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Abstract

This thesis provides a new geometric-combinatorial costin to characterise the
Nash equilibria of a non-degenerate bimatrix game and thdices. Considering a
non-degenerate x n bimatrix game, the construction yields ém— 1)-simplexX”
that is simplicially divided intdm— 1)-simplices, reflecting the best reply structure of
player Il. Each(m— 1)-simplex in the triangulation is divided into best reply ic@ts

of player I. This yields a division aX” into regions with labels 1..,m.

In this representation, the Nash equilibria are represelmyecompletely labelled
points, and the index is the local orientation of theegions around completely la-
belled points. For a missing label of player I, the Lemke-ldow algorithm follows

paths inX2 that are defined byn— 1 labels of player I.

This representation of bimatrix games is shown to be relet&®perner’'s Lemma
in dimensionm— 1. In particular, the existence of Nash equilibria in nog@leerate

bimatrix games is equivalent to Brouwer’s fixed point theore

The construction yields a new strategic characterisatidheindex, conjectured
by Hofbauer (2000). It is shown that a Nash equilibrium in a-{degenerate bimatrix
game has index +1 if and only if one can add strategies to theegauch that the

equilibrium is the unique equilibrium of the extended game.

The construction can be extended to outside option equitibcomponents in
bimatrix games. The characterisation for such componsstsawn to be similar to the
well-known Index Lemma. As a consequence, index zero bayridbellings allow
triangulations that do not contain a completely labelledpex. The game theoretic
counterpart applies to outside option equilibrium compadse It is shown that an
outside option equilibrium component is hyperessentiahid only if it has non-zero

index. This question had been open for some time.

It is also shown how equilibrium components of arbitraryer@an be constructed

by means of outside options in bimatrix games.



Contents

Introduction 10

1 Equilibrium Components with Arbitrary Index 14
1.1 Preliminaries . . . . . . . . . . . e 15
1.2 The Lemke-Howson Algorithm . . . . . . .. ... .. ... ..... 21
1.3 IndexTheory . . . ... . . . . . . . .. e 25
1.4 Construction of Equilibrium Components with Arbitrdndex . . . . 30

2 A Reformulation of the Index for Equilibria in Bimatrix Gam es 37
2.1 TheDual Construction . . . .. ... .. .. ... ... .. ..... 38
2.2 Labelling and Characterisation of Nash Equilibria . ...... . ... 46
2.3 The Lemke-Howson Algorithm in the Labelled Dual Constian . . 50
2.4 An Orientation for Nash Equilibria . . . . .. .. ... ....... 55

3 Sperner's Lemma and Labelling Theorems 64
3.1 SpernersLemma . . . . . . . . ... 65
3.2 The Applicationto BimatrixGames . . . . .. ... .. ... .... 67
3.3 A Topological Interpretation of the Dual Construction . . . . . . . 84

4 A Strategic Characterisation of the Index 89
4.1 A Geometric Interpretation . . . . . .. ... ... .. oL 09
4.2 Some Technical Requisites . . . . . ... .. ... ... ....... 94



4.3 A Game Theoretic Characterisation ofthelndex . . . . . ...... . 98

5 Outside Option Equilibrium Components 103
5.1 A Generalised Version of SpernersLemma . . . ... .. .. ... 105
5.2 The Index for Outside Option Equilibrium Components . ..... . . 107
5.3 Degenerate Games and General Equilibrium Components..... . 114

6 Index Zero and Hyperstability 117
6.1 IndexZerolabellings. .. ... ... ... . ... .. ... .. ... 118
6.2 Index Zero Outside Option Equilibrium Components . . ...... . 123
6.3 Restricted Duplication of Strategies and Index ZeroEkxample . . 137

Index of Symbols 141

References 143



List of Figures

1.1 Thebestreply polyhedron . . . ... ... ... ... ... ..... 19
1.2 Thedivision ofX andY forthegamein(1.6) ... .. ... .. ... 19
1.3 Theorientationofabasis . . . . ... ... .. ... ... ...... 21
1.4 The L-H algorithm for thegamein(1.6) . . .. ... ... ... .. 23

1.5 Equilibria at the ends of L-H paths have opposite indices. . . . . 26
1.6 Theindexinthe coordinationgame . ... ... ........... 7 2
1.7 The K-M structuretheorem . . . . . .. ... .. ... ... ..... 28
1.8 Division ofX before and after adding an outside option . . . . . . .. 31
1.9 The division ofX for the gameG? with outside option . . . . . . . . 34
2.1 The projection of the polyhedrd¢h and the polytop® . . . . . . .. 40
2.2 Thedualofapolytope . ... ... ... .. ... ... ....... 41
2.3 Thesimplicial divisionoK% . . . . . . . .. ... ... .. ... .. 42
2.4 The best-reply division of for the game in Example2.3 . . . . . .. 44
2.5 The triangulation okK” for Example 2.3 . . . . . .. ... ... ... 45
2.6 The labelled dual constructicmA forExample2.3 . . ... ... .. 47
2.7 The labelled polar polytopﬁA ..................... 50
2.8 Thel-Hpathsfok=2inX" . . . . . i, 54
2.9 Inaccessible equilibria and cyclestF ................ 56
2.10 The construction orflsA ......................... 57
2.11 The index ir)(*A forExample2.3. .. ... .. ... . ... .. ... 58

5



2.12 The index irP*A ............................. 60

2.13 OrientationalongL-Hpaths . . . . ... ... ... ......... 26
3.1 Alabelled triangulation . . . . .. ... ... ... .. ... ... 6 6
3.2 The proof of Sperner's Lemmaféxy? . . . .. ... ......... 69
3.3 Thecanonical divisiod™ ™ . . . . ... L 70
3.4 Adivision of A™ linto labelledregions . . . . . .. .. ... .... 71
3.5 An algorithm for finding completely labelled triangles . . . . . . . 74
3.6 The Sperner algorithm as a path-following algorithm ...... . .. 75
3.7 Sperners Lemma implies Brouwer andviceversa . . . . . ... 76
3.8 An iterated refinement of a simplex and the barycenttcsusion. . 79
3.9 Aniterated refinement oK™ . . . . ... ..., 80
3.10 Arefinementof™ . . . ... ... ... 83
3.11 A labelled triangulation for the game in Example 2.3 ...... . .. 83
3.12 Themappindy . . . . . . . . . . e 85
3.13 The payoffmapping . . .. ... .. ... ... ... ....... 86
3.14 The dual payoff mappintf™ . . . . ... .. ... ... ....... 87
3.15 The orientation of th&® andA™ 1 . . . . . ... .. ... ... .. 87
4.1 Anindex+1 equilibriuminH™ . . .. ... ... .. oL 91
4.2 Anindex+1 equilibriumform=2 .. ... ... ... ... .... 92

4.3 A unique index-1 equilibrium in an extension of the coordination game 94
4.4 Aniterated pseudorefinement . . .. ... ... ... ... ..., 95

4.5 The regular refinement obtained from the iterated pseefteement . 96

4.6 Pseudo vertices with consistentpayoffs . . .. ... ... ... 97
47 AhOMOtOPY . . . . . . o 100
4.8 An approximation of the homotopy . . . . . . . .. ... ... ... 011



4.9

5.1

5.2

5.3

5.4

5.5

5.6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10 An approximation of the homotopy

6.11 Adding vertices close

The labelled dual for an extension of the game in Exam@e 2. . .

A representation of an outside option game

A general version of Sperner'sLemma . . . . ... ... ...
An outside option componentwithinde? . . . . . ... .. ..
An outside option componentwithindexX . . . . . ... .. ..
A perturbation of anindex2 component . . . . .. ... .. ..

The dual of the componentin(5.4) . . . .. ... ... ... ..

TheconeovalP . . . ... .. ... .. . ... ... ...
A labelling withindexzero . . . . .. ... .. ... ......
A labelling with index zero and a restricted triangwati . . . . . .
Obtaining a division with exactlk| completely labelled points . . . .
An index zero essential component . . . . . .. ... .. ...
The essentiality of the component . . . . . . . ... ... ...
A non-essentialcomponent . . . .. ... ... L.
Duplication of the outside option . . . . . . .. ... ... ...

A homotopy for outside option equilibrium components.. .. . . . .

102

. 104

109

110

113

.. 161

119



Acknowledgements

| am indebted to Bernhard von Stengel for his excellent supien. He introduced me
to the questions addressed in this work. | am thankful fomtia@y hours of discus-

sions, and also for his guidance and patience in times wiseritseseemed far away.

Also, | am grateful to Srihari Govindan and Robert Wilson @iseful advice and

encouragement.

Furthermore, | would like to thank the members of the Math#redepartment
for their general support. In particular, | thank Jackie fiyeDavid Scott and Mark
Baltovic for their assistance, as well as Nic Georgiou anis$ Qereceda for their help

on the final draft.

There were many people who supported me personally. Foteimesuld like to
thank my parents and Ane S. Flaatten for always being therado | am also beholden

to Philipp Beckmann for his advice, and to Philip Hochstfatehis inspiration.

Finally, I would like to thank the London School of Economasd Political Sci-
ence (LSE), the Department of Mathematics at LSE and the Ukrteering and Phys-

ical Sciences Research Council (EPSRC) for financial suppor



To my parents, for all their support.



Introduction

Since Shapley (1974) introduced the index for equilibtmimportance in the context
of game theory has been increasingly appreciated. For deamgex theory can be
a useful tool with regards to strategic characterisatidnsgailibria and equilibrium

components. Demichelis and Ritzberger (2003) show thataiiilgrium component

can only be evolutionary stable if its index equals its Ealeracteristic. At the same
time, most of the existing literature on the index is techljcdemanding, and the
amount of algebraic topology required is substantial. Asresequence, this literature

is difficult to access for most economists and other applaadetheorists.

The contribution of this thesis can be divided into two pafise first part concerns
methods and techniques. By introducing a new geometridsamatorial construction
for bimatrix games, this thesis gives a new, intuitive redpretation of the index. This
re-interpretation is to a large extent self-contained ameschot require a background
in algebraic topology. The second part of this thesis cargtire relationship between
the index and strategic properties. In this context, theitherovides two new results,
both of which are obtained by means of the new constructiehaaa explained in
further detail below. The first result shows that, in nonetegrate bimatrix games, the
index can fully be described by a simple strategic propéttg shown that the index
of an equilibrium is+1 if and only if one can add strategies with new payoffs to the
game such that the equilibrium remains the unique equilibrof the extended game.
The second result shows that the index can be used to descsetability property
of equilibrium components. For outside option componentbimatrix games, it is

shown that such a component is hyperessential if and ortiy&s non-zero index.

The new geometric-combinatorial construction, which femed to as thelual
constructioncan be described as follows. Forrax n bimatrix game, the construction
translates the combinatorial structure of the best reiores for both players into an
(m— 1)-simplex that is divided into simplices and labelled regigsee, for example,
Figure 2.6 below). The simplices in the division accounttfor best reply structure
of player Il. The simplices themselves are divided into bepty regions for player I,

accounting for the best reply structure of player I.

10



In this representation of bimatrix games, the Nash equaliare represented by
points that are completely labelled with all pure strategé player I. Earlier con-
structions required the use of all pure strategies of badlggyk as labels. The index
is simply the local orientation of the labels around a corghelabelled point (Fig-
ure 2.11). The Lemke-Howson algorithm, which builds thenfdation for Shapley’s
original index definition, can be re-interpreted as a patlodving algorithm in the new
construction (Figure 2.8). Since the new construction idiofensionm— 1, both the
index and the Lemke-Howson algorithm can be visualisednmedision at most 3 for

everym x n bimatrix game withm < 4.

But the construction does not merely yield an intuitivemeerpretation of the index
and the Lemke-Howson algorithm. More significantly, it casctbse relationships
between the index and strategic properties. In this conthig thesis provides, as

mentioned, two new results.

As for the first result, it is shown that the index of an equilim is +1 if and only
if it is the unique equilibrium of an extended game. The regrdves a conjecture by
Hofbauer (2000) in the context of equilibrium refinement.eTgroof is based on the
idea that one can divide dm— 1)-simplex such that there exists only one completely
labelled point which represents the index equilibrium (Figure 4.7). Then such a
division can be achieved as the dual construction of an dettgame where strategies

for player Il are added (Figure 4.8).

The second result solves, for a special case, a problem @mtopen for some
time. This problem addresses the question whether and hpelogical essential-
ity and game theoretic essentiality (Wu and Jiang (19620ng)(1963)) are related.
Govindan and Wilson (1997b) argue that the resolution &f phoblem is highly rele-
vant with respect to axiomatic studies: Imposing topolabessentiality as an axiom
in a decision-theoretic agenda is questionable if thereyepebetween topological and
strategic essentiality. Hauk and Hurkens (2002) constaugame with an outside op-
tion equilibrium component that has index zero but is esagkenthis demonstrates that
topological essentiality is not equivalent to strategsessiality. However, their exam-
ple fails the requirement of hyperessentiality, i.e. theaponent is not essential in all
equivalent games (Kohlberg and Mertens (1986)). The foellpiguestion is whether

hyperessentiality is the game theoretic counterpart adltapcal essentiality. In this
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thesis, it is shown that this is the case for outside optiarilégium components in

bimatrix games. That is, an outside option equilibrium comgnt in a bimatrix game
is hyperessential if and only if it has non-zero index. Theobris based on creat-
ing equivalent games by duplicating the outside option. Remeple presented in this
thesis shows that one can create an outside option equitiidomponent that has in-
dex zero and is essential in all equivalent games that doarmdaim duplicates of the
outside option. However, it can be shown that the comporaistthe requirement of

hyperessentiality if allowing duplicates of the outside¢iop.

The proof of this result employs the combinatorial naturéhefindex for compo-
nents of equilibria. In the framework of the dual constroctithe index for compo-
nents of equilibria is defined by a combinatorial divisionedboundary into labelled
best reply regions. This re-interpretation of the indexd@mmponents is very similar to
the index in the framework of the Index Lemma, a generabsati Sperner’'s Lemma.
For labellings as in the Index Lemma it is shown that, if thdex of a boundary
triangulation is zero, then there exists a labelled tridaigan such that the triangula-
tion does not contain a completely labelled simplex. Thepextends an index-zero
boundary division of a polytope into labelled regions suwdt ho point in the interior
of the polytope is completely labelled. This extension entkranslated into a triangu-
lation (Figure 6.2). The proof for outside option comporsambrks similarly. Given an
index-zero component, the dual of the component can beathirtto labelled regions
such that no point is completely labelled. It is then showat #uch a division can be
achieved as the dual construction of an equivalent game ichvthe outside option is

duplicated and perturbed (Figure 6.10).

The concept of essentiality is strongly influenced by thethef fixed points and
essential fixed point components (Fort, 1950). In a paraltel independent work,
Govindan and Wilson (2004) show that, for gendigblayer games and general equi-
librium components, a component has non-zero index if ahdibihis hyperessential.
Their proof is based on a well-known result from fixed poirgdty that shows that a
fixed point component is essential if and only if it has nomzadex (O’Neill, 1953).
Their proof is technically very demanding. In contrast, pheof presented here for the
special case provides a geometric intuition and does naineg knowledge of fixed

point theory.
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There is, however, a link between the combinatorial apgrazchis thesis and
fixed point theory. This link is established via Sperner'snoea (Sperner, 1928). The
representation of bimatrix games in form of the dual cortsion reveals strong analo-
gies with Sperner's Lemma. Sperner’'s Lemma is a classisaltr'om combinatorial
topology and is equivalent to Brouwer’s fixed point theoreldsing the parallels of
the dual construction with Sperner’s Lemma it is shown that éxistence of Nash
equilibria in a non-degenerate bimatrix game is equivalerBrouwer’s fixed point
theorem. On a similar topic, McLennan and Tourky (2004)\deKakutani’s fixed

point theorem using the Lemke-Howson algorithm.

An additional result of this thesis, which does not involiae tlual construction,
is the construction of equilibrium components with arbigrandex. It is shown that
for every integerg there exists a bimatrix game with an outside option equilir
component that has index The construction is purely based on the properties of the
index, and does not require knowledge of algebraic topolddys result originates

from Govindan, von Schemde and von Stengel (2003).

The structure of this thesis is as follows. Chapter 1 intoadunotations and con-
ventions used throughout this work (Section 1.1). SectioBsnd 1.3 contain reviews
of the Lemke-Howson algorithm and index theory. Sectionshdws how equilib-
rium components of arbitrary index can be constructed. @n&introduces the dual
construction (Sections 2.1 and 2.2) and gives a re-int&xpoa of the index and the
Lemke-Howson algorithm (Sections 2.3 and 2.4). Chapter<ritees the parallels
between the dual construction, Sperner's Lemma, and Brosivieed point theorem.
In Chapter 4, it is shown that the index for non-degeneratebix games can be fully
described by a strategic property. In Chapter 5, the duadtocaction is extended to
outside option equilibrium components (Section 5.2). $patontains a review of the
Index Lemma (Section 5.1). Finally, Chapter 6 investigéitesrelationship between
the index and hyperessentiality. Section 6.1 considee#zero labellings in the con-
text of the Index Lemma. In Section 6.2, it is shown that arsidigt option equilibrium
component is hyperessential if and only if it has non-zedein A list of symbols is
given at the end. Proofs and constructions are illustragefigores throughout this

work.
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Chapter 1

Equilibrium Components with

Arbitrary Index

This chapter describes a method of constructing equilib@omponents of arbitrary
index by using outside options in bimatrix games. It is shadhat for every inte-
gerq there exists a bimatrix game with an outside option equiliorcomponent that
has indexg. The construction is similar to the one used in Govindan, Sohemde
and von Stengel (2003). That paper also showsdbsttible sets violate a symmetry
property which the authors refer to as theak symmetry axionThe construction of

equilibrium components of arbitrary index is the main restithis chapter.

