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Abstract
Norm-to-weak* continuity of excess demand as a function of prices is proved

by using our two-topology variant of Berge’s Maximum Theorem. This improves
significantly upon an earlier result that, with the extremely strong finite topology
on the price space, is of limited interest, except as a vehicle for proving equilibrium
existence. With the norm topology on the price space, our demand continuity re-
sult becomes useful in applications of equilibrium theory, especially to problems
with continuous commodity spectra. Some auxiliary results are also given, includ-
ing closedness of the total production set and additivity of the asymptotic cone
operation. Both are needed in proving equilibrium existence by the use of the
Debreu-Gale-Nikaido Lemma.
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1 Introduction

Although the properties of demand in infinite-dimensional commodity and price spaces
have attracted much interest, hitherto the results on its price-continuity that are needed
for establishing equilibrium existence by the direct excess-demand approach have been
unsatisfactory. For example, both Aliprantis and Brown [1, p. 204], who initiated this
line of research, and Araujo [2] report negative findings, whilst Florenzano [10, p. 216]
manages only a continuity result with the finite topology on the price space, obliging her
to use finite-dimensional price sets.1 These failures led others to use finite-dimensional
approximations of the commodity space as well as of the price space,2 because this method
does not require demand continuity: see, e.g., [5], [8] or [21]. The resort to approximation
is often packaged with an interpretation of the infinite-dimensional commodity space as
an idealised description of a “large but finite” number of commodities: see, e.g., [21, p.
512]. Sometimes this may be appropriate, but in problems for which infinite-dimensional
modelling is tailor-made, and where it has turned out to be most successful, the spectra of
commodities are genuinely continuous, e.g., the flows of goods in continuous-time pricing
of public utilities. In such contexts, it is mistaken to hold that all meaningful results
can be captured by the approximation approach. Discretisation rules out techniques
that yield key calculus results, such as the continuity of the equilibrium price density
[16] and its uses in the marginal valuation of capital and other fixed inputs in [14] and
[17]. It also rules out the sensitivity analysis that is needed for any implementation of
the equilibrium solution: in the case in point, demand continuity properties are essential
for deciding whether small deviations from the equilibrium price system will or will not
result in large shifts of demand.
For demand continuity to be of interest in applications, the topologies used on the

price and commodity spaces must be kept, respectively, as weak and as strong as possible.
If, by contrast, an extremely strong topology is used on the price space as in [10], then
demand continuity becomes a weak result that has little value except as a vehicle for an
equilibrium existence proof. For a more detailed account of [10], as well as of [1], see
Section 6.
What we establish is norm-to-weak* continuity of demand, which is the best general

property available when the commodity space, L, is the Banach dual of a price space
L0 (on which the demand map is defined). It is essential that this result be applica-

1The direct approach to equilibrium existence consists in extending the methods developed originally
for a finite-dimensional commodity space, and continuity of demand in prices is needed if the excess-
demand method is adopted. For want of a satisfactory result on the demand derived from the optimising
behaviour of individual consumers and producers, Aliprantis and Brown [1] take continuous demand as
a primitive rather than derived concept–except in [1, Example 4.8, p. 205], where they, too, resort to
using finite-dimensional price sets.

2Florenzano [10, Proof of Proposition 3, p. 216] works with demand as a map of a finite-dimensional
price set into the infinite-dimensional commodity space, as do Aliprantis and Brown [1, Example 4.8, p.
205] when dealing with derived demand.
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ble to preferences that are weakly* upper semicontinuous (w∗-u.s.c.) but not necessarily
weakly* lower semicontinuous (w∗-l.s.c.), since even some of the simplest functional forms
for utility are not weakly* continuous. For example, an additively separable, strictly con-
cave utility function on L∞+ is not w∗-l.s.c. (although it is Mackey-continuous and hence
w∗-u.s.c.): see [5, Appendix II]. Lower semicontinuity of preferences should therefore be
assumed for a topology that is significantly stronger than the weak* topology–and the
best choice is the finite topology of the commodity space, denoted by TFin (L). This
gives a very large class of continuous preferences, which obviously includes all the norm-
continuous ones. The TFin-continuity condition is actually no more restrictive than it
is in the finite-dimensional case (so the only truly “infinite-dimensional” restriction on
preferences here is that of w∗-u.s. continuity).3

The case of a preference order 4 that is w∗-u.s.c. but only TFin-l.s.c. requires a variant
of Berge’s Maximum Theorem with two topologies on the set of actions, which is here the
consumption set. Such extensions, given in [18], are applied to prove demand continuity
(Theorem 5) as well as another result used in the direct proof of equilibrium existence
(Lemma 7).
The main reason for using the weak* topology (w∗) is that it is weak enough to make

the consumption set compact. Furthermore, in the context of demand continuity, the
parameter set is the price space L0 with the norm topology, and w∗ is also weak enough
to make the budget correspondence norm-to-w∗ upper hemicontinuous (u.h.c.). The other
topology on the consumption set is purely auxiliary in that it enters the assumptions but
not the conclusion–which is that the excess-demand correspondence is norm-to-w∗ u.h.c.
The role of this auxiliary topology is only to make the preferences l.s.c. whilst making
the budget correspondence lower hemicontinuous (l.h.c.) when the price space L0 carries
the norm topology. Since TFin (L) meets the latter condition despite its strength–the
budget correspondence is actually even weak-to-TFin l.h.c., as the Proof of Theorem 5
shows–it is the best choice for the auxiliary topology.
In the context of demand continuity, the price-space topology should be kept as weak

as possible (i.e., just strong enough to make the budget correspondence u.h.c. with w∗

on the consumption set, and l.h.c. with TFin (L) thereon). We achieve this by using the
norm topology of L0. This is what allows us to improve on the analysis of Florenzano
[10, Proof of Proposition 3], who establishes demand continuity, but only when the price
space carries the finite topology TFin (L0), which is even stronger than the strongest vector
topology TSV (L0). As with the two norms, the two finite topologies (on the price and
commodity spaces) should not be mistaken for each other: whereas the use of TFin (L0)
as in [10] severely weakens the demand continuity result, our use of TFin (L) can only
strengthen it (albeit perhaps not significantly by comparison with using the norm of L
for this purpose).

3A function U : L→ R is continuous for TFin if (and only if) its restriction to any affine subspace of
a finite dimension d is continuous for the usual topology of Rd.
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The stronger continuity property of demand does not, however, strengthen the equi-
librium existence result itself (Theorem 8): this does not differ significantly from [10,
Propositions 3 and 4], except for minor improvements. Given here mainly for complete-
ness, it establishes the existence of an equilibrium with a price system p? in the norm-dual
L∗ of L (which is larger than the predual L0, unless the space is reflexive). However, for
the continuity properties of demand to be relevant for investigating the impact of price
deviations, the exact equilibrium price p? must be known to belong not just to L∗ but
actually to the smaller price space L0 (since demand is defined only on L0). Although
no such price representation result is given here, under appropriate assumptions it holds
for both (i) the commodity space of all bounded functions L∞, with L0 = L1 (the space
of integrable functions) and (ii) the commodity space of measuresM, with L0 = C (the
space of continuous functions on a compact space of commodity characteristics): see [5]
and [21], respectively.4

