w (K,K 0)-u.s.c. on B by the relevant part of Berge’s Maximum
Theorem [6, VI.3: Theorem 2].102 ¤

Similar Type One semicontinuity results are next given for the other functions: CLR is
l.s.c. in y, and CSR is l.s.c. in (y, k) jointly.

Lemma 21.4 (Semicontinuity of LRC in outputs). Under the PSAs 6 and 7 in addition
to PSAs 2, 3 and 5, the convex function CLR (·, r, w) : Y → R+ ∪ {+∞} is Y 0-lower
semicontinuous (on Y ), for each (r, w) ∈ K 0

+ × V 0+.

101Also, under PSA 4, if 0 ∈ Y then ΠSR (p, ·, w) ≥ 0 on K+ (and it is −∞ outside of K+).
102Another way to apply Berge’s Theorem [6, VI.3: Theorem 2] is to take hp | yi − hw | vi −

δ (y,−k,−v | Y) as the maximand (u.s.c. in (y, k, v)) and A as the constraint set (compact and in-
dependent of k ∈ B).
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Proof. This is proved like Lemma 21.3: since the function C := CLR (·, r, w) is convex
(on Y ), it suffices to prove that C is l.s.c. for the bounded weak* topology, i.e., that C
is weakly* l.s.c. on any norm-bounded set B ⊂ Y = Y 0∗. And a bound on y implies a
bound on the efficient combinations of k and v (which are the only ones that matter with
(r, w) ≥ 0). In precise terms, the set

A := clw(K×V,K0×V 0)
[
y∈B

vmin ILR (y)

is w (K × V,K 0 × V 0)-compact by PSA 7 and the Banach-Alaoglu Theorem; and for every
y ∈ B
(21.5) CLR (y) := inf

k,v
{hr | ki+ hw | vi : (k, v) ∈ ILR (k) ∩A}

by PSA 6. Since (r, w) ∈ K 0×V 0, the minimand in (21.5) is w(K×V,K 0×V 0)-l.s.c. (and
actually continuous) in (k, v). In addition, since Y is w(Y ×K × V, Y 0×K 0× V 0)-closed
(and A is compact), the constraint correspondence y 7→ ILR (y) ∩ A is compact-valued
and upper hemicontinuous (w (Y, Y 0)-to-w (K × V,K 0 × V 0)): see, e.g., [34, 7.1.16]. So
C is w (Y, Y 0)-l.s.c. on B by the relevant part of Berge’s Maximum Theorem [6, VI.3:
Theorem 2], reoriented to minimization. Finally, C ≥ 0 by PSA 5. ¤
Lemma 21.5 (Semicontinuity of SRC in fixed quantities). Under the PSAs 10 and 11
in addition to PSAs 2, 3 and 5, the convex function CSR (·, ·, w) : Y ×K → R+ ∪ {+∞}
is (Y 0 ×K 0)-lower semicontinuous (on Y ×K), for each w ∈ V 0+.
Proof. This is proved like Lemmas 21.3 and 21.4: since the function C := CSR (·, ·, w) is
convex, it suffices to show that it is l.s.c. for the bounded weak* topology, i.e., that C
is weakly* l.s.c. on any norm-bounded set B ⊂ Y ×K = (Y 0 ×K 0)∗. And bounds on k
and on y imply a bound on the efficient v’s (which are the only ones that matter with
w ≥ 0). In precise terms, the set

A := clw(V,V 0)
[

(y,k)∈B

vmin ISR (y, k)

is w (V, V 0)-compact by PSA 11 and the Banach-Alaoglu Theorem; and for every (y, k) ∈
B

(21.6) CSR (y, k) := inf
v
{hw | vi : v ∈ ISR (y, k) ∩A}

by PSA 10. Since w ∈ V 0, the minimand in (21.6) is w (V, V 0)-l.s.c. (and actually con-
tinuous) in v. In addition, since Y is w(Y × K × V, Y 0 × K 0 × V 0)-closed (and A is
compact), the constraint correspondence (y, k) 7→ ISR (y, k) ∩ A is compact-valued and
upper hemicontinuous (w (Y ×K,Y 0 ×K 0)-to-w (V, V 0)): see, e.g., [34, 7.1.16]. So C is
w (Y ×K,Y 0 ×K 0)-l.s.c. on B by the relevant part of Berge’s Maximum Theorem [6,
VI.3: Theorem 2], reoriented to minimization. Finally, C ≥ 0 by PSA 5. ¤
So profit and cost are semicontinuous functions on the commodity space paired with

its pre-dual, on condition that the given price system lies in that predual space. On
the same condition, these functions are a fortiori semicontinuous for the pairing of the
commodity space with its dual (instead of the predual) as the price space. Since either
space (dual or predual) can serve as the range for the decision variable of the dual
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programme, the “predual”-semicontinuity does add to the results that would follow from
just the “dual”-semicontinuity of the optimal value. In ruling out a duality gap (and thus
ensuring that the marginal values are of Type One), the stronger property of “predual”-
semicontinuity means that the primal and the dual programmes have the same value
when the dual decision variable ranges only over the predual space (hence, a fortiori, also
when it ranges over the dual space).
In symbols, if (i) w ∈ V 0+, and (ii) p ∈ Y 0+ or (iii) r ∈ K 0

+ then, respectively:
(i)ΠSR (p, ·, w) isK 0-u.s.c. (and a fortiori alsoK∗-u.s.c.) onK, (ii)CSR (·, ·, w) is (Y 0 ×K 0)-
l.s.c. (and a fortiori also (Y ∗ ×K∗)-l.s.c.) on Y ×K, and (iii) CLR (·, r, w) is Y 0-l.s.c. (and
a fortiori also Y ∗-l.s.c.) on Y . In our notation for the dual values (Π, C) and the marginal
values (b∂kΠ, b∂kΠ, ∂y,kC, ∂y,kC), the cases of either the predual or the dual as the price
space are distinguished by the superscripts 0 and ∗–although the ∗ is suppressed from
∂∗ in [21], [24], [26] and [28]. (Both 0 and ∗ are also suppressed when the predual equals
the dual, e.g., when the space is finite-dimensional.) Since Y 0 ⊆ Y ∗, V 0 ⊆ V ∗ and K 0

⊆ K∗,

Π
0
SR (p, k, w) ≥ Π

∗
SR (p, k, w) = ΠSR (p, k, w) ≥ ΠSR (p, k, w)

C 0LR (y, r, w) ≤ C∗LR (y, r, w) = CLR (y, r, w) ≤ CLR (y, r, w)
C 0SR (y, k, w) ≤ C∗SR (y, k, w) = CSR (y, k, w) ≤ CSR (y, k, w)

for every p ∈ Y ∗, w ∈ V ∗ and r ∈ K∗–with equalities when p ∈ Y 0, w ∈ V 0 and r ∈ K 0

(by Lemmas 21.3—21.5 and Propositions 20.1—20.3). Then (Section 19) the solution set
for the “starred” dual (viz., (5.6), (5.5) or (5.4) with P = Y ∗, W = V ∗, R = K∗) is
equal to b∂∗kΠSR (p, k, w), ∂∗yCLR (y, r, w) or ∂∗y,kCSR (y, k, w). Likewise, the solution set
for the “primed” dual (viz., (5.6), (5.5) or (5.4) with P = Y 0, W = V 0, R = K 0) is
then equal to b∂0kΠSR, ∂0yCLR or ∂0y,kCSR–which always equals K 0 ∩ b∂∗kΠ, Y 0 ∩ ∂∗yCLR or
(Y 0 ×K 0)∩ ∂∗y,kCSR, by definition. It follows that any solutions to the “primed” dual are
exactly those solutions to the “starred” dual which do belong to the smaller, “primed”
space for the dual variable.103

Comment: Y 0-semicontinuity of C := CSR (·, k, w) is also useful in subdifferentiating
its conjugate, Π := ΠSR (·, k, w), as a function on Y ∗ but at a p ∈ Y 0 (with k and w
fixed). Namely,

(21.7)
C is Y 0-l.s.c. proper convex on Y

(and Π = C# on Y ∗)

)
⇒ ∂Π (p) = ∂

¡
Π|Y 0

¢
(p) for p ∈ Y 0

i.e., at any p ∈ Y 0 the subdifferential of Π: Y ∗ → R ∪ {+∞} can be evaluated after
restricting Π to the subspace Y 0 (which makes the task easier). This can be proved by
applying the Inversion Rule (C.31) to the cases of either Y 0 or Y ∗ as P , and comparing
the results. (In other words, it follows from the “reduced” version of Hotelling’s Lemma
(Lemma 19.21) applied to the cases of either Y 0 or Y ∗ as P .)

Comments (on the Proofs of Lemmas 21.3—21.5):
103This is of course true whenever the “primed” and “starred” dual values are equal, whether or not

the common dual value equals the primal value, e.g., whenever Π
0
SR = Π

∗
SR, whether or not this equals

ΠSR.
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(1) These proofs exemplify the advantage of using the bounded weak* topology to
exploit convexity: for a convex function C on a dual Banach space Y , the question
of weak* lower semicontinuity is reduced to bounded sets B ⊂ Y–even though
a bounded set is never a weak* neighbourhood (unless Y is finite-dimensional).
By itself, an application of Berge’s Theorem [6, VI.3: Theorem 2] can prove only
that C is weakly* l.s.c. on every ball B.104 The Krein-Smulian Theorem upgrades
this result to weak* l.s. continuity on Y (and not just on each B). To obtain a
continuity result on Y without this step, one would have to put the norm topology
on Y to make B a neighbourhood–and then the conclusion would be weaker, viz.,
only that C is norm-l.s.c. on Y (i.e., that it is Y ∗-l.s.c. but not that it is Y 0-l.s.c.).

(2) The bounded weak* topology can be equally useful in other contexts: e.g., in
[21] and [24] we use the Krein-Smulian Theorem to show that the production sets
for storage technologies are weakly* closed (in an L∞ space). In [25], we devise
another “localization” technique, and we combine the two for a simple proof that
the additively separable consumer utility is Mackey continuous on L∞+ .

(3) Since duality of programmes is symmetric, absence of a duality gap could also
be proved by showing that the dual value is semicontinuous in the dual para-
meter (instead of showing that the primal value is semicontinuous in the primal
parameter), i.e., by verifying Condition 3 (instead of 2) of Lemma 20.1, etc.

Comments (on the Production Set Assumptions):
(1) PSA 9 formalizes the notion that fixed inputs impose capacity constraints.105

(2) Unlike the fixed inputs, the variable inputs alone need not impose any bound on
kyk: see (15.1).

(3) Unlike the inputs k and v, which are always nonnegative by PSA 5, the “output”
can be a signed bundle y = y+−y−, where y± are the nonnegative and nonpositive
parts. This is convenient when, e.g., y represents a single good differentiated over
time, and the dated commodities cannot be classified as net inputs or net outputs
a priori. For example, the output from storage y is always signed, i.e., y+ 6= 0
6= y− unless y = 0: see (15.4).106

22. Solubility of cost and profit programmes

In addition to semicontinuity of ΠSR, CLR and CSR (which rules out duality gaps),
the PSAs also guarantee solubility of the primal programmes of SRP, LRC and SRC
optimization, when p, r and w are in the preduals (Y 0, K 0 and V 0). This is because the
relevant subsets of the constraint set (Y) are then weakly* compact (so Weierstrass’s
Extreme Value Theorem applies). This is next recorded formally.
104For Berge’s Theorem to apply, the (efficient) range of the decision variable must be contained in a

weak* compact that is independent of the parameter (y) as it ranges over a set B ⊂ Y–and so B must
be bounded. (The result stated in [44, Example 4’ after (5.13)] also applies, but it is a special case of
Berge’s.)
105PSAs 7, 9 and 11 make it possible (in Lemmas 21.3—21.5) to prove semicontinuity of profit and

costs at every (p, r, w) ≥ 0 (and not only at strictly positive prices as is done in [13] or [14], for finite-
dimensional spaces).
106When, by contrast, a signed y could arise only from free disposal, the good is essentially a net

output.
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Proposition 22.1 (Solubility of SRP programme). Under the Production Set Assump-
tions 3, 8 and 9,107 if (p,w) ∈ Y 0+×V 0+ and the short-run profit maximization programme
(3.6)—(3.7) is feasible, then it has a solution.

Proof. It is similar to the Proof of Lemma 21.3, but simpler. A fixed k imposes a bound
on the efficient combinations of y and v: in precise terms, the set

E (k) := clw(Y×V,Y 0×V 0) vmaxYSR (k)

is w (Y × V, Y 0 × V 0)-compact by PSA 9 and the Banach-Alaoglu Theorem, and it is
contained in YSR (k) by PSA 3. Since (p,w) ≥ 0,
(22.1) ΠSR (k) = sup

y, v
{hp | yi− hw | vi : (y,−v) ∈ E (k)}

by PSA 8 (as part of which, E (k) 6= ∅ if YSR (k) 6= ∅). Since (p, w) ∈ Y 0 × V 0, the maxi-
mand in (22.1) is w (Y × V, Y 0 × V 0)-u.s.c. (and actually continuous) in (y, v) jointly. So,
by Weierstrass’s Theorem, it attains its supremum on E (k), which equals its supremum
on YSR (k) by (22.1). ¤

Proposition 22.2 (Solubility of LRC programme). Under the Production Set Assump-
tions 3, 6 and 7,108 if (r, w) ∈ K 0

+ × V 0+ and the long-run cost minimization programme
(3.8)—(3.9) is feasible, then it has a solution.

Proof. Again, it is similar to the Proof of Lemma 21.4, but simpler. A fixed y imposes a
bound on the efficient combinations of k and v: in precise terms, the set

E (y) := clw(K×V,K0×V 0) vmin ILR (y)

is w (K × V,K 0 × V 0)-compact by PSA 7 and the Banach-Alaoglu Theorem, and it is
contained in ILR (y) by PSA 3. Since (r, w) ≥ 0,
(22.2) CLR (y) = inf

k,v
{hr | ki+ hw | vi : (k, v) ∈ E (y)}

by PSA 6 (as part of which, E (y) 6= ∅ if ILR (y) 6= ∅). Since (r, w) ∈ K 0 × V 0, the
minimand in (22.2) is w (K × V,K 0 × V 0)-l.s.c. (and actually continuous) in (k, v) jointly.
So, by Weierstrass’s Theorem, it attains its infimum on E (y), which equals its infimum
on ILR (y) by (22.2). ¤

Proposition 22.3 (Solubility of SRC programme). Under the Production Set Assump-
tions 3, 10 and 11,109 if w ∈ V 0+ and the short-run cost minimization programme (3.8)—
(3.9) is feasible, then it has a solution.