The structure of this chapter is as follows. Section 1.loshiices notational con-
ventions and definitions that are used throughout this wBdction 1.2 gives a brief
review of the classical Lemke-Howson algorithm that findeast one equilibriumin a
non-degenerate bimatrix game. Although the Lemke-Howsgorighm does not play
arole in the construction of equilibrium components of &y index, it can be used in
the index theory for non-degenerate bimatrix games. Shgp®74) shows that equi-
libria at the ends of a Lemke-Howson path have opposite @dithe Lemke-Howson
algorithm also plays an important role in subsequent chaptlen it is interpreted in
a new geometric-combinatorial construction (see Chaj@esd 3). Section 1.3 re-
views the concept of index for Nash equilibria in both nogeleerate bimatrix games
and generaN-player games. Using basic properties of the index for camepts of

Nash equilibria, Section 1.4 shows how equilibrium compasef arbitrary index can
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be constructed as outside options in bimatrix games. Itasvahthat for every inte-
ger g there exists a bimatrix game with an equilibrium componéat has indexg

(Proposition 1.6).

1.1 Preliminaries

The following notations and conventions are used throughbis work. The
k-dimensional real space is denotedR¥s with vectors as column vectors. Anx n
bimatrix game is represented by twox n payoff matricesA andB, where the entries
Ajj andB;; denote the payoffs for player | and player Il in théh row andj-th column
of AandB. The set of pure strategies of player | is denoted by{1,...,m}, and the
set of pure strategies of player Il is representedNby {1,...,n}. The rows ofA and
B are denoted; andb; fori € I, and the columns ok andB are denoted\j andB; for

] € N. The sets of mixed strategies for player | and player |l avemgby

xz{xeRm\lgx:l, xiZOViel}, Y:{yeRn\lﬁyzl,yjzoweN}

?

wherel, € R¥ denotes the vector with entry 1 in every row. For easier mtisibn of

the pure strategies, |8t= {m+1 m+ n}, following Shapley (1974). Any € N

can be identified withm+ j € J and vice versa. Aabelis any element in UJ. For
notational convenience, the lalgegk sometimes used to refer to the pure strategyn

of player Il if there is no risk of confusion.

X is a standardm— 1)-simplex that is given by the convex hull of the unit vectors
g € R™ i el, andY is a standardn — 1)-simplex given by the convex hull of the unit
vectorsej_m € R", j € J. The terms {m— 1) and “(n—1)" refer to the dimension of
the simplex. In general, gm— 1)-simplex is the convex hull ahaffinely independent
points in some Euclidian space. These points arevéingcesof the simplex, and the

simplex is said to bepannedy its vertices.

An affine combinatiorof pointsz, ..., zy in an Euclidian space can be written as
Y Az with ST A =1andA € R, i =1,...,m. A convex combinatiors an affine
combination with the restrictioh; > 0,i =1,...,m. A set ofm pointsz,...,zy is

affinely independentnone of these points is an affine combination of the oth&hnss

is equivalent to saying thgt™ ; Aiz = 0 andy " ; Aj = 0 imply thatA; = ... = An=0.

15



A convex set hadimension df it hasd + 1, but no more, affinely independent points.
A k-faceof an(m—1)-simplex is thek-simplex spanned by any subsekof 1 vertices.
The standardm — 1)-simplex spanned by the unit vectorsRff' is denoted byA™1,
SoX =AM landy = AN,

For a mixed strategy € X, the support ok are the labels of those pure strategies
that are played with positive probability ¥n The support foy € Y is defined similarly.
So

suppx) = {i €1 |x >0}, suppy)={j€JI|yj-m>0}.
The strategy set§ andY can be divided into best reply regioks$j) andY(i). These

are the regions itX wherej € J is a best reply and the regionsYnwherei € | is a

best reply, so
X(j)= {xex | B/ x> B;XVKGJ}, Yi)={yeY|ay>ayvkell.

The regionsX(j) andY (i) are (possibly empty) closed and convex regions that cover
X andY. For a pointx in X the setJ(x) consists of the labels of those strategies of

player Il that are a best reply with respecitarhe set (y) is defined accordingly, so

JX)={jed[xeX(j)}, y)={iel|yeY(i)}. (1.1)

Fori € 1, the setX(i) denotes thém— 2)-face of X where the-th coordinate equals
zero. Forj € J, the sety () is defined as thén — 2)-face ofY where the(j — m)-th

coordinate equals zero.
X(0) = { o xm) T €X % =0}, Y(i) = {(y....ym) T €Y |yj-m=0}.
Similar to (1.1), the setlx) andJ(y) are defined as
I ={iel[xeX()}, Iy =1{ieIlyeY(j)}. (1.2)
The labeld_(x) of a pointx € X and the label& (y) of a pointy € Y are defined as
L(x) ={kelud|keX(k)}, Ly)={kelud|keY(k)}. (1.3)

From (1.1) and (1.2) it follows thdt(x) = I(x) UJ(x) andL(y) = I (y) UJ(y). So the
labels of a poink € X are those pure strategies of player | that are played with zer
probability inx and those strategies of player Il that are best repligs milarly, the
labels ofy € Y are those pure strategies of player Il that are played with@ebability

in y and those strategies of player | that are best repligs to
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Definition 1.1 An mx n bimatrix game is called non-degenerate if for akk»X and
y €Y the number of best reply strategies against x is at mostizieeo$ the support of
X, and the number of best reply strategies againsty is at thestize of the support of

y, i.e.|J(x)| < [suppx)| and|l(y)| < |supfy)| forallx € X andye Y.

It follows directly that in a non-degenerate game a piX can have at moshlabels
L(x) and that a poingin Y can have at mostlabelsL(y). Non-degeneracy implies that
X(j) andY (i) are either full-dimensional or empty (in which case a sgyie strictly
dominated). For non-degenerate games the set of veliceX is defined as those
points inX that lie on somék — 1)-face ofX and that havé pure best reply strategies

in player II's strategy space. The set of vertitésn Y is defined accordingly, i.e.
V ={veX|suppv) =k, [J(v)| =k}, W={weY |supgw)=Kk, [I(w)|=k}.

Non-degeneracy implies thétis the set of those points K that have exactlynlabels,
andW is the set of those points ivi that have exactly labels. Notice that the unit
vectors inR™ andR", i.e. those representing the pure strategies endY, are inV
andW. An edgein X is defined bym— 1 labels, and an edge ¥is defined byn— 1

labels. For subsets, K’ c 1 UJ let
X(K)={xeX|KcL(x}, YK)={yeY|K cCL(y)}. (1.4)

That is, in caseK| = m— 1 and|K’| = n— 1, an edge irX is defined byX(K), and
an edge irY is defined byy (K’). If the game is non-degenerate, every edgk and

every edge ity is a line segment.

The notion of vertices and edges comes from the study of pdighand polytopes
(see e.g. Ziegler (1995)). In generapha@yhedron His a subset oRY that is defined by
a finite number of linear inequalities. If the dimensiontbfs d, then it is called full-
dimensional. A polyhedron that is bounded is callgabéytope A faceof a polytope
P is the intersection oP with a hyperplane for which the polytope is contained in one
of the two halfspaces determined by the hyperplane. If tfeeses are single points,
they are calledertices if they are 1-dimensional line segments, they are caltiges
If the dimension of a face is one less than the dimension opttgope, it is called

facet
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For a bimatrix game with payoff matr&for player I, one can define a polyhedron

over player I's mixed strategy spaieas follows.
H={(x,v)eXxR |1 x=1 B'x<1y,x>0Viel} (1.5)

The polyhedrorH is referred to as theest reply polyhedranin a similar fashion,
one can define the best reply polyhedron oYeusing the payoff matrixA. Note
that one can assume that all entriesfond B are strictly greater than zero, since
adding a positive constant to the payoffs does not affedtsh equilibria of a game.
The polyhedrorH is described by the upper envelope, that is, the maximunheof t
expected payoffs for pure strategies of player Il as fumstiof the mixed strategy

played by player I.

Figure 1.1 depicts the polyhedréhfor the payoff matrix

6 41
B= .
L 3 5]

For example, the line that describes the facet with labelgdvisn by the line between
v = 6 for pure strategy 1, and payoff= 1 for pure strategy 2. The labels of a point
on the boundary oH are the “labels” of the linear inequalities that are binding
that point. A vertex oH is described byn binding linear inequalities, edges dfare
described byn— 1 binding linear inequalities. Ea¢im— 1)-facet of the polyhedroHhl

is defined by a single binding inequality and correspondeeetb a best reply strategy
of player Il or to an unplayed strategy of player IHfis projected ont, it yields the

division of X into best reply regionX(j).

The above definitions can be illustrated using the3Bbimatrix game that is given

by the following payoff matrices, taken from von Stengel428).

0 30 01 -2
A=|1 0 1 B=(2 0 3]. (1.6)
-3 4 5 21 0

The mixed strategy spacé of player | is a 2-simplex, and so is the mixed strategy
spacey of player Il. Figure 1.2 shows the divisionsX¥fandY into best reply regions.
For notational convenience, the subsg¢tk) andY (k), for k € | UJ, are just denoted

by their label in Figure 1.2. The vertices V are emphasised by dots and are exactly
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Figure 1.1: The best reply polyhedron

| | | |
xm X  ox@ X

those points inX that have three labels. A boundary 1-faceXotarries the label of
the pure strategy that is played with zero probability ort thee. So, for example, the
pure strategy(0,0,1) " € X has labels{1,2,4}, since strategies,2 are played with

zero probability, and strategy 4 of player Il is the pure lvepty strategy.

Figure 1.2: The division oK andY for the game in (1.6)

A perturbationof a bimatrix game is defined by twm x n matrices,ea andeg.
The perturbed gameés given by the game with payoff matricést+ ea andB+eg. A
perturbation is said to be small figa||, ||| < € for some smalk > 0, where|| - ||
denotes the Euclidian (or the maximum) normRI. A perturbation iggenericif the

resulting perturbed game is non-degenerate.

The subsequent chapters use the concept of orientationefmdidn of the index

for Nash equilibria. For am-tuple of vectorsy = (vy,...,vin) in R™, an orientation
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can be defined using the following term:
sign detv = sign det [Vl Vm] . (1.7)

This term is+1 or —1 if and only if the vectors in’ span anm— 1)-simplex that is
contained in a hyperplane not containihg R™. The two signs yield two equivalence
classes of ordered vectors in general position. Choositgnaard orientation (which
is usually that induced by the unit vectas. .., ey), the orientation ofi’ is +1 if it
belongs to the same orientation class as the chosen stamriamtation, and it is-1

otherwise.

The orientation can also be described as the sign of a petioutaatrix. Suppose
one has a set ah vectors that are in general position, and each vector hastiadi
labeli € {1,...,m}. Then the vectors can be ordered according to their lalgekind
(1.7) can be applied to determine the orientation of thellettset of vectors. Let the
so-ordered set of vectors be denotedias At the same time, one can re-order the
vectors in such a way that (1.7) yields the same sign as thtteothosen standard
orientation. Let this re-ordered basis be denoted’asBoth ¢ and¥’’ are a basis of
R™, where one basis is a permutation of the other basis. The trasisformation is
described by a permutation matfixsuch thaty’ = D- 4/, so dety’’ = detD -detv .
Hence deD = +1 if det ¥/ = det+, and detD = —1 if det %' = —detv. So the
determinant of the permutation matiix which is either+1 or —1, can also be used
to describe the orientation. An illustration of the oridiga concept is depicted in
Figure 1.3. For the vectong,Vv»,v3 as in Figure 1.3 the determinant has sigh.
The associated permutation of the labels, written as a ptaafucycles, is given by
(1)(23), and has also sigrl. This corresponds to an anti-clockwise orientation on
A\? if looked at from the origirD € R, whereas the standard orientation induced by

the unit vectors yields a clockwise orientation.

One can also define an orientati@tativeto a pointv, € R™. Let (vy,...,Vm) be

an orderedn-tuple of vectors irR™. Then the orientation is defined by the term
sign detv = sign det [vl ~Vp ... Vm—Vp|- (1.8)

Expression (1.7) is the same as (1.8) ¥gr= 0 € R™. The term (1.8) is+1 or —1

if and only if the vectors invy,...,vm,vp span amm-simplex. That isyy,...,vm span
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Figure 1.3: The orientation of a basis

an (m— 1)-simplex such thaty, is not an affine combination of the vectos. .., V.
The hyperplane defined by the affine combinations of the vegfo.. ., vy, dividesR™
into two halfspaces. If two pointg, andvj, lie in the same halfspace, the orientation
relative tovp andvj, is the same. If the two points lie in different halfspaces8)1

yields opposite signs.

Let f be a function between two topological spa&andT. If f is continuous
then f is called amapping For two mappingd,g from a topological spac&to a
topological spacd, i.e. f,g: S— T, ahomotopy tbetweenf andg is a continuous
deformation off intog. A homotopyh can be described as a mappmgSx [0,1] — T
such that(x,0) = f(x) andh(x,1) = g(x) for all x € S. This is denoted a$ ~, g.

1.2 The Lemke-Howson Algorithm

In their seminal work, Lemke and Howson (1964) describe garghm for finding at

least one equilibrium in a non-degenerate bimatrix games a&lgorithm is referred
to as the Lemke-Howson (L-H) algorithm, and it is the claaisadgorithm for finding

Nash equilibria in non-degenerate bimatrix games. This@egives a brief review
of the L-H algorithm, since it can be used in the theory of intte non-degenerate
bimatrix games. Detailed reviews of the L-H algorithm caridaend in Shapley (1974)
and von Stengel (2002). Shapley (1974), motivated by thedlgdrithm, introduces
the notion of index for non-degenerate bimatrix games. Hvstthat the equilibria at

the two ends of an L-H path have opposite indices. The L-Hrélyo also plays an
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important role in the subsequent chapters where it is @aéedlinto a new geometric-

combinatorial construction (see Chapters 2 and 3).

Proposition 1.2 Let G be an nx n bimatrix game (not necessarily non-degenerate).

Then(x,y) € X xY is a Nash equilibrium of G if and only if(k) UL(y) =1 UJ.

Proof. This follows from the fact that in an equilibrium a pure sé@y is a best reply
strategy or is played with zero probability. If the game ig&eerate, both might be
the case. In any case, the conditlgix) UL(y) = | UJ ensures that only the best reply

strategies are played with non-zero probability. O

If a game is non-degenerate, an equilibrium strateglays a pure strategy with
positive probability if and only if it is a best reply strateggainsty, and vice versa.
So in equilibriumL(x) UL(y) = 1UJ andL(x) NL(y) = 0. A pair (x,y) such that
L(x) UL(y) = UJis calledcompletely labelled

The fact that an equilibrium strategiplays a pure strategy with positive probabil-
ity if and only if it is a best reply strategy againg{and vice versa) builds the basis
for the L-H algorithm. The L-H algorithm describes a pathhe product spack¥ x Y
along which the points are almost completely labelled wifixed missing label. A
pair (X,y) is said to bealmost completely labellgfiL(x) UL(y) = 1 UJ— {k} for some
k € 1 UJ. The endpoints of a path are fully labelled and hence eqialdf the game.

In order to obtain a starting point for the L-H algorithm ongemdsX andY with the
pointsO € R™ and0 € R". These zero vectors can be seen as artificial strategieewher
the probability on each pure strategy is zero, i.e. no Siyateplayed. The paif0, 0)

is then completely labelled.

The following description of the L-H algorithm follows thagiven by Shapley
(1974). LetXp denote the boundary of tie-simplex spanned by € R™ andg € R™,
i €1. SoXp consists of a union ofm— 1)-faces, where oném— 1)-face of Xg is
given byX. The otherlm— 1)-faces ofXy are spanned by vertic@s= R™ andg € R™,
i € 1 —{k}. Accordingly, the seYj is defined as the boundary of thesimplex spanned
by 0 € R" andej_m € R", j € J. The(n— 1)-face ofYy that is spanned bg;_m € R",
j € J, represent¥. The other(n— 1)-faces ofYy are spanned by vertic€s= R" and
e—meRM, j € J—{l}. Forx e Xo, the labeld (x) are defined abk(x) UJ(x) for x € X
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and agi € | | x; = 0} otherwise. Foy € Yo, the labeld (y) are defined agy) UJ(y) for
yeY andas{j € J | yj—m = 0} otherwise. The vertices Xy are the points witim la-
bels, and the vertices Wy are the points withm labels. S® € R™ is a vertex inXg with
labelsl and0 € R" is a vertex inYp with labelsJ. The vertex paif0,0) € R™ x R"
is completely labelled, and it is referred to as #réficial equilibrium. For subsets
K,K'cluJ, let

Xo(K) = {x € Xo | K C L}, Yo(K') = {y € Yo | K' € L(y)}.