The analysis is complemented by examples showing that demand may be undefined
at a p ∈ L∗ \ L0 and, also, that demand can be weak-to-weak* discontinuous (as a map
of L0 into L): see Section 7.
Our own interest in Bewley’s model [5] comes from our use of it in continuous-time

peak-load pricing, which has the potential for implementation by public utilities and
competitive industries: see [14], [15], [16], [17] and the references therein. In this context,
however, demand continuity would be of even greater interest if it could be established
for the Mackey topology on the commodity space L∞ (paired with the price space L1).
This seems to be an open question. If true, this would mean, for example, that the
disequilibrium resulting from a price deviation which is small in the L1 [0, T ]-norm could
be corrected by rationing users without much loss of utility or output (on the assumption
that their utility and production functions are Mackey continuous, but that much is
needed anyway to guarantee that p? ∈ L1). It is also of interest to examine demand
continuity for the supremum norm on the commodity space L∞ [0, T ]: such a property
would mean that the extra cost of meeting demand out of equilibrium could be “absorbed”
by the supplier (since this is the norm that makes his cost function continuous in peak-
load pricing). For such a continuity property, the price space has to be restricted further,
and its norm strengthened to the supremum norm, on a suitable subspace of L1 [0, T ]
such as C [0, T ]. For this use of the supremum norm to be possible, the equilibrium price
function p? must be known to be at least bounded; and in [15] we identify cases in which
p? is actually in C [0, T ] when the commodity space is L∞ [0, T ]. That the usual norm of
the price space L1 is not strong enough to make demand a norm-to-norm continuous map
of L1 into L∞ is clear from simple counterexamples, as well as from a general discontinuity
result of Araujo [2, Theorem 3(b)].5

4For the case of L = L∞, see also [15]. And Richard’s result [28] applies to both cases.
5This exploits the separability of L1 and the nonseparability of L∞ for their respective norms. By

contrast, L∞ is separable for the weak* topology (when L1 is separable for the norm).
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However, Araujo’s conclusion [2, p. 319] that “it is not a good idea to try to prove
the existence of equilibria by means of a globally defined (i.e., on the whole dual) de-
mand function” is mistaken, at least in so far as he specifically refers to Bewley’s model:
although the demand map (from L1 to L∞) is norm-to-norm discontinuous, this simply
has little or no bearing on this approach to equilibrium existence. A sufficient property of
demand is its norm-to-weak* continuity, although genuine technical difficulties do arise
in exploiting it. The base∆∗ of the polar P ∗ of the production cone is not norm-compact,
nor is the demand map defined on the whole of ∆∗ because this is a subset of L∗ and not
of L0, on which demand is defined. And although ∆∗ is weakly* compact, its intersection
with L0 is not: the weak* closure of ∆∗ ∩ L0 equals the larger price set ∆∗. There is,
nevertheless, a useful extension of the Debreu-Gale-Nikaido Lemma–given by Floren-
zano [10]–that does apply to this setting. Its application can prove only the existence
of an equilibrium price p? in L∗ (and not in L0), but the problem of price representation
is conceptually separate from that of its existence; and in principle p? can be shown to
belong to L0 by an additional argument. Such an argument is well known for the case of
L = L∞ with L0 = L1 (and is based on the Hewitt-Yosida decomposition of L∞∗).6

Some other technical results needed to realise the full potential of the direct approach
are also provided. As is recognised in [5, p. 520] and [8], for the Adequacy Assumption
it is best to use the largest cone contained in the total production set Y : this helps
both to weaken the assumption and to limit the range of relevant prices to a compact
set ∆∗.7 However, if this cone is to be used for an equilibrium existence proof based on
the Debreu-Gale-Nikaido Lemma, one needs to know that it is weakly* closed. This is
established here: Y is shown to be closed (Lemma 2), and it follows that so is the cone
in question, which therefore equals the asymptotic cone, asY . One also needs to know
that it (asY ) is equal to the sum of the asymptotic cones of the individual production
sets, and this is shown in Lemma 4.8

2 Model and assumptions

The commodity space, L, is taken to be the norm-dual (equal to the order-dual) of a
Banach lattice L0; i.e., L = L0∗. The nonnegative cone in L0 is denoted by L0+, and the
norm of a p ∈ L0 is kpk0. The dual nonnegative cone in L is L+. The (dual) norm of

6So far as we know, no corresponding argument exists for L =M with L0 = C.
7A similar restriction on the relevant range of prices can be obtained on the consumption side by

assuming the properness of preferences: see [26] and [8, pp. 2—3]. However, it is shown in [22, Section 3]
that this use of properness is formally equivalent to assuming that the production cone has a nonempty
interior (for the norm topology). A distinctive feature of L∞ is that its nonnegative orthant has a
nonempty interior.

8These results are obtained by using the “localisation” of weak* closedness property to bounded parts
of convex sets, known as the Krein-Smulian Theorem. The technique is also instrumental in establishing
weak* upper semicontinuity of concave functions: see [13].
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an x ∈ L is denoted by kxk. The norm-dual L∗ of L, which contains L0, is used as
the price space; and hp |xi denotes the value of a commodity bundle x ∈ L at a price
system p ∈ L∗. The weak* topology of L is denoted by w∗ for brevity; the full notation
is w (L,L0). As for the weak* topology of L∗, this is always denoted by w (L∗, L) for
clarity. Also, the finite topology on the commodity space L–in which a set is closed if
and only its intersection with any affine subspace of a finite dimension d is closed for the
usual topology of Rd–is denoted by TFin (L). This is abbreviated to TFin (which never
means TFin (L0)).
The (finite) sets of producers and households (or consumers) are denoted by Pr and

Ho. The production set of producer i ∈ Pr is denoted by Yi, and the consumption set
of household h ∈ Ho is Xh. Consumer preferences, taken to be complete and transitive,
are given by a total (a.k.a. complete) weak preorder 4h on Xh, for each h. The corre-
sponding strict preference is denoted by ≺h. The household’s initial endowment is xEnh ;
the household’s share in the profits of producer i is ςhi ≥ 0, with

P
h ςhi = 1 for every

i. (The ranges of running indices in summations, etc., are always taken to be the largest
possible with any specified restrictions.)
The attainable consumption and production sets consist of those points of Xh or Yi

that appear in some feasible allocation. Formally, with xEn :=
P

h x
En
h denoting the total

initial endowment, the attainable consumption and production sets are

XAt
h := Xh ∩

Ã
−
X

h0:h0 6=h
Xh0 + x

En +
X
i

Yi

!
(1)

Y Ati := Yi ∩
ÃX

h

Xh − xEn −
X
i0: i0 6=i

Yi0

!
. (2)

The complete list of assumptions follows.

Set Closedness The sets Yi and Xh are w∗-closed (for each i and h).

Set Convexity The sets Yi and Xh are convex.

Preference Continuity For each h the preorder 4h is:

1. w∗-upper semicontinuous, i.e., for every x0 the set {x ∈ Xh : x0 4h x} is w∗-
closed; and

2. TFin-lower semicontinuous, i.e., for every x0 the set {x ∈ Xh : x 4h x0} is TFin-
closed.

Preference Convexity For each h, if x ≺h x0, then x ≺h ²x0 + (1− ²)x for every
number ² with 0 < ² ≤ 1.9

9This condition is also known as semi-strict quasi-convexity. It implies quasi-convexity (i.e., the
convexity of {x : x0 4 x}) if 4 is TFin-u.s.c.: see, e.g., [7, pp. 59—60].
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Nonsatiation For every h and x ∈ XAt
h there exists x0 ∈ Xh with x ≺h x0.

Inaction Feasibility 0 ∈ Yi for every i.

Boundedness For every norm-bounded set B ⊂ L, the set

Yi ∩
Ã
L+ −B −

X
i0: i0 6=i

Yi0

!

is norm-bounded (for each i); and Xh is contained in L+ (for each h).10

Adequacy For each h, ¡
Xh − xEnh

¢
∩ cor asY 6= ∅ (3)

where Y :=
P

i Yi, i.e., a feasible trade for the consumer belongs to the core (a.k.a.
the algebraic interior) of the asymptotic cone of the total production set.

Comments:

1. The Adequacy Assumption (3) guarantees that feasible allocations exist, i.e., that
XAt
h and Y Ati are nonempty.

2. The cone asY can be characterised as the largest cone (with vertex at 0) that is
contained in Y ; it is further discussed in Section 4.