Proof. Again, it is similar to the Proof of Lemma 21.5, but simpler. A fixed (y, k) imposes
a bound on the efficient and v’s: in precise terms precise terms, the set

E (y, k) := clw(V,V 0) vmin ISR (y, k)

107Here, it suffices to assume PSA 9 for B = {k}, i.e., that vmaxYSR (k) is bounded for each k ∈ K.
108Here, it suffices to assume PSA 7 for B = {y}, i.e., that vmin ILR (y) is bounded for each y ∈ Y .
109Here, it suffices to assume PSA 7 for B = {(y, k)}, i.e., that vmin ISR (y, k) is bounded for each

y ∈ Y and k ∈ K.
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is w (V, V 0)-compact by PSA 11 and the Banach-Alaoglu Theorem, and it is contained in
ISR (y, k) by PSA 3. Since w ≥ 0,

(22.3) CSR (y, k) := inf
v
{hw | vi : v ∈ ISR (y, k)}

by PSA 10 (as part of which, E (y, k) 6= ∅ if ISR (y, k) 6= ∅). Since w ∈ K 0, the minimand
in (22.3) is w (V, V 0)-l.s.c. (and actually continuous) in v. So, by Weierstrass’s Theorem,
it attains its infimum on E (y, k), which equals its infimum on ISR (y, k) by (22.3). ¤

23. Continuity of profit or cost in the quantity variables and
solubility of the

shadow-pricing programmes

Slater’s Condition is sufficient for Type One continuity, and not just semicontinuity, of
the optimal value (albeit only locally, on a neighbourhood of a particular parameter point,
rather than globally as in Lemmas 21.3—21.5). Type One continuity of the primal value
guarantees not only that there is no duality gap but also that a dual solution exists (and
can be obtained as a cluster point of any sequence of approximate optima): see, e.g., [44,
Theorem 17]. As is spelt out next, this applies to the value function ΠSR (p, ·, w) when
its domain, K, carries the norm topology. (A weaker topology would not do because the
effective domain of ΠSR is typically K+, and to have a nonempty interior it must carry
the norm topology as well as have a nonempty core a.k.a. algebraic interior.)
A similar result is given for CLR (·, r, w)–but not for CSR (·, ·, w) because, without

modifications, it would be vacuous in the cases of most interest: see a Comment at the
end of this section.

Lemma 23.1 (Solubility of dual to SRP programme). Assume PSAs 8 and 9. If a k ∈ K
has a norm-neighbourhood N for which there exists a (y, v) such that

³
y,−ek,−v´ ∈ Y

for every ek ∈ N then, for each (p, w) ∈ Y ∗+ × V ∗+:
(1) The concave function ΠSR (p, ·, w) : K → R∪{−∞} is finite and norm-continuous

at k (and hence K∗-u.s.c. at k).110

(2) So b∂∗kΠSR (p, k, w) 6= ∅ (when K is paired with K∗ as R). Equivalently, the fixed-
input shadow-pricing programme (5.6) has a solution in the norm-dual K∗, and
its value equals ΠSR (p, k, w).

Proof. This is because Slater’s Condition, as formulated in [44, Theorem 18 (a)] for
generalized perturbed CPs, is met (when K is topologized by the norm). Spelt out,
this argument means here that the concave function ΠSR (p, ·, w) is locally bounded from
below (by the constant hp | yi − hw | vi, on N), so it is continuous: see, e.g., [18, 14A:
Theorem], [44, Theorem 8] or [48, 5.20]. Therefore, it has a supergradient in K∗ (by a
version of the Hahn-Banach Theorem): see, e.g., [18, 14B], [44, Theorem 11 (a)] or [48,
5.35]. And this means, by Remark 19.8 and Lemma 19.2 that: (i) the dual (5.6) has a
solution (in K∗), and (ii) ΠSR = ΠSR at (p, k, w). ¤

110As in Lemma 21.3, ΠSR < +∞ everywhere by PSAs 8 and 9 with B = {k}.
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Lemma 23.2 (Solubility of dual to LRC programme). Assume PSAs 6 and 7. If a y ∈ Y
has a norm-neighbourhood N for which there exists a (k, v) such that (ey,−k,−v) ∈ Y for
every ey ∈ N then, for each (r, w) ∈ K∗

+ × V ∗+:
(1) The convex function CLR (·, r, w) : Y → R+∪{+∞} is finite and norm-continuous

at y (and hence Y ∗-l.s.c. at y).111

(2) So ∂∗yCLR (y, r, w) 6= ∅ (when Y is paired with Y ∗ as P ). Equivalently, the output
shadow-pricing programme (5.5) has a solution in the norm-dual Y ∗, and its value
equals CLR (y, r, w).

Proof. This is because Slater’s Condition, as formulated in [44, Theorem 18 (a)] for
generalized perturbed CPs, is met (when Y is topologized by the norm). Spelt out, this
means here that the convex function CLR (·, r, w) is locally bounded from above (by the
constant hr | ki + hw | vi, on N), so it is continuous: see, e.g., [18, 14A: Theorem], [44,
Theorem 8] or [48, 5.20]. Therefore, it has a subgradient in Y ∗ (by a version of the
Hahn-Banach Theorem): see, e.g., [18, 14B], [44, Theorem 11 (a)] or [48, 5.35]. And this
means, by Remark 19.10 and Lemma 19.4 that: (i) the dual (5.5) has a solution (in Y ∗),
and (ii) CSR = CSR at (y, r, w). ¤
Comments:
(1) With CSR (·, ·, w) as the value function, Slater’s Condition usually fails at efficient

points of Y × K, e.g., when k imposes an active capacity constraint on y: if
supt y (t) = k, it is impossible to maintain the constraint y ≤ k under small but
otherwise arbitrary variations of (y, k). In conjunction with additional arguments,
however, Slater’s Condition may still be of use because it may hold for a modified
problem (in which the effective domain CSR is artificially extended): see [24].

(2) That b∂∗Π## (k) 6= ∅, where Π means ΠSR (p, ·, w)–i.e., that the dual (5.6) is
soluble–can also be shown by minimizing hr | ki− Π# (r) over r: the function’s
sublevel sets are w (K∗, K)-compact if Π is norm-continuous at k (i.e., if the
primal value is continuous at the given primal parameter point): see, e.g., [36,
6.3.9], [42, 14.2.2 with 10.1] or [44, Theorem 10 (b)]. So a minimum point exists
by Weierstrass’s Theorem, and it belongs to b∂∗Π## (k) by the Derivative Prop-
erty (C.33) reoriented for concave conjugacy. The Hahn-Banach Theorem is still
needed to show that there is no duality gap, i.e., that the minimum in question,
Π## (k), actually equals Π (k)–or, equivalently, that b∂∗Π (k) = b∂∗Π## (k) 6= ∅.
This is a roundabout argument, but it provides a check as well as stating another
result (viz., the duality between the continuity and inf-compactness properties).

24. Long-run producer optimum with conditionally fixed technical
coefficients

Such technologies have already been encountered in the context of electricity: both
thermal generation and pumped storage, though not hydro, are examples (Section 15).
More generally, a production technique has conditionally fixed coefficients (c.f.c.) if
the conditional input demands are price-independent, i.e., if the cost-minimizing input
quantities are functions not of the input prices (r, w), but of the output bundle y alone.
111As in Lemma 21.4, CLR ≥ 0 everywhere by PSA 5.



SHORT-RUN APPROACH TO LONG-RUN EQUILIBRIUM 113

Denoted by ǩφ (y) and v̌ξ (y), these are called the input requirements for a fixed input
φ ∈ Φ and a variable input ξ ∈ Ξ (since the input requirement set is an orthant with¡
ǩ (y) , v̌ (y)

¢
as its vertex). There may also be a constraint that applies to any producible

output bundle in the long as in the short run (e.g.,
R
y dt = 0 when y is the net flow from

storage, as in (15.4)). In these terms, the long-run production set for a c.f.c. technique
is the convex cone

(24.1) Y =
©
(y,−k,−v) : ǩ (y) ≤ k, v̌ (y) ≤ v, y ∈ Y0

ª
where each of the (real-valued) functions ǩφ and v̌ξ is: (i) sublinear, i.e., convex and
positively linearly homogeneous (p.l.h.) on Y , and (ii) nonnegative on Y0, which is a
convex cone in the output space Y . Usually

(24.2) Y0 = {y : haj | yi = 0, bl (y) ≥ 0 for j ∈ J, l ∈ L}
where each aj is a linear functional, and each bl is a superlinear (p.l.h. concave) function
on Y . The polar of Y0 is then

Y ◦0 =

(X
j

αjaj −
X
l

βlb∂bl (0) : α ∈ RJ , β ∈ RL, β ≥ 0
)
.

The finite sets J and L may both be empty (in which case Y0 = Y and Y ◦0 = {0}). Note,
also, that unless the output is a scalar (i.e., unless Y = R), this need not be an ordinary
fixed-coefficients technology: see also the Comment at the end of this section.
A direct route to characterizing a long-run producer optimum in terms of the functions

ǩ and v̌ is to note that, for r ≥ 0 and w ≥ 0,
(24.3) CLR (y, r, w) = r · ǩ (y) + w · v̌ (y) + δ (y | Y0)
and to use either the LRC optimization system (6.4)—(6.6) or its differential equivalent
(8.8)—(8.9) or, easiest of all, the conjunction of (6.4) and (8.9). In the c.f.c. case, it is
no problem to split the joint programme (3.8)—(3.9) for k and v in (6.4): the optimal
k’s and v’s can be found separately from each other (as functions of y); equivalently,
∂r,wCLR = ∂rCLR × ∂wCLR. When r À 0 and w À 0 (and y ∈ Y0), the unique optima
are ǩ (y) and v̌ (y)–so our use of this notation in the context of a c.f.c. technique is
essentially consistent with the earlier meaning of v̌ (y, k, w) and ǩ (y, r, w) for a general
technology (Sections 4 and 11 after (11.14)). However, when r and w are nonnegative but
not strictly positive, the solution set for (6.4) is not just the single point

¡
ǩ (y) , v̌ (y)

¢
:

it is the Cartesian product of the sub-orthants

Ǩ (y, r) :=
©
k : k ≥ ǩ (y) , r ·

¡
k − ǩ (y)

¢
= 0

ª
V̌ (y, r) := {v : v ≥ v̌ (y) , w · (v − v̌ (y)) = 0} .

So a bundle (y,−k,−v) is a long-run producer optimum at prices (p, r, w) if and only if

k ≥ ǩ (y) , y ∈ Y0 and v ≥ v̌ (y)(24.4)

r ≥ 0 and w ≥ 0(24.5)

r ·
¡
k − ǩ (y)

¢
= 0 and w · (v − v̌ (y)) = 0(24.6)

p ∈ r∂ǩ (y) + w∂v̌ (y) + N (y | Y0)(24.7)
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where N(y | Y0) is the outward normal cone to Y0 at y, i.e.,112

N(y | Y0) := ∂δ (y | Y0) = {λ ∈ Y ◦0 : hλ | yi = 0}(24.8)

=

⎧⎨⎩X
j

αjaj −
X
l:βl 6=0

βlb∂bl (y) : α ∈ RJ , β ∈ RL, β ≥ 0, β · b (y) = 0
⎫⎬⎭

and r∂ǩ (y) + w∂v̌ (y) :=
X

φ: rφ 6=0
rφ∂ǩφ (y) +

X
ξ:wξ 6=0

wξ∂v̌ξ (y) .

Comment: The qualifications βl 6= 0, rφ 6= 0 and wξ 6= 0 in (24.8), and later in
Lemma 25.1, may seem superfluous–and so they are when Y and P , the output quantity
and price spaces, are finite-dimensional (because, if ǩ is a finite convex function on Y ,
then ∂ǩ (y) 6= ∅, and the term 0∂ǩ (y) = {0} has no effect on any sum that contains it).
But when P is infinite-dimensional, the P -part of the algebraic subdifferential of a finite
convex function ǩ on Y can be empty (i.e., ∂ǩ (y) := P ∩ ∂aǩ (y) can be the empty set
∅ even though ∂aǩ (y) 6= ∅).113 Without the restriction to nonzero coefficients, the term
0∂ǩ (y) = 0∅ = ∅ would then make the whole sum empty, instead of having no effect.
The sum (24.7) decomposes a marginal cost p ∈ ∂yCLR into the sum of operating

charges and capital charges (plus a term arising from Y0 if Y0 6= Y ).
The system (24.4)—(24.7) can be recognized as the Kuhn-Tucker Optimality Conditions

for any of the programme pairs–either SRP or LRC or SRC optimization together with
the dual. For the case of SRP, this is proved formally in Proposition 25.3 (Section 25).
The roles of the variables (p, y; r, k; w, v)–as primal/dual decisions or parameters–
differ from case to case, of course (Sections 3 and 5).
Although this system is easiest to derive by using the LRC programme and function

(24.3) to find (k, v) and p in terms of (y, r, w), the short-run profit approach requires
inverting this map partially to find (y, v) and r (given p, k and w). Since this means
solving the SRP programme with its dual, it is of interest to spell out both programmes
in terms of ǩ, v̌ and Y0 (even though the primal is obvious, and the dual might be left
implicit because, whatever it is, a characterization of optimality for the programme pair
is already known, from (24.4)—(24.7)).
Since the short-run cost is known–it is w · v̌ (y) whenever the SRC programme is

feasible and w ≥ 0–we focus on the reduced SRP programme, introduced in (3.13) and
(4.2). Since the fixed capacities k are thought of as a plant, it is called the (reduced)
profit-maximizing plant operation programme. It can be formulated as the following CP
(an ordinary CP with an “abstract” constraint, the set Y0):

Given p, k and w ≥ 0(24.9)

maximize hp | yi− w · v̌ (y) over y(24.10)

112At 0, the normal cone equals the polar cone Y ◦0 . When Y0 is a vector subspace of Y , as in (15.5),
the normal cone is the same at every y: it is the annihilator space (a.k.a. orthogonal complement) Y ⊥0 .
113For example, the function ǩ (y) := EssSup (y) := ess supt y (t), for y ∈ Y := L∞ [0, T ], has no

subgradient in P := L1 [0, T ] at any y with meas {t : y (t) = EssSup (y)} = 0. This is because γ ∈
L1 ∩ ∂a EssSup (y) if and only if γ ≥ 0,

R T
0
γ (t) dt = 1 and γ = 0 on {t : y (t) < EssSup (y)}: see, e.g.,

[32, 4.5.1: Example 3].
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subject to: ǩ (y) ≤ k and y ∈ Y0.(24.11)

The dual programme (5.13)—(5.14) consists in plant valuation; this is the standard dual
of (24.9)—(24.11), and so its variables (r) are the Lagrange multipliers for the primal
inequality constraints. It can be formulated as the following CP:

Given p, k and w ≥ 0(24.12)

minimize r · k over r(24.13)

subject to: r ≥ 0(24.14)

p ∈ r∂ǩ (0) + w∂v̌ (0) + Y ◦0 .(24.15)

Formally, this is because the condition (p, r, w) ∈ Y◦ of (5.14) can be expanded into
(24.15) when Y is given by (24.1): see Lemma 25.1.

Comment (on the Kuhn-Tucker and the FFE Conditions with a c.f.c. technique):
(1) The Kuhn-Tucker Conditions on y and r to solve the reduced operation pro-

gramme (24.9)—(24.11) and its dual (24.12)—(24.15) are also (24.4)—(24.7), but
with v = v̌ (y), which makes parts of (24.4) and (24.6) redundant (and w ≥ 0 is
now an assumption needed for the reduction).