Xo is a graph whose vertices are points withabels, and whose edges are described
by m— 1 labels. Similarly, the séf is a graph whose vertices are points witlabels,
and whose edges are describednby 1 labels. Depictions 0Ky andYyp for the game

in (1.6) are given in Figure 1.4.

Figure 1.4: The L-H algorithm for the game in (1.6)

Now fix a labelk € 1 UJ and consider the subset of labéls J — {k}. The idea
of the L-H algorithm is to follow a unique path of almost comtgly labelled points
with labelsl UJ — {k} in the product grapfXp x Yp. As a starting point, one chooses
a completely labelled pair of verticés,y) in Xp x Yo, SO one can either start at an
equilibrium or the artificial equilibrium. Each path withblals| UJ — {k} lies in the
set

M(k) = {(x,y) € Xox Yo | lUJ—{k} C L(X)UL(y)}. (1.9)
At the end of each path one finds another completely labekédob vertices, i.e. an
equilibrium. The paths of almost completely labelled psiate referred to ak-H

paths The following theorem and proof can also be found in von §&(2002).
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Theorem 1.3 (Lemke and Howson, 1964; Shapley, 1974)t G be a non-degenerate
bimatrix game and k be a label indJ. Then MK) as in (1.9) consists of disjoint paths
and cycles in the product graphyX Yp. The endpoints of the paths are the equilibria

of the game and the artificial equilibriu®,0). The number of equilibria is odd.

Proof. Let (x,y) € M(k). Thenx andy have together eithen+ n or m+n—1 labels.
In the former case, the tuple, y) is either an equilibrium or the artificial equilibrium.
In the latter case, one h&$x) UL(y) = | UJ — {k}, and there are the following three

possibilities:

a) |L(x)| = mandy hasn— 1 labels. Therx s a vertex inXp, andy lies on some

edgee(y) in Yo. So{x} x e(y) is an edge iy x Yp.

b) x hasm— 1 labels and is part of an edgéx) in Xo, whiley hasn labels and is a

vertex inYp. Thene(x) x {y} is an edge irXp x Yo.

c) xhasmlabels and/hasnlabels. Sqx,y) is a vertex in the product grapfy x Yo.

Therefore, the setl (k) defines a subgraph &b x Yo. If (X,y) is completely labelled,
then the verteXx,y) is incident to a unique edge in the subgraytk), namely{x} x
Yo(L(y) — {k}) if ke L(y) or Xo(L(x) — {k}) x {y} if k€ L(x). In case c), one has
L(x) UL(y) =1 UJ— {k}, so there must be a duplicate labellitx) N L(y). But this
means thafx,y) is incident to both edges«} x Yo(L(y) — {k}) andXo(L(x) — {k}) x

{y}. Therefore, the sél (k) is a subgraph where all vertices are incident to one or two
edges. Hence, the subgraltik) consists of paths and cycles. The endpoints of the
paths are the equilibria and the artificial equilibrium.&the number of the endpoints

is even, the number of equilibria is odd (not counting thdiesl equilibrium). [

The L-H algorithm can be illustrated by the game in (1.6). sTisi depicted in
Figure 1.4. One starts in the completely labelled artifiei@uilibrium (0,0). Now
choose a label to drop, say label 1 of player I. This determareedge iy along
which the points have labels 2 At the other end of this edge one finds a vertex
v € Xp with labels 23,5. The vertex paifv,0) has labels 2,5 and 45,6, so 5 is a
duplicate label. This determines an edgé&grwith labels 46 leading to the vertew

with labels 34,6. So the vertex paifv,w) has the duplicate label 3, and one follows
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the edge inXg that is given by labels,3, leading to/ with labels 24,5. Now (V,w)
has duplicate label 4. This yields an edgeYgndefined by labels &, leading tow
with labels 61, 3. The pair(V,w') is completely labelled and hence an equilibrium of

the game in (1.6).

1.3 Index Theory

For non-degenerate bimatrix games, the index for equalitiras first introduced by
Shapley (1974). Shapley’s index theory is motivated by th¢ algorithm, and Shap-

ley shows that equilibria which are connected via an L-H etbe opposite indices.

Formally, let(x,y) be an equilibrium of a non-degenerate bimatrix game with pay
off matricesA andB. Let A’ andB’ denote the square sub-matrices obtained ffom
andB by deleting those rows and columns that correspond to praegtes played

with zero probability inx andy. So

A= [Aij]iesupQX)/\jesupr): B = [Bij]iesupQX)/\jesupr) (1.10)

are the payoff matrices restricted to the support ahdy. Without loss of generality
it can be assumed that all entriesAdfindB are (strictly) greater than zero. This is
possible since adding a positive constant to the entries @fB does not affect the

equilibria of the game.

Definition 1.4 (Shapley, 1974)The index of an equilibriurtx, y) of a non-degenerate
bimatrix game with payoff matrices A and B is given as the tiegaf the sign of the

determinant of the following index matrix obtained from Aldh

I (x,y) = —sign det

/
(W) o]
Using basic laws for the calculation of the determinants #pression simplifies to
1(x,y) = sign(—1)**1detA') "detB’, wherek is the size of the support afandy.

Remark 1.5 Shapley (1974) defines the index as



i.e. Definition 1.4 is the negative of the original definitidar the following reasons.
Definition 1.4 is consistent with the generalisation of tiaex for components of equi-
libria. Furthermore, according to Definition 1.4, pure stegy equilibria and equilib-

ria that are the unique equilibrium of a game have indek

Shapley shows that equilibria that are connected via an lath pave opposite
indices and that the sum of indices of equilibria of a gameabqul (using the index
as in Definition 1.4). In Shapley’s original work, the prodfthis claim is not very
intuitive. A more intuitive approach can be found in Savamil &on Stengel (2004).
Basically, it employs the fact that along a path with- n— 1 labels that connects two
completely labelled vertices the “relative position” oétlabels stays constant. This is
illustrated in Figure 1.5. The two fully labelled points arennected via a path with
labels 23, where 2 is always on the left of the path and 3 on the righd ¢ae non-
missing labels have a similar fixed orientation in higherelsion). The fully labelled
vertex on the left reads, 2,3 in clockwise orientation, and the fully labelled vertex
on the right reads,P, 3 in anti-clockwise orientation. In this sense the indexris a

orientation of the labels around a fully labelled vertex.

Figure 1.5: Equilibria at the ends of L-H paths have oppasiees

To apply this concept of orientation to bimatrix games, $awead von Stengel
first consider symmetric games. In symmetric games, the latigpcan be followed
in the strategy space of just one player, say player |, byacepg the labels of player Il
in X by the corresponding best reply labels of player | in thesion of Y. Then
the Nash equilibria of a symmetric game correspond to \estio X that have labels
1,---,m. Forthe 3x 3 coordination game, this is depicted in Figure 1.6. Butewen-

symmetric game with payoff matricdsandB can be symmetrised by constructing the
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game with payoff matrices

0 A
B" 0

0 B
AT 0

C= c’ =

Y Y

again assuming that all payoffs AfandB are strictly greater than 0. Then the equi-
libria of the game with matrice€ andC" correspond to the equilibria of the orig-
inal game by restricting the solutions of the symmetriseahg@&o X andY, and re-

normalising the probabilities.

Figure 1.6: The index in the coordination game

In non-degenerate games, the Nash equilibria are singl@totine product space
X xY. For degenerate games one has to consider sets of equititfiaY. Kohlberg
and Mertens (1986, Proposition 1) show that the set of Nasfilega of any finite
game has finitely many connected components. A maximallyected set of Nash
equilibria is referred to as eaomponent of equilibria The index of a component of
equilibria of a game is an integer that is computed as thd begree of a map for
which the Nash equilibria of the game are the zeros. Loogealking, the local de-
gree of a map counts the number of cycles (in higher dimerspberes) around zero
obtained by the image of a cycle (in higher dimension sphen@)nd the component
(see e.g. Dold (1972, 1V, 4)). The Nash equilibria of a game lsa described as the
fixed points of a mappind : X xY — X xY (see e.g. Nash (1951) or Gul, Pearce
and Stacchetti (1993) for such mappings). Such maps aedddédish mapsDefining
F = f —Id yields aNash fieldwhose zeros are the Nash equilibria of a game. The
index is independent of the particular map used (see Goriadd Wilson (1997b),
for bimatrix games, and, for games with any number of play@esnichelis and Ger-

mano (2000)). For generic bimatrix games it is the same amtiex in Definition 1.4
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(Govindan and Wilson (1997b)). An introduction to the cqotoef index for compo-
nents of equilibria can be found in Ritzberger (2002, 6.5).

Using the Kohlberg-Mertens (K-M) structure theorem (Kahtipand Mertens (1986,
Theorem 1)), the index can also be expressed as the loca&alefjthe projection map
from the equilibrium correspondence to the space of ganeesGgvindan and Wilson
(1997a), for bimatrix games, and, for games with any numbeitayers, Demichelis

and Germano (2000)). This can be illustrated using theviatig parameterised game.

1-t,1-t 0,0
G(t) =
0,0 tt

(1.11)

In this example, the gamé&(t) are parameterised liye R. Figure 1.7 shows that the
equilibrium correspondende(G(-)) C G(+) x (X xY) overG(-) is homeomorphic to
G(-) itself. In Figure 1.7 p denotes the probability for the first strategy of player | in
equilibrium. If player | playgp,1— p) € X in an equilibrium, then player II's strategy
in that equilibrium is alsdp,1— p) € Y, wherep =t gives the mixed equilibrium of

the game when €t < 1.

Figure 1.7: The K-M structure theorem

E(G(") " 0 p=1

+1

o0 tio 05wl
In general, lef” denote the space of games for a fixed number of players with a
fixed number of strategies. Théhcan be parameterised R, wherek equals the
number of players multiplied by the product of the numbergwife strategies per
player. Let> denote the product space of mixed strategy spaces. Thequiiggum

correspondence oveéris defined as
E(F) ={(G,0) e x X | ois an equilibrium ofG} .

The K-M structure theorem states that the space of g&anieomeomorphic t&(I")

(after a one-point compactification). In general, the K-Misture theorem does not
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apply to restrictions of the space of ganfess in (1.11). If, for example, one re-
strictsI™ to a single point that represents a game with more than on@@oemt of
equilibria, the space of games, i.e. the single point, isheobdeomorphic to the graph
of the equilibrium correspondence, which consists of se\dsjoint sets of equilibria.

Nevertheless, (1.11) gives a good illustration of the K-Misture theorem.

For the illustration in Figure 1.7, the local degree of thej@ction map fronE (")
onl measures, loosely speaking, the local orientation of thulibgjum correspon-
dence relative to the orientation Bf In the example, all completely mixed equilibria
have index—1. The pure equilibria in the non-degenerate gamest(#€.0,1}) have
index+1. The corners of the Z-shaped correspondence are thosstpategy equi-
libria in the degenerate gamesH {0, 1}) which disappear or split into two equilibria

with opposite indices for small perturbations. These hadex O.

The index for components and for singletons in the non-dexgta case has useful
properties that are employed in the next section to const@mponents of arbitrary

index.

1) For the non-degenerate case, the index defined as thallegae is the same as

the index defined in Definition 1.4 (Govindan and Wilson (11997

2) The sum of indices of components of equilibria for a fixethgaequalst+1 (see

e.g. Govindan and Wilson (1997a)).

3) For sufficiently small generic perturbations of a degateegame, the index of a
component equals the sum of indices of equilibria in theysbad game close
to the component (see e.g. Govindan and Wilson (1997a;ba fdiscussion).
This fact is illustrated in Figure 1.7. Take the pure strateguilibrium in the
degenerate cade= 1 that has index 0. If the game is perturbed “to the right”
(t +€) the equilibrium vanishes, if it is perturbed “to the left{ €) it splits into

two equilibria close to it, one with index1 and one with index-1.

4) The index of a component is the same in all equivalent gai@esindan and
Wilson (1997a, Theorem 2; 2004, Theorem A.3)), i.e. it i@m@ant under adding
convex combinations of existing strategies with the regpegayoffs as new

pure strategies.
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An equilibrium component is said to lessentialif every small perturbation of the
game yields a perturbed game that has equilibria close twotimg@onent. It follows that
an equilibrium component with non-zero index is essenfialequilibrium component
is said to behyperessentiaif it is essential in all equivalent games. Therefore an
equilibrium component with non-zero index is also hypesasial. Chapter 6 reviews
the concept of (hyper)essentiality in more detail. It addes the question whether and
under what circumstances the converse is also true, i.ethehénhyper)essentiality

implies non-zero index.

1.4 Construction of Equilibrium Components with Ar-

bitrary Index

In this section it is shown how games with equilibrium comgiats of arbitrary index

can be constructed. This new result is based on a constnuittad uses outside op-
tions in bimatrix games. The construction is similar to tine aised in Govindan, von
Schemde and von Stengel (2003), where the authors consymaobetric components
of arbitrary index in order to show thgtstability violates a notion of symmetry. A

great part of the following description is borrowed fromstpiaper.

First, consider a & 2 coordination game, say

5 10,10 00
H® =
0,0 1010
(in agreement with the notation in (1.16) below). This gamas two pure strategy
equilibria, and one mixed equilibrium, where both playelsyphe mixed strategy
(%, %). The index of any of these equilibria is easily determinedhzyfollowing two
properties, which hold for any game: A pure strategy eqguiin which isstrict (that
is, all unplayed pure strategies have a payoff that is Stiictver than the equilibrium

payoff) has index-1; The sum over all equilibria of their indicesisl. Therefore, the

mixed equilibrium inH? has index—1. This can also be verified using Definition 1.4.
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Next, anoutside optiorcalledOut is added to the set of pure strategies of player I,

say, giving the game

(1.12)

10,10 00 0.9
00 1010 0,9] '
An outside option can be thought of as an initial move thataygl can make which
terminates further play, and gives a constant payoff to ptdigers. If the player has
not chosen his outside option, the original game is playduk dutside option payoff
above is 9 for player Il. This has the effect that an equilibriof the original game with
payoff less than 9 for player Il disappears, in this case thedwstrategy equilibrium.
Geometrically, one can consider the upper envelope, eanidximum of the expected
payoffs for the pure strategies of player Il, as functionshaf mixed strategy played
by player | as described in Section 1.1. Any equilibriumtstgg of player I, together
with its payoff to player Il, is on that upper envelope. Thdside option gives an
additional constant function that “cuts off” any former ddprium payoffs below it.

This is depicted in Figure 1.8. It shows the upper envelopthefexpected payoffs
for pure strategies of player Il and the resulting divisidéplayer I's strategy spack¥

before and after addinQut to player II's strategy space.

Figure 1.8: Division oiX before and after adding an outside option

In gameG~, the original pure strategy equilibria B are unaffected, and continue
to have indext+-1. Any such equilibrium, as long as it remains (quasi-)safter in-
troducing the outside option, keeps its index, as the indexstrict equilibrium can be
defined in terms of the payoff sub-matrices correspondirigegure best replies (see
Definition 1.4). The mixed strategy equilibrium B is absorbed into an equilibrium
componenwhere player Il plays his last strate@ut. The original mixed equilibrium

strategy(%, %) of player | is part of the outside option component, whichiiseg by
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the set of mixed strategies of player | so thatt is a best response. &8~ above, it is
easy to see that these are all mixed strategies of playerrdewdaeh pure strategy has
probability at most 910. In general, the outside option component is defined by a se

of linear inequalities, one for each pure strategy of thggaavho playOut.

Let G be some game with an outside option. Then the outside optjoititerium
component of the gam@ by is denoted bYC(G). In (1.12), the index o£(G™) is
—1, which is simply the sum of the indices of all equilibria btoriginal gameH?
that have been absorbed into the outside option componecaube the sum of all
indices is+1. As described in Section 1.3, the index of an equilibriummponent also
equals the sum of indices of equilibria near the componeetwiayoffs are perturbed

generically; this sum does not depend on the perturbation.

It is well-known that the best response structure of a bimg@ame remains un-
changed when adding a constant to any column of the payoftsetoow player, or
a constant to a row of the column player’s payoffs. This wllbw to cut off pure
strategy equilibria rather than mixed equilibria by usimgoaitside option. Start with
a 2x 2 coordination game with payoffs 1 on and QO off the main diagonal, and add
the constant 12 to the first column of player | and row of pldyjeand 7 to the second
column respectively row. The resulting gaitdeand a corresponding outside option

gameG are given by

(1313 7.12] [1313 712 09
1127 88|’ 127 88 09|

The gameH has two pure equilibria with payoffs 183 and 88, respectively, and one
mixed equilibrium where both plags, 3) with payoffs 1010. The outside option with
payoff 9 for player Il cuts off the pure strategy equilibrinmith payoffs 88 but leaves

the other equilibria intact. Consequently, the compo@&@) has index+1.