3. Part of the Adequacy Assumption is that cor asY 6= ∅. For a convex set A, its core
is equal to the interior of A for each of the following: TFin (the finite topology), TSV
(the strongest vector topology), and TSLC (the strongest locally convex topology,
a.k.a. the natural or convex-core topology): see, e.g., [24, (1.3) and Section 3: p.
108]. In a Banach space L, the core of a convex, norm-closed set A is also equal to
the norm-interior of A (in L): see, e.g., [12, p. 84] or [30, II.7.1].

4. The (algebraic) polar A◦ of a cone A ⊂ L with a nonempty norm-interior is a
cone in L∗ with a w (L∗, L)-compact base. This is essential for the fixed-point
argument in the equilibrium existence proof, where such a base ∆∗ for the price
cone P ∗ := (asY )◦ \ {0} is specified by (14).

5. For demand continuity, a significantly weaker form of the Adequacy Assumption is
sufficient (Theorem 5). This is because, in the continuity proof, the assumption is

10When L = L∞, this Boundedness Assumption is equivalent to that of [5, p. 520], since norm-
boundedness and order-boundedness are the same in this case.
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needed only to make the budget correspondence lower hemicontinuous by guaran-
teeing that each consumer’s income is (strictly) above the survival minimum at all
price systems from the relevant range, i.e., that

∀p ∈ P 0 ∃xh ∈ Xh

p |xh − xEnh

®
< 0 (4)

where P 0 := P ∗ ∩ L0. This obviously holds if

∃xh ∈ Xh ∀p ∈ P 0

p |xh − xEnh

®
< 0 (5)

i.e., if a feasible trade is (strictly) negative as a linear functional on P 0. And (3)
implies the stronger property of negativity on P ∗, i.e., it implies that

∃xh ∈ Xh ∀p ∈ P ∗

p |xh − xEnh

®
< 0. (6)

For a proof, see (12).

6. For the case of Y = −L+ in a Banach lattice L, Condition (3) implies a specific
restriction on the space itself: corL+ 6= ∅ if and only if L is the space C (K) of
all continuous real-valued functions on a compact K. This is the Kakutani-Krein-
Krein Theorem: see, e.g., [30, V.8.5 with V.8.4].11 The existence of a y ∈ L that
is strictly positive on L∗+ \ {0}, as is required for (6), can be a significantly weaker
condition than the nonemptiness of corL+. This is because, in any Banach lattice
L, strictly positive elements are the same as quasi-interior points of L+;12 and the
latter exist whenever L is separable:13 see, e.g., [30, V.7.6]. Therefore (6) is a useful
condition when L = L% (Ξ,A, µ) for a % < +∞ (where µ is a sigma-finite measure
on a countably generated sigma-algebra A, or on its completion).

7. The assumption that L has a (Banach) predual can be avoided by replacing L0

with some separating subspace of the norm-dual L∗ and using the weak topology
w (L,L0) instead of the weak* topology on L. For example, when L = L1 one can set
L0 = L∗ = L∞, and work with w (L1, L∞) using the Dunford-Pettis Compactness
Criterion.

11More precisely, L can be equivalently renormed so as to be isomorphic, as a normed lattice, to
C (K). For the case of L∞, note that: (i) renorming is unnecessary, (ii) the K in question is extremally
disconnected.
12If L is an order-complete Banach lattice of minimal type (e.g., L1 or L% for a % <∞), then strictly

positive elements (or, equivalently, quasi-interior points of L+) are also the same as weak order units:
see, e.g., [30, V.7.7].
13More generally, quasi-interior points exist (and are dense in L+) for any separable, completely

metrisable and locally convex space (a separable Fréchet space) L ordered by a closed cone that generates
it (i.e., a cone L+ such that L+ − L+ = L).
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8. The spaceM (K) has generally no element that is strictly positive onM∗
+ \ {0}.

But it has elements that are strictly positive on C+ \ {0} when K is a metric
compact: any measure that is positive on every open subset of K is an example.
So, although (6) cannot hold in this case, Condition (5) can still be useful.

9. The Adequacy Assumption keeps the value of the initial endowment above the
minimum; any profit income plays no part in the argument (except for being non-
negative). For best results, all the productive factors should be included in the list
of commodities, to represent the rents on any fixed factors as endowment rather
than profit income. This can be achieved by “conification”, which formally con-
verts a technology with decreasing returns to scale into one with constant returns.
This procedure–detailed in, e.g., [27, Section 5]–enlarges the commodity space
by introducing “entrepreneurial” factors, one for each production set Yi that is not
a cone from the start.14 The added factors are in fixed supply: there is, say, a
unit of each, which is owned by the consumers in amounts proportional to their
shares in the firm. (Each factor is taken to be of use only for the firm in question,
and so it does not enter consumer preferences.) The original production set Yi is
embedded into the enlarged commodity space by setting the additional coordinates
of each input-output vector at −1 for the i-th entrepreneurial factor (and at 0 for
the others). Finally, the i-th production set is redefined as the closure of the cone
generated (in the enlarged space) by the embedded original set.

10. Although the lower semicontinuity of preferences need be (and is) assumed only for
TFin, little would be lost by way of applications had l.s. continuity been assumed
for the norm of L. (By contrast, in the price space L0 the distinction between the
norm topology and TFin (L0) is significant, as is pointed out in the Introduction.)

11. Note, however, that TFin is not a vector topology, unless dim L is countable (which is
never the case for an infinite-dimensional Banach space L): see, e.g., [24, Section 3:
p. 108]. When the vector-space property, or local convexity, is also needed, the best
replacement is TSV, or TSLC. Even with TSLC on L, every concave utility function
U : L → R (defined and finite on the whole commodity space) is continuous: see,
e.g., [3, V.3.3 (d)].

3 Compactness of attainable sets

Lemma 1 The attainable sets XAt
h and Y Ati are w (L,L0)-compact, for each h and i.

Equivalently, the set of all feasible allocations is weakly* compact.

14McKenzie [27] also shows how to weaken the adequacy assumption, in another respect, by using the
concept of an irreducible economy.
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Proof. First consider the case of Xh = L+ for each h. Then

XAt
h = L+ ∩

Ã
−L+ + xEn +

X
i

Yi

!

Y Ati = Yi ∩
Ã
L+ − xEn −

X
i0: i0 6=i

Yi0

!
.

So Y Ati is norm-bounded, by the Boundedness Assumption with B =
©
xEn
ª
. Further-

more, note that

XAt
h = L+ ∩

Ã
−L+ + xEn +

X
i

Y Ati

!
.

It follows that this set is also norm-bounded: use [19, 3.2.6 with 3.2.3]. (This applies
because L is a normed lattice, so the cone L+ is self-allied for the norm topology. The
result is also given in [30, V.3.1: Corollary 2], where the property of L+ is referred to as
“normality”.) It follows a fortiori that the attainable sets are also norm-bounded in the
general case of Xh ⊆ L+ (since they can only be smaller than in the case of Xh = L+).
So XAt

h and Y Ati are weakly* compact relatively to L (by the Banach-Alaoglu Theorem).
That they are actually compact (or, equivalently, closed) can be shown in two ways: one
consists in using Lemma 2 (below) to show that the sums of the weakly* closed sets in 1
and 2 are also closed. For an alternative proof, note that the set of all feasible allocations,
A, is contained in the Cartesian product of XAt

h and Y Ati (over all h’s and i’s); and so A
is weakly* compact relatively to LHo∪Pr. Since A is also weakly* closed in this space, it is
weakly* compact. It follows that so are XAt

h and Y Ati , since they are weakly* continuous
images of A, viz., its coordinate projections.

4 Total production set and its asymptotic cone

When the commodity space is finite-dimensional, the Boundedness Assumption is equiva-
lent to positive semi-independence of the asymptotic cones of the production sets together
with the cone −L+, and it is well known to imply that the total production set is closed
and, also, that the asymptotic cone operation is additive: see, e.g., [7, p. 23] and [29,
9.1.1]. Both results are next extended to the case of a dual Banach commodity space by
using the Krein-Smulian Theorem. The closed-sum result (Lemma 2) is the more impor-
tant of the two,15 since the additivity result can be made superfluous by transforming
the production sets into cones in the way described towards the end of Section 2.