(2) For a c.f.c. technique, the FFE characterization of a solution pair (as a pair of fea-
sible points giving equal values to the primal maximand and the dual minimand)
is:114

k ≥ ǩ (y) , y ∈ Y0 and v ≥ v̌ (y)(24.16)

r ≥ 0 and w ≥ 0(24.17)

p ∈ r∂ǩ (0) + w∂v̌ (0) + Y ◦0(24.18)

hp | yi = r · k + w · v.(24.19)

This system’s equivalence to the Kuhn-Tucker Conditions (24.4)—(24.7) can be
seen from a variant of Euler’s Theorem on p.l.h. functions (C.41): applied to each
ǩφ and v̌ξ (in place of C), it shows that the LRMC pricing condition (24.7) can be
equivalently recast as the conjunction of price consistency (24.18) and the LRC
recovery condition

(24.20) hp | yi = r · ǩ (y) + w · v̌ (y) .
And, under the feasibility conditions ((24.16), (24.17) and (24.18)),

hp | yi ≤ r · ǩ (y) + w · v̌ (y) ≤ r · k + w · v
so (24.20) and (24.6) together are equivalent to (24.19), i.e., to the equality of
values at the two feasible points.

(3) The FFE Conditions on y and r to solve the reduced operation programmes
(24.9)—(24.11) and its dual (24.12)—(24.15) are also (24.16)—(24.19), but with with
v = v̌ (y).

114To see that (24.16)—(24.19) is indeed the FFE system, recall from (3.5) that primal and dual
feasibilities mean that (y,−k,−v) ∈ Y and (p, r,w) ∈ Y◦. In the c.f.c. case, the two feasibility conditions
expand into (24.16) and (24.17)—(24.18).
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(4) The Kuhn-Tucker Conditions (24.4)—(24.7) can also be derived by using, instead
of the LRC function (24.3), the SRC function

(24.21) CSR (y, k, w) =

(
w · v̌ (y) if ǩ (y) ≤ k and y ∈ Y0
+∞ otherwise

to find v and (p,−r) in terms of (y, k, w) from the conjunction of (6.8) and
(8.13). When all the capacity constraints are active (i.e., kφ = ǩφ (y) for each φ),
subdifferentiation of (24.21) gives115

(24.22) ∂y,kCSR (y, k, w) =
©¡
w∂v̌ (y) + r∂ǩ (y) + λ,−r

¢
: r ≥ 0, λ ∈ N(y | Y0)

ª
.

Since the function CSR represents, by (24.21), the capacity constraints as well as
the variable cost actually incurred, the sum representing the (multi-valued) SRMC
in (24.22) contains capacity premia κφ ∈ rφ∂ǩφ (y), where each rφ is nonnegative
but otherwise completely undetermined by pure short-run cost calculations.116

This is the short-run counterpart of the LRMC’s decomposition (24.7).
(5) The inputs of a c.f.c. technique are perfect complements, in the sense that no

input substitution is possible after fixing the output bundle y.117 With y fixed,
the rate of input substitution is either undefined or completely indeterminate if
regarded as multi-valued.118 Remarkably, perfect complements can substitute for
one another in product-value terms; i.e., the maximum revenue

(24.23) sup
y
{hp | yi : (y,−k,−v) ∈ Y}

can have ordinary derivatives w.r.t. each input quantity, kφ or vξ. Then, a fortiori,
the (maximum) SRP function is also differentiable in k–and so the capital inputs
have definite and separate marginal values, whose ratio is a well-defined rate of
substitution (∂ΠSR/∂k1 : ∂ΠSR/∂k2). This is so with, e.g., the storage technique
(15.4) when the good’s price is a continuous function of time.119 Such a substi-
tution between perfectly complementary inputs would, of course, be impossible
with a homogeneous, one-dimensional output good: in such a case the output
from an input bundle (k, v) could only have the familiar fixed-coefficients form
min {k1, . . . , v1, . . .}. But with a multi-dimensional, differentiated output good,
perfect complementarity would imply fixed proportions between inputs only if
the output proportions were fixed–and they are not. With output proportions
allowed to vary, it is the output price system p that aggregates the output bundle
y into a scalar revenue; and, given a suitable p, substitution in revenue terms is
possible. With multiple outputs, the inputs can be perfect complements without,
like a nut and bolt, having to be used in a fixed proportion.

115The term corresponding to any inactive constraint must be deleted.
116This term is an (outward) normal vector to the intersection of the sublevel sets of ǩφ’s in (24.21):

see, e.g., [42, 23.7.1 and 23.8.1] or [32, 4.3: Propositions 1 and 2].
117This is the borderline case between Hicks-Allen complements and substitutes: see, e.g., [47, 1.F.d].
118Formally, the multi-valued rate of substitution equals R+ = [0,+∞).
119Shown in [21] or [27], the result is summarized and used in Sections 16 and 17 here.
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25. Derivation of dual programmes and of the Kuhn-Tucker Conditions
for c.f.c. techniques (proofs for Section 24)

The cones polar and normal to the production cone of a technique with conditionally
fixed coefficients are calculated next. The formulae can be used to specialize the dual
programmes of Section 5 to such a technology. In particular, we prove that the dual
of the SRP programme is indeed (24.12)—(24.15). We also show that the Kuhn-Tucker
Conditions are indeed (24.4)—(24.7).
Lemma 25.1 (Polar and normal to production cone with c.f.c.). Assume that the pro-
duction set Y has the form (24.1)—(24.2), where:

(1) ǩφ: Y → R and v̌ξ: Y → R are sublinear (p.l.h. convex), aj: Y → R is linear, and
bl: Y → R is superlinear (p.l.h. concave), with ǩφ (0) = 0, v̌ξ (0) = 0 and bl (0)
= 0 (for each φ ∈ Φ, ξ ∈ Ξ, j ∈ J and l ∈ L, which are finite sets).

(2) There exists a y0 ∈ Y such that haj | y0i = 0 for each j ∈ J and bl (y0) > 0 for
each l ∈ L.120

(3) All but at most one of the functions ǩφ, v̌ξ and bl (for φ ∈ Φ, ξ ∈ Ξ and l ∈ L)
are continuous for m(Y, P ), the strongest locally convex topology that makes P
the continuous dual of Y . All the linear functionals aj belong to P (for j ∈ J).121

Then, for every (y,−k,−v) ∈ Y,

N(y | Y0) =

⎧⎨⎩X
j

αjaj −
X
l:βl 6=0

βlb∂bl (y) : α ∈ RJ , β ∈ RL+, β · b (y) = 0
⎫⎬⎭(25.1)

Y ◦0 =

⎧⎨⎩X
j

αjaj −
X
l:βl 6=0

βlb∂bl (0) : α ∈ RJ , β ∈ RL+
⎫⎬⎭(25.2)

N(y,−k,−v | Y) =
©
(p, r, w) ∈ P ×RΦ

+ ×RΞ
+ : (24.6) and (24.7) hold

ª
(25.3)

Y◦ =
©
(p, r, w) ∈ P ×RΦ

+ ×RΞ
+ : p ∈ r∂ǩ (0) + w∂v̌ (0) + Y ◦0

ª
.(25.4)

Proof. It is based on the additivity of subdifferentiation (C.15), applied to the normal
cone operation N := ∂δ as per (C.16), and on a representation of normal cones to sets
of two special forms: (i) the kernel of a linear map a = (aj)j∈J : Y → RJ , and (ii) the
superlevel set of a continuous concave function, such as {y : bl (y) ≥ 0}, abbreviated to
{bl ≥ 0}.
Unless a = 0, this application of the additivity property (C.15) requires continuity of

all the functions ǩφ, v̌ξ and bl (since the one function allowed to be discontinuous has
to be δ (· | ker a)). Therefore, (25.1)—(25.4) are first proved in the purely algebraic form,
i.e., for the algebraic subdifferential ∂a and normal cone Na (instead of ∂ := P ∩ ∂a

and N := P ∩ Na). In other words, the strongest locally convex topology, TSLC, is
120When y is a decision variable, as in the SRP programme, this is Slater’s Condition on the constraints

defining Y0.
121For a linear functional aj , m(Y, P )-continuity is equivalent to w (Y, P )-continuity (and it means

simply that aj ∈ P ). But a concave function (bl) or a convex function (ǩφ, v̌ξ) can be m(Y,P )-
continuous (and hence w (Y, P )-u.s.c. or l.s.c., respectively) without being w (Y,P )-continuous. The
weak and Mackey topologies are also used, and briefly discussed, in Section 20.
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put on Y to start with. This makes every finite convex function continuous, and hence
subdifferentiable by (C.19) when Y is paired with its algebraic dual Y a. (See, e.g., [5,
V.3.3 (d)] or deduce from [18, Exercise 2.10 (g)].) Since TSLC = m(Y, Y a), its use amounts
to replacing P by Y a to start with.
By Assumption 1, each bl is TSLC-continuous (everywhere on Y ), so (C.16) applies to

show that, for every y ∈ Y0 = {a = 0} ∩
T
l {bl ≥ 0},

Na (y | Y0) = Na (y | ker a) +
X
l∈L
Na (y | {y0 : bl (y0) ≥ 0})(25.5)

= span {aj : j ∈ J}−
X

l: bl(y)=0

cone b∂abl (y)(25.6)

by: (i) the Factorization Lemma (a.k.a. Sard’s Quotient Theorem) given in, e.g., [18,
21A] and [32, 0.1.4: Corollary],122 and (ii) the formula for the normal cone to a sublevel
set of a convex function (reoriented to a concave function’s superlevel set), which is given
in, e.g., [32, 4.3: Proposition 2], [42, 23.7.1] and [48, 7.8]. In other words, p ∈ Na (y | Y0)
if and only if p =

P
j αjaj −

P
l βl
b∂abl (y) for some α and β ≥ 0 with β · b (y) = 0. This

proves (25.1); and (25.2) is a case of (25.1) for y = 0 (since Y ◦a0 = Na (0 | Y0)).
Note that both the decomposition (25.5) and the representation (25.6) rely on Assump-

tion 2. First, it guarantees that all but one of the sets in question have a common interior
point that also lies in the other set: y0 ∈ {bl > 0} = cor {bl ≥ 0} = intY,TSLC {bl ≥ 0},
and y0 ∈ ker a =

T
j ker (aj).

123 So (C.16) applies to give (25.5). Second, the existence of
a point y0 satisfying the inequality strictly is what validates the formula for the normal
cone, which gives the second term in (25.6).
The same arguments apply to Y, which is the intersection of Y0 × RΦ × RΞ with the

sublevel sets of ǩφ (y) − kφ, etc., as functions of (y,−k,−v). Their subdifferentials are:
∂aǩφ × {(0, . . . , 1, 0, . . .)} × {(0, . . . , 0)}, etc. And the cardΦ + cardΞ sublevel sets do
have a common interior point that lies in Y0 × RΦ × RΞ: e.g., (0,−k,−v) with any
(k, v) À 0 will do (since each ǩφ or v̌ξ is TSLC-continuous by Assumption 1). So, for
every (y,−k,−v) ∈ Y, one has (p, r, w) ∈ Na (y,−k,−v | Y) if and only if: r ≥ 0, w ≥ 0,
r ·
¡
k − ǩ (y)

¢
= 0, w · (v − v̌ (y)) = 0 and p ∈ r∂aǩ (y) + w∂av̌ (y) + Na (y | Y0). This

proves (25.3); and (25.4) is a case of (25.3) for y = 0, k = 0 and v = 0.
Now that (25.1)—(25.4) have been proved for P = Y a, their extension to any P follows

from Assumption 3 and the fact that if vectors p2, . . . , pn all belong to P then: p1+. . .+pn
∈ P if and only if p1 ∈ P . By Assumption 3 and (C.19), all but at most one of the
algebraic subdifferentials–∂aǩφ (y), ∂av̌ξ (y), b∂abl (y)–lie wholly in P . So (with the
argument y suppressed in the intermediate sums)

P ∩
ÃX

φ

rφ∂
aǩφ (y) +

X
ξ

wξ∂
av̌ξ (y) +

X
j

αjaj −
X
l

βlb∂abl (y)
!

122[42, 22.3.1] and [48, 4.19] give only Farkas’s Lemma, but this contains the Factorization Lemma.
123For the strongest locally convex topology, the interior of a convex set equals the entire core, i.e., if

a Z ⊆ Y is convex then intY,TSLC Z = corZ: see, e.g., [5, V.3.3 (b)] or [18, Exercise 2.10 (g)].
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=
X
φ

P ∩ rφ∂aǩφ +
X
ξ

P ∩ wξ∂
av̌ξ +

X
j

αjaj −
X
l

P ∩ βlb∂abl
=
X

φ: rφ 6=0
rφ
¡
P ∩ ∂aǩφ

¢
+
X

ξ:wξ 6=0
wξ (P ∩ ∂av̌ξ) +

X
j

αjaj −
X
l:βl 6=0

βl

³
P ∩ b∂abl´

=
X

φ: rφ 6=0
rφ∂ǩφ (y) +

X
ξ:wξ 6=0

wξ∂v̌ξ (y) +
X
j

αjaj −
X
l:βl 6=0

βlb∂bl (y)
where: the last (third) equality holds by definition (∂ := P ∩ ∂a), and the penultimate
(second) equality holds because P ∩ %D = % (P ∩D) for every D ⊆ Y a and every real
number % 6= 0,124 whilst P ∩ 0D = {0} for every D 6= ∅; this is applied to D = ∂aǩφ (y),
∂av̌ξ (y), b∂abl (y). This shows that (25.3)—(25.4) hold as stated (i.e., also when P 6= Y a
in ∂ := P ∩ ∂a and N := P ∩Na).
With all the functions ǩφ and v̌ξ left out (or replaced by zeros), the same arguments

derive (25.1)—(25.2) for a general space P from the case of P = Y a. ¤

The formula for Y◦ can be used to spell out all the dual programmes (when Y is a
c.f.c. technique).

Corollary 25.2 (Dual to SRP programme with c.f.c.). On the assumptions of Lemma
25.1, the dual to the profit-maximizing operation programme (24.9)—(24.11), with k as
the primal parameter, is the plant valuation programme (24.12)—(24.15), with Y ◦0 given
by (25.2).

Proof. Apply Proposition 18.1 and (25.4) with (25.2). ¤

As has already been noted (in a Comment in Section 24), the formula (25.4) for Y◦
shows also that the system (24.16)—(24.19) is the FFE characterization of a solution pair
(to the SRP or LRC or SRC programme together with its dual). And, by using Euler’s
Theorem, this FFE characterization has been proven equivalent to (24.4)—(24.7). What
still remains to be shown is that the latter system, which has already been referred to
as the Kuhn-Tucker Conditions, is indeed an expansion of the Kuhn-Tucker Lagrangian
saddle-point condition. This is next done for the SRP programme (the LRC and SRC
cases being similar). The identification of (24.4)—(24.7) as the saddle-point condition–
which is known, from general theory, to be equivalent to optimality and absence of a
duality gap–will also reprove its equivalence to (24.16)—(24.19) as a case of the equiva-
lence between Kuhn-Tucker and FFE Conditions (instead of the earlier, problem-specific
argument based on Euler’s Theorem).