Next, one can “destroy” the pure strategy equilibriunGy adding another row

to the game. Consider the games

13,13 7,12 13,13 7,12 09
H'=1]127 88|, G=|127 88 009]|.
141 1,2 141 12 09
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Compared tdH, the pure strategy equilibrium with payoffs, I3 is no longer present
in H'. It is replaced by another, mixed equilibrium where playgplays (%,%) and
player | plays(3,0,3), with payoffs 7 to player Il and 8& to player I. This new
mixed equilibrium has index-1. Since the payoff to player Il in that equilibrium is
less than the outside option payoff 9, that equilibrium piszars inG'. Consequently,
the componenE(G') has index+2, because the only equilibrium that is not cut off has

index—1.
Finally, consider the following gamié¢ —, which is a symmetrised version Hif :

13,13 7,12 114
H =]127 88 21]. (1.13)
141 12 11

In this game, the mixed strategy equilibrium where both gtayplay(3, 3,0) is the

equilibrium with the highest payoff, yielding 10 for bothaglers. This equilibrium has
index—1. The other equilibria are as follows: The mixed strate%»a %) of player I,

which together With(%,%) of player | forms an equilibrium oH’, is no longer part
of an equilibrium as the third strategy of player Il i~ gives a higher payoff. By
playing that strategy as well, one obtainsampletely mixe@quilibrium where both
players play(3, 5. =), with resulting payoff 132 to both players. This equilibrium
has indext+1, as has the pure strategy equilibrium with payof.8here are no other

equilibria ofH ™.

H~ is used for constructing components with arbitrarily higisitive index. For
k > 1, letH ¥ be the game consisting kfcopies of the gami ~ on the diagonal and

zeros everywhere else, that is,

H- 00 --- 00
K 0,0 H™ 0,0
H = . e (1.14)
0,0 00 --- H~™
kcgpies

Each player hasi3strategies irH K. For any nonempty set of tHecopies ofH~,
and any equilibrium in such a copy, one obtains an additiegallibrium of H ¥ by

suitable probability weights assigned to the copies. Adlhsmixtures involving more
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than one copy, however, give payoffs less than 8. There aothas equilibria oH —«

as the payoffs in a copy ¢~ are all positive, and the other payoffs are zero.

The superscript it~ indicates the sum of indices of those equilibria that are not
cut off by adding a suitable outside option. The outsideapis, as before, added to
player II's strategy space, and is also referred t@asas an additional pure strategy.
This gives the game

0,9

Gl= |k o (1.15)

0,9
The gameG**t1 hask + 1 equilibrium components: thie mixed strategy equilibria
where both players play strategies 1 and 2 in one copy oith probability% (yield-
ing a payoff of 10 for both), and the equilibrium componennimich player Il chooses
the last strategy, the outside optiGut. That component(G*1) is given by those
strategy pairs where player Il plagut, and player | playing such th&ut is a best
response. All isolated equilibria have indexd. Since the indices of all equilibrium
components have to add up to one, the outside option equitilzomponen€(G**1)
has indexk+ 1, which is chosen as a superscript ®in (1.15). Therefore, for each
positive integeiy, the gameGY in (1.15) has a component with indgxthis includes

the trivial caseg = 1 andk = 0, which is a 1x 1 game.

The division of player I's mixed strategy spa¥efor the gameG? is depicted in
Figure 1.9. It shows that, except for the equilibrium ver(éx%,O) € X, all other

vertices that are part of an equilibriumH are cut off by the outside option.

Figure 1.9: The division oK for the gameG? with outside option
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A similar, simpler construction gives equilibrium compaotewith arbitrary nega-

tive index. Fork > 2, letHK be the followingk x k game:

10010 00 --- 0,0
0.0 1010 0
Hk=1| ° _ Q (1.16)
0,0 0,0 --- 10,10
kcoffjmns

Just as (1.15) is obtained from (1.14), one can add an outgitiien for player Il, and

obtain
0,9

G kD= gk (k= 2). (1.17)
0,9
The equilibria of game& (k-1 are thek pure strategy equilibria of the coordination
game, yielding a payoff of 10 for both players, and the oasiption equilibrium com-
ponentC(G~(k-1)) (see Figure 1.8 for the cake= 2). Since pure strategy equilibria
have indext1, it follows thatC(G~(-V) has index—(k— 1).

Hence, for each negative integgr there exists a game that has an equilibrium
component with indeg. The cas& =1 gives an empty equilibrium component (which
can be thought of as having index 0), since in this case thestiigtegy by player Ii

strictly dominate©ut. Therefore it is required th&t> 2 in (1.17).

From the above, one can now easily construct a game with arivaed-equilibrium
component that has index 0. This is done by combining the gathandH 1 ina
new game by placing them on the diagonal, and adding an eutgiton for player Il

as before. The cade= 2 is sufficient, so leG° be the following 5< 6 game:

G0 = (1.18)

HZ 0 09
0 H 09|
As argued after (1.14), the only equilibria@? that are not cut off are those with pay-

offs 10,10 inH?2 or H . Thus, by a counting argument, the outside option equilitri

componen€(GP) has index 0. The constructions prove the following proposit

Proposition 1.6 For each integer g, there exists a (bimatrix) game that hasramo-

nent of equilibria with index q.
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In general, index 0 components are easy to construct (sed& alsl in (1.17) for

the trivial case). Consider for example the game

1,1 00
0,0 00|

This game is the same &80) in (1.11) and has two pure strategy equilibria, one with
payoff 1 and the other one with payoff 0. It is easy to verifgttthe equilibrium with
payoff 1 has index-1. It “survives” every small payoff perturbation. The puteagegy
equilibrium with payoff 0 has index zero. The payoffs can bewrbed such that this
equilibrium either vanishes or splits into two equilibridglvopposite indices (see also
Figure 1.7). The reason for providir@f as in (1.18) is that a similar construction is
used in Govindan et al. (2003) in order to show that O-stabie wolate a notion of
symmetry. Furthermore, in Chapter 6 it is shown that theideteption equilibrium
component of the gam@? is essential in all equivalent games that do not contain a

duplicate ofOut. However, it is not hyperessential when allowing copie®at.
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Chapter 2

A Reformulation of the Index for

Equilibria in Bimatrix Games

This chapter introduces a new geometric-combinatoriagtrantion for non-degenerate
bimatrix games that allows one to give a new characterisaifdNash equilibria and
index in bimatrix games. Given am x n non-degenerate bimatrix game (assuming
m < n without loss of generality), the construction yields a slien of an(m— 1)-
simplex in which the Nash equilibria and the index can be attarised by the labels
of player | only. So, for example, any>3n bimatrix game can be represented by a

division of a 2-dimensional simplex using only label213.

The new construction, which is referred to as thel construction allows an
intuitive definition of an orientation (or index) for equolia in bimatrix games. It
is shown that the notion of orientation introduced here & tbhme as the notion of
index introduced by Shapley (1974) (modulo the sign in tHend®n as explained in
Remark 1.5). It is also shown that the L-H algorithm by Lemke &owson (1964)
that finds an equilibrium in a non-degenerate bimatrix gaare lwe interpreted as a
path-following algorithm in the dual construction. Thidoals one to visualise, in
dimension 3 or lower, both the index and the L-H paths fonal n non-degenerate
bimatrix games with mifm, n} < 4, whereas the interpretation of L-H paths and the
definition of index by Shapley, or the interpretation by Sawnd von Stengel (2004)

by symmetrising games (see Section 1.3), uses geometectskijp dimensiorm+
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n— 2. Furthermore, it illustrates how non-degenerate bima@mes fit into the study

of solutions of piecewise linear equations as in Eaves aad §£976).

This chapter is basic for the results in the subsequent ermptater, Chapter 3
shows how the results of this chapter are related to Spsrherhma in dimension
(m—1). In Chapter 4, the construction is used to give a strategicaciterisation of
the index in non-degenerate bimatrix games. Chapter 5 showshe dual construc-
tion can be extended to outside option equilibrium comptsjemhich is applied in
Chapter 6 to show that an outside option equilibrium compbehyperessential if

and only if it has non-zero index.

The structure of this chapter is as follows. In Section 2eldbal construction is
introduced and described in detail. Section 2.2 gives aaciarisation of the Nash
equilibria in the dual construction. Using only labels o&y#r I, it is shown that the
Nash equilibria are given by the fully labelled points in thel construction (Proposi-
tion 2.6). Section 2.3 re-interprets the Lemke-Howson (Lalgorithm and shows that
it yields a connected path in the dual construction (PramwsR.7 and Lemma 2.8).
Finally, in Section 2.4, a notion of orientation for Nash gigua is given. It is shown

that it is equivalent to the notion of index defined by Shaglpposition 2.10).

2.1 The Dual Construction

This section describes a new geometric-combinatorialtcectson for non-degenerate
bimatrix games. Put briefly, the subdivided strategy simplas dualised to obtain a
dual spacéX”|. Vertices inX become simplices itX*|, and best reply regions X
become vertices ifX”|. There are two equivalent ways of constructi¥g*|. One
uses polar polytopes, the other one is a combinatorial satéin method. IntgX”|
one then inscribes those facesrahat are of strategic relevance for the game, yielding
a divisionx*A of the dual space into labelled best reply regions for pldy€he final
construction has the same dimensiotXand uses only labels of player I. The division
into simplices reflects the best reply structure for playghk division of the simplices

into labelled best reply regions reflects the best replycttine for player I. Combining
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these two, the Nash equilibria are represented by completetlled points in the dual

construction.

The dual constructiothA\ can be obtained by using a polarisation method for
polytopes (see e.g. Ziegler (1995, Section 2.3)). A contbim dualisation method
is described further below. In brief, when polarising a pope, vertices become sim-
plices and facets become vertices. The polytope itselftgioéd from the best reply
polyhedrorH in (1.5) that is given by the upper envelope of player II'sected pay-
offs overX. The polyhedrorH is neither bounded nor full-dimensional. Since full-
dimensional polytopes, i.e. bounded and full-dimensiqgaéyhedra, are more conve-
nient to study, the polyhedrdd can be projected in order to obtain a polytdpthat
contains the same information Hsand that is full-dimensional and bounded. This de-
scription is similar to von Stengel (2002), which also givefgrences to related earlier

works.

The polyhedrorH as in (1.5) is defined as
H={(xV)eR"xR|1x=1, B'x<1,, x >0Viecl}.

Without loss of generality it can be assumed that0 for all (x,v) € H, since adding
a positive constant to the entries Bfdoes not affect the equilibria or the best reply

structure of a game. Now consider the set
P={xcR"|B'x<1,%>0Viecl}. (2.1)

The mappingd — P’ — {0} is given by(x,v) — 1 .x, and the invers® — {0} — H is
given byx+—» (ﬁ, \x\) , where|x| = 1.x. The vertex0 of P’ corresponds with “infinity”
overH. The sef is described by a finite number of inequalities and is botmoled
and full-dimensional. Hence, the $&tis anm-dimensional polytope. Geometrically,
the polytopeP’ is the projection of the polyhedrdd on the hyperplane described by

v=1. This is depicted in Figure 2.1.

In order to obtain the polar (or dual) of a polytope of dimensn, it is convenient
if 0 R™ lies in the interior of the polytope. This is not the case Far polytopeP’, but

can easily be obtained by translating the polyt&h&o obtain the desired polytoge

1

Consider the poinfl,.... 1

V) € H with V= max jbjj + ¢, wherec is some arbitrarily

large positive constant. The projection of this point isegioyX = (n—lw, e n—lw) eP
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Figure 2.1: The projection of the polyhedrbinand the polytop®

X1

and lies in the interior oP’. So one can translaf by —x to obtain
P={xecR™|B'(x+%) <1 x+% >0Viel}.

Note that every other point in the interior Bf could be used for the translation. Then
0 e R™M lies in the interior ofP. The polytopeP is referred to as theest reply polytope
A depiction ofP is given by the dotted lines on the right in Figure 2.1. Theyiradities

that describé® can be rewritten to obtain

~

Y . . :
P:{xeRm|\7 EBJ-TxgleeN;—rnv>q§1v|el}
—bj

(2.2)

3

1;.B;
m

whereB; = is the average payoff for player Il in colunjn

In general, leP be a polytope given by
P— {zeRm lelz<1, 1<k< n}.

Geometrically, the polytop® is defined by halfspaces, which are given by hyper-
planes. The vectors; € R™ are the normal vectors of these hyperplanes. fdiar
polytopeP” of the polytopeP is defined as the convex hull of the normal vecigrsf

the hyperplanes that descriBgi.e.
P~ = conv{cy,...,Cn}. (2.3)

One can show that the polar of the polar polytope is the caiginlytope, i.eP22 =P

(see e.g. Ziegler (1995, Theorem 2.11)). Note thatR™ lies in the interior ofP, and
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hence in the interior oP”. A depiction of the polar polytope for a given polytope is

given in Figure 2.2.

Figure 2.2: The dual of a polytope

For a non-degenerate bimatrix game, the polyte@e in (2.2) is simple, i.e. each
vertex of them-dimensional polytop® is described by exactlyn binding linear in-
equalities, so each vertex is contained in exacthacets ofP. Consequently, the polar
P~ is simplicial (see e.g. Ziegler; Proposition 2.16). Eactiaseof P> corresponds to

a facet ofP, and each facet d?”, representing a vertex i, is an(m-— 1)-simplex.

The study of polytopes is a very useful tool in the analysigahes. Von Stengel
(1999hb), for example, uses cyclic polytopes to constructegmin order to obtain a
new lower bound on the maximal number of Nash equilibriadhad non-degenerate
bimatrix game. Savani and von Stengel (2004) employ a klaethod to construct

games in which L-H paths are exponentially long.

The simplicial surface of the polar polyto¥* can be projected on the facet of
P~ that is given by thém— 1)-simplex spanned by the verticesig, i € |, where
g denotes the unit vector iR™ with entry 1 in rowi. The projection is defined by
the intersection of the line between a potrand (—mV) 1, with the facet spanned by
—mve, i € | (see Figure 2.3). This yields a triangulation of the facetrsged by the
vertices—mva, i € |. A triangulation(or simplicial subdivisiohof a simplex is a finite
collection of smaller simplices whose union is the simpkaxd that is such that any
two of the simplices intersect in a face common to both, onnkersection is empty.

The vertices of a triangulation are the vertices of the sioeglin the triangulation.
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Figure 2.3: The simplicial division ok”

Definition 2.1 The simplex spanned bymig, i € |, is denoted as X. The triangula-
tion induced by the projection’P— X2 — X2 is denoted a$X”|, and referred to as
the dual construction. The facets of Rther than X*, which are(m— 1)-simplices,
are denoted as’v. For notational parsimony, their projections orfXwhich are also

(m—1)-simplices, are also denoted a8 v

An illustration of X*| is depicted in Figure 2.3. The verticesnig correspond to the
facets ofP that represent unplayed strategies. All other verticeB’otorrespond to
facets ofP that represent best reply facetskbf Each vertew # —X of P represents
a vertex ofH, and hence a vertex in the division Bfinto best reply regions. So
each vertew in X or H corresponds to a uniquen— 1)-simplexv® in |X%| or on

the surface oP”. The simplexX” represents the vertex € P, and is spanned by

—nve,i e l.

The induced triangulationX”*| is regular. A triangulation is calletegular if it
arises as the projection of a polyto@ewhose facets are simplices (see e.g. Ziegler
(1995, Definition 5.3)). The simplices {X*| are the projections of the facets®ef.
Essentially, the projectiofX”| is a so-calledSchlegel-diagranof P> that is combi-
natorially equivalent to the compledP” — X* (see e.g. Ziegler (1995, Proposition
5.6.)), wheredP~ denotes the boundary Bf*.

Now suppose one has a regular triangulafdéft| of X*. Assume that the only
vertices of the triangulation that lie on the boundanXéf are those that spa?®, i.e.

—mva, i € |. Then one can obtain a payoff matBxthat induces this subdivision. For
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this, consider the polytop® that induces this triangulation. Without loss of geneyalit
it can be assumed thate Q. Otherwise the vectors other thammve, i € |, can be
moved in the same manner along the projection line. TQeaa the polar polytope
P~ of a polytopeP. The polytopeP” is given by conyc, ..., cq} (see (2.3)), where
the firstm vectors are given by-mVg, i € | (these are the vertices ¥). Given a
polytopeP%, the following lemma shows how one can construct the coomding

payoff matrixB that yieldsP” as the polar of the polytogegiven in (2.2).

Lemma 2.2 Consider P* as in (2.3) with0 € P*, and let the first m vectors be given

by G = —nva, i € I. For all other ¢j, j > m, let(cj)i > —mV Vi € |, where (c;j);

Te.
denotes the i-th row ofjcand letc; > —V, wheret; = 1”‘—m°’ Then P is the polar of
the polytope in (2.2) with
v
Bj = Cj. 2.4
I (2.4)

Proof. By definition, one hag-%-B; = c; for all j > m. This implies that--B; =<,
P Bl

V*Ej
v

S0Bj = 75 Cj. Substituting this int®; = (

) ¢j yieldsBj = —c;. Note that the

V4Cj

first mvectors are; = —nwa, i € |, and give the inequalitiesmux < 1 in (2.2).

TranslatingP as in (2.2) by(:, ..., %) gives the polytopd® as in (2.1) with

(. .... %) lying in the interior ofP’. FromP’ — {0} one obtaingd via x (‘—;“ |x|>.
. . l l A . .