15For Lemma 2, it suffices to assume that the set Yi∩
³
−B −

P
i0: i0 6=i Yi0

´
be norm-bounded (for every

bounded B). So Lemma 2 extends, to the case of any (finite) number of subsets of a dual Banach space
L, the w∗-closedness result given in [23] for the sum of two sets. In the case of a Banach space, the
equicontinuity condition of [23] is the same as the above one for two sets, and the hypercompleteness
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Lemma 2 The set Y :=
P

i Yi is w
∗-closed.

Proof. Take any bounded and w∗-closed subset, B, of L. Since Y is convex, it suffices
to show that Y ∩B is w∗-closed and apply the Krein-Smulian Theorem: see, e.g., [9, V.7.5]
or [12, 18E]. For any net (yn) in Y ∩B convergent weakly* to some y ∈ L, decompose each
of its terms into the sum yn =

P
i y
n
i for some y

n
i ∈ Yi. By the Boundedness Assumption

the net (yni ) is bounded; so one can assume that it converges weakly* to some yi, for each
i. (If not, replace it with a w∗-convergent subnet, which exists by the Banach-Alaoglu
Theorem.) Since Yi is w∗-closed, yi ∈ Yi. It follows that y =

P
i yi ∈

P
i Yi.

A vector v ∈ L is called a direction of recession in a convex set S ⊆ L, at a point
s ∈ S, if s+αv ∈ S for every α ∈ R+. The recession cone recS of S consists of all those
directions of recession common to every point s ∈ S, i.e., recS = {v : v + S ⊆ S}. The
asymptotic cone asS is the recession cone of the algebraic closure of S.16 The distinction
between recS and asS disappears when S is closed for any vector topology T on L: the
directions of recession are then the same at every s ∈ S, i.e.,

asS = recS =
\
α>0

1

α
(S − s) for each s ∈ S.

It follows that asS is T -closed and, also, that if 0 ∈ S then asS is the largest cone
contained in S: see, e.g., [3, I.3.5], [6, p. 1909] or [12, (8.5)]. Furthermore, if (sn) and
(²n) are nets in S and R+ with ²n → 0 and ²nsn → v for T , then v ∈ asS: see, e.g., [11,
1.1] or [12, 8C: Lemma (c)].

Corollary 3 The cone asY := as (
P

i Yi) is w
∗-closed.

Lemma 4 as (
P

i Yi) =
P

i asYi.

Proof. Take any v ∈ as (
P

i Yi); this means that nv ∈
P

i Yi for each n ∈ N (since
0 ∈ Yi). So

v =
X
i

yni
n

(7)

for some yni ∈ Yi. By using the Boundedness Assumption as in Proof of Lemma 2, the
sequence (yni /n) is shown to be bounded; so it can be assumed to converge weakly* to
some vi, for each i.17 Since 1/n → 0 (and yni /n → vi), vi ∈ asYi. And v =

P
i vi by

passage to the limit in (7) as n→∞. This shows that as (
P

i Yi) ⊆
P

i asYi; the reverse
inclusion holds obviously.

assumption holds by the Krein-Smulian Theorem. The criterion of [20, Proposition 5] for the closed
sum of two cones is similar: “Property (G)” holds if the cones are allied; and alliedness can be shown to
imply the above boundedness condition by using [19, 3.2.5].
16This is the same as the closure of S for TSLC or TSV if the core of S is nonempty: this follows from

[12, 11A], given that corS is the interior of S for TSLC (when S is convex).
17If it does not converge, replace it by a convergent subnet (which does exist, although a convergent

subsequence need not exist unless L0 is separable).
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5 Norm-to-weak* continuity of truncated demand

The truncated consumption and production sets are defined as18

XTr
h :=

¡
XAt
h + {x : kxk ≤ 1}

¢
∩Xh (8)

Y Tri :=
¡
Y Ati + {y : kyk ≤ 1}

¢
∩ Yi. (9)

Since XAt
h , Y

At
i and the closed unit ball of L are all w∗-compact, so are the sets XTr

h

and Y Tri . Also, by construction, X
At
h and Y Ati are contained in the norm-interiors of XTr

h

relative to Xh and of Y Tri relative to Yi. For completeness, the truncated supply and
demand correspondences are next spelt out. At p ∈ L∗ the profit of producer i is

ΠTri (p) := sup
©
hp | yi : y ∈ Y Tri

ª
(10)

and his supply correspondence (the set of optimal input-output bundles) is

Ŷ Tri (p) :=
©
y ∈ Y Tri : hp | yi = ΠTri (p)

ª
.

Household h’s income and its budget set are (both at the maximum of its profit income)

M̂Tr
h (p) :=


p |xEnh

®
+
X
i

ςhiΠ
Tr
i (p) (11)

B̂Trh (p) :=
n
x ∈ XTr

h : hp |xi ≤ M̂Tr
h (p)

o
.

The household’s demand is

X̂Tr
h (p) :=

n
x ∈ B̂Trh (p) : ∀x0 ∈ B̂Trh (p) x0 4h x

o
and so the (truncated) excess demand correspondence is

ÊTr (p) :=
X
h

³
X̂Tr
h (p)− xEnh

´
−
X
i

Ŷ Tri (p) .

Note that ÊTr (p) can be empty at some p ∈ L∗ \ L0: see Example 9. However, ÊTr is
effectively defined on P 0, i.e., ÊTr (p) 6= ∅ for p ∈ P 0: this is part of Theorem 5 below.
Recall that the polar cone of asY is

(asY )◦ = {p ∈ L∗ : ∀y ∈ asY hp | yi ≤ 0}
18Our use of a single truncation, extending the technique of [7, pp. 87—88] to infinite-dimensional

commodity spaces, simplifies the arguments of [10] and [31], which use a sequence (or a family) of
truncations.
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and denote for brevity

P ∗ := (asY )◦ \ {0}
P 0 := P ∗ ∩ L0 = ((asY )◦ ∩ L0) \ {0} .

Comment: By definition, A◦ is the algebraic polar of a cone A ⊂ L, i.e., A◦ consists
of all the linear functionals that are nonnegative on A. However, A◦ ⊂ L∗ if A has a
nonempty norm-interior (as is the case with asY here). Also, A◦ 6= {0} by a separation
argument if: (i) A 6= L, (ii) A is convex, and (iii) either corA 6= ∅ or A is TSLC-closed (or
both, as is the case here).
For clarity, note the distinction between hemicontinuity (of a correspondence) and

semicontinuity (of an order or a real-valued function). This is by now standard in math-
ematical economics, but usage of these terms has varied, and in [25] “semicontinuity”
means what we mean by hemicontinuity.

Theorem 5 The truncated excess demand, p 7→ ÊTr (p), is a norm-to-weak* upper hemi-
continuous correspondence from P 0 into L, with nonempty, convex and weakly* compact
values.

Proof. Except where other topologies are specified, in this proof the space L0 is
topologised by its norm k · k0, and L by w∗. The real line R carries its usual topology.
Since Y Tri is w∗-compact (and since the norm topology of L0 is the topology of uniform
convergence on w∗-compact subsets of L), the duality form (y, p) 7→ hp | yi is (jointly)
continuous on Y Tri × L0 (for k · k0 × w∗). An application of Berge’s Maximum Theorem
[4, p. 115] shows that Ŷ Tri : P

0 ³ Y Tri is norm-to-w∗ u.h.c. (with nonempty, convex and
compact values), and that ΠTri : P

0 → R is norm-continuous.
To prove that X̂Tr

h is norm-to-w∗ u.h.c., note first that the budget correspondence
defined by

(p,M) 7→ Bh (p,M) :=
©
x ∈ XTr

h : hp |xi ≤M
ª

for p ∈ L0 andM ∈ R is u.h.c. (Since XTr
h is compact, this is equivalent to the closedness

of the graph of Bh in L0 × R ×XTr
h –see, e.g., [25, 7.1.16]–and this holds because the

duality form is continuous on XTr
h × L0.)