124For % = 0, this fails if and only if D 6= ∅ but P ∩D = ∅ (in which case P ∩0D = {0} but 0 (P ∩D)
= ∅).
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For the profit-maximizing operation programme (24.9)—(24.11), the Lagrange function
(of the primal variable y and the dual variable r) is125

(25.7) L (y, r) :=

⎧⎪⎪⎨⎪⎪⎩
hp | yi− w · v̌ (y) + r ·

¡
k − ǩ (y)

¢
if y ∈ Y0 and r ≥ 0

+∞ if y ∈ Y0 and r ¤ 0
−∞ if y /∈ Y0

.

Proposition 25.3 (Saddle-point condition for SRP programme with c.f.c.). On the as-
sumptions of Lemma 25.1, and given any (p, k, w) ∈ P×RΦ

+×RΞ
+, the following conditions

on a pair (y, r) ∈ Y ×RΦ, are equivalent to one another:
(1) y and r are solutions of equal value to the programmes of profit-maximizing op-

eration (24.9)—(24.11) and of plant valuation (24.12)—(24.15).
(2) (y, r) is a saddle point (maximum-minimum point) of the Lagrange function L

defined by (25.7), i.e., 0 ∈ b∂yL (y, r) and 0 ∈ ∂rL (y, r).
(3) (y, r), together with v = v̌ (y), meets Conditions (24.4)—(24.7).

Proof. A (y, r) is a pair of solutions with equal values if and only if it is a saddle point
of L: see, e.g., [44, Theorem 15 (e) and (f)]. So Conditions 1 and 2 are equivalent.
Next, note that: if 0 ∈ b∂yL then y ∈ Y0; and if 0 ∈ ∂rL then r ≥ 0. So the task is

to show that Conditions 2 and 3 are equivalent when y ∈ Y0 and r ≥ 0. The inclusion
0 ∈ ∂rL then translates into: k ≥ ǩ (y) and kφ = ǩφ (y) if rφ > 0, which are (24.4)—(24.6).
And (24.7) comes from expanding the inclusion

0 ∈ b∂yL (y, r) = p− ∂
¡
r · ǩ + w · v̌ + δ (· | Y0)

¢
(y) .

It remains to be shown that this sum can be subdifferentiated term by term (and then
apply (25.1) to expand ∂δ (y | Y0) = N (y | Y0)). This is done in the same way as in the
Proof of Lemma 25.1. First, note that

∂a
¡
r · ǩ + w · v̌ + δ (· | Y0)

¢
(y) = ∂a

¡
r · ǩ

¢
(y) + ∂a (w · v̌) (y) + ∂aδ (y | Y0)(25.8)

= r∂aǩ (y) + w∂av̌ (y) + Na (y | Y0)

for every y ∈ Y0 (for y /∈ Y0, both sides equal ∅). This is because each ǩφ or v̌ξ, being a
finite convex function, is TSLC-continuous (everywhere on Y ). The only other function,
δ (· | Y0), may have no point of continuity, but this does not matter: since all but one of
these functions are continuous, the algebraic subdifferential ∂a is an additive operator by
(C.15). And it is p.l.h. by (C.17) with (C.19).
The additivity of ∂ := P ∩ ∂a follows from that of ∂a by using Assumption 3 on

the functions involved, as in the Proof of Lemma 25.1. This is only sketched. Say, for
simplicity, that L = ∅, i.e., Y0 = ker a and so Y ◦0 = span {a} ⊆ P . All but at most one
of the sets ∂aǩφ (y) and ∂av̌ξ (y) also lie wholly in P , by (C.19). So the sum of their
elements (one from each set) belongs to P if and only if each term does. (If p2, . . . , pn
all belong to P then: p1 + . . . + pn ∈ P if and only if p1 ∈ P .) This means that (25.8)
holds also with ∂ := P ∩ ∂a in place of ∂a. ¤
125This is a case of the ordinary Lagrangian (with Y0 as an “abstract” constraint, unpriced by L):

see, e.g., [44, (4.4)], where it is derived from the generalized Lagrangian defined in [44, (4.2)].
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Comments:
(1) Instead of deriving the dual programme (24.12)—(24.15) straight from the primal

(as in the Proof of Proposition 18.1, applied in the earlier Proof of Corollary 25.2),
one can obtain the dual through the Lagrange function–since the dual to a
maximization programme consists in minimizing, over the dual variables, the
supremum of the Lagrange function over the primal variables: see, e.g., [44, (4.6)
or Example 1’: (5.1)]. Here, this means minimizing supy L (y, r) over r. Denote126

ΠExc (y) := hp | yi− w · v̌ (y)− r · ǩ (y) .
For r ≥ 0, supy L equals r ·k+supy∈Y0 ΠExc. Since ΠExc is p.l.h. in y, its supremum
is either 0 or +∞, and it is 0 if and only if 0 ∈ ∂yΠExc (0) + ∂δ (0 | Y0). This
inclusion translates into (24.15). The additivity of ∂ must be verified as before
(in the Proof of Lemma 25.1).

(2) Three variations on the above Lagrangian L are possible but only one of them is
useful:
(a) Although it is simpler to reduce the problem by using the obvious cost-

minimizing solution v = v̌ (y) for any variable inputs, one could retain the
constraint v ≤ v̌ (y) and apply the Lagrangian method to the joint SRP
programme for y and v. Within the intrinsic parameterization (i.e., when
only p, y, r, k, w, v serve as parameters and variables), this inequality could
only be treated as another unparameterized “abstract” constraint like y ∈ Y0
(since y and v are variables and not parameters of the SRP programme). The
resulting Lagrangian would be just like (25.7), only with v ≤ v̌ (y) adjoined
to y ∈ Y0 as another abstract constraint; and the Kuhn-Tucker Conditions
would be the same, viz., (24.4)—(24.7).

(b) The parameterization could of course be extended by rewriting this constraint
as v − v̌ (y) ≤ ζ, with ζ as an extrinsic primal parameter varying around 0
and paired with a Lagrange multiplierm, say. But this would only needlessly
complicate the Lagrangian to: L (y, v; r,m) = hp | yi−w ·v+m ·(v − v̌ (y))+
r ·
¡
k − ǩ (y)

¢
for y ∈ Y0 and r ≥ 0. At a saddle point, m = w from the FOC

that 0 = ∇vL–which reduces L back to (25.7).
(c) By contrast, it would be sensible to parameterize the constraints defining Y0

in (24.2) to have

(25.9) haj | yi = ζ 0j and bl (y) ≥ ζ 00l .

In any programme for y subject to y ∈ Y0, this would give a marginal-value
interpretation to the coefficients αj and βl in (25.1), since these would be the
extrinsic Lagrange multipliers paired with the extrinsic parameters ζ 0j and ζ

00
l .

In particular, for the profit-maximizing operation programme (24.9)—(24.11),
this would mean that ∂ΠSR/∂ζ

0
j = αj and ∂ΠSR/∂ζ

00
l = βl.

127 For example,

126ΠExc (y) is the excess a.k.a. pure profit from the output y (i.e., revenue at prices p less minimum
input cost at prices r and w).
127The partial derivatives (∂ΠSR/∂ζ) exist if the αj and βl associated by (25.1) with the optimal y

are unique. If not, the derivative property still holds for the superdifferential, i.e., b∂ζ0,ζ00Π contains each
(α,β) that satisfies (25.1) for some optimal y (and hence for every optimal y).
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in the case of the storage technology (15.4), the constraint
R
y (t) dt = 0 is

varied to
R
y (t) dt = ζ to interpret the constant term, λ, of the good’s price

as ∂ΠSR/∂ζ (at ζ = 0); the price decomposition (16.9) is a case of (24.7)
with (24.8).

(3) Instead of obtaining Y◦ from a formula for N(· | Y) evaluated at (0, 0, 0) as in the
Proof of Lemma 25.1, one can calculate the polar directly: from (3.4) and (24.1),
(p, r, w) ∈ Y◦ if and only if the conditions y ∈ Y0, ǩ (y) ≤ k and v̌ (y) ≤ v imply
that hp | yi ≤ r · k+w · v. This, in turn, is equivalent to: r ≥ 0, w ≥ 0, and hp | yi
≤ r · ǩ (y) +w · v̌ (y) + δ (y | Y0) for every y. Since ǩ, v̌ and δ (· | Y0) all vanish at
y = 0, the last inequality can be restated as: p ∈ ∂

¡
rǩ + w∂v̌ + ∂δ (· | Y0)

¢
(0).

To obtain (25.4), this sum is subdifferentiated term by term (as is done above
from (25.8) on).

26. Verification of assumptions for techniques with conditionally fixed
coefficients

To apply the results of Sections 21 to 23 (which rule out duality gaps and ensure that
both primal and dual programmes are soluble), one needs to verify the Production Set
Assumptions of Section 21. This is next done for c.f.c. techniques, when the output space
Y is the dual of a Banach lattice Y 0.

Lemma 26.1 (Properties of production set with c.f.c.). Assume that Y is given by (24.1),
i.e., that (y,−k,−v) ∈ Y if and only if

ǩ (y) ≤ k, v̌ (y) ≤ v and y ∈ Y0
where:128 ǩ: Y → RΦ and v̌: Y → RΞ are sublinear maps (with ǩ (0) = 0 and v̌ (0) = 0)
that are nondecreasing and nonnegative on Y0, which is a convex cone in Y (and Φ and
Ξ are finite sets). Then:

(1) Y satisfies PSAs 1, 2, 4, 5, 6 and 10.
(2) If ǩφ and v̌ξ are w (Y, Y 0)-lower semicontinuous (for each φ ∈ Φ and ξ ∈ Ξ) and

Y0 is w (Y, Y 0)-closed, then Y satisfies PSA 3 (i.e., it is also weakly* closed).
(3) If ǩ and v̌ are norm-continuous (on Y ), then Y satisfies PSA 7 (and hence also

PSA 11).
(4) Under the assumptions of Part 2, if the set

©
y ∈ Y0 : ǩ (y) ≤ k

ª
is bounded for

each k,129 then Y satisfies PSA 8.
If additionally v̌ξ is norm-continuous (for each ξ ∈ Ξ),130 then Y satisfies PSA 9
(and hence also PSA 11).

(5) Y satisfies PSA 8 also when either (a) Y0 is a vector subspace with Y0∩Y+ = {0},
or (b) for some ξ ∈ Ξ, the function v̌ξ is increasing on Y0 (i.e., v̌ξ (y0) < v̌ξ (y00)
whenever y0 < y00, for y0 and y00 in Y0).

128In other words, each ǩφ or v̌ξ is a p.l.h. convex finite function.
129When each ǩφ is weakly* l.s.c. and Y0 is weakly* closed as in Part 2, this is equivalent to weak*

compactness of
©
y ∈ Y0 : ǩ (y) ≤ k

ª
.

130This assumption holds vacuously when Ξ = ∅ (i.e., when there are no variable inputs, as with the
storage and hydro techniques (15.4) and (15.9)).
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Proof. Part 1 is obvious: PSAs 1 and 2 hold (i.e., Y is a convex cone) because ǩ and v̌
are sublinear and Y0 is a convex cone. PSA 4 holds because ǩ and v̌ are nondecreasing
on Y0 (and because projY (Y) = Y0 here). PSA 5 (with K = RΦ, V = RΞ) holds because
ǩ and v̌ are nonnegative on Y0. Finally, PSAs 6 and 10 are verified at ek = ǩ (y) and ev
= v̌ (y).
Part 2 is also obvious: the l.s. continuity of ǩ and v̌ mean that their sublevel sets are

closed.
For Part 3, note that vmin ILR (y) =

©¡
ǩ (y) , v̌ (y)

¢ª
if y ∈ Y0 (and if not, then

ILR (y) = ∅). By their norm-continuity, ǩ and v̌ are bounded on some ball centered at
the origin. It follows, by their p.l. homogeneity, that ǩ and v̌ are bounded on every ball
in Y–i.e., PSA 7 holds.
For Part 4, given a y ∈ Y0 with ǩ (y) ≤ k, take the point (y,−v̌ (y)). It is itself efficient

(maximal) if the set

(26.1)
©
y0 ∈ Y0 : y0 ≥ y, ǩ (y0) ≤ k, v̌ (y0) = v̌ (y)

ª
has no element other than y. But even if it has, the method of Lemma 21.1 applies. This
is because the set (26.1), after embedding it in Y × V by taking its Cartesian product
with {−v̌ (y)}, is here the set (21.2) with v = v̌ (y), and it is bounded (being contained in
the set that is bounded by assumption)–so Part 1 of Corollary 21.2 applies. So PSA 8
holds. To verify PSA 9, note that every bounded B ⊂ K is bounded from above by
some k (since K is finite-dimensional). For each k ∈ B, every point of vmaxYSR (k)
has the form (y,−v̌ (y)) for some y ∈ Y0 with ǩ (y) ≤ k. So

S
k∈B vmaxYSR (k) is

bounded (since
©
y ∈ Y0 : ǩ (y) ≤ k

ª
is bounded by assumption, and since v̌, being p.l.h.

and norm-continuous, is bounded on every bounded set).
In Part 5, (y,−v̌ (y)) itself is always efficient: in Case (a), no point of Y0 is greater

than y; and in Case (b), if y0 is a point of Y0 greater than y, then v̌ (y0) is greater than
v̌ (y). ¤

27. Existence of optimal operation and plant valuation and their
equality to marginal values for c.f.c. techniques

The foregoing analysis (Sections 19, 20, 21, 22, 23) is next specialized to the SRP
programme and its dual for a technique with conditionally fixed coefficients. As in the
preceding Section 26 (and in Sections 21, 22, 23), the output space Y is the dual of a
Banach lattice Y 0 (and Y ∗ is the norm-dual of Y , with Y 0 ⊆ Y ∗).

Notation: The optimal solution sets for programmes (24.9)—(24.11) and (24.12)—
(24.15) are denoted by Ŷ (p, k, w) and R̂ (p, k, w), respectively. The corresponding
lowercase notation, ŷ or r̂, is used only when the solution is known to be unique.

Proposition 27.1 (Hotelling’s Lemma and solubility of SRP programme with c.f.c.).
Assume that the production set Y is given by (24.1), where the input requirement functions
ǩφ: Y → R and v̌ξ: Y → R are w (Y, Y 0)-lower semicontinuous (for each φ ∈ Φ and
ξ ∈ Ξ), and the output constraint cone Y0 is w (Y, Y 0)-closed (so Y is weakly* closed).
Then:
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(1) For every p ∈ Y ∗, k ≥ 0 and w ≥ 0,131

(27.1) Ŷ (p, k, w) = ∂pΠSR (p, k, w) .