So the upper envelogd satisfiesv > 0 for all (x,v) € H, and(,...,,9) lies in the

relative interior ofH with V> B; V j € N. O

The above construction shows that each strategy sindlean be dualised in a
way such that one obtains a regular triangulaflf| of an (m— 1)-simplex. This
construction is such that the vertices %fcorrespond to the simplices {X*|, and
the best reply regions and unplayed strategieX icorrespond to vertices ifK”|.
Furthermore, an edge M that connects verticeg andv, in X corresponds to the

common(m— 2)-face of the two adjacerftn— 1)-simp|ices11A andv2A in X2

The important aspects (X | are the combinatorial properties of the simplices and
vertices in]X*|. A combinatorial equivalent giX% |, which, for notational parsimony,
is also referred to dX” |, can be obtained without using the polarisation method from
above. Instead, it can be derived directly from the divi©ibKX into best reply regions.

To illustrate the procedure, it is applied to the followingeple.
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Example 2.3
0,0 1010 00 10-10
10,0 00 010 08 (2.5)
810 00 100 88

Take player I's standar@m— 1)-simplex representing the mixed strategy spce
ThenX can be divided into best reply regioXgj). Non-degeneracy implies that the
number of best replies in a vertexc X equals the number of strategies played with
positive probability inv. Figure 2.4 gives the division of into best reply regions for
player Il for the game in Example 2.3. It shows that everyasevtc X has exactlym
labels, where the labels of a vertex X are the pure best reply strategies of player Il
with respect tov and the pure strategies of player | not played.inThe labels of a

pointx € X are given byL(x) as defined in (1.3).

Figure 2.4: The best-reply division &f for the game in Example 2.3

A combinatorial dualisation aX is now obtained as follows. For each best reply
region and each unplayed strategy, one chooses a repiiagepi@int in R™ 1 that
serves as a vertex iX”|. For best reply regions, these representatives are deasted

X(j)%. For an unplayed strated\e | the representatives are denotecgig .

The pointsX (k)*, for k € 1 UJ, that are corresponding to best reply regions or
unplayed strategies, now become the vertices in the dué) e each such vertex has
label k. For every vertew € X with labelsL(v), the combinatorial dual simplex*
is the simplex spanned by the dual vertidgk)”, with k € L(v). For two vertices/

andv; that are joined by an edge with lab&ls/;) NL(vz) in X, the two combinatorial
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simplicesvlA andva are adjacent and share thm — 2)-face that is spanned by the

dual vertices representing the labk(s1) NL(v2) in X2.

For the game in Example 2.3, the triangulatitt*| is illustrated in Figure 2.5.
The dotted lines in Figure 2.5 show the divisionXfinto best reply regions. The
solid lines illustrate X”*|. The best reply regions i and those labels that represent
unplayed strategies become dual verticel¥ifi|. Each vertex irX is represented by a
unique(m— 1)-simplex in|X%|. The edges iXX becomgm— 2)-faces of two adjacent

simplices in|X*|.

Figure 2.5: The triangulation 0¢” for Example 2.3

If a vertex of a simplex?” is of the formX (i)%, for somei € 1, itis called arouter
vertexof v2*. Outer vertices of” represent those strategies of player | that are played
with zero probability inv. The (m— 1)-simplexX” is spanned by all outer vertices
X(i)%, i € 1. Accordingly, theinner verticesof a simplexv® are of the formX(j)*,
for somej € J. The inner vertices of a simplex® represent best reply strategies of
player I1. All simplicesv”* have at least one inner vertex, simplices representingea pur

strategy of player | have exactly one inner vertex.

45



2.2 Labelling and Characterisation of Nash Equilibria

The aim is now to divide the simplex® into regions with labels € | such that the
Nash equilibria are represented by fully labelled points.ahove, it can be assumed
that all entries of the payoff matriA are strictly greater than zero. Now consider
a simplexv® € |[X2|. An inner vertex that represents the pure strategy efN of
player Il has the corresponding payoff colup The outer vertices do not represent
payoff columns ofA and are dealt with by introducing slack variables. Each route
vertex that represents a pure strategyl of player | played with zero probability is
assigned aartificial payoff vectorg, i.e. the unit vector iR™ with entry 1 in rowi.

So suppose(v) = {iy,....ik}, Sov” is spanned by outer verticeqir)>, ..., X (i)
and some inner vertice$(ji;. 1), ..., X(jm)”. The payoffs for player | with respect
to pure strategie$y1,..., jm are given by the columng;, ,,...,A;, of the payoff
matrix A. The artificial payoffs for player | with respect to the unydd strategies

i1,...,ix are defined ag,, ..., &,. Let A(v) be the followingartificial payoff matrix
AV) = G o 8 Ajgr Al (2.6)

This artificial payoff matrix now allows one to divide eachngilexv” into labelled

“best reply” regions with labelse |.

Definition 2.4 A point in V2 is denoted as w described by its convex coordinates
with respect to the vertices of*v(the subscript “s” indicates that wcontains slack

variables).

Then every simplex” can be divided into labelled regions according to
VA(i) = {ws € Vv | (A(V)We)i > (A(V)We)i V k€ 1}, (2.7)
This is the same division as the division of player II's mixadhtegy space in the case

A(v) is the payoff matrix of player | in some bimatrix game.

Dividing each simplex” in [X”|, this gives, by non-degeneracy, a divisionof
into full-dimensional regionX” (i) with labels 1...,m, where
X2 (i) = [Jv2(i).
veV
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Figure 2.6: The labelled dual constructisf’ for Example 2.3

This division is well-defined, since, if two simplice@ andva share some common
face, the induced division on that face is the same in botlp)liztlaﬂsvlA andva. For

the game in Example 2.3 the resulting divisiondt is depicted in Figure 2.6.

Definition 2.5 The division of X into labelled regions X (i) is referred to as the
labelled dual construction, and is denoted a§.XA point w € X*A is assigned the

labels I(ws) of those regions that containswi.e.

I(ws) = {i €1 |wse X2(i)}. (2.8)

For each simplex”, the innerk+ 1 (for somek > 0) vertices ofv® span somé-
face ofv”. Thisk-face is referred to as thzest reply facef v and is denoted a8,
So the best reply facé™ is spanned by exactly those verticesvf that represent
a best reply strategy of player Il with respect to strategyrhe best reply face®®
corresponds to the face ¥fthat is spanned by those pure strategies of player Il that
are represented as verticesBf*. So eactw € VP2 can be identified with a unique
strategyy € Y of player II. The division of/” into labelled regions also yields a division
of V"2 into labelled regions. These labelled regions are affirealinransformations
of the division of the face o¥ into best reply regions that correspondsv™. It
should be noted that if a poimt lies on the best reply face of a simplek, then the
set of labeld (w) as in (2.8) is the same &6w) in (1.1).
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The space(*A together with the labelling function in (2.8) now allows awalete
characterisation of the Nash equilibria of a non-degerebanatrix game. Before
proving the main result of this section, it should be noteat #il pointsws that lie in
the interior of X and in some/” can be projected on sonvee VP by dropping
those coordinates that are the slack variables associatedntificial payoff vectors
and normalising the resulting vector such that its entnigs ®© 1. So letvs € V2. Let
the set of outer vertices of* beX(i1)”, ..., X(ix)*, and let the set of inner vertices of
Ve beX(jkr1)?, ..., X(jm)”. Note that for all simplices”, the set of inner vertices
is non-empty. So letvs = (Wsy,...,Wsy), Where the firsk entries are the coordinates
with respect to the outer vertices, and the last k entries are the coordinates with

respect to the inner vertices. Then define the projeqtiow) as

w, =0 X <i<

W= p(we) = (2.9)

1 k
S Wi . i
N-m D k+1<i<m
The projection pointv = p(ws) € VP2 can be identified with a unique strategy vector
in Y. Forws on the boundary oK., one definep(ws) = 0 € R™. This allows the

following characterisation.

Proposition 2.6 A point w; € X*A with ws € V2 is completely labelled if and only if

(v, p(ws)) is a Nash equilibrium of the game.

Proof. Letws be completely labelled wittvs € v*. Then consider the artificial payoff
matrix A(v). A pointis, by definition, completely labelled K(v)ws = c1y, wherec is
some positive constant. It is easy to verify that the payaffi&(v) are non-degenerate,
since the payoffs oA are non-degenerate. Heneg lies in the interior ofv~. By
construction one has = p(ws) € V2. It implies thatl (w) = 1 —1(v), wherel (v) is
as defined in(1.2). Sincew lies on the best reply face of*, it means that player Il
mixes only those strategies with positive probabilityvthat are a best reply ta@ So,

using(1.1) and(1.2), one has
we V™ — J(v)ud(w) =J. (2.10)

This is to say that player Il is always in equilibrium when swmlering points in the
labelled dual construction. But théfw) =1 —1(v), sol(v)Ul(w) =1. This means

that (v, w) is completely labelled, and hence an equilibrium.
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Now let (v,w) be a Nash equilibrium. Thed(v) UJ(w) = J, sow € V*"2. Since it
is a Nash equilibrium, one hd$v) =1 — I (w). SoA(v)w is a vector with maximum
entries in those rows that are strategies played with pesgrobability inv. Letc
be this maximum entry. Now assign weights to the columnsessrting unplayed
strategies to obtain a strictly positive vectarsstich thatA(v)Ws = c1y,. Normalising
the vectorwg such that the entries add up to one yields the desired vegtavrith

I(ws) =1. O

For the game in Example 2.3, the labelled dual construcsotepicted in Fig-
ure 2.6. For the following description, the coordinateswgtarry a subscript, marking
the payoff vector they apply to. So, for example, the supsed, 2, 3 refer to artificial
payoff vectors, and the subscript$46, 7 refer to payoff columns oA. The construc-
tion contains three completely labelled points, nanvey= (( )1, (%) (920)7) lying
in the simplex/” representing = (0, %, ), the pointws' = (()4. (). (£1)e) lying
in the simplex representing = (%,%,%), andws” = ((39)2, (39)3. (%)s) lying in the
simplex representing’ = (1,0,0). Projecting these vectors gives= (5,07 0, 3), the
pointw = (2, 13, 74, 0) andw’ = (0,1,0,0). So(v,w), (V,w) and (v',w") are the

Nash equilibria of the game.

Instead of labelling the dual constructit®”|, which consists of the projected
simplicial facets of the polar polyto@”, one can also label the simplicial facets of
P2 directly via the artificial payoff matrix. The division of elasimplicial facet oP~
is obtained in the same way as the division of the projectegblstes. The result of

this construction is depicted in Figure 2.7 for the game mgjive the payoff matrices

1 00 6 4 1
A= B= .
011 1 35

The resulting labelled surface of the polar polytope is ded@sP”. Its simplicial
surface is denoted d8%|. In this construction, the equilibria are, as before, repre
sented by exactly those points on the surface of the polgtgumé that are completely
labelled. The artificial equilibriuni0,0) can be identified with the completely labelled
point on the faceX® of P*A. Note thatX® corresponds to the vertex f that has
all labels of player 1, i.e. no strategy of player | is playeithapositive probability. So

the artificial payoff matrix that corresponds to this facethe identity matrix that only
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consists of artificial payoff vectors. Its centre is a congdielabelled point. So, in-
stead of considering the projection of the labelled facate,might as well characterise

the equilibria using the “labelled spher‘ékA.

Figure 2.7: The labelled polar polytoﬁ\@

The labelled dual construction allows one to completelyati@rise the Nash equi-
libria of a non-degenerate bimatrix game in a geometricahgédimensiorm— 1 by
using only the set of labels of player I. Assuming without loss of generalty< n,
it is possible to visualise(*A for all m< 4. It also demonstrates how non-degenerate
bimatrix games fit into the study of solutions of piecewisetir equations as in Eaves
and Scarf (1976), and allows one to illustrate how one candihgsh equilibrium of

a non-degenerate bimatrix game.

2.3 The Lemke-Howson Algorithm in the Labelled Dual

Construction

The L-H algorithm described in Section 1.2 is the standaydréthm for finding a Nash
equilibrium in a non-degenerate bimatrix game. The L-H atgm describes a path

in the product spack¥ x Y (or Xg x Yo when including the artificial equilibrium points)
that is given by a set of poin{s,y) € X x Y that is described by labelgx) UL(y) =

| UJ — {k} for somek € | UJ. This path consists of pairs of edges and vertices in the

product graph.

The fact that the L-H algorithm applies to a product graph esai difficult to
visualise it for games of higher dimension. In this sectibig shown that every L-H

path inX x Y that is defined by a missing labekE | of player | can be interpreted as a
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path in the labelled dua(*A that consists of paths that are almost completely labelled
with missing labek. This allows one to give a new geometric interpretation mdy o
of the L-H algorithm but also of the fact that equilibria a¢thnds of an L-H path have

opposite indices (see Section 2.4 below).

Similar to the definition oM (k) in (1.9), one can define the set of almost com-
pletely labelled points on the labelled surfd® for a missing labek of player I. So
let M (k)f, for k € 1, denote all those pointss in P that have at least labels- {k},
ie.
M(K)S = {ws € P2 || — {k} C I (ws)}. (2.11)

One obtains the following proposition (compare Theorem).1.3

Proposition 2.7 Let G be a non-degenerate ¥ bimatrix game. Fix a label k
I. Then l\/(k)*A consists of disjoint paths and cycles i P The endpoints are the

equilibria of the game, including the artificial equilibmoL

Proof. As before, lefP*| denote the simplicial surface &". Since the payoff ma-
trix A(v) is non-degenerate for all simplices in |P2|, the set of aimost completely
labelled points inv® with a missing labek is, if not empty, an edge (or line segment)
in v, Now take an endpointis € v of an edge inv with labelsl — {k}. Then
there are two cases. The first is whevelies in the interior ofv”. In this casews
represents an equilibrium and is fully labelled. Bgis endpoint of a unique edge in
v2. The second case is wheng lies on the boundary of®. In this case, due to the
non-degeneracy assumption, the paigties in the interior of somém— 2)-face of
V2. This (m— 2)-face is the face of another simpleX’ in |P2| that is adjacent tg?.
In V2, the pointws must be the endpoint of another edge with labels{k}. So the
endpoints of edges (Ml(k)*A in v* are incident to one or two edges I\xzih‘(k)*A in P2,

L]

Note thatX” is just a projection of the labelled facetsRif — X2 on X2. So the
paths and cycles ib(*A with labelsl — {k} are projections of the paths and cycles in
P*A — X with labelsl — {k}. For notational convenience, the projection of these paths
and cycles inX” is also denoted alyl(k)f. Equivalently, one can defirmsl(k)*A =

{ws € X2 | I —{k} C I(ws)}. The endpoints of the paths ¥(* are the equilibria of
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the game, not including the artificial equilibrium, since #tificial equilibrium lies
on the faceX® on which P*A — X% is projected. l.e. the artificial equilibrium is not
seen under the projection and can be thought of lying uXderIn the same way as

above one can confirm thm(k)*A in X~ consists of paths and cycles.

The following lemma shows how the definitions Mf(k) andM(k)*A are related.
This yields a straightforward interpretation of the L-H@ighm on the labelled surface

P*A and in the labelled dual constructimf.

Lemma 2.8 Equilibria that are connected by a L-H path in() are connected by a
path in M(k)f. An edge g x {w} € M(K) is represented in l‘(/k)*A by two adjacent
simplices. An edgév} x ey € M(K) is represented in I‘(/k)*A by an edge in 4 with
labels - {k}.

Proof. First consider an edgex x {w} € M(k). Thenex is an edge irXo. Let this be
an edge irX betweenv; andv,. Edges inXy are represented iiX”| and |P”| by an
(m— 2)-face that is common tvllA andva. As for the edge that connects the artificial
equilibrium with a pure strategy, i.e. the edge betw@and a pure strategy note that
every pure strategyis represented ifP” | by a simplex/” that is adjacent tX*, the
latter representing the artificial strate@yg R™. In X2 this is reflected by the fact that
v2 has an(m— 2)-face on the boundary of”. So, if (v1,w) and (v, w) lie along a
L-H path, therwlA andvff are adjacent and share tfra— 2)-face that corresponds to
the labeld_(v1) NL(v2). So the L-H path irXp yields a union of adjacent simplices in
X2 and|P2|.

Now suppose one h&g w) € M(k). Let(v,w) € X xY. Then, by the equivalence in
(2.10), one haw € V™. This point corresponds to an almost completely labellédtpo
ws = | (W) € v® in the labelled dual construction. To see thisi&g),, k € 1 (v) UJ(v),
denote the row ofvs that corresponds to the column Afv) that represents strategy
k. Also, letwy, k € J(v), denote the probability with which strategys played inw.

Then define

~ W ke J(v)
c— (AW kel(v)

wherec is the maximum payoff for player | when player Il plays and(Aw)y is the

payoff for player | in strategk. In v, a strategy € | (v) has probability zero. So, for
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k € I(v), the expected payoff for the unplayed stratégg (Aw)x. Normalisingl (w)
yields the vectows = | (w) such that (ws) =1 (v) Ul (w), sows € M(k)f. Therefore,
the mappind (w) is a lifting of w € VP™ to a pointws € v* such that (ws) = I (v) Ul (w)

(compare the projectiopin (2.9)).

Now consider an edgfv} x ey € M(k) that connect$v, w;) and(v, w,) with wy # 0
andw, # 0. By the equivalence in (2.10) one sees that thea V*™*, so the edge lies
on the best reply face of®. But that means thd{ey) is an edge i/ connecting

[(wy) andl (wo).

It remains to show that these lifted edges yield a connecétia ip the union of
simplices that correspond to the L-H path¥p So letw be an endpoint of the edge

ey. Then one can distinguish two cases.