Next, note that the “strict” budget correspondence defined by

BSh (p,M) :=
©
x ∈ XTr

h : hp |xi < M
ª

is w (L0, L)-to-TFin l.h.c. What is more, it is w (L∗, L)-l.h.c. on L∗ with any topology
whatsoever on XTr

h , since it has w (L
∗, L)-open sections (i.e., the set©

(p,M) : x ∈ BSh (p,M)
ª
is open).

It follows that Bh is w (L∗, L)-to-TFin l.h.c. at every point (p,M) ∈ L∗ × R with
BSh (p,M) 6= ∅. To see this, take any x0 ∈ BSh (p,M); then, as ²→ 0+, the sequence x² :=

13



²x0 + (1− ²)x converges to x for TFin; and this shows that the TFin-closure of BSh (p,M)
contains Bh (p,M). Since Bh (p,M) is w∗-closed, it equals the closure of BSh (p,M) for
any topology between w∗ and TFin. To complete the proof that Bh is l.h.c. (w (L∗, L)-to-
TFin, at every (p,M) with BSh (p,M) 6= ∅), recall that the correspondence whose values
are the closures of an l.h.c. correspondence is also l.h.c.: see, e.g., [25, 7.3.3].
Since M̂Tr

h (p) is a norm-continuous function of p ∈ L0 (because ΠTri is), it follows that
the composition

p 7→ Bh
³
p, M̂Tr

h (p)
´
=: B̂Trh (p)

is k · k0-to-w∗ u.h.c. on P 0. To prove that it is w (L∗, L)-to-TFin l.h.c. on P ∗, use the
Adequacy Assumption to select any xSh ∈ Xh and ySh ∈ cor asY with xSh = xEnh +ySh. Note
that xSh ∈ XAt

h ⊆ XTr
h and that

p |xSh
®
<

p |xEnh

®
≤ M̂Tr

h (p) (12)

for every p ∈ P ∗; so xSh ∈ BSh
³
p, M̂Tr

h (p)
´
6= ∅. Given the l.h.c. result for Bh, it follows

that B̂Trh is w (L∗, L)-to-TFin l.h.c. on P ∗. A fortiori, it is k · k0-to-TFin l.h.c. on P 0.
The strict inequality of (12) is given in, e.g., [10, Proposition 2], but it is also proved

here for completeness: when A ⊂ L is a cone and p ∈ A◦ \ {0}, choose any v ∈ L with
hp | vi 6= 0. If yS ∈ corA, then yS + ²v ∈ A and yS − ²v ∈ A for some ² > 0. Therefore
p | yS ± ²v

®
≤ 0, and so


p | yS

®
≤ −² |hp | vi| < 0, as required.

Given the hemicontinuity properties of B̂Trh , a two-topology version of Berge’s Max-
imum Theorem [18, Corollary 2.6] shows that X̂Tr

h is k · k0-to-w∗ u.h.c. with nonempty
and compact values. (In this application, the action set is XTr

h , ordered by 4h and twice
topologised by TFin and w∗, whilst the constraint correspondence is B̂Trh restricted to the
parameter space P 0, topologised by k · k0.) It follows that ÊTr is also u.h.c. (being the
sum of compact-valued u.h.c. terms): see, e.g., [25, 7.3.15].

6 Equilibrium existence by direct excess-demand ap-
proach

In this section, we prove the existence of an equilibrium (with a price system in L∗) by
using demand continuity and Florenzano’s [10] successful extension of the Debreu-Gale-
Nikaido Lemma (quoted here in the Appendix), which applies to a demand map defined
just on the predual price space L0, provided that it is norm-to-weak* continuous (or
even just TFin (L0)-to-weak* continuous). It therefore applies to the demand map derived
from preference maximisation: if the price system belongs to L0, then the budget set is
w∗-compact once the consumption set has been truncated to make it bounded. So the
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demand derived from w∗-u.s.c. preferences is defined effectively on L0.19

The idea of working with a demand map defined on the intersection of L0+ with a
weakly* compact base of the cone L∗+ is contained in the setup of Aliprantis and Brown
[1, p. 195] because their Density Condition holds for any Banach lattice L with a predual
L0. However, their analysis takes the demand map as a primitive concept for the most
part, and they themselves point out [1, p. 204] that their Continuity Condition fails for
the derived demand (in Bewley’s model). In other words, in contrast to the norm-to-
w∗ continuity established here (Theorem 5), consumer demand can be w (L0, L)-to-w∗

discontinuous on P 0, as is also shown by Example 10 below. And this is because–unlike
the norm topology we use–the weak topology of the price space is too weak for the
purpose: the budget correspondence is not closed for w (L∗, L) × w (L,L0). Because of
the discontinuity, Aliprantis and Brown [1, Example 4.8] resort to using finite-dimensional
price simplices in the case of L = L∞. Their arguments are developed by Florenzano
[10, Lemma 1 and Proof of Proposition 3], who states that derived demand is upper
hemicontinuous for the finite topology TFin (L0) on the price space (with w∗ on L).20 She
also extends the Debreu-Gale-Nikaido Lemma in a compatible way, i.e., with the finite
topology on L0. This gives a foundation for the direct approach using the demand map.
However, the extreme strength of the finite topology–which is strictly stronger than
every vector topology, unless dimL0 is finite–weakens her continuity result, and keeps
her analysis close to the finite-dimensional approximation approach.

Definition 6 A competitive equilibrium consists of a price system, p? ∈ L∗, and an
allocation, x?h ∈ Xh and y?i ∈ Yi for each household h and producer i, that meet the
conditions:

1.
P

h

¡
x?h − xEnh

¢
=
P

i y
?
i .

2. hp? | y?i i = supy {hp? | yi : y ∈ Yi} =: Πi (p?).

3. hp? |x?hi =

p? |xEnh +

P
i ςhiy

?
i

®
=: M̂h (p

?).

4. For every x ∈ Xh, if hp? |xi ≤ hp? |x?hi, then x 4h x?h.
19The literature on this topic also contains several other extensions of the Debreu-Gale-Nikaido Lemma

that do not apply to the demand map derived from the optimising behaviour. This is because those
extensions impose one or both of the following conditions: (i) that the domain of definition for the demand
map be the norm-dual L∗ of the commodity space, and/or (ii) that the demand map be w (P,L)-to-w∗

continuous, where the price space P is either L∗ or L0. Neither condition is met by the derived demand:
see Examples 9 and 10. With regard to the demand’s domain, a price system that belongs to L∗ but
not to L0 can make the (truncated) budget set w∗-noncompact–with the result that there may be no
optimum for a consumer with w∗-u.s.c. preferences (Example 9).
20The proof in [10, p. 216] contains a gap which can be filled by using the two-topology version of

Berge’s Maximum Theorem.
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Once demand continuity has been established, the main technical difficulty in using it
for a direct proof of equilibrium existence is that the duality form is not jointly continuous
for the two weak* topologies–viz., w (L∗, L) and w (L,L0)–that have to be put, for the
fixed-point argument, on the price set ∆∗ and on a consumption set XTr (or a production
set Y Tr). This is why even Florenzano’s version of the Debreu-Gale-Nikaido Lemma
cannot yield equilibrium existence without additional arguments. These are made simpler
and more transparent by using a two-topology variant of Berge’s MaximumTheorem that
applies even to a non-closed constraint correspondence (the budget here). This is set out
next, with XTr

h abbreviated to XTr, etc. (since h is fixed here).

Lemma 7 Assume that (p, x) is in the w (L∗, L)×w (L,L0)-closure of the graph gr X̂Tr

in P ∗ ×XTr, and that x ∈ XAt. Then

1. hp |xi ≥ M̂Tr (p).

2. x ∈ X̂Tr (p) if (and only if) hp |xi = M̂Tr (p).