Also, (21.7) applies, i.e., ΠSR (·, k, w) can be restricted to Y 0 for the calculation
of ∂pΠSR at a p ∈ Y 0.

(2) If k ≥ 0 and
©
y ∈ Y0 : ǩ (y) ≤ k

ª
, the feasible set of the operation programme

(24.11)—(24.9), is norm-bounded then ΠSR (p, k, w) is finite, for every p ∈ Y ∗ and
w ≥ 0. If additionally p ∈ Y 0 then

(27.2) Ŷ (p, k, w) 6= ∅
for every w ≥ 0, i.e., the profit-maximizing operation problem (24.9)—(24.11) has
a proper solution.

Proof. The assumptions on ǩ, v̌ and Y0 imply that, being given by (24.21), the proper
convex function CSR (·, k, w) is l.s.c. for the weak* topology w (Y, Y 0).132 So (27.1) fol-
lows from Lemma 19.21, i.e., from (C.12) and (C.2). Furthermore, (21.7) applies with
CSR (·, k, w) as C. This proves Part 1.
For Part 2, ΠSR (p, k, w) > −∞ because, for every k ∈ RΦ

+, the operation programme
(24.9)—(24.11) is feasible. Since the feasible set is norm-bounded by assumption,133

ΠSR (p, k, w) ≤ sup
y∈Y0

©
hp | yi : ǩ (y) ≤ k

ª
− inf
y∈Y0

©
w · v̌ (y) : ǩ (y) ≤ k

ª
< +∞.

(The infimum is of course nonnegative if v̌ ≥ 0 on Y0, but it is finite in any case because
each v̌ξ is weakly* l.s.c.)
Solubility (27.2) can be deduced from Proposition 22.1; its assumptions can be verified

by applying Parts 2 and 4 of Lemma 26.1. This requires assuming that v̌ is norm-
continuous (as well as weakly* l.s.c.). But the norm-continuity of v̌ is actually unnecessary
because Weierstrass’s Theorem applies directly: a maximum point exists because (i) the
maximand of (24.10) is weakly* u.s.c. (since p ∈ Y 0), and (ii) the feasible set is weakly*
compact and nonempty (since the point y = 0 is feasible). ¤
If p ∈ Y 0 or k À 0 (Slater’s Condition), then ΠSR (p, ·, w) is u.s.c. on K = RΦ or

continuous at k, respectively (Lemmas 21.3 and 23.1). Under either assumption, there is
no duality gap between the profit-maximizing operation and plant valuation programmes,
(24.9)—(24.11) and (24.12)—(24.15). It follows that the optimal shadow prices for the fixed
inputs are their profit-imputed marginal values; this is spelt out next.
Proposition 27.2 (Dual Hotelling Lemma and solubility of FIV programme with c.f.c.).
In addition to the assumptions of Proposition 27.1 on ǩφ, v̌ξ and Y0 (viz., that each ǩφ
and v̌ξ is weakly* l.s.c. and that Y0 is weakly* closed), assume that each v̌ξ is norm-
continuous, and that the set

©
y ∈ Y0 : ǩ (y) ≤ k

ª
is norm-bounded. Then:

131Formally, (27.1) holds also when k ¤ 0: in this case, Ŷ = Y = ∂pΠSR (the programme (24.9)—
(24.11) is then infeasible, so every y is an improper solution, and ΠSR (·, k, w) = −∞).
132When ǩ and v̌ are norm-continuous, the l.s. continuity of CSR (on Y ×K) can also be deduced by

using Lemma 26.1 to verify the assumptions of Lemma 21.5.
133Being also weakly* closed, the set

©
y ∈ Y0 : ǩ (y) ≤ k

ª
is actually weakly* compact by the Banach-

Alaoglu Theorem.
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(1) If p ∈ Y 0 or k À 0 (i.e., kφ > 0 for each φ ∈ Φ) then, for every w ≥ 0,

(27.3) R̂ (p, k, w) = b∂kΠSR (p, k, w) .
(2) If k À 0 then ΠSR (p, ·, w) is continuous at k, and so

(27.4) R̂ (p, k, w) 6= ∅
for every p ∈ Y ∗ and w ≥ 0. (This means that the fixed-input value minimization
programme (24.12)—(24.15) has a proper solution, since its value ΠSR (p, k, w) is
finite.)

Proof. The operation programme (24.9)—(24.11) is feasible, i.e., ΠSR (p, k, w) > −∞ for
every k ∈ RΦ

+. If p ∈ Y 0 then ΠSR (p, ·, w) is u.s.c. by Lemma 21.3; its assumptions
are verified by applying Parts 2 and 4 of Lemma 26.1. If k À 0 then ΠSR (p, ·, w) is
continuous at k, by Part 1 of Lemma 23.1. In either case, ΠSR (p, k, w) = ΠSR (p, k, w)
by Lemma 20.1. So (27.3) follows from Lemma 19.2 with Remark 19.8 (as in the Proof
of Part 1 of Corollary 19.19). This proves Part 1.
For Part 2, since k À 0, (27.4) follows from (27.3) and Part 2 of Lemma 23.1. This

means that the valuation programme (24.12)—(24.15) has a proper solution, provided
that it is feasible, i.e., that +∞ > ΠSR (p, k, w) = ΠSR (p, k, w)–which is the case here
(see the Proof of Proposition 27.1). ¤

28. Linear programming with c.f.c. techniques

The original description of a c.f.c. technique’s production set Y need not be in terms of
input requirement functions as in (24.1). Indeed, a sublinear requirement function ǩφ can
arise from summarizing, in a single scalar constraint, a set of linear inequality constraints
(i.e., a multi- or infinite-dimensional linear inequality constraint). For example, a capacity
kφ may constrain the output rate to a y (t) ≤ kφ at any time t, and this can be summarized
as kφ ≥ ǩφ (y) := supt y (t)–as in (15.2) for the case of thermal generation. Another
example is the storage capacity requirement ǩSt (y) of (15.6), which is used in (15.8) to
summarize the continuum of reservoir constraints of (15.4).134 In other words, the profit
or cost optimization problem for a c.f.c. technique can typically be formulated as an LP
from the start (as we do for peak-load pricing in Section 16). With continuous time,
there is a continuum of decision variables and a continuum of capacity constraints, so the
LP is doubly infinite. The sublinear representation (24.1) of Y provides the alternative
framework of a nonlinear CP with a continuum of decision variables but with only a finite
number of constraints. Its usefulness depends on the availability of tractable formulae
for ǩ and v̌–such as (15.6)—(15.7), which make the CP workable in our study of pumped
storage [21]. But a clear advantage of formulating the profit or cost problem as an LP
is that routines such as the simplex algorithm can be applied (after discretization); such
methods solve the primal LP and its (standard) dual simultaneously.

134Similarly, if a unit output requires a unit of a costlessly storable variable input, whose total amount
available, vξ, can be spread as an input flow evξ (·) over the period, then the output rate is constrained
to a nonnegative y (t) ≤ evξ (t) for some evξ (t) ≥ 0 with R evξ (t) dt = vξ. This can be summarized in the
single constraint vξ ≥ v̌ξ (y) :=

R
y (t) dt.
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Even if it is not an LP originally, the profit or cost problem for a c.f.c. technique can
always be reformulated as an LP: a sublinear inequality constraint on y can be converted
to an equivalent system of linear constraints by using the “convex variant” of Euler’s
Theorem on p.l.h. functions, stated here as (C.39). Each condition ǩφ (y) ≤ kφ in (24.1)
is thus rewritten as the system: hγ | yi ≤ kφ for every γ ∈ ∂ǩφ (0). The same is done for
each function v̌ξ.
As for the dual (to the profit or cost problem), it can be reformulated as an LP

by applying (C.40) to the CLR (·, r, w) of (24.3) to rewrite the subdifferential condition
(24.15) as the following system of linear constraints on the dual variables (viz., either r
or p or both): hp | yi ≤ r · ǩ (y) + w · v̌ (y) for every y ∈ Y0.
Spelt out, the profit-maximizing plant operation programme (full, not reduced) is thus

reformulated as the LP:

Given p, k and w ≥ 0(28.1)

maximize hp | yi− w · v over y and v(28.2)

subject to:

γφ | y

®
≤ kφ for every γφ ∈ ∂ǩφ (0) , for each φ ∈ Φ(28.3)

hιξ | yi− vξ ≤ 0 for every ιξ ∈ ∂v̌ξ (0) , for each ξ ∈ Ξ(28.4)

hλ | yi ≤ 0 for every λ ∈ Y ◦0 .(28.5)

An equivalent sub-system of these constraints is obtained by taking only an extreme
point of ∂ǩφ (0) as a γφ, i.e., by replacing ∂ǩφ (0) with ext ∂ǩφ (0) in (28.3). Similarly,
ιξ can be made to run only through ext ∂v̌ξ (0), and λ to be a generator of the cone Y ◦0 .
But even after the pruning, the LP (28.1)—(28.5) may be doubly infinite: the number
of its decision variables is finite if and only if the space Y is finite-dimensional, and the
number of constraints is finite if each ∂ǩφ (0) or ∂v̌ξ (0) is a polytope and the cone Y ◦0 is
finitely generated.
And the plant valuation programme is reformulated as the LP:

Given p, k and w ≥ 0(28.6)

minimize r · k over r(28.7)

subject to: r ≥ 0(28.8)

hp | yi ≤ r · ǩ (y) + w · v̌ (y) for every y ∈ Y0.(28.9)

This LP has a finite number of variables, so it is generally semi-infinite (although the
constraints can of course be whittled down to a finite system if Y0 is finitely generated
and both ǩ (y) and v̌ (y) are linear in y–but this is not the case with (15.2), (15.6) or
(15.7)).

29. Conclusions

The long-run general equilibrium can be determined most efficiently through the short-
run equilibrium, which itself is of central practical interest. Our method uses either the
producer’s plant operation and valuation programmes, which form a primal-dual pair,
or an optimal-value function. The choice depends on the available description of the
technology but, in engineering models with multiple outputs, this is usually a production
set (which favours the use of programming). The primal programme in question can
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be either short-run profit maximization or short-run cost minimization, but the profit
approach is much easier. This brings to the fore the equilibrium pricing of capital goods
and natural resources. Such inputs divide into those which are fixed, or nearly fixed,
even in the long run (e.g., river flows for hydroelectric generation) and those which are
variable in the long run but are supplied at an increasing marginal cost (like water
reservoirs). Correct valuation of such inputs is essential for efficient investment decisions
and operating policies, as well as to other matters (compensation payments for, e.g.,
land or rivers). Their values, as the key to the transition from the short-run to the
long-run solution, are fundamental to the approach. Thus the use of long-run general-
equilibrium analysis puts valuation on a sound basis, and the short-run programmes
provide a workable method for calculating these values.

Appendix A. Example of duality gap between short-run profit
maximization and fixed-input valuation

Equality of the primal and dual optimal values is equivalent to semicontinuity of either
value function w.r.t. its “own” parameters, i.e., Type One semicontinuity (Section 20).
Therefore, any sufficient condition for continuity of the one value rules out a duality
gap and implies that the other value is semicontinuous. It also implies that the other
programme is soluble (Section 23). In this Appendix, “continuity” means Type One
continuity (unless specified as Type Two).
Any result for the primal value can be transcribed for the dual value by swapping

the two programmes. Below, we consider only those sufficient conditions for continuity
which are put entirely and directly in terms of the primal programme. Such a criterion
can be classified by the particular value whose continuity it guarantees, i.e., it is either
a primal-value or a dual-value continuity criterion. In other words, it gives, in terms of
the one programme, a condition that guarantees value continuity for either the same or
the other programme of the pair.
There is a salient criterion in each class. A criterion of primal-value continuity (w.r.t.

primal parameters) is Slater’s Condition on the primal programme, together with its
generalized forms: see [44, (8.12) and Theorem 18 (a)]. A useful criterion of dual-
value continuity (w.r.t. dual parameters) can be based on compactness and continuity
conditions on the primal constraints and the optimand: see [44, Theorem 18’ (e)]. Its
semicontinuity implication for the primal value, w.r.t. primal parameters, can be viewed
as a version of a part of Berge’s Maximum Theorem [6, VI.3: Theorem 2]; the basic
semicontinuity result of [44, Example 4’ after (5.13)] is simply a special case of Berge’s.
Our semicontinuity results are closely related, being applications of Berge’s Theorem
(Lemmas 21.3—21.5).
In the context of profit or cost as the primal value function, Slater’s Condition takes

the form spelt out in Section 23. Furthermore, in the case of short-run profit maximiza-
tion with conditionally fixed coefficients, Slater’s Condition boils down to strict positivity
of the fixed-input bundle k; this guarantees continuity of ΠSR (p, ·, w) on a neighbour-
hood of k (Part 2 of Proposition 27.2). The alternative upper semicontinuity result for
ΠSR (p, ·, w) on K (Lemma 21.3) requires a price system from the predual of the com-
modity space, i.e., a p ∈ Y 0 (in addition to Production Set Assumptions 2, 3, 8 and 9,
which hold whenever Parts 1, 2 and 4 of Lemma 26.1 apply).
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Either condition (positive capacities or predual output price) rules out a duality gap
between profit-maximizing operation and plant valuation (for a c.f.c. technique satisfying
the relevant PSAs). Between them, the two sufficient conditions cover a lot of ground:
although the alternation “p ∈ Y 0 or k À 0” is not actually necessary for ΠSR to equal
ΠSR at (p, k, w), it comes close to being so with technologies such as pumped storage
and hydroelectric generation. In the case of storage, if the reservoir capacity kSt is zero
and the price system p ∈ L∞∗ [0, T ] has a singular a.k.a. purely finitely additive part
pFA 6= 0 (in addition to a density a.k.a. countably additive part pCA ∈ L1), then the
operating profit is obviously zero, but the unit value of conversion capacity is positive.
This example, spelt out next, shows also that the failure of Slater’s Condition can lead
to nonexistence of an exact dual solution. A similar example of a duality gap for the
hydro technology is given in [24].135

Example A.1 (Duality gap between operation and valuation of an incomplete plant).
Take the pumped-storage technology (15.4) and an output price system p ∈ L∞∗ [0, T ] with
pFA 6= 0 and pCA ∈ BV ⊂ L1 (i.e., with a nonzero singular part and a density part of
bounded variation). If additionally kCo > 0 but kSt = 0 (i.e., the plant has a conversion
capacity but no storage capacity), then the operating profit is zero, i.e., ΠPSSR (p; 0, kCo)
= 0. But the optimal stock price (the dual solution) is ψ̂ = pCA, and so the capacity
value (the dual optimal value) is

(A.1) Π
PS

SR (p; 0, kCo) = kCo kpFAk
∗
∞ > 0 = ΠPSSR (p; 0, kCo) .

If pCA ∈ L1 \ BV (and still kCo > 0 but kSt = 0), then the dual (stock-pricing)
programme for ψ has no (exact) solution, but any sequence of ψ’s in BV that converges
to pCA in the L1-norm is a sequence of approximate dual optima. The infimal capacity
value is still kCo kpFAk∗∞ (i.e., there is the same duality gap).