The firstis where (v) N1 (w) = {i}. In this case the paiiv,w) has a duplicate label
i of player I. This means that strateggf player | is a best reply, but is not played with
positive probability inv. Therefore, one hg#\w); = ¢, sol (w); = 0, i.e. the lifted point
[(w) lies on the(m— 2)-face where the weight on the artificial payoff veotpis zero.
So it lies on thelm— 2)-face that corresponds to labelév) — {i}. This represents
the edge inXp that is described by labelgv) — {i} and connects and another vertex
v, with (v,w) and (V,w) both lying along a L-H path iM (k). So the lifted point is

adjacent to two edges, onevft and one i/,

The second case is whelre/) N1 (w) = 0. In this cas€v,w) has a duplicate label
j of player Il. This implies that strategyof player Il is a best reply, but is not played
with positive probability. Thereforay; = 0 and hencé(w); = 0, i.e. the lifted point
| (w) lies on the(m— 2)-face ofv”* where the weight on the payoff vectay is zero.
So it lies on thgm— 2)-face that corresponds to lab&ls/) — { j}. This represents the
edge inXp that is described by labelgv) — {j} and connects and another vertex,
with (v,w) and(V/,w) both lying along a L-H path iM (k). So the lifted point is also
adjacent to two edges, onevft and one i/,

Finally, one has to account for the simplices adjacett‘toand the artificial equi-
librium. The L-H path with missing labekt that starts in the artificial equilibrium is

such that, after two steps, it yields the p@irw), wherev represents pure strategy

andw is the pure best reply ta Then eithelv,w) is an equilibrium, in which case the
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completely labelled point in” is connected with the completely labelled poin¥f

via an edge in/® and an edge iX”. If (v,w) is not an equilibrium, pure strategy

is not a best reply to pure strategy The lifted pointl (w) lies on the(m— 2)-face of
v> that corresponds to labelgv) — | (w), and is also connected with the completely
labelled point inX2 via an edge inv® and an edge iXX2. For pure strategiesand

w such that(v,w) is an equilibrium, the completely labelled poing in v** connects
with a point on them— 2)-face corresponding to labelgv) — {k}. This is also the
(m— 2)-face ofv’”* such thatv,w) and(V,w) both lie along a L-H path iM(k). [

Figure 2.8: The L-H paths fdt= 2 in X*

The above lemma can be illustrated by considering the M(@f for the game
in Example 2.3. This is depicted in Figure 2.8. Accordinghe L-H algorithm, one
starts at the artificial equilibriungy = O,wp = 0 and looks at the path that has labels
1,3. Dropping label 2 means that one flips from the artificialigium simplex
X2 into the simplexvlA that represents pure strategy 2 of player I. Thighas labels
1,3,6, since 6 is a best reply to pure strategy 2, agcas labels 46,6.7. Hence 6
is a duplicate label. This determines. Strategyw; represents the pure best reply to
pure strategy 2, which is 6. S@ = (0,0, 1, 0) with labels 45,7, 3, since pure strategy
3 is a best reply tovi. In X*A, this is represented hys;. Now 3 is a duplicate label.

This determines the simple@ by flipping over the face that corresponds to vertices
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representing strategies 1 and 6. Tihvernas labels 17,6. Now 7 is a duplicate label,
determiningw,. The strategyw, is the mixed strategy that mixes strategies 6 and 7,
with best replies 1 and 3. IP(*A, this givesws,. Now w» has labels 54,1,3, so 1

is a duplicate label, which determim@. The simplexv§ is the simplex adjacent to
v2A with common face spanned by vertices representing 6 and i8.igthe simplex
spanned by vertices representingg&. Now 4 is duplicate, which determineg

in which pure strategy 4 is played with positive probability X*A, this giveswss.
Strategyws has labels 46, 1,3, so now 6 is a duplicate label. Flipping over the face
of v§ that is spanned by vertices 4 and 7 givﬁsspanned by vertices representing by
4,7 and 1. Finally, label 1 is duplicate, determinig with labels 56, 2, 3, which, in

X2, is representedis4. The tuple(vs,wy) is an equilibrium of the game.

This reinterpretation of the L-H paths)gA also allows one to illustrate why Nash
equilibria might be inaccessible in the sense that they ate&onnected via a union
of paths with the artificial equilibrium as noted by Shaplé9{4). An example for
this situation is depicted on the left in Figure 2.9. The undd pathsM*A(k), for
k € 1, is depicted in bold lines. The game represented on therdfigure 2.9 has
three equilibria, one pure strategy equilibrium and two mck player | plays all three
strategies with positive probability. Starting at one ndxerategy equilibrium, every
path inM*A(k) always leads to the other mixed strategy equilibrium and varsa. So
for k € 1, the L-H algorithm only finds the pure strategy equilibriumwhich player |
plays only pure strategy 1 (the equilibria might not be issdavhen considering paths
M(j) for j € J). X2 can also be used to show tmf(k) might contain cycles. This is

depicted on the right in Figure 2.9, which illustrates a eylth labels 13 in M*A(Z).

2.4 An Orientation for Nash Equilibria

This section gives a re-interpretation of the index by mezrthe labelled dual con-
struction. This allows a simple visualisation of the indexd&nym x n bimatrix game

with m < 4, sincex*A is of dimensionm— 1 for anm x n bimatrix game. Further-
more, this re-interpretation of the index extends to certmmponents of equilibria,
namely outside option equilibrium components in bimatmges (Chapter 5). This

re-interpretation of the index is then employed in Chapttr dbtain a strategic char-
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Figure 2.9: Inaccessible equilibria and cycleS(iﬁ

acterisation of the index in non-degenerate bimatrix gaamelsin Chapter 6 to obtain

a characterisation of hyperessentiality in terms of thexad

The definition of the index iiX’ is similar to the index as depicted in Figure 1.5,
i.e. itis defined by the relative ordering of the labels “ardtian equilibrium. Consider
a completely labelled poimtis € X that represents an equilibrium. Note that in this
casews lies in the interior of some uniqué®. One now constructs a simplwﬁ such
that it containsvs and such that each vertexwf lies in a different best reply region
of v&. Comparing the orientation of this simplex with the origiuta induced byX~

then yields the index of the equilibrium representedigy

The simplestA can be obtained as follows. Let € v> be completely labelled.
Fori € 1, letw; denote the vector, described as a convex combination ofdthees
of v, such that the payoff for player | from the artificial payoffitrix is such that
A(v)W; has the maximum entrg},,...in row i, and is the same constant< c.,..in all
other rows. Such vectors existMf is completely labelled, extend the edge with labels
| — {i} into the best reply region with label Then any point that lies on the extension
of the edge in the best reply region with labdhas this property. If a labale |
represents an unplayed strategy, choose the vert¥x dhat represents the unplayed
strategyi. In this case is itself a unit vector such th#t(v)w; = g. The construction
of WSA is depicted in Figure 2.10, in which label 1 represents anayeal strategy.
Thenw}' is the(m— 1)-simplex spanned by, i € 1.

Now label each vertew; with labeli. This means thalvsA is an(m— 1)-simplex

whose vertices are completely labelled, i.e. have all kibel . This induces an order-
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Figure 2.10: The construction of,

ing of the vertices ovivsA The simplexX” is also ar{fm— 1)-simplex that is completely
labelled, spanned by the verticesnvg with labeli, i € I. To define the orientation in
X2, choose the orientation o2 as the standard orientation. The expression (1.7) for
the vertices oK” is given by(—1)™. Let the coordinates afi with respect to the unit
vectors be given by. So, ifvy,..., vy are the vertices of>, described as column
vectors with respect to the unit vectors, th@h= [v1,...,Vm]W;. Then the index of an

equilibrium is defined as follows.

Definition 2.9 The index of an equilibrium represented bsyalrv)(*A is+1if WSA liesin
the same orientation class aXand it is—1 otherwise. That is, the index is defined

as

sign(—1)" defw, ..., wy] = sign(—=1)" defva, ..., Vim][W, . . ., Wiy]. (2.12)

Proposition 2.10 below shows that the index in Definitioni2.¢he same as that
in Definition 1.4. It follows that the index as defined here slo®t depend on the
particular vertices o‘fvsA chosen. Furthermore, the index is well-defined and does not
depend on whether one us)éﬁ orY*A. It also follows that the definition is independent
of the labelling of the strategies. This can also be seenlisv® Re-labelling the
strategies of player | would induce a re-labelling of regidlmX*A, without affecting
them as such. Therefore, a re-labelling of the strateghsces the same re-labelling

of the vertices oKX~ as of the vertices ONSA
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An illustration of Definition 2.9 is given in Figure 2.11. Tlpaire strategy equi-
librium where player | plays pure strategy 1, represented/ty has index+1. The
labels aroundV’s read 12,3 in anti-clockwise direction, and so do the labels of the
vertices ofX2, which are the corners €. The labels around/s read 13,2 in anti-
clockwise direction or 12, 3 in clockwise direction. Hence the index is defined-ds
The labels arounds are oriented as the labels of the corners(ﬁf, hence the index

is +1.

Thus, as described in Section 1.1, the index can be identifidtda permutation
of the labeld. In particular, if, for example, strategies. .., ik, are played with zero
probability in an equilibriunws, then the(k— 1)-face ofwsA that is spanned by the ver-
tices ofwsA representing labels, ..., iy is the same as thg — 1)-face ofX% spanned
by the outer vertices representing labls. .,ix. Choosing the orientation 0f” as
the standard, this implies that the associated permutafitre labeld is the identity
on the subsefiy,...,ix}. It follows that pure strategy equilibria have index. If
(v,w) is a pure strategy equilibrium in which strategyf player | is played with prob-
ability 1, the permutation of the labelss the identity on the labels— {i}. But then
it must be the identity oRi}. So the permutation is the identity and has sigh This
can also be verified using the expression (2.12), notingthteaentries ofv' are less

than zero.

Figure 2.11: The index iX” for Example 2.3
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The above definition of index uses the orientatiomﬁ, which is the projection
of the labelled surfac@*A. One can also define the orientation by using the labelled
surfaceP’ directly. In the same way as the simpke@ is constructed irx*A, one can
constructw4’ in P2 such that it lies on the facet® of P2 that containsvs. These

simplices are also denoted\a§.

To define the index i?”, one has to account for the fact that the projection has an
effect on the orientation of simplices. Lw€ be a simplex around an equilibriuvwy
contained in/®, wherev® is a facet o~ — X2. Then the sign in (1.7) for the vertices
of WsA ordered by their labels, is the opposite as the sign in {@rihe vertices of the

projected simplex.

To see this, note that the expression (1.7) for vertices afalsex on PA x4
is the same as (1.8) for vertices of the simplex relative eogojection point, =
(—=mV,...,—mV).  This is due to the fact that both point8 € R™ and
Vp = (—mV,...,—mV) lie in the same of the two halfspaces which are defined by the
hyperplane containing the simplex. Furthermore, the esgioa (1.8) for a simplex
WSA relative tovy is not affected by the projection WSA on X2. For the simplex2,
the expression (1.7) for the ordered verticeéf is the negative as that in (1.8) rel-
ative tovp . Both0 € R™ andv, lie in different halfspaces defined by the hyperplane
containingX?. So if a simplestA in X*A has the same orientation X$*, it means

that the corresponding simplexﬂf has the opposite orientation X$".

This is depicted in Figure 2.12. One the left, one looks afstimace ofP2 from
the projection poinvy throughX 2, wherevp, lies on the outside dP2. On the right,
one looks at the surface & from 0 € R™, which lies the inside oP”. Moving
from v, to 0 € R™ changes the orientation &, but not the orientation of the other

simplices.

Hence, inP*A the index of an equilibriumvs is 41 if WSA has the opposite orienta-
tion asX%, and it has index-1 otherwise. This means that the artificial equilibrium
itself has, by definition, index 1. So let, as beforaeys, ..., Wy be the set of vertices
of ws* described by their coordinates with respect to the vertafeg®, wherevX
is a facet ofP2. Let the vertices of/® be given as/,...,Vm, described as column

vectors with respect to the unit vectors as basis.wigt. ., wy, denote the set of ver-

59



Figure 2.12: The index iR,

tices ofwsA described by their coordinates with respect to the unitorsas basis. So

W' = [v1,...,Vm|Wi. Then the index is given by

sign(—1)™ defwy, ..., W] = sign(—1)™ tdetvy, ..., Vi [W1, ..., W], (2.13)

3

So the index as in (2.13) for the constructiBﬁ is the negative of the expression
(2.12) for the constructiob(*A. This accounts for the effect of the projection on the

orientation.

Proposition 2.10 The index as in Definition 2.9 is the same as the index in Defini-

tion 1.4.

Proof. Without loss of generality, it can be assumed that the entrfethe payoff
matricesA andB are strictly greater than zero. Consider the labelled sa&. Let
(v,w) be an equilibrium, and IewsA be the corresponding completely labelled simplex
contained in the facet® of P2. The simplex is spanned by some vectafs. ... , Vi,
which are described as column vectors with respect to thievaators as a basis. These

vectors are some vertices of the polar polytope” as in (2.3).

If vi represents a strategyof player Il, thenv; = AjBj, whereA; = ﬁ is a
|
positive scalar (compare (2.2)).\if represents an unplayed strate@j player I, then

Vi = —nwq. Sov, = —Ajg, whereA; = nv is a positive scalar.

Letws, ..., Wy denote the ordered set of verticesnﬁ, given by their coordinates
with respect to the vertices of*. These vectors are, by construction, such Aaw;
has the maximum entrgl,,, in row i, and is the same constatit< ¢, in all other

rows. LetC denote the matriA(v)[w ...wy]. Then deC has positive sign, since any
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convex combination of with the identity matrix has full rank. Note that all entriefs

C are strictly greater than zero, since all entrieg\@fre strictly greater than zero.

One obtaingwy, ..., wm] = A(v) ~1C. With respect to the unit vectors, the vertices
of &' are given by the vectorgw, ..., wi] = Blwy, ..., W), whereB = v, ..., Vi,
The rows ofB can be ordered such that if rojaof B represents an unplayed strategy,
thenB;j = —\je;. If the rows ofB are ordered in this way, then tfieh column ofA(v)

is given byA(v)j = ;.

Let k denote the size of the support (@w), and letA’ andB’ be defined as in

(1.10). For the expression in (2.13), this gives
sign(—1)™ ! detjwf...wh] = sign(—1)™* det [BA(v)"C]
= sign(—1)¥"! detB’ detA. (2.14)

Note that sign def\(v) 1 = sign detA(v) = sign detA’, sinceA(v); = g; if col-
umn j represents an unplayed strategy. One also has sigd €et1. Furthermore,
sign detB = (—1)™ Ksign detB'. This is due to the fact that the rowsBfare ordered
such that if rowj of B represents an unplayed strategy, té@n: —Ajej with Aj > 0.
All other rows of B are positive multiples of columns @&. Thus the expression in

(2.13) is the same as the expression in Definition (1.4). O

The expression in (2.14) can be interpreted as follows. &at—1)kt! accounts
for the alternating sign of the matrix correspondingto, sign detB’ gives the orien-

tation ofv>*, and sign de#\’ gives the orientation oivsA within v2,

In X2, the artificial equilibrium is not represented as such. dadf it can be
thought of lying undeiX’, since it is covered by the projection B — X2, Al-
ternatively, the artificial equilibrium can be represeritea{*A by attaching a mirrored
version ofX” along somém-— 2)-face toX” as depicted in Figure 2.13. The represen-
tation of the index inX” allows to intuitively show that indices which are connected

via a L-H path have opposite indices. This result was first@ndoy Shapley (1974).

Proposition 2.11 Equilibria connected by an L-H path have opposite indicebe T

sum of indices of equilibria in a non-degenerate bimatrixgas+1.

Proof. The proof is illustrated in Figure 2.13. Note that the dualstouction can also

be applied to player II's strategy spac¢o obtainY*A to follow L-H paths defined by a
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missing labelj € J. The proof here applies m? and L-H paths defined by a missing

labelk € | of player I. The proof for L-H paths mr*A is equivalent.

Take two equilibria(vi,w;) and (vo,w») that are connected iX x Y via an L-
H path inM(k) for somek € I. In X*A, this corresponds to two completely labelled
pointsws; andws, that are completely labelled and are connect@dﬁrby some path
in M*A(k). Along the path, the relative position of the regions withdes| — {k} is
constant. Fixing the face with labdls- {k}, the vertex with labek lies on one side in
wﬁl, and on the other side ws‘é sowﬁl andwé must have opposite indices (see e.qg.
Eaves and Scarf (1976) or Garcia and Zangwill (1981, The@dni)).

Figure 2.13: Orientation along L-H paths

As argued above, the artificial equilibrium has orientatioh Since for a given
missing label the L-H paths always yield equilibrium pairsc{uding the artificial
equilibrium), the sum of indices of equilibria equals O ifeoalso counts the artificial

equilibrium, and it equals-1 if one does not. O

Proposition 2.10 shows that the index is independent ofaygal strategies. This
is also illustrated by the dual construction, since the pgation of the labels repre-
senting unplayed strategies is trivial. The following alvaéion shows that this invari-
ance property, together with the fact that the sum of indafesquilibria of a game

equals+1, actually defines the index.