Proof. Since x ∈ XAt, there is an x0 ∈ X with x0 Â x (by Nonsatiation). Define x²
:= ²x0+(1− ²)x. Then x² ∈ XTr for small enough ² > 0, since the (norm) interior of XTr

relative to X contains XAt by construction (8). Also, x² Â x by Preference Convexity.
By assumption, there is a net (pn, xn)n∈N in gr X̂

Tr with pn → p for w (L∗, L) and
xn → x for w∗ := w (L,L0). By the weak* u.s. continuity of preferences, x² Â xn for every
n far enough in the directed set N (i.e., from some n0 on). So

hpn |x²i > M̂Tr (pn) . (13)

Furthermore, M̂Tr is an w (L∗, L)-l.s.c. function on L∗, since each ΠTri is by definition the
supremum (10) of a family of w (L∗, L)-continuous functions. Therefore (13) implies, by
passage to the limit in n, that

hp |x²i ≥ M̂Tr (p) .

By passage to the limit as ² → 0+, this gives that hp |xi ≥ M̂Tr (p), as is required for
Part 1.
Part 2 follows directly from an application of another two-topology version of Berge’s

Maximum Theorem [18, Theorem 2.1], given that B̂Trh is w (L∗, L)-to-TFin l.h.c. on P ∗
(as is shown in the Proof of Theorem 5). In this case–as distinct from the Proof of
Theorem 5–the parameter space is P ∗ topologised by w (L∗, L), and this is taken as the
domain of the constraint correspondence B̂Trh . The action set is again X

Tr, ordered by
4h and topologised by TFin and w∗ as before.

Theorem 8 On the assumptions of Section 2, a competitive equilibrium with a price
system p? ∈ L∗ exists.
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Proof. Fix any yS ∈ cor asY = intL,k·k asY , and define

∆∗ :=
©
p ∈ (asY )◦ :


p | yS

®
= −1

ª
. (14)

This is a convex and w (L∗, L)-compact base for the cone (asY )◦: see, e.g., [19, 3.8.6] or
[10, Proposition 2]. Set

∆0 := ∆∗ ∩ L0.
By Theorem 5, ÊTr is a k · k0-to-w∗ u.h.c. correspondence from ∆0 into the w∗-compact
set

P
h

¡
XTr
h − xEnh

¢
−
P

i Y
Tr
i . For every p ∈ ∆0, the set ÊTr (p) is w∗-closed, convex

and nonempty; also, hp | ei ≤ 0 for every e ∈ ÊTr (p). Furthermore, asY is w∗-closed by
Corollary 3. Therefore, an application of Florenzano’s [10, Lemma 1] extension of the
Debreu-Gale-Nikaido Lemma21 shows that, on some directed set N, there exist two nets,
(pn)n∈N in ∆0 and (en)n∈N with e

n ∈ ÊTr (pn), that converge weakly* to some p? ∈ ∆∗

and v? ∈ asY , i.e., pn → p? for w (L∗, L) and en → v? for w (L,L0). (Note that p? need
not belong to L0, so at this stage it is not clear that ÊTr (p?) 6= ∅: even this part of the
equilibrium result is yet to be established.)
By Lemma 4,

v? =
X
i

v?i (15)

for some v?i ∈ asYi. Also, for every n, the excess demand at pn can be decomposed into
the sum

en =
X
h

¡
xnh − xEnh

¢
−
X
i

yni (16)

for some xnh ∈ X̂Tr
h (p

n) and yni ∈ Ŷ Trh (pn). Since XTr
h and Y Tri are w∗-compact, it can

be assumed (by passage to subnets if necessary) that the nets (xnh) and (y
n
i ) converge

weakly* to some x?h ∈ XTr
h and y?i ∈ Y Tri withX

i

v?i =
X
h

¡
x?h − xEnh

¢
−
X
i

y?i (17)

from (16) and (15). It remains to show that p? supports the allocation (y?i + v
?
i )i∈Pr and

(x?h)h∈Ho as an equilibrium.
Since x?h ∈ XAt

h by (17), Part 1 of Lemma 7 gives that

hp? |x?hi ≥ M̂Tr
h (p

?)

and summation over h gives, with the definitions (11) and (10), thatX
h


p? |x?h − xEnh

®
≥
X
i

ΠTri (p
?) ≥

X
i

hp? | y?i i . (18)

21Since the extension applies to an excess demand that is merely TFin (L0)-to-w∗ u.h.c., it applies a
fortiori to a demand that is norm-to-weak* u.h.c.
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On the other hand, hp? | v?i i ≤ 0 for each i because v?i ∈ asYi and p? ∈ (asY )
◦ =

(
P

i asYi)
◦ =

T
i (asYi)

◦. SoX
i

hp? | y?i i ≥
X
i

hp? | v?i + y?i i =
X
h


p? |x?h − xEnh

®
(19)

where the equality follows from (17). Therefore (18) and (19) actually hold as equalities,
and so do all the inequalities which have added up to (18) and (19). That is, for each h
and i,

hp? |x?hi = M̂Tr
h (p

?) (20)

ΠTri (p
?) = hp? | y?i i (21)

hp? | v?i i = 0. (22)

What (21) means is that hp? | y?i i ≥ hp? | yi for every y ∈ Y Tri . To show that this holds
also for every y ∈ Yi, introduce y² := ²y+(1− ²) y?i ; then y² ∈ Y Tri for small enough ² > 0
(since y?i ∈ Y Ati , which lies in the norm-interior of Y Tri relative to Yi, by (9)). Therefore
hp? | y?i i ≥ hp? | y²i; substitute for y², cancel out the terms with the coefficient 1− ² and
divide by ². This shows that y?i maximises profit (at p

?, on Yi); and so does y?i + v
?
i in

view of (22).
It remains only to verify the preference maximisation condition of Definition 6. Given

(20), Part 2 of Lemma 7 shows that x?h ∈ X̂Tr
h (p

?), i.e., that for x ∈ XTr
h

hp? |xi ≤ hp? |x?hi⇒ x 4h x?h.

To show that this holds also for every x ∈ Xh, introduce x² := ²x+ (1− ²)x?h. Suppose
that x Âh x?h; then also x² Âh x?h for ² ∈ (0, 1] by Preference Convexity. Also, x² ∈ XTr

h

for small enough ² > 0 (since x?h ∈ XAt
h , which lies in the norm-interior of X

Tr
h relative

to Xh, by (8)). So hp? |x²i > hp? |x?hi; substitute for x², cancel out the terms with the
coefficient 1− ² and divide by ² to obtain that hp? |xi > hp? |x?hi, as required.
Comments:

1. As has been pointed out, the duality form is not jointly continuous for the two
weak* topologies–viz., w (L∗, L) and w (L,L0)–for which pn and (yni , x

n
h) converge.

(It is neither u.s.c. nor l.s.c.) This is why, although yni maximises profit on Y
Tr
i

at pn, the same property for their limits y?i and p
? does not follow by continuity.