Comments (on Example A.1):

(1) It gives an example of a duality gap in infinite linear programming, since the SRP
programme can be formulated as an LP: see (16.12)—(16.16).

(2) The example shows in a simple way why a duality gap must open at a point of
the optimal value’s discontinuity (of Type One). With the other parameters (p
∈ L∞∗ and kCo > 0) kept fixed, ΠSR and ΠSR are equal and vary continuously
with kSt as long as it stays positive: every finite concave function on R++ is
continuous, and ΠSR = ΠSR when kSt > 0 because this is Slater’s Condition. But
at kSt = 0, ΠSR can fail to be right-continuous and then, being concave, it also
fails to be u.s.c.–which means that it drops at kSt = 0.136 By contrast, Type
Two semicontinuity holds automatically, i.e., ΠSR is always u.s.c. and hence it
is actually right-continuous at kSt = 0. So the discontinuity of ΠSR at kSt = 0
implies that ΠSR (0) < ΠSR (0). See Figure 5.

135In the case of hydro with p ≥ 0, pFA 6= 0 and kSt = 0, if kTu > Sup (e) then hp | ei < hpCA | ei
+ kTu kpFAk; i.e., the optimal output is obviously equal to the inflow e, which yields a revenue lower
than the value of hydro inputs (turbine and inflow).
136A finite concave function on a polyhedral set Z ⊆ Rn is l.s.c. on Z (so if it is u.s.c. on Z then it is

continuous on Z): see [42, 10.2 and 20.5]. This applies to Z = Rn+ for every n (here, n = 1).
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Figure 5. Capacity value and operating profit for the pumped-storage
technique, ΠSR and ΠSR, as functions of storage capacity kSt (for a fixed
conversion capacity kCo > 0 and a fixed good’s price p ∈ L∞∗ \L1). When
kSt > 0, Slater’s Condition is met and so Π = Π, but a duality gap opens
at kSt = 0, where Π is continuous but Π drops (Example A.1).

(3) Recall from Section 6 that the data (here, p and k) and a pair of solutions (here, y
and r) with the same value (i.e., without a duality gap) can be permuted to form
the data and solutions to another programme pair. As the example shows, this
need not be so when there is a duality gap. Indeed, none of the other programme
pairs need have a gap. In this example, the SRP programme pair does have a gap,
but the LRC and the SRC programme pairs do not, since both cost functions are
semicontinuous in the quantities (which means Type One semicontinuity). That
is, CLR is L1-l.s.c. (and a fortiori L∞∗-l.s.c.) in y ∈ L∞. (This can be shown either
directly from the formulae for capacity requirements (15.6)—(15.7), or by applying
Lemma 21.4.) The same is obviously true of CSR as a function of (y, k), which
is simply the 0-∞ indicator function of the closed set Y. (There are no variable
inputs with this technique, i.e., the SRC programme is merely a check of capacity
sufficiency.) So permutation of p, k, y and r must fail to yield a cost-minimizing
solution and its dual, and it does fail: (i) the LRC programme’s solution has
kCo = 0, unlike the SRP data in this example; and (ii) the OFIV (dual to SRC)
programme’s solution has rCo = 0, unlike the FIV (dual to SRP) programme’s
solution, which has rCo = kpFAk∗∞ > 0. (In detail, the SRP primal-dual solution
pair–given a nonconstant pCA ∈ BV and pFA 6= 0, kSt = 0 and kCo > 0–is y
= 0 and r = (rSt, rCo) =

¡
Var+c (pCA) , kpFAk

∗
∞
¢
À 0. But, given y = 0 and r

= (rSt, rCo) À 0, the LRC solution pair is obviously (kSt, kCo) = (0, 0) with any
LRMC as p, i.e., with any p ∈ rSt∂ǩSt (0) + rCo∂ǩCo (0) + const. Similarly, given
y = 0, kSt = 0 and kCo > 0, the SRC dual solution is rCo = 0 with any rSt ≥ 0
and any p ∈ rSt∂ǩSt (0) + const.)

Appendix B. A nonfactorable joint subdifferential

We identify a class of jointly convex functions of two variables (which can be vector
variables) such that: (i) nondifferentiability in one of the variables implies nondifferentia-
bility in the other, and (ii) the joint subdifferentials do not factorize into the Cartesian
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product of the partial subdifferentials. This means that a partial subgradient cannot be
extended to a joint one by adjoining just any partial subgradient w.r.t. the other variable.
But, as we also show, it can usually be extended by a suitable choice of the other partial
subgradient.
Proposition B.1. Assume that C: Y ×K → R ∪ {+∞} is (jointly) positively linearly
homogeneous, convex and lower semicontinuous (for the pairing of the space Y ×K with
P ×R). If additionally (p0,−r0) and (p00,−r00) are elements of ∂y,kC (y, k) with137

(B.1) hp0 | yi 6= hp00 | yi
then r0 6= r00 (so ∂kC (y, k) is not a singleton, i.e., C (y, ·) is not Gateaux-differentiable
at k). What is more, neither (p0,−r00) nor (p00,−r0) is in ∂y,kC (y, k), and so

∂y,kC (y, k) 6= ∂yC (y, k)× ∂kC (y, k) .

Proof. By (C.41), which is a variant of Euler’s Theorem,

(B.2) C (y, k) = hp | yi− hr | ki
for every (p,−r) ∈ ∂y,kC (y, k). So (B.2) holds for both (p0,−r0) and (p00,−r00), but
it therefore fails for (p0,−r00) and (p00,−r0) because of (B.1). So neither (p0,−r00) nor
(p00,−r0) is in ∂y,kC (y, k), which shows that this set is not a Cartesian product. ¤
Example B.2. Take the function c: R2+ → R defined as in (2.7), i.e., c (y, k) = wy if 0
≤ y ≤ k and +∞ otherwise (given a number w ≥ 0). With the scalar product hp,−r | y, ki
:= py − rk/T where T > 0 is a given number, the joint subdifferential at a point with y
= k > 0 is

∂y,kc (y, k) =
n
(p,−r) ∈ R+ × R− : p = w +

r

T
, r ≥ 0

o
(which, being a half-line not parallel to either axis of the plane R2, is not a Cartesian
product).
When c serves as a convex integrand, this non-factorization is inherited by the integral

functional

C (y, k) :=

Z T

0

c (y (t) , k) dt for y ∈ L∞ [0, T ] .

Take a y and k with 0¿ y ≤ k and meas {t ∈ [0, T ] : y (t) = k} > 0. When L1 [0, T ]×R
is paired with L∞ [0, T ] × R by the scalar product hp,−r | y, ki :=

R T
0
p (t) y (t) dt − rk,

one has (p,−r) ∈ ∂y,kC (y, k) if and only if both p = w + κ and r =
R T
0
κ (t) dt for some

κ ∈ L1+ [0, T ] with κ (t) = 0 for a.e. t ∈ [0, T ] such that y (t) < k.
Besides this example, Condition (B.1) is met by some (p0,−r0) and (p00,−r00) from

∂y,kC (y, k) if: (i) Y is a vector lattice, P is a sublattice of the order dual Y ∼, and y is
strictly positive as a linear functional on Y ∼, (ii) ∂yC (y, k) contains a p0 and a p00 with
p0 < p00,138 and (iii) Every partial subgradient p ∈ ∂yC (y, k) can be extended to a joint
subgradient (p,−r) ∈ ∂y,kC (y, k).
Such extensibility can be proved in two ways. One method is to establish that the

relevant partial conjugate of the bivariate convex function C is superdifferentiable in
137The minus sign in (p,−r) is there to make r nonnegative when C (y, ·) is nonincreasing on K.
138Then hp0 | yi < hp00 | yi, since p0 < p00 and y À 0.
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the non-conjugated variable–i.e., to introduce the saddle (convex-concave) function on
P ×K defined by Π := C#1 , then show that b∂kΠ (p, k) 6= ∅ for the given k and the given
p ∈ ∂yC (y, k), and finally apply the Subdifferential Sections Lemma (i.e., Lemma C.5)
to conclude that any r ∈ b∂kΠ (p, k) extends p to a (p,−r) ∈ ∂y,kC (y, k). This can also be
an effective method of calculating a suitable r. Without introducing Π, mere existence
of such an r can also be proved by using the Hahn-Banach Extension Theorem, which
can be stated as follows in terms of subgradients.
Theorem B.3 (Hahn-Banach). Assume that C: Y ×K → R∪{+∞} is a (jointly) convex
function, where Y and K are topological vector spaces (with P and R as the continuous

duals). If k ∈ intK dom (C (y, ·)), i.e., C
³
y,ek´ < +∞ for every ek in some neighbourhood

of k, then for every p ∈ ∂yC (y, k) there exists an r such that (p,−r) ∈ ∂y,kC (y, k).

Proof. See, e.g., [37, Theorem 0.28]; although that formulation applies only when (y, k)
∈ intY×K domC, the same proof is valid under the weaker assumption made here. ¤
Theorem B.3 does not apply to the boundary points of the function’s effective domain,

which is
domC := {(y, k) : C (y, k) < +∞} .

And indeed, at a boundary point, a partial subgradient may have no extension (to a joint
one). But it is useful to identify those cases in which such extensions do exist. This is
because the boundary points can be the points of greatest interest: e.g., when C is the
SRC as a function of the output bundle y and the fixed-input bundle k, all the efficient
combinations of y and k lie on the boundary of domC. However, if C has a finite convex
extension CEx, defined on the whole space (or at least on a neighbourhood of domC),
and domC is the sublevel set of another finite convex function CDo, then Theorem B.3
can be applied to both functions, CEx and CDo. For the original function C, this yields
a result that applies also to the domain’s boundary points.
Corollary B.4. Let C: Y × K → R ∪ {+∞} be a (jointly) convex function. Assume
that:
(1) Its effective domain has the form

(B.3) domC =
©
(y, k) : CDo (y, k) ≤ 0 and k ∈ K0

ª
where K0 is a convex subset of K, and CDo: Y ×K → R is a continuous convex
function.

(2) k ∈ K0 and CDo (y, k) ≤ 0, i.e., (y, k) ∈ domC.
(3) There exists a yS ∈ Y with CDo

¡
yS, k

¢
< 0 (Slater’s Condition).

(4) C (or, more precisely, its restriction to domC) has a continuous convex extension
CEx: Y ×K → R.

Then for every p ∈ ∂yC (y, k) there exists an r such that (p,−r) ∈ ∂y,kC (y, k).

Proof. Every p ∈ ∂yC (y, k) has the form p = p0 + αp00 for some p0 ∈ ∂yC
Ex (y, k), p00

∈ ∂yC
Do (y, k) and a scalar α ≥ 0, with α = 0 if CDo (y, k) < 0. This is because, since C

= CEx + δ (· | domC),
∂yC (y, k) = ∂yC

Ex (y, k) + ∂yδ (y, k | domC)
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= ∂yC
Ex (y, k) + ∂δ

¡
y |
©
y0 : CDo (y0, k) ≤ 0

ª¢
= ∂yC

Ex (y, k) + cone
¡
∂yC

Do (y, k)
¢

(B.4)

if CDo (y, k) = 0. When CDo (y, k) < 0, the term ∂yδ (which is the outward normal cone
to the sublevel set of CDo (·, k)) is {0}, in which case the term denoting the cone generated
by ∂yC

Do must be deleted from (B.4). For additivity of ∂ (also with an application to a
sum of the form C + δ), see, e.g., [42, 23.8 and proof of 28.3.1], [44, Theorem 20] or [48,
5.38 and 7.2]. The relevant formula for the normal cone to a sublevel set is given in, e.g.,
[32, 4.3: Proposition 2], [42, 23.7.1] or [48, 7.8].
Since CEx and CDo are continuous (everywhere on Y × K), Theorem B.3 applies to

both; so there exist r0 and r00 with

(B.5) (p0,−r0) ∈ ∂y,kC
Ex (y, k) and (p00,−r00) ∈ ∂y,kC

Do (y, k) .

It now suffices to set r := r0+αr00. To see this, use again the formula for the normal cone
and the additivity of ∂ (this time for joint subdifferentials) to obtain from (B.5) that

(p,−r) = (p0 + αp00,−r0 − αr00)

∈ ∂y,kC
Ex (y, k) + ∂y,kδ

¡
y, k |

©
y0, k0 : CDo (y0, k0) ≤ 0

ª¢
⊆ ∂y,kC

Ex (y, k) + ∂y,kδ
¡
y, k |

©
CDo ≤ 0

ª¢
+ ∂y,kδ (y, k | Y ×K0)

= ∂y,kC
Ex (y, k) + ∂y,kδ (y, k | domC) = ∂y,kC (y, k) .

The penultimate equality follows from (B.3); also, ∂y,kδ (y, k | Y ×K0) = {0}×∂kδ (k | K0)
on its l.h.s. ¤

Comments: Extensibility of partial subgradients means that the obvious inclusions
∂y,kCSR ⊆ ∂yCSR× ∂kCSR and ∂yCLR ⊆ ∂yCSR–or (9.1) and (11.7)–are “tight”, each in
its sense:

(1) ∂yCSR is equal to the projection of ∂y,kCSR onto Y if and only if every p ∈ ∂yCSR
extends to some (p,−r) ∈ ∂y,kCSR. A similar result applies to ∂kCSR.

(2) With CLR defined by (11.2), if every p ∈ ∂yCSR (y, k) extends to some (p,−r)
∈ ∂y,kCSR (y, k) then

∂yCSR (y, k) =
[

r∈−∂kCSR(y,k)

∂yCLR (y, r) .

This follows from the second equivalence in (11.1), which is a case of the SSL
(Lemma C.5). A similar result for CSR and ΠSR shows that the inclusion (11.4)
is tight.

Appendix C. Convex conjugacy and subdifferential calculus

C.1. Semicontinuous envelope. Let C: Y → R ∪ {±∞} be a convex extended-real
function on a real vector space Y that is paired with another one, P , by a bilinear form
h· | ·i : P × Y → R. The effective domain of C is the convex set

domC := {y ∈ Y : C (y) < +∞} .
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Given a locally convex topology T on Y that is consistent with P (i.e., makes P the
continuous dual space), the l.s.c. envelope of C is the greatest lower semicontinuous
(l.s.c.) minorant of C. Denoted by lscC, it can be determined pointwise by the formula

(lscC) (y) := min

½
C (y) , lim inf

y0→y
C (y0)

¾
or globally by the formula epi lscC := cl epiC, where cl means the T -closure, and

epiC := {(y, %) ∈ Y ×R : C (y) ≤ %}

is the epigraph of C. Note that lscC depends on the dual space P but not on the
consistent topology T , by the Hahn-Banach Separation Theorem [18, 12A: Corollary 1].
Also, C is l.s.c. at y if and only if C (y) = (lscC) (y).
A proper convex function is one that takes a finite value (somewhere) but does not

take the value −∞ (anywhere). A convex function taking the value −∞ is peculiar: it
may take finite values only on the algebraic boundary of its effective domain,139 and it
has no finite value at all if it is lower semicontinuous along each straight line: see, e.g.,
[42, 7.2 and 7.2.1], [44, Theorem 4] or [48, 5.12 with Proof].