Proposition 2.12 Let Ind(v,w) be some index function that assigns an indexor

—1to equilibria (v, w) of a non-degenerate bimatrix game. If lfwiw) is such that the
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indices of equilibria of a game add up #1 and such that the index does not depend

on unplayed strategies, then Ifdw) must be the same as in Definition 1.4.

The proof is by induction on the numbleof strategies played in equilibrium. The case
k = 1 reflects pure strategy equilibria, for which both concepetd index+1. Now

fix a non-degenerate bimatrix gaf@eand consider an equilibrium & in which each
player playsk strategies. Consider the garke k bimatrix gameG’ that is obtained
from the original gamés by deleting all unplayed strategies, i.e. consider the game
with payoff matricesA’ andB’. Then the equilibrium is the only completely mixed
equilibrium inG'. The sum of indices of the equilibria &' equals+1 with respect
to bothInd(-) and Definition 1.4. But for all equilibria o6&’ that usek — 1 or less
strategies, both indices are the same, noting that botheptmonly depend on the
strategies played in equilibrium. The sum of indices of theikbria of G’ equals+1,
thus the indices of the completely mixed equilibrium@fmust coincide. These, in

turn, are the same as the indices of the equilibrium as arilegum of G. O

In the same way as in the proof of Proposition 2.12, one caw shat the invari-
ance property, i.e. the index does not depend on unplayatgies, and the property
that equilibria at the ends of L-H paths have opposite irslaampletely characterise

the index.
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Chapter 3

Sperner’s Lemma and Labelling

Theorems

This chapter shows how the labelled dual construckprrelates to labelled triangula-
tions as in Sperner’'s Lemma. Sperner’s Lemmai is a resultda@mbinatorial topology
that applies to triangulations of the unit simplex togethith a labelling of the vertices
in the triangulation. Sperner’s Lemma states the existehadully labelled simplex if
a certain boundary condition is satisfied. This conditicatisstriction on the labelling

function for vertices on the boundary.

Sperner's Lemma is equivalent to Brouwer’s fixed point teeo(see e.g. Garcia
and Zangwill (1981)). Since the Nash equilibria of a gamelimadescribed as the fixed
points of a suitable mappinfj: X xY — X x Y, a “connection” between Sperner’s
Lemma and bimatrix games is nothing new. What is new, howevéne fact that the
dual construction fom x n bimatrix games relates to Sperner's Lemma in dimension
m— 1. This also allows one to show that the existence of a Nasitil@gum in an non-
degeneraten x n bimatrix game implies Brouwer’s fixed point theorem in diraem
m-— 1. Since Nash equilibria can, conversely, be described ed fiwints, Brouwer’s
fixed point theorem is equivalent to the existence of Nasliiega in non-degenerate

bimatrix games.

The structure of this chapter is as follows. Section 3.lewsiSperner's Lemma in
its classical form. It shown that Sperner's Lemma is eqevato the KKM Lemma,

a classical result by Knaster, Kuratowski and Mazurkiewik229), and to Brouwer’s
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fixed point theorem. In Section 3.2 it is shown how these tssapply to bimatrix
games. In particular, it is shown that for every labelledutagtriangulation A™ 1 |
with no vertices on the boundary other than the unit veatorgth labeli, there exists
anmx n non-degenerate bimatrix game such that the labelled duateation for the
game is equivalent to the labelled triangulation (PropmsiB.9). The L-H algorithm
in that bimatrix game is equivalent to a well-known algamitthat finds completely
labelled simplices. It is also shown that for every labetiedl constructiorX” there
exists a refinement 0K”*| and a labelling of the vertices that is consistent with the be
reply regions such that the Nash equilibria are represdmntetde completely labelled
simplices (Proposition 3.14). The relation of the dual ¢ardion to Sperner’'s Lemma
is then used to show that the existence of Nash equilibrimmdegenerate bimatrix
games is equivalent to Brouwer’s fixed point theorem (Cargli3.13). Section 3.3
translates the division O‘f(*A into a mapping that characterises the Nash equilibria.

This section is important, as it lies the technical fourmlatf the subsequent chapters.

3.1 Sperner's Lemma

Sperner’'s Lemma (Sperner (1928)) applies to triangulataira simplex with labelled
vertices. Sperner’s lemma states that there exists an addenof completely labelled
simplices in a labelled triangulation of the standérd- 1)-simplexA™ 1 if a bound-
ary condition is fulfilled. This boundary condition statésit the label of a vertex
on the boundary is one of the labels of the vertices that dpaffece that containg
Sperner's Lemma is a classical result from combinatoripblogy and is equivalent
to Brouwer’s fixed point theorem and the KKM Lemma (see e.gcfaaand Zangwill
(1981)).

A triangulation(or simplicial subdivisiohof A™ 1, denoted asA™ 1|, is a finite
collection of smallefm— 1)-simplices whose union is the simplex, and that is such
that any two of the simplices intersect in a face common tb batthe intersection is
empty. Letv denote the set of vertices of the smaller simplicesi1|. A labelling
function is a function that assigns a lalbel | = {1,...,m} to each vertex € V, i.e.

L: V — 1. An example of a triangulation ofA™ 1| with a labellingL is depicted
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in Figure 3.1. A triangulation together with a labelling bétvertices is referred to as

labelled triangulation

Figure 3.1: A labelled triangulation

The simplexA™ 1 is spanned by the unit vectagsc R™, i € I, wherel = {1,...,m}.
The Sperner boundary condition, which is referred to asSiperner conditionstates
that if a vertexv € V lies on the(k — 1)-face of A™1 that is spanned bgj, j € Iy,
with Iy = {i1,...,ik} C I, thenL(v) € I. Note that the Sperner condition only restricts
the labelling of vertices that lie on the boundaly € | andlx # 1). For vertices in
the interior of A™ 1 there is no restrictionl{ = 1). So it is appropriate to refer to the
Sperner condition as a boundary condition. The Spernertondnplies that the unit
vectorsg have label. So every vertex can only be assigned one of the labels of those
vertices that span the (minimal) face that containSor the example in Figure 3.1, the
Sperner condition is fulfilled. For example, the verticesttie on the boundary face

spanned by vertices with labels 1 and 2 only have labels 1 or 2.

Definition 3.1 (Sperner condition) Let ve V be contained in gk — 1)-face of A™-1
spanned by g j € Iy, with Iy = {i1,...,ik} C I, and let k be minimal in this respect.

Then a labelling L V — | fulfils the Sperner condition if v) € I.

Sperner’s Lemma states that there exists an odd number giletaty labelled sim-
plices if the Sperner condition is satisfied. A simplex idaxhlcompletely labelled if
the vertices of the simplex have distinct labels, i.e. if ¥ketices have labels, 1., m.

It follows that there exists at least one completely laliedienplex. Sperner's Lemma
also states that there exists one more completely labeitgalex with positive orienta-
tion than with negative orientation. An orientation is amnieglence class as described

through (1.7). According to (1.7), the sign of the determirassociated with the unit
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simplex A™1 with vertices labelled.(g) =i is +1. If a simplex is completely la-
belled, one can order the vertices according to their ladgell Applying (1.7) and
choosing the orientation of the unit simplex as the standashtation, one can define

the orientation of a completely labelled simplex.

Definition 3.2 (Orientation) A completely labelled simplex has orientatied, if it
falls in the same equivalence class as the unit simpl&k ! with vertices labelled

L(g) =i, and—1 otherwise.

The labels of a completely labelled simplex can be seen asdaming of its vertices,
and the orientation of a fully labelled simplex correspotos& permutation of the
labels of the vertices as described before. The orient&ien if the permutation has
sign+1, and it is—1 otherwise. For the example in Figure 3.1, the completdigllad
simplex in the bottom right corner has orientatied; the labelling read$l,2,3) in
anti-clockwise direction. The completely labelled simile the centre of Figure 3.1

has orientation-1; its labelling read$1, 2, 3) in clockwise direction.

Theorem 3.3 (Sperner’'s Lemma)Consider a labelled triangulation A™ 1| such
that the labelling satisfies the Sperner condition. Themetlegists an odd number of

completely labelled simplices, one more with orientatidnthan with orientation-1.

Proof. This proof employs methods from combinatorial topology anbly induction
(see e.g. Henle (1994, p. 38) for the case- 3). The case fom= 1 is trivial, and

m= 2 is also easy to verify. So suppose the claim is true for gyigations ofA™ 2,

Fix a labelk € 1, and consider a simplex € | A™ 1| that is spanned by vertices
v1,...,Vm. Consider arim— 2)-face of A that is spanned by, say, vertices. .., Vm_1.
Relative to/\, each(m— 2)-face has an orientation induced by the orientation & 1
and the label$ — {k}: If the m— 1 vertices of the face do not have labkls {k}, the
orientation is 0. If the vertices of the face hawe- 1 distinct labeld — {k}, then the
orientation of the(m— 2)-face is the orientation of the completely labelled simplex
that would be obtained by giving, the missing labek. This is depicted in Figure 3.2

for k= 1. There are three cases.
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1) A simplexA does not have labels— {k}. In this case the orientations of its
(m— 2)-faces are zero since rfm— 2)-face can have labels- {k}. Hence the

sum of the orientations over thjen— 2)-faces ofA is zero.

2) A simplexA has exactly then— 1 distinct labeld — {k}. Then exactly two
(m—2)-faces ofA are such that they have the same 1 distinct labeld — {k},
while all other(m— 2)-faces have labels other than {k}. The latter ones have
by definition orientation zero, while the two former ones sueh that they have
opposite orientations. Hence the sum of orientations dwe(rh— 2)-faces of

A\ is also zero.

3) AsimplexA is completely labelled. Then, by definition, their existaety one
(m— 2)-face of A with labelsl — {k}. This face has orientation1 if A has

positive orientation, and orientatioenl if A has negative orientation.

Now consider afim— 2)-face that lies in the interior oh™*. By definition, it belongs

to exactly two simplices that are adjacent. With respect® simplex its orientation

is the negative of its orientation with respect to the othepgex (including the case
where the orientation is zero). So, adding up the oriemataf all (m— 2)-faces of

all simplices in| A™-1|, this sum must equal the sum of orientations of the boundary
(m— 2)-faces ofl A™-1|, since the orientations ¢ — 2)-faces in the interior cancel

out.

Boundary(m— 2)-faces off A™1| with labelsl — {k} can only lie on thém— 2)-
face spanned bg, i € | — {k}. But the sum of orientations of theé@ — 2)-simplices
equals+1 by induction assumption. Hence, there exists exactly ooie mompletely
labelled simplex with positive orientation than with negatrientation. Note that the

proof is independent of the lablekchosen for the proof. ]

An illustration of the proof in the case = 3 is depicted in Figure 3.2 for the
example in Figure 3.1. Consider a trianglec | A?|, and fix the labek = 1. The
assigned orientation is1 if the edge has labels 2 oriented in the same way as the
edge 23 in the original simplex, and-1 if it has labels 23 oriented in the opposite
way. All other edges have orientation 0. Now consider twantgies/\ and A’ that

share an edge. Then the edge in one triangle has the opppositéation as the same
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Figure 3.2: The proof of Sperner’s Lemma f&F

edge in the adjacent simplex. The sum of orientations of tgeg of a triangle is
either+1, —1 (if completely labelled) or O (if not completely labelledBut adding
up the sums of orientations of edges over all trianglés/is | is the same as the sum
of orientations of edges on the boundary|df? |, since the orientations of edges in
the interior of| A?| cancel out. The Sperner condition ensures that this outerisu
+1. Boundary edges with labels®can only lie on thém— 2)-face of A? spanned
by e; andes. On this 1-face, the orientations add upit@. Hence, there exists an odd
number of completely labelled simplices, one more with pgsorientation than with

negative orientation. In Figure 3.2 these are depicted Iy ddges.

So the Sperner condition, which is a restriction of the labglon the boundary,
determines the existence of a completely labelled simpken.alternative proof of
Theorem 3.3 can be given by using degree theory from algetopology, described
next. This proves useful when comparing the Sperner simatith the labelled dual
constructior»(*A and when formalising a generalised version of Sperner’'srharthat
applies to components of equilibria in Chapter 5. For thiee translates the labelled
triangulation into a mapping between two stand@rd- 1)-simplices. The mapping
also yields a division o~A™ ! into labelled regions such that one can apply the KKM

Lemma (see below).

Definition 3.4 Consider the standartm— 1)-simplexA™1. ThenA™ 1 s the (non-
disjoint) union of m convex regions™1(i) with labels ic | as follows: AM™ (i) =

{xe A™ 1| x = maxe x¢}. This division ofA™ ! into convex regions is referred to
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as the canonical division and is denoteda%—1. Each pointin pe A™1is assigned
the labels of the regions that contain p, i.épl.= {i € | | pc A™(i)}. The vertices
of AM1 are the vertices of the sets™ (i), i € I. The completely labelled point in

the centre oiA™ ! is denoted as.v

Essentially, the division o™ into labelled regions is same as the divisiorXoE
A™Linto best reply regions in the x m coordination game with identity matrices
as payoffs, and the vertices 6f"* are the vertices iX = A™ 1. A depiction of the

canonical division is given in Figure 3.3.

Figure 3.3: The canonical division™ 1

The labelling now defines a mappifig from | A™1| to A™L. Consider a simplex
A € |A™ 1| thatis spanned by vertices, ..., vm. Each vertex has a labe(v;), and is
mapped to the vertex () in A™ 1 This mapping preserves the labels of the vertices,
i.e. L(v) = L(fS(v)). Having defined the mapping on the vertices/of it can be
linearly extended to a mapping froh by mapping a convex combination of vertices

on the convex combination of their images, £&(3 ™ A\ivi) = S™, A fS(w).

It is easy to verify thaf S maps everk-face of a simplex in A™ 1| on somek-face
of A™ 1, In particular, if thek+ 1 vertices of &-face have distinct labels, . . . ,ix,1,
itis mapped affinely on thieface of AT~ that is spanned by unit vectass, . . ., Bl 1
If the k+ 1 vertices of that face have labals...,i; (with | <k+ 1, so some labels
might be duplicate), it is mapped on ttle- 1)-face of AT that is spanned by unit
vectorse,...,§,. Since this also holds for then— 2)-faces that lie on the boundary

of | A™1|, the mapping S maps boundary on boundary, i.e.
£ (JA™ 0| A1) — (AT 04T, (3.1)
The mapping in (3.1) is referred to as tBperner mappingand induces a division
of | A™ 1] into labelled regions A™1|(i). This is depicted in Figure 3.4. These
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regions are the pre-images of the regiah®-(i) in the canonical divisiom\™1,
This division of A™1 into labelled regions is denoted 4™ 1|,. The subscript
“*” symbolizes a division into labelled regions (as in thesea(*A). The labels of a
point p € | A™ 1|, are defined a&(p) = L(f(p)). The bold numbers and lines in
Figure 3.4 mark the regions\™1|(i). In this representation, the completely labelled
points correspond to completely labelled simplices, sordg the centre of completely

labelled simplices is mapped .

Figure 3.4: A division ofA™ 1 into labelled regions

Alternatively, letvy,...,vm be the vertices of some simplex in | A™ 1| with
labelsL(v;), fori € 1. A point in A is given by its coordinatep with respect to
Vi,...,Vm. Then, on eaclf\, the mappingf > can be described by the matd(A) =
[€L(vy) - EL(vy ] - This matrix is referred to as theperner matrix So a point inA
with coordinate is mapped tAS(A)p. The labels of a point with coordinat@sare
given byL(p) = {ke | | (AS(A)p)k = maxe| (AS(A)p)i}. So the division into labelled
regions is obtained in a similar way as the labelled dual toogon is obtained via
A(v). The difference is that in the Sperner case the columns aftiteix AS(A) are
unit vectors, whereas in caseAfv) the matrix consists of a mixture of payoff vectors

and unit vectors.

The Sperner condition determines the degree of the Sperapping fS. The
concept of degree is a useful tool that incorporates whatdeags “manually” in the
proof of Theorem 3.3. For the mappirfg, the degree counts the number of pre-
images of the completely labelled pointe A™ 1, where each pre-image is counted
with its local degree. The local degree at a pre-image efjuals the orientation of the

completely labelled simplex that contains the pre-image.aFmapping that permutes
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the vertices of a simplex, the degree equals the sign of tireuygation. In Figure 3.4,

this is depicted by the oriented arc around completely latgdoints.

Furthermore, the degree of a mapping is the same as the dd@gheemapping re-
stricted to the boundary. The degreeféfrestricted to the boundary df™ 1 counts,
for an arbitrary but fixed labéd € |, the number of almost completely labelled points
on the boundary A™1|, with labelsl — {k}, again counting each with its local de-
gree. The local degree d6f restricted to the boundary equals the orientation that was
assigned tgm— 2)-faces in the proof of Theorem 3.3. In particular, it is indegent

of the labelk chosen.

The two paragraphs above contain all that is needed in tefsgoee theory for
the remainder of this work. A detailed account of the degeseecg. be found in Dold
(2972, 1V, 4 and 5).

Lemma 3.5 If the Sperner condition is satisfied then the degree of tleertgp map-
ping fSis +1.