Similarly (20) does not follow directly from the corresponding property of (pn, xnh);
another obstacle here is that M̂Tr

h is only l.s.c. for the weak* topology of L∗. (For
the norm of L0, it is continuous.) In other words, the topologies that must be put
on the price set and the consumption set for the fixed-point argument are too weak
to make the budget constraint closed.
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2. The equilibrium price system p? ∈ ∆∗ is obtained in the proof of Theorem 8 as the
limit of a net of price systems (pn) in ∆0. Such an approach is implicitly based on
the weak* denseness of ∆0 in ∆∗, which indeed follows from the w∗-closedness of Y
and hence of asY . In precise terms, if yS ∈ A ⊂ L, A is a w∗-closed cone (with the
algebraic polar A◦), and

∆∗ =
©
p ∈ A◦ ∩ L∗ :


p | yS

®
= −1

ª
and ∆0 = ∆∗ ∩ L0

then ∆0 is w (L∗, L)-dense in ∆∗.22 This excludes, e.g., the case of a Y equal to the
half-space with a normal vector p ∈ L∗ \ L0 (so that ∆0 = ∅).
Proof. It is shown first that A◦ ∩ L0 is dense in A◦ ∩ L∗. Suppose it is not. Then
a point p0 ∈ A◦ ∩ L∗ can be strictly separated from A◦ ∩ L0 by a z0 ∈ L, i.e.,
hp0 | z0i > sup {hp | z0i : p ∈ A◦ ∩ L0}: see, e.g., [12, 11.F: Corollary] or [30, II.9.2].
Since A◦ ∩ L0 is a cone, it follows that the supremum equals zero, and so

p0 | z0
®
> 0 ≥


p | z0

®
for every p ∈ A◦ ∩ L0. (23)

It only remains to deduce from the right-hand inequality that z0 ∈ A: given that
p0 ∈ A◦, this will contradict the left-hand inequality. So suppose that z0 /∈ A.
Since A is w∗-closed, another separation argument shows that there exist a p ∈ L0
with hp | z0i > sup {hp | yi : y ∈ A}. Since A is a cone, this implies that hp | z0i >
0 ≥ hp | yi for each y ∈ A, and so p ∈ A◦ ∩ L0. This contradicts the right-hand
inequality of (23), thus completing the proof that A◦ ∩ L0 is w (L∗, L)-dense in
A◦ ∩ L∗. Therefore, for each p ∈ ∆∗ there exists a net (pn)n∈N in ∆0 with pn → p
for w (L∗, L). In particular


pn | yS

®
→

p | yS

®
= −1, and so

¡
1/

pn | yS

®¢
pn is a

net in ∆0 that converges weakly* to p.

7 Counterexamples

The following are counterexamples to weak-to-weak* continuity of consumer demand,
and to its very existence on ∆∗ \∆0.23 In both examples, there is one differentiated good
in addition to a homogeneous numeraire commodity, and (p, 1) and (x,m) play the roles
of the p and x of the “abstract” model. So the commodity space is L = L∞ [0, T ]×R with
L0 = L1 [0, T ]×R. The consumer’s income comes wholly from an initial endowment mEn

of the numeraire. The consumption set is taken to be L∞+ ×R+, but it can be truncated
to a w∗-compact without changing the results. The utility function has the additively
separable form with a constant marginal utility of the numeraire, i.e.,

U (x,m) := m+

Z T

0

u (x (t)) dt

22The same holds with L∗ replaced by the algebraic dual of L, though this adds nothing when A◦ ⊂ L∗
(as is the case for A = asY here).
23That is why the equilibrium existence proof uses a net of approximate equilibrium prices pn ∈ ∆0.
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for x ∈ L∞+ [0, T ] and m ∈ R+, where u (known as the felicity function) is increasing and
differentiable on R+, with u (0) = 0. For simplicity, to ensure that consumer demand is
uniquely determined (i.e., is a single-valued map), assume also that u is strictly concave,
i.e., that its derivative du/dx is a (strictly) decreasing, continuous function on R+. At
sufficiently high income levels, this form of utility results in a cross-price independent
demand for the differentiated good, with no income effect on it. Given a price function
p ∈ L1, the demand x̂ (p) (t) can be determined from the marginal condition

du

dx
(x̂ (t)) = p (t) (24)

at each t ∈ [0, T ], with

m̂ = mEn −
Z T

0

p (t) x̂ (t) dt (25)

as the demand for the numeraire.
Our first example shows that nonexistence of a consumer optimum can result from the

presence of a nonzero purely finitely additive term in the Hewitt-Yosida decomposition of
a p ∈ L∞∗ [0, T ]. Recall that every such p can be identified with an additive set function
(vanishing on Lebesgue-null sets) which has the decomposition p = pCA + pFA, where
pCA is the countably additive part (identified with its density by the Radon-Nikodym
Theorem), whilst pFA is the purely finitely additive (a.k.a. “singular”) part: see [5] or
[32] for details.

Example 9 (Nonexistence of consumer optimum when pFA 6= 0) Fix any number
x > 0, denote p := (du/dx) (x) for brevity, and consider the price system (p, 1) with a
constant pCA (t) := p for every t and with any nonzero pFA ≥ 0 that is concentrated on
[t, T ] for each t < T . Assume that mEn > Txp. If (x,m) is a consumer optimum at p,
then it is also a consumer optimum at pCA: see [15, Lemma 5]. At pCA = p1[0,T ], the
demand is

x̂ (pCA) (t) = x

for (almost) every t, with
m̂ (pCA) = m

En − Txp.
At p, however, this bundle is not in the budget set because it costs

mEn − Txp+ x
Z T

0

pCA (t) dt+ xpFA [0, T ] = m
En + xkpFAk∗∞ > mEn.

This shows that there is no consumer optimum at p. Finally, note that, without changing
the demand at p or pCA, the consumption set can be made w∗-compact by truncating it to©

(x,m) ≥ 0 : x ≤ x+ 1[0,T ],m ≤ mEn + 1
ª
.
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Comment: A utility level arbitrarily close to that of (x̂, m̂) (pCA), in Example 9, can
be attained within the budget constraint at p: take a sequence tn % T , and xn := x01[0,tn]
with mn := mEn − tnx0p0. As n→∞,

U (xn,mn)% mEn − Tx0p0 + Tu (x0) = U (x̂ (pCA) , m̂ (pCA)) .

But the point is that this utility limit, the supremum of U on the budget set, is not
attained. Since U is Mackey-continuous and hence w∗-u.s.c.–see, e.g., [5, Appendix II]
or [13, Section 3]–this shows that the budget set is not w∗-compact. The example can
be interpreted in the context of consumption over time: the consumer should “switch
off” just before the extremely concentrated charge pFA around T–and there is no best
time to switch off: the closer to T , the better.

Our second example shows that consumer demand can be w (L1, L∞)-to-w (L∞, L1)
discontinuous.

Example 10 (Weak-to-weak* discontinuity of demand) Fix any constant x0 > 0,
and denote p0 := (du/dx) (x0) for brevity. There is a number δ > 0 with p := p0 + δ <
(du/dx) (0) and p := p0 − δ > limx→∞ (du/dx) (x). One can assume that δ = 1. Use the
Rademacher function sequence

rn (t) := sgn sin (2nπt)

to define a sequence of price systems (pn, 1) ∈ L1 ×R by

pn (t) = p0 + rn (t)

for every t ∈ [0, T ] and n ∈ N. As n → ∞, the pn converges for w (L1, L∞) to the
constant p0 (i.e., rn → 0 weakly). As in Example 9, mEn is assumed to be high enough
for the demand, x̂ (pn) and m̂ (pn), to be determined by (24)—(25). Then x̂ (pn) converges
for w (L∞, L1) as n→∞ to the constant

x00 :=
x+ x

2

where

x :=

µ
du

dx

¶−1
(p) :=

µ
du

dx

¶−1
(p0 + 1)

x :=

µ
du

dx

¶−1 ¡
p
¢
:=

µ
du

dx

¶−1
(p0 − 1) .

In general x00 6= x0 (unless du/dx, the demand curve, is linear in the relevant region). For
example, if du/dx is strictly convex (and decreasing), then x00 > x0. In such a case, the
demand for the differentiated good is weak-to-weak* discontinuous, since x̂ (p0) = x0 but
x̂ (pn)→ x00 (or, put formally, x̂

¡
p01[0,T ]

¢
= x01[0,T ] but x̂ (pn)→ x001[0,T ] as n→∞).
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Comments:

1. If x00 = x0 in Example 10, then it is the demand for the numeraire that is discon-
tinuous. To see this, note first that in either case (whether x00 equals x0 or not) the
value of the limit bundle x00 at the limit price p0 is greater than the value of x̂n at
pn, which is actually independent of n. That is,

p0x00 =

¡
p+ p

¢
(x+ x)

4
>
px+ px

2
=
1

T

Z T

0

pn (t) x̂ (pn) (t) dt. (26)

This means that the limit bundle
¡
x00,mEn − T

¡
px+ px

¢
/2
¢
is outside the budget

set at the limit price (p0, 1). (By Part 2 of Lemma 7, this must be the case if the
demand map is to be discontinuous along a price sequence for which the demands
converge.) When x0 = x00, substitution for x00 in (26) gives that

mEn − Tp0x0 < mEn − T
2

¡
px+ px

¢
i.e., that the demand for the numeraire is less at p0 than at pn (at which it is the
same for each n). So it is discontinuous.