C.2. The conjugate function. The Fenchel-Legendre convex conjugate of C is

(C.1) C# (p) := sup
y∈Y

(hp | yi− C (y))

for p ∈ P ; it is l.s.c. and either proper convex or an infinite constant (+∞ or −∞).
Obviously

(C.2) C# (p) ≥ hp | yi− C (y)

for every y and p; this is the Fenchel-Young Inequality.
The second convex conjugate, C##, is the pointwise supremum of all the affine mi-

norants of C with coefficients in P (supremum of those functions of the form hp | ·i− %,
with p ∈ P and % ∈ R, that nowhere exceed C), i.e.,

(C.3) C## (y) = sup
p∈P, %∈R

{hp | yi− % : hp | y0i− % ≤ C (y0) for every y0 ∈ Y } .

So C## is l.s.c. on Y and

(C.4) C## ≤ lscC ≤ C.

Furthermore, C## = lscC unless lscC takes the value −∞ (and hence has no finite
value).140 In the latter case, C## = −∞ (everywhere on Y ) and lscC = −∞ on the
convex set cl domC, but lscC = +∞ on the complement set. So if C is l.s.c. at y then:
(i) C## (y) and C (y) can differ only by being oppositely infinite, and (ii) C## (y) = C (y)
if and only if either C (y) < +∞ or both C (y) = +∞ and lscC > −∞ everywhere on

139In precise terms, C (y) = −∞ for every y in the intrinsic core (a.k.a. the relative algebraic interior)
of domC if C (y0) = −∞ for some y0 (and C is convex).
140When additionally Y is finite-dimensional, if lscC takes the value −∞, then so does C itself. This

follows from [42, 7.5]; it is stated in, e.g., [44, Example 1”].
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Y . Also, C## = C (everywhere on Y ) if and only if C is either l.s.c. proper convex or
an infinite constant.141 Applied to C# (instead of C), this shows that

(C.5) C### = C#

(which can also be seen directly from (C.1) and (C.4):
¡
C##

¢# ≥ C# because C## ≤
C#, but also

¡
C#
¢## ≤ C#).

For a bivariate convex function C, its partial second conjugate (i.e., its second con-
jugate taken w.r.t. just one variable y, with the other variable k kept fixed) lies always
between the total second conjugate (i.e., the second conjugate w.r.t. both variables) and
the original function itself. Formally, the partial first and second conjugates w.r.t., say,
the first variable of a bivariate convex function C on Y ×K (where K is another vector
space) is defined by

(C.6) C#1 (p, k) := (C (·, k))# (p) := sup
y∈Y

(hp | yi− C (y, k))

for every p ∈ P and k ∈ K. This (C#1) is a saddle (convex-concave) function on P ×K:
it is convex (like C) in the “conjugated” first variable, but (unlike C) it is concave in the
non-conjugated second variable. The partial second conjugate (w.r.t. the first variable)
is the bivariate convex function

(C.7) C#1#1 (y, k) := (C (·, k))## (y) .

Remark C.1 (Inequality between partial and total second conjugates). Assume that
C: Y ×K → R ∪ {±∞}, where Y and K are vector spaces paired with P and R. Then

(C.8) C## ≤ C#1#1 ≤ C

on Y ×K. (In other words, for each k ∈ K, if Ck means the function on Y defined by
Ck (y) := C (y, k) for every y, then

¡
C##

¢
k
≤ (Ck)## ≤ Ck on Y .)

Proof. The second inequality of (C.8) is a case of (C.4), without the middle term. As
for the first inequality of (C.8), this follows from a comparison, for the partial and total
second conjugates, of their representations as suprema of affine minorants: by (C.3)
applied to C (·, k) and to C,

C#1#1 (y, k) = sup
p∈P,α∈R

{hp | yi− α : hp | ·i− α ≤ C (·, k)}(C.9)

C## (y, k) = sup
p∈P, r∈K,β∈R

{hp,−r | y, ki− β : hp,−r | ·, ·i− β ≤ C (y0)} .(C.10)

By setting α equal to hr | ki + β, it follows that the supremum in (C.9) is not less than
that in (C.10).142 ¤

141In [42] and [44], C is called “closed” when C = C##, and clC serves as an alternative notation
for C##. This is abandoned in [45], and rightly so: clC can be misinterpreted as lscC, especially since
others–e.g., [37]–do use clC instead of lscC (to have epi clC := cl epiC).
142In other words, the α in (C.9) is allowed to vary with k in any way (subject to the stated inequality),

whilst the corresponding term in (C.10) is hr | ki+ β, which is additionally linear in k.
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C.3. Subgradients. A T -continuous subgradient (a.k.a. topological subgradient) of C
at a y ∈ Y is any p ∈ P such that
(C.11) C (y +∆y) ≥ C (y) + hp |∆yi
for every ∆y ∈ Y . The set of all subgradients (at y) is the subdifferential ∂C (y). In
other words,

p ∈ ∂C (y)⇔ y maximizes hp | ·i− C(C.12)

⇔ C# (p) = hp | yi− C (y) .(C.13)

So the graph of the subdifferential correspondence (∂C ⊆ Y ×P ) consists of those points
(y, p) at which the Fenchel-Young Inequality holds as an equality.
Any linear, not necessarily T -continuous, functional p meeting (C.11) is an algebraic

subgradient of C at y, and the set of all such subgradients is the algebraic subdifferential
∂aC (y), with P ∩ ∂aC (y) = ∂C (y) by definition. The two subdifferentials are identical,
for every C, when T is the strongest locally convex topology, TSLC, on Y . This is because
every linear functional on Y is TSLC-continuous, i.e., the TSLC-continuous dual is equal to
the algebraic dual Y a (what is more, TSLC is obviously m(Y, Y a), the Mackey topology
for this pairing).
Directly from the subgradient inequality (C.11), if C 0 and C 00 are convex functions with

values in R ∪ {+∞}, i.e., not taking the value −∞, then
(C.14) ∂ (C 0 + C 00) (y) ⊇ ∂C 0 (y) + ∂C 00 (y) .

Equality holds for proper convex functions under a continuity assumption: if, in addition
to C 0 and C 00 being convex with values in R ∪ {+∞}, there exists a point of Y at which
both C 0 and C 00 are finite and at least one (C 0 or C 00) is continuous, then

(C.15) ∂ (C 0 + C 00) (y) = ∂C 0 (y) + ∂C 00 (y)

for every y ∈ Y . See, e.g., [44, Theorem 20 (i) under (a)] or [48, 5.38 (b)]. Applied to the
case of 0-∞ indicator functions of convex subsets of Y , (C.15) gives the outward normal
cone to the intersection of sets Z 0 and Z 00 as the sum of their normal cones, i.e.,

N(y | Z 0 ∩ Z 00) := ∂δ (y | Z 0 ∩ Z 00) = ∂δ (y | Z 0) + ∂δ (y | Z 00)(C.16)

=: N (y | Z 0) + N (y | Z 00)
for every y ∈ Y if Z 0 ∩ intZ 00 6= ∅. This is stated in, e.g., [32, 4.3: Proposition 1].
Also directly from (C.11), for every α > 0,

(C.17) ∂ (αC) (y) = α∂C (y)

and this holds for α = 0 as well if (and only if) ∂C (y) 6= ∅, i.e., if C is subdifferentiable
at y.
For C to be subdifferentiable at y, it is necessary that C be l.s.c. at y and actually

that C## (y) = C (y); in this case ∂C## (y) = ∂C (y). In other words,

(C.18) p ∈ ∂C (y)⇔
¡
p ∈ ∂C## (y) and C## (y) = C (y)

¢
from (C.13) and (C.4).
Lower semicontinuity is not generally sufficient for subdifferentiability, but continuity

is. In precise terms, if a proper convex function C: Y → R ∪ {+∞} is continuous and
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finite at some point of Y , then it is subdifferentiable (and continuous) at every interior
point of its effective domain, i.e., ∂C (y) is nonempty and, also, w (P, Y )-compact (weakly
compact) for every y ∈ int domC: see, e.g., [32, 4.2: Proposition 3], [44, Theorem 11
(a)] or [48, 5.35 (a)]. Furthermore, every algebraic subgradient is then T -continuous, i.e.,
∂aC (y) = ∂C (y) 6= ∅ or, equivalently,
(C.19) ∅ 6= ∂aC (y) ⊆ P
for every y ∈ int domC: see, e.g., [18, 14B: Proof of Theorem] or [37, Corollary 2 to
Theorem 0.27, and p. 60].

C.4. Continuity of convex functions. Any continuous function is bounded from
above (by a finite number) on a neighbourhood of any point where its value is either
finite or −∞. With convex functions, this obvious necessary condition is also sufficient
for continuity. In precise terms, if C: Y → R ∪ {±∞} is convex then the following
conditions are equivalent to one another:

(1) C is continuous at some y ∈ Y with C (y) < +∞.
(2) There exists an open set N ⊆ Y and a % ∈ R such that C (y) ≤ % (or, equivalently,

the epigraph of C has a nonempty interior in Y ×R).
(3) C is continuous on int domC, which is nonempty.

See, e.g., [18, 14A], [32, 3.2: Theorem 1], [44, Theorem 8] or [48, 5.20]. In particular, this
shows that continuity (of a convex function) is a property that “propagates” from any
single point to the whole interior of the effective domain (Part 1 ⇒ Part 3). Also, the
sufficiency of local boundedness for continuity can be combined with a Baire category
argument to deduce continuity from mere lower semicontinuity for a convex function on
a Banach space (or, more generally, on a barrelled space). The result has two variants
(which are very similar, but not identical): see, e.g., [44, Corollary 8B] and [18, p. 84
and Exercise 3.50].
Another “automatic continuity” result, limited to finite-dimensional spaces, is that a

finite convex function C on a polyhedral set Z ⊆ Rn is upper semicontinuous on Z (so
if C is also l.s.c. on Z then it is actually continuous on Z). More generally, a convex
function C: Rn → R∪ {±∞} is u.s.c. on any locally simplicial (not necessarily convex or
closed) subset, Z, of domC. See [42, 10.2 and 20.5].

C.5. Concave functions and supergradients. All of these concepts and results can
be reoriented to concave functions. In particular, when Π: K → R ∪ {±∞} is a concave
function on a space K paired with another space R, its effective domain (in the concave
sense) is the convex set

dbomΠ := {k ∈ K : Π (k) > −∞}
and the concave conjugate of Π is

(C.20) Π# (r) := inf
k∈K

(hr | ki−Π (k))

for r ∈ R. The second concave conjugate meets the inequality
(C.21) Π## (k) ≥ uscΠ (k) ≥ Π (k)
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where uscΠ is the least upper semicontinuous (u.s.c.) majorant of Π; and uscΠ (k) and
Π## (k) differ in only one case: if k /∈ cl dbomΠ and uscΠ (k00) = +∞ for some k00, then
uscΠ (k) = −∞ but Π## = +∞ (on K). So if Π is u.s.c. proper concave (i.e., takes a
finite value but does not take the value +∞), then Π## = Π (everywhere). Hence

(C.22) Π### = Π#.

A supergradient of Π at a k ∈ K is any r ∈ R such that

(C.23) Π (k +∆k) ≤ Π (k) + hr |∆ki

for every ∆k ∈ K. The set of all supergradients (at k) is the superdifferential, b∂Π (k),
i.e.,

r ∈ b∂Π (k)⇔ k maximizes Π− hr | ·i(C.24)

⇔ Π# (r) = hr | ki−Π (k) .(C.25)

Also,

(C.26) r ∈ b∂Π (k)⇔ ³
r ∈ b∂Π## (k) and Π## (k) = Π (k)

´
.

The concave and convex cases are linked by the rules:

Π# (r) = − (−Π)# (−r)(C.27)

Π## = − (−Π)##(C.28)

uscΠ = − lsc (−Π)(C.29) b∂Π = −∂ (−Π) .(C.30)

C.6. Subgradients of conjugates. The subdifferential correspondences of mutual con-
jugates are inverse to each other.143

Theorem C.2 (Inversion Rule). Assume that C: Y → R ∪ {±∞} is convex, and Y is
paired with P . Then, for every y ∈ Y and p ∈ P

(C.31) p ∈ ∂C (y)⇔
¡
y ∈ ∂C# (p) and C## (y) = C (y)

¢
.

For a concave function Π (on a space K paired with R), this becomes

(C.32) r ∈ ∂Π (k)⇔ (k ∈ ∂Π# (r) and Π## (k) = Π (k)) .

Proof. This follows from the Fenchel-Young Inequality and from the case of equality
therein as a characterization of the subdifferential: apply (C.12)—(C.13) twice, to C and
to C# (in place of C), to see that the conditions p ∈ ∂C (y) and y ∈ ∂C# (p) are
equivalent when C## (y) = C (y). It remains to show that this equality holds when
p ∈ ∂C (y). And this is because, by (C.2) and by (C.12)—(C.13) applied to C#, C## (y)
≥ hp | yi− C# (p) = C (y) ≥ C## (y) by (C.4). ¤
143This is given in, e.g., [4, 4.4.4], [42, 23.5 (a) and (a*)] and [44, Corollary 12A].
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The Inversion Rule and the First-Order Condition (C.12) are next combined in a deriv-
ative property of conjugate functions. In convex programming, this yields the derivative
property of the optimal value (in the same way as is shown here for the case of profit or
cost programmes and their duals, in Section 19).
Corollary C.3 (Derivative Property of the Conjugate). Assume that C: Y → R∪{±∞}
is convex (and Y is paired with P ). Then, for every y ∈ Y and p ∈ P ,
(C.33) y maximizes hp | ·i− C ⇔

¡
y ∈ ∂C# (p) and C## (y) = C (y)

¢
.

When C is lower semicontinuous proper convex on Y , this means that

(C.34) ∂C# (p) = argmax (hp | ·i− C)
for every p ∈ P .144

Proof. The equivalence (C.33) follows from the FOC (C.12) and the Inversion Rule
(C.31). And (C.34) follows from (C.33) because C## = C in this case. ¤
The convex conjugate of the 0-∞ indicator δ (· | Z) of a set Z ⊆ Y (i.e., of the function

equal to 0 on Z and +∞ on Y \ Z) is the support function of Z, i.e.,
(C.35) δ# (p | Z) = sup

Z
hp | ·i

and the Derivative Property (C.34) gives its subdifferential at a p ∈ P as
(C.36) ∂δ# (p | Z) = argmax

Z
hp | ·i

if Z is nonempty, convex and closed. This is stated in, e.g., [42, 23.5.3] and [44, p. 36,
lines 1—7]. Similarly, the inf-support function of a set Z ⊆ R is the concave conjugate of
−δ (· | Z), i.e.,
(C.37) inf

Z
h· | ki = (−δ)# (k | Z)

for every k ∈ K (the space paired with R). Its superdifferential at k is

(C.38) b∂ (−δ)# (k | Z) = argmin
Z

h· | ki

if Z is nonempty, convex and closed.