2. When demand is multi-valued (at some prices), its upper hemicontinuity established
in Theorem 5 does not have the same implications as the ordinary continuity (of
a single-valued map): for example, it is easy to exhibit a convergent sequence
of price systems for which the demands do not converge. Like Examples 9 and
10, the following example uses a u independent of t, but additionally the price
systems and the demand bundles are constant on [0, T ]: essentially there are just
two commodities. Take du/dx to be (strictly) decreasing on R+ except for being
constant on an interval [x, x] with x < x. Take any two sequences xn % x with xn < x
and xn & x with xn > x, and set pn := (du/dx) (xn) for odd n and pn := (du/dx) (xn)
for even n. Then pn (a sequence of constants) converges to p := (du/dx) (x) =
(du/dx) (x), but the corresponding sequence of demands diverges (since it alternates
between xn and xn). This does not contradict Theorem 5, of course: at the limit p
demand equals [x, x], and it is a u.h.c. correspondence.

A Florenzano’s extension of the Debreu-Gale-Nikaido
Lemma

Lemma 11 Let L be a linear space carrying a vector topology T and a locally convex
topology W that is weaker than T . Assume that A ⊂ L is a convex cone with a point yS
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in its T -interior, so that the polar cone A◦–which is a nonempty, proper subset of the
T -continuous dual space (L,T )∗–has a w ((L,T )∗ , L)-compact base

∆T :=
©
p ∈ A◦ :


p | yS

®
= −1

ª
.

Assume also that A is W-closed, so that the convex set

∆W := ∆T ∩ (L,W)∗

is w ((L,T )∗ , L)-dense in ∆T .24 Furthermore, assume that E is a TFin ((L,W)∗)-to-
W upper hemicontinuous correspondence from ∆W into a W-compact subset of L, with
nonempty, convex and W-closed values. If also hp | ei ≤ 0 for every e ∈ E (p) and
p ∈ ∆W, then ∆T ×A intersects the w ((L,T )∗ , L)×W-closure, in ∆T ×L, of the graph
of E.

Comment: In the Proof of Theorem 8, the Lemma is applied with A = asY ,W equal
to w∗ = w (L,L0) and T given by k · k, so that ∆T = ∆∗ ⊂ L∗ and ∆W = ∆0 ⊂ L0.

References

[1] Aliprantis, C. D., and D. J. Brown (1983): “Equilibria in markets with a Riesz space
of commodities”, Journal of Mathematical Economics, 11, 189—207.

[2] Araujo, A. (1988): “The non-existence of smooth demand in general Banach spaces”,
Journal of Mathematical Economics, 17, 309—319.

[3] Bair, J., and R. Fourneau (1975): Etude géometrique des espaces vectoriels (Lecture
Notes in Mathematics, vol. 489). New York-Heidelberg-Berlin: Springer.

[4] Berge, C. (1963): Topological spaces. Edinburgh: Oliver and Boyd.

[5] Bewley, T. (1972): “Existence of equilibria in economies with infinitely many com-
modities”, Journal of Economic Theory, 4, 514—540.

[6] Choquet, G. (1962): “Ensembles et cones convexes faiblement complets”, Comptes
Rendus de l’Académie des Sciences, Série A, 254, 1908—1910 and 2123—2125.

[7] Debreu, G. (1959): Theory of value. New York: Wiley.

[8] Duffie, D. (1986): “Competitive equilibria in general choice spaces”, Journal of
Mathematical Economics, 14, 1—23.

24This is shown in a Comment after the Proof of Theorem 8.

23



[9] Dunford, N., and J. T. Schwartz (1958): Linear operators, Part I: General theory.
New York: Interscience.

[10] Florenzano, M. (1983): “On the existence of equilibria in economies with an infinite
dimensional commodity space”, Journal of Mathematical Economics, 12, 207—219.

[11] Gale, D., and V. L. Klee, Jr. (1959): “Continuous convex sets”, Mathematica Scan-
dinavica, 7, 379—391.

[12] Holmes, R. B. (1975): Geometric functional analysis and its applications. New York-
Heidelberg-Berlin: Springer.

[13] Horsley, A., and A. J. Wrobel (2000): “Localisation of continuity to bounded sets
for nonmetrisable vector topologies and its applications to economic equilibrium
theory”, Indagationes Mathematicae (New Series), 11, 53—61.

[14] Horsley, A., and A. J. Wrobel (2002): “Efficiency rents of pumped-storage plants and
their uses for operation and investment decisions”, Journal of Economic Dynamics
and Control, 27, 109—142.

[15] Horsley, A., and A. J. Wrobel (2002): “Boiteux’s solution to the shifting-peak prob-
lem and the equilibrium price density in continuous time”, Economic Theory, 20,
503—537.

[16] Horsley, A., and A. J. Wrobel (2005): “Continuity of the equilibrium price density
and its uses in peak-load pricing”, Economic Theory, 26, 839—866.

[17] Horsley, A., and A. J. Wrobel (2005): “Profit-maximising operation and valuation
of hydroelectric plant: a new solution to Koopmans’ problem”, Journal of Economic
Dynamics and Control, to appear.

[18] Horsley, A., A. J. Wrobel, and T. Van Zandt (1998): “Berge’s Maximum Theorem
with two topologies on the action set”, Economics Letters, 61, 285—291.

[19] Jameson, G. J. O. (1970): Ordered linear spaces (Lecture Notes in Mathematics,
vol. 141). Berlin-New York: Springer.

[20] Jameson, G. J. O. (1972): “The duality of pairs of wedges”, Proceedings of the
London Mathematical Society, 24 , 531—547.

[21] Jones, L. E. (1984): “A competitive model of commodity differentiation”, Econo-
metrica, 52, 507—530.

[22] Jones, L. E. (1987): “Existence of equilibria in economies with infinitely many
commodities. Banach lattices reconsidered”, Journal of Mathematical Economics,
16, 89—104.

24



[23] Khan, M. Ali, and R. Vohra (1987): “On sufficient conditions for the sum of two
weak* closed convex sets to be closed”, Archiv für Mathematik (Basel), 48, 328—330.

[24] Klee, Jr., V. L. (1953): “Convex sets in linear spaces. III”, Duke Mathematical
Journal, 20, 105—111.

[25] Klein, E., and A. C. Thompson (1984): Theory of correspondences. New York-
Chichester-Brisbane-Toronto-Singapore: Wiley.

[26] Mas-Colell, A. (1986): “The price equilibrium existence problem in a Banach lat-
tice”, Econometrica, 54, 1039—1053.

[27] McKenzie, L. W. (1981): “The classical theorem on existence of competitive equi-
librium”, Econometrica, 49, 819—841.

[28] Richard, S. (1989): “A new approach to production equilibria in vector lattices”,
Journal of Mathematical Economics, 18, 41—56.

[29] Rockafellar, R. T. (1970): Convex analysis. Princeton, NJ: Princeton University
Press.

[30] Schaefer, H. H. (1971): Topological vector spaces. New York-Heidelberg-Berlin:
Springer.

[31] Toussaint, S. (1985): “On the existence of equilibria in economies with infinitely
many commodities and without ordered preferences”, Journal of Economic Theory,
33, 98—115.

[32] Yosida, K., and E. Hewitt (1952): “Finitely additive measures”, Transactions of the
American Mathematical Society, 72, 46—66.

25