Comment (proper and improper solutions): As in [45], argmaxZ f means the set of all
maximum points of a function f on a set Z–provided that supZ f > −∞. Points of
argmaxZ f maximize f properly (i.e., either to a finite value or to +∞). When f = −∞
on Z, any point of Z maximizes f on Z, but argmaxZ f := ∅. In other words, when a
programme is infeasible, it is convenient to regard any point as an improper solution, as
in [44, p. 38]. But note that in a dual pair of solutions with equal values both solutions
are always proper (i.e., are feasible) or, equivalently, their common value is finite. To see
this, let the primal programme be to maximize a concave f : X → R ∪ {−∞}; then the
dual is to minimize a certain convex g: Y → R∪ {+∞} such that f (x) ≤ g (y) for every
144This is given in, e.g., [4, 4.4.5], [42, 23.5 (b) and (a*)] and [44, Corollary 12B]. It holds formally

also when C is the constant −∞ (but not when C is +∞ because argmax (−∞) := ∅ by convention,
whilst ∂ (−∞) (p) := Y ).
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x and y (where X and Y are vector spaces). If x maximizes f , y minimizes g and there is
no duality gap, then +∞ > f (x) = g (y) > −∞ (so x ∈ argmax f and y ∈ argmin g).145

The support function of a nonempty set Z is sublinear–i.e., it is convex and positively
linearly homogeneous (p.l.h.) or, equivalently, it is p.l.h. and subadditive. Conversely,
every l.s.c. sublinear function C: Y → R∪ {+∞} is the support function of a nonempty,
convex and closed set, viz., ∂C (0)–i.e.,

C (y) = sup
p∈∂C(0)

hp | yi(C.39)

where ∂C (0) := {p : hp | yi ≤ C (y)} .(C.40)

See, e.g., [32, 4.1: Proposition 1], [42, 13.2.1] or [48, 6.22]. By (C.36), it follows that

(C.41) ∂C (y) :=

(
p ∈ ∂C (0) : hp | yi = sup

∂C(0)

h· | yi = C (y)
)

which is stated in, e.g., [32, 4.2.1: Example 3], [42, 23.5.3] and [44, p. 36, lines 1—7]. This
is a variant of Euler’s Theorem on homogeneous functions.

C.7. Subgradients of partial conjugates. In the case of partial conjugacy, between a
bivariate convex function C and a saddle (convex-concave) function Π, the Inversion Rule
not only applies to the relevant partial derivatives but also extends to the total derivatives
(Corollaries C.6 and C.8 below). Namely, when Π and C are differentiable, their gradient
maps can be obtained from each other by transposition of that pair of variables, p and
y, w.r.t. which Π and C are mutual conjugates. When Π and C are nondifferentiable,
the rule applies to their subdifferential correspondences–i.e., to the “saddle differential”
∂pΠ × b∂kΠ and the joint subdifferential ∂y,kC (which does not usually factorize into
∂yC × ∂kC). This rule is based on a key lemma, useful also by itself,146 which identifies
the section of the joint subdifferential ∂y,kC through a p ∈ ∂yC as −b∂kΠ, the partial
subdifferential of −Π w.r.t. the argument k that it shares with C (Lemma C.5).
These relationships between a saddle function Π and its bivariate convex “parent” C

are spelt out below. First, since Π is the partial conjugate of C w.r.t. one variable, the
total (bivariate) conjugate of C is the partial conjugate of −Π w.r.t. the other variable.
Lemma C.4 (Total conjugacy by stages). Assume that C: Y ×K → R∪ {±∞} and let
the spaces Y and K be paired with P and R. Then, in the notation of (C.6),

C# =
¡
−C#1

¢#2
on P ×R. In other words, if
(C.42) Π (p, k) = C#1 (p, k) := sup

y
(hp | yi− C (y, k))

145This argument assumes that the maximand f is nowhere +∞ and that the minimand g is nowhere
−∞. These sensible conditions are met when the perturbed primal constrained maximand, F , is a
u.s.c. proper concave function on a space X × A paired with B × Y (where A and B are the spaces of
primal and dual perturbations). This is because: (i) f (x) = F (x, 0) < +∞ for every x, and (ii) the
perturbed dual constrained maximand, G (b, y) := −F# (−b, y), is then l.s.c. proper convex, and so
g (y) := G (0, y) > −∞ for every y: see, e.g., [44, (4.17)].
146For example, it yields the extension (11.1) of the Wong-Viner Theorem.
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for every p ∈ P and k ∈ K, then
C# (p,−r) = (−Π)#2 (p,−r) := sup

k
(Π (p, k)− hr | ki)

for every p ∈ P and r ∈ R.
Proof. For every (p, r) ∈ P ×R

C# (p,−r) = sup
y,k
(hp | yi− hr | ki− C (y, k)) = sup

k

µ
− hr | ki+ sup

y
(hp | yi− C (y, k))

¶
= sup

k
(Π (p, k)− hr | ki)

as required. ¤
Comment (“staged” conjugacy and alternative proofs of the inequality between partial

and total second conjugates): Also the second conjugate can be obtained in stages, i.e.,

C## = C#1#1#2#2 .

That is, the total second conjugate of C is equal to the partial second conjugate, w.r.t.
one variable, of the partial second conjugate of C w.r.t. the other variable. This gives
another proof of the first inequality in (C.8): C## = C#1#1#2#2 ≤ C#1#1 (by (C.4)
applied to the function C#1#1 (y, ·) onK, in place of C). Similarly, in terms of the partial
second concave conjugate of Π := C#1 w.r.t. the second variable, C## =

³¡
C#1

¢
#2#2

´#1
≤ C#1#1 (because Π#2#2 ≥ Π).

The “staged” conjugacy is next used to “slice” the joint subdifferential of the bivariate
convex function along one of the “axes” (the p-axis): the section of the set ∂C (y, k) ⊆
P ×R through any p ∈ ∂yC (y, k) is found to be −b∂kΠ (p, k) ⊆ ∂kC (y, k) ⊆ R.
Lemma C.5 (Subdifferential sections). Assume that C: Y ×K → R ∪ {+∞} is proper
convex, and that Π: P ×K → R∪{±∞} is the partial convex conjugate of C, i.e., (C.42)
holds for each k in K (which is paired with a space R). Then the following conditions
are equivalent to each other:
(1) (p,−r) ∈ ∂C (y, k).
(2) p ∈ ∂yC (y, k) and r ∈ b∂kΠ (p, k).

Also, either condition implies that both C (y, k) and Π (p, k) are finite.

Proof. Since C# = (−Π)#2 by Lemma C.4, and since Π := C#1 by (C.42), one has by
(C.1)

hp | yi− C (y, k) ≤ Π (p, k)(C.43)

− hr | ki+Π (p, k) ≤ C# (p,−r)(C.44)

as well as

(C.45) hp | yi− hr | ki− C (y, k) ≤ C# (p,−r)
for every p, y, r and k. By (C.13), Condition 1 is equivalent to equality in (C.45),
which holds if and only if equalities hold in both (C.43) and (C.44). Finally, the pair of
equalities is equivalent to Condition 2, again by (C.13).
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It remains to show that the equivalent Conditions, 1 and 2, imply that C (y, k) and
Π (p, k) are finite (as is also C# (p,−r)). For a start, note that, by assumption, C does
not take the value −∞, and neither does C# (since C is not the constant +∞). But both
C and C# can take the value +∞. As for Π, it can take both infinite values, although
for no p can the concave function Π (p, ·) be the constant −∞.147
Assume, say, Condition 1–i.e., that equality holds in (C.45). Since C (y, k) is either

finite or +∞, and since so is C# (p,−r), both C (y, k) and C# (p,−r) are actually finite
(since they add up to hp | yi− hr | ki, which is finite). Given this, the inequalities (C.44)
and (C.43) show that Π (p, k) is also finite.
It is equally easy to argue from Condition 2: if equalities hold in (C.43) and (C.44),

then

Π (p, k) = hp | yi− C (y, k) < +∞
Π (p, k) = C# (p,−r) + hr | ki > −∞

so Π (p, k) is finite;148 and hence so are C (y, k) and C# (p,−r). ¤

Finally, the Inversion Rule is applied to the partial subdifferential (∂yC) that is the
range of the variable (p) indexing the sections of the joint subdifferential (∂C) in Lemma
C.5. The result shows that, up to a sign change, the saddle-differential and the joint-
subdifferential correspondences (∂pΠ× b∂kΠ and ∂y,kC) are partial inverses of each other:
their graphs are identical.

Corollary C.6 (Partial Inversion Rule). Under the assumptions of Lemma C.5, the
following conditions are equivalent to each other:149

(1) (p,−r) ∈ ∂C (y, k).
(2) y ∈ ∂pΠ (p, k) and r ∈ b∂kΠ (p, k), and C (·, k) is finite and lower semicontinuous

at y.

Also, either condition implies that both C (y, k) and Π (p, k) are finite.

Proof. By Lemma C.5, if (p,−r) ∈ ∂C (y, k) then, in addition to r ∈ b∂kΠ (p, k) and
C (y, k) < +∞, one has p ∈ ∂yC (y, k). By the Inversion Rule (C.31) and (C.4), this
implies that y ∈ ∂pΠ (p, k) and that C (·, k) is l.s.c. at y. So Condition 1 implies Condi-
tion 2.
For the converse, since C (y, k) < +∞ and C (·, k) is l.s.c. at y, one has C (y, k)

= C#1#1 (y, k). So if y ∈ ∂pΠ (p, k) then p ∈ ∂yC (y, k) by the Inversion Rule (C.31).
And if additionally r ∈ b∂kΠ (p, k), then (p,−r) ∈ ∂C (y, k) by Lemma C.5. ¤

Comments (on the PIR and SSL):

(1) Finiteness of C (y, k) can be dropped from Condition 2 (and the proof of its
equivalence to Condition 1 simplifies) if either (i) C (·, k) is assumed to be l.s.c.

147What is more, for every k ∈ K either (i) Π (·, k) = −∞ (everywhere on P ), or (ii) Π (·, k) does not
take the value −∞ (anywhere on P ). The latter is the case for some k (since C (·, k) 6= +∞ for some
k); and so Π (p, ·) 6= −∞ for every p ∈ P .
148That Π (p, k) > −∞ can also be deduced from r ∈ b∂kΠ (p, k), since Π (p, ·) 6= −∞.
149This is in, e.g., [4, 4.4.14], [41, Lemma 4], [42, 37.5] and [45, 11.48].
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on the whole space Y (and not just at the particular point y), or (ii) Y is finite-
dimensional. This is because, in either case, the assumption (of Lemmas C.5
and C.6) that C (·, k) > −∞ on Y implies that lsc (C (·, k)) > −∞ on Y (when
Y is finite-dimensional, this follows from [42, 7.5]). Therefore lsc (C (·, k)) =
C#1#1 (·, k) on Y , and so the Inversion Rule (C.31) shows that p ∈ ∂yC (y, k)
if and only if both y ∈ ∂pΠ (p, k) and C (·, k) is l.s.c. at y. Thus Corollary C.6
reduces immediately to Lemma C.5.

(2) There is a structural difference between the Subdifferential Sections Lemma and
the Partial Inversion Rule. The SSL turns the condition (p,−r) ∈ ∂y,kC into a
pair of conditions like p ∈ ∂yC and r ∈ b∂kΠ–which involve two functions but
use partial subdifferentials w.r.t. the same variables as in the joint subdifferential.
The PIR turns the condition (p,−r) ∈ ∂y,kC into the pair of conditions y ∈ ∂pΠ

and r ∈ b∂kΠ. These use a single function Π, but only one of its arguments (k)
is the same as in the original function C: the other argument (y) is replaced by
its dual (p) in inverting ∂yC into ∂pΠ. This step requires the semicontinuity of C
w.r.t. y–and this is why the PIR is not purely algebraic like the SSL.

Remark C.7. Under the assumptions of Lemma C.5,

(C.46) b∂kΠ (p, k) ⊆ −∂kC (y, k) when p ∈ ∂yC (y, k)

i.e., when y yields the supremum defining Π in (C.42).

Proof. Since

(C.47) ∂C (y, k) ⊆ ∂yC (y, k)× ∂kC (y, k)

∂kC (y, k) contains the section of ∂C (y, k) through any p ∈ ∂yC (y, k). And this section
is −b∂kΠ (p, k) by Lemma C.5. ¤

Comments:

(1) A simpler proof of (C.46) comes straight from the definition (C.42):

Π (p, k +∆k) ≥ hp | yi− C (y, k +∆k) for every ∆k

with equality at ∆k = 0. In other words, the graph of the convex function
−Π (p, ·) lies below that of C (y, ·) + const., touching it at k. It follows that
−b∂kΠ (p, k) is a subset of ∂kC (y, k), although this “envelope argument” does not
show it (−b∂kΠ) to be a section of ∂C (y, k) through p.

(2) The inclusion (C.47) is usually “tight” in the sense that ∂yC×∂kC is the smallest
Cartesian product set encasing ∂C: by (C.47) itself, ∂yC and ∂kC contain the
projections of ∂C (onto P and R), and the reverse inclusions can be obtained by
using the Hahn-Banach Extension Theorem (Theorem B.3 or Corollary B.4).

For a saddle function S with a (bivariate) convex parent I, the following useful variant
of Corollary C.6 transposes the saddle differential correspondence ∂S into ∂I# instead of
∂I (i.e., into the subdifferential correspondence of I’s total conjugate instead of I itself).

Corollary C.8 (Dual Partial Inversion Rule). Assume that I: Y × V → R ∪ {+∞} is
proper convex and (jointly) lower semicontinuous for the pairing of the space V with W



SHORT-RUN APPROACH TO LONG-RUN EQUILIBRIUM 143

(and Y with P ), and that −S: Y ×W → R∪ {±∞} is I#2 (the partial convex conjugate
of I), i.e.,

(C.48) S (y,w) = inf
u
(I (y, u)− hw |ui)

for every y ∈ Y and w ∈W . Then the following conditions are equivalent to each other:
(1) (y, u) ∈ ∂I# (p, w).
(2) p ∈ ∂yS (y, w) and −u ∈ b∂wS (y, w).

Also, either condition implies that both I (p,w) and S (y, w) are finite.

Proof. Since I## = I by the assumption that I is l.s.c., the Inversion Rule (C.31) shows
that Condition 1 is equivalent to: (p,w) ∈ ∂I (y, u). And this is equivalent to Condition 2
by the Partial Inversion Rule (Corollary C.6) and the first Comment thereafter. ¤
Comment (on another derivation of DPIR): By Lemma C.4, the convex function I# is

a partial conjugate of the saddle function S; and when this relationship can be inverted
to represent S as a partial conjugate of I#, the equivalence of ∂I# and ∂S follows from
the Partial Inversion Rule alone. But this argument requires S (·, w) to be l.s.c. on Y ,
and this is a condition that S can actually fail at some points (even when I is l.s.c.).
Corollary C.8 obviates the need to ensure that S is l.s.c. in y.
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