Proof. The proof is by induction. Fom = 1 the case is trivial (and fom= 2 it is

also easy to check). So suppose the statement is true flogaitetions of the standard
(m— 2)-simplex. Fix a labek € I. In the division of AT into labelled regions
consider the vertex with labels| — {k} that lies on the(m— 2)-face spanned by
unit vectorse, i € | — {k}. Now restrict fS to the boundary. FoifS restricted to

the boundary, the pre-images wican only lie on thgm— 2)-face of | A™ 1| that

is spanned by, i € | — {k} (see also Figure 3.4). This is ensured by the Sperner
condition. But then the degree 6f restricted to the boundary is1 by induction

assumption, which equals the degred ®f ]

After translating the labelling into a mapping, Spernersrima is simply a conse-
quence of Lemma 3.5. The degreeffequals+1. This degree is, as explained above,
the sum of local degrees at pre-imagew.of But the local degree at a pre-image of
Vv, is the same as the orientation of the completely labelleghlexithat contains the

pre-image.

The induced divisiorf A™ 1|, is a division to which one can apply the KKM

Lemma, a classical result by Knaster, Kuratowski and Maewricz (1929).
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Theorem 3.6 (KKM Lemma) LetG, withiel ={1,...,m}, be a collection of closed
subsets ofA™~1 such that for all subsetg [ | the face ofA™ ! that is spanned by, g

fori € ly, is contained in ¢, Ci. ThenN¢, Ci # 0.

Proof. The KKM Lemma is implied by Sperner's Lemma. To see this asstimat
Nic1Ci = 0. Now each subsef; is closed by assumption, and since it is bounded,
it is compact. So the sdi|C; is compact, and the mappirgic|C; — R defined

by (X1,...,X) — max j||x — xj|| takes a minimung > 0. Therefore there exists an
g > 0 such that for alk € A™1 the e-neighbourhoodJg(x) aroundx is such that
Ug(X) NG = O for at least one seti. Now choose a triangulation @™ such that
each simplex in the triangulation has a diameter smaller ¢hd_abel the verticey
such thatL(v) € {i | ve Ci}. Then one has a triangulation af™ ! that fulfils the
Sperner condition but does not contain a completely labedlmplex. This violates

Sperner’s Lemma. L]

Conversely, it is easy to see that the KKM Lemma implies Spesiemma. As-
suming a triangulation oA™ 1 that fulfils the Sperner condition but does not contain a
completely labelled simplex, one obtains a divisiomdf—! via the Sperner mapping
fS that satisfies the assumptions of the KKM Lemma but does miaova completely
labelled point. Thus Sperner’'s Lemma is equivalent to thé/Klkemma (see also e.g.

Garcia and Zangwill (1981)).

There exists a well-known algorithm that finds a completalyelled simplex in
| A™1| (or a completely labelled point inA™-1|,). This algorithm is described be-

low, and is referred to as ti&perner algorithmFirst, “extend”| A™1| by inscribing

itinto a larger(m— 1)-simplex| A™1|® as shown in Figure 3.5 (see e.g. Scarf (1983)).
This gives a triangulation of the extended simplex that cidies with the triangulation

| A™1]'in the interior. Now label the vertices that spah™1 |® such that there are
no completely labelled simplices except from thosgAd™ 1 |. This is possible due to
the Sperner condition: Take the outer vertex of the extestiedture that lies on the
outside of the face of A™* | on which the vertices can only have labels| — {k}.
Labelling the outer vertex witk+ 1 (modm) ensures that no new completely labelled
simplices are created. Furthermore, it ensures that, fyeset of label$ — {k}, there

exists exactly oném— 2)-face on the boundary ¢/A™ |® that has labels — {k}.

73



Figure 3.5: An algorithm for finding completely labelleckingles

The algorithm can now be described as follows (see Figurg Btart from the
outside of the extended construction (or at a completelgllath simplex once one has
been found). Choose a lablet | and flip over thgdm— 2)-face that has labels- {k}.

If the new simplex is not completely labelled, it must havaaly one othefm— 2)-
face (other than the face one flipped over) with the samedabelk}. Then flip over
this (m— 2)-face into an adjacent simplex, and so on. Eventually, flgisrahm yields

a completely labelled simplex ilA\™1| (see e.g. Scarf (1983)). Simplices that are

connected through the algorithm have opposite orientation

The Sperner algorithm translates easily into the topoligietting. LetfS denote
the Sperner mapping from the enlarged simplex™ | to A™ 1. This yields a
division of the extended simplex into labelled regions inahithe completely labelled
simplices correspond to points that are mapped tnderfS. For every labek, there
exists exactly one point on the boundary with lablels{k}. The path with labels
| — {k} that starts on the boundary leads to a completely labelled.po

To emphasise the relevance of Sperner’s Lemma in fixed pgo#atry, this section
concludes by proving the familiar theorems that show tharsgr’'s Lemma implies
Brouwer’s fixed point theorem and vice versa. This also al@me to show in the
next section that the existence of Nash equilibria in nogederate bimatrix games is

equivalent to Brouwer’s fixed point theorem.
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Figure 3.6: The Sperner algorithm as a path-following ator

Theorem 3.7 (Brouwer’s fixed point theorem) Every mapping £ A™ 1 - AMm-1

has a fixed point, i.ed x* € A™1: f(x*) = x".

Proof. Assume the contrary, i.e. for ale A™ 1 one hasf(x) # x. This defines a
mappingr : A™ ! — 9A™ 1 that retractsA™! on its boundary. Define(x) as the
point on the boundary that is given by the intersection po@téveen the line defined by
x andf (x) in direction ofx and the boundary (see the left picture in Figure 3.7). Since
r is continuous and defined on a compact set, the mappmgniformly continuous.
Now take a triangulation oA™ 1 into sufficiently small simplices, say with diame-
ter smaller than som& Then label the vertices accordingltév) = L(r(v)), where
L(r(v)) is the label of the point(v) in the canonical division. Then one has a labelling
that satisfies the Sperner condition (simge the identity on the boundary) and is such
that no simplex is fully labelled i is sufficiently small: Every-neighbourhood ok

is mapped on some smaHneighbourhood of (x), which does not contain more than

m— 1 distinct labels for smal. This contradicts Sperner's Lemma. O

Brouwer’s fixed point theorem depends on the fact th8t 1 cannot be retracted
to its boundary. If there exists a subdivisipnh™1| with a labelling that satisfies the
Sperner condition and does not contain a completely lathsllaplex then the Sperner
mappingfS is a mapping that retracts™ 1 to its boundary. Assuming without loss of
generality there are no vertices except thosé\8f 1 on the boundary (by inscribing

| A™1| into an extended structure as above), the mappmg the identity on the
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boundary. Thus the “no-retraction” property implies Sgeisi\Lemma. But Sperner’s

Lemma can also be deduced directly from Brouwer’s fixed pi@brem.

Figure 3.7: Sperner’'s Lemma implies Brouwer and vice versa

Proposition 3.8 Brouwer’s fixed point theorem implies Sperner’'s Lemma arar&p’s

Lemma implies Brouwer’s fixed point theorem.

Proof. The latter implication was shown in the proof of Theorem &%@.it remains to
show that Brouwer’s fixed point theorem implies Spernersmb®. Suppose one has
a labelling that satisfies the Sperner condition and thad doecontain a fully labelled
simplex. Then the Sperner mappifigis such thatf S(x) # v, for all xe A™ L. Then
defineg(x) as the point on the boundary that is defined as the intersegfithe line
betweenfS(x) andv, in direction ofv, with the boundary (see the right picture in
Figure 3.7). Thery(x) is a mapping for whichy(x) # x for x in the interior of A™-1,
Now suppose lies on somé-face of A™ 1. By construction of the Sperner mapping,
the pointfS(x) lies on thatk-face, and the line connectirig®(x) andv, does not go
elsewhere through this face. §¢x) # x for all points on the boundary, and hernge

has no fixed points. This contradicts Brouwer's fixed poietttem. ]

3.2 The Application to Bimatrix Games

The division| A™1|, into labelled regions induced by the labelled triangulatib-
ready shows strong similarities with the labelled dual tartsion X2, The division

of | A™1], is induced by the Sperner mat® () as described on page 71, whereas

76



the division of)(*A is induced by the artificial payoff matri&(v). The difference, how-
ever, is thatAS(A) only consists of unit vectors, wherea$v) consists of a mixture
of unit vectors representing unplayed strategies and awduofiA representing pure
strategies of player Il. So the division of a simplex¥*| into best reply regions is
in general more complex than the division of simplices ™1 |. Furthermore, the
triangulation|X%| is regular as it arises from the projection of a simplicialypape.

The triangulation in the Sperner case can be any triangulati

Despite the differences, there are still striking simtles betweer) A™1|, and
IX%|,, and this section shows how and under what circumstancesaméranslate
one situation into the other and vice versa. The equivaleh& ouwer’s fixed point
theorem and the existence of Nash equilibria in non-degémérmatrix games (Corol-

lary 3.13 below) also shows that these differences are nmgtdeep.

Proposition 3.9 Let| A™ 1| be a labelled triangulation of the unit simplex with no
vertices on the boundary other than®r i € |. Let the Sperner condition be satisfied,
so L(g) =i. If the triangulation ofA™~1 is regular, then there exists a non-degenerate
mx n bimatrix game such thatA™1| = X% | and | A™1|, = X (after identifying

XA with A™1),

Proof. Let| A™ 1| be aregular triangulation. Consider the simpteéxthat is spanned
by the vertices—mVq, for i € | and some positive constamt Then A™1 can be

identified withX” via a linear mapping defined t&y— —mVq. This mapping induces
a regular triangulatiofX”| of X, The label of a vertex € |[X%| is defined by the

label of its pre-images.

This yields a labelled and regular triangulationXs. Since the triangulation is
regular, the triangulation is the projection of some siwiplipolytopeP2 as in 2.3,
with the firstm vertices ofP” given by —mvVq, i € |. The vertices oP” satisfy the
conditions in Lemma 2.2 since the triangulation is reguMso, it can be assumed that
0 € R™ lies in the interior ofP2. If not, one could just move the vertices except for
—mve, i € |, along the projection lines to obtain a combinatoriallyigglent polytope
that contain® € R™. As described in Lemma 2.2, this yields the columns of a gayof

matrix B such that the best reply polytopethat arises fronB is the polar ofP2. This
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determines the payoffs for player Il. Note that if there angertices in the interior of

| AM™1], then the resulting game is of dimensiorx n.

Finally, one has to determine the payoff matfiXor player |I. These payoffs are
determined by the labelling of the vertices. Each vestex|X%| represents a pure
strategy of player Il. If the label of a vertexiigor somei € I, then define the payoff
for player | with respect to the pure strategy that is represse by vertew ase, the
unit vector with entry in rowi. Then the induced polyhedral division into best reply
regions of the simplices ifX*| is the same as the division induced by the labelling
of the vertices i A™1|. The payoff matrixB that inducesX”| is generic. So is
the payoff matrixA that only consists of unit vectors and induces the divisito best

reply regions. ]

Corollary 3.10 For a missing label ke | of player I, the L-H algorithm for the game
constructed in Proposition 3.9 follows the same path of oep as the Sperner algo-

rithm.

Proof. This is an immediate consequence from the construction. LFHealgorithm
follows the path of almost completely labelled points in ldigelled dual construction.
This corresponds to flipping ovém— 2)-faces in the triangulation which have— 1
distinct labels. The labelled dual construction is ideattigith the division of A™-1
that is induced by the Sperner mappifiy But the Sperner algorithm also flips over
those(m— 2)-faces in the triangulation that hame- 1 distinct labels. Hence the paths

of both algorithms are identical. ]

Proposition 3.9 is used to conclude Brouwer's fixed poinbteen from the exis-
tence of Nash equilibria in bimatrix games. The idea of tlepis based on translat-
ing a division| A™-1|, that arises from a Sperner labelling into a diviskn with a

triangulation|X”*| that is regular and arises from a payoff maix

For this, consider some triangulation &1, Then add a vertex. Suppose this
vertex is contained in some simpléxthat is spanned by vertices, . ..vy. Note that
it is allowed forv to lie on somek-face of A. Then consider the refinement 4f that
is given by the simplices spanned by

{V-/VZ-/----/Vm}; {Vl-/V-/VS-/---,Vm}; cee {Vl-/----/melav}- (32)
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If vlies on thek-face of two or more simplices, the refinement in (3.2) apgpiteeach
simplex that containg. An illustration for this is given on the left in Figure 3.8ir§t
the vertexv is added, then the verte%, and finally the vertex”’. Note that some of
the simplices in (3.2) are not full-dimensional in cadees on somek-face of A with

k < (m-2). In this case, they become faces of simplices in the triaatmu.

A refinement of a given triangulation that is achieved byateely adding vertices
at a time to the triangulation is referred to asitamated refinement The following
lemma shows an iterated refinement can divide a simplex idtidrarily small sim-
plices. Themeshof a triangulation is defined as the maximum diameter of a Erp

in the triangulation.

Lemma 3.11 For everye > O there exists an iterated refinement®f? such that the

mesh size of the triangulation is smaller than

Proof. It is shown that the barycentric subdivision is an iteratefinement. The
barycentric subdivision is known to produce simplices dfitaarily small maximal

diameter (see e.qg. Dold (1972, 1ll, 6)).

A depiction of the barycentric subdivision is given on thghtiin Figure 3.8. Take
a simplex in the triangulation. Then add the barycentre ef(th— 1)-simplex as a
vertex. Next, add the barycentres of jta— 2)-faces as vertices, and continue with
the lower dimensional faces and their barycentres. Noteftbae adds a vertex to a
k-face that is common to more than one simplex in the triarigulathen the vertex
is the barycentre of th&tface, i.e. the added vertex is the same for all simplicess tha

contain thek-face. This procedure yields the barycentric subdivision. O

Figure 3.8: An iterated refinement of a simplex and the barymesubdivision

Lemma 3.12 Let|X*| be a regular triangulation of X with no vertices on the bound-

ary other than those that span’X Then every iterated refinement 6| that does
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not add vertices to the boundary of*Xis a regular triangulation. In particular, if
X% arises from a payoff matrix B, then the refinement arises fiaraxtended payoff

matrix that consists of the original columns of B and addigibcolumns.

Proof. Itis required that the added vertices do not lie on the boynofaX ~ so that the
resulting triangulation can still be achieved as the duaktmiction for some bimatrix

game.

So let|X*| be a regular triangulation. Then consider the polytBpethat yields
X% | via projection. Now take a pointin the interior of X |. This point is represented
by some point” on the boundary of the polytog@”. Now take a point on the line
defined byv andV* that lies outside oP~ but is still closeP~. This is depicted in
Figure 3.9. Let this point be denoted by

Figure 3.9: An iterated refinement P2 |

Let P~ be defined as the convex hull of points as described in (2.8) dbnsider

the pontopéDCA that is given by
P2 = conv{c,Cy,...,Cn}.

Thenc becomes a new vertex of the polytope. Then the vertetines the simplicial
structure ofP2 in a way such that the projection Qf yields the iterated refinement
that is obtained by adding the powas a vertex. The vertexis the projection of the

vertexc.

For each added point, the polytoﬁé satisfies the requirements of Lemma 2.2.
Hence, by Lemma 2.2, one can obtain a payoff matrix that iaddice refinement. If

the original triangulation arises from a payoff matBxthe refinement corresponds to
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a payoff matrix which contains the original columns®énd that has an extra column

for each added vertex. O

In Section 3.1 it was shown that Sperner’s Lemma is equivateBrouwer’s fixed
point theorem. This section shows how to construct non-olegge bimatrix games
from regular labelled triangulations such that the duaktarttion has the same prop-
erties as the labelled triangulation. Combining theseltgsone obtains the following

result.

Corollary 3.13 The existence of a Nash equilibrium in a non-degeneratenrbi-
matrix game implies Brouwer’s fixed point theorem in dimemsn— 1. Since Nash
equilibria can, conversely, be described as fixed pointsuiaer’s fixed point theorem

is equivalent to the existence of Nash equilibria in nonethegate bimatrix games.

Proof. Consider a mapping: A™ 1 — A™ 1 Assumef (x) #xforallxe A™ 1. As

in the proof of Theorem 3.7, this yields a retractiaimat is defined by the intersection
of the line betweerx and f(x) in direction ofx with the boundary ofA™!, The
mappingr then dividesA™ 1 into labelled regions by considering the pre-images of
the labelled regions odA™ 2. In the proof of Theorem 3.7, this division is used to
create a labelled triangulation &™! such that no simplex is completely labelled.
Here, it is shown that one can create a regular labelledguiation of A™ 1 with no
vertices added to the boundary Af" 1 such that no simplex is completely labelled.
Using Proposition 3.9 one can then createraxin non-degenerate bimatrix game that

does not possess an equilibrium, leading to a contradiction

Take the division o/A™ 1 into labelled regions induced by the retractionCon-
struct iteratively a triangulation ak™~* such that its mesh is so small that no simplex
is completely labelled. As before, the label of a vertex ialzel of a region that con-
tains the vertex. Note that the mesh of the triangulationbEanonstructed arbitrarily

small (see Lemma 3.11)

Letvi,...,vN be the set of vertices added to the triangulation, whereuhscsipt
reflects the order in which the vertices are added./ALet {1,...,N} denote the or-
dered subset for those vertices that were added to the bouaHa™ 1. Now take

the vertexv,, for A € A, that is added last to the triangulation, and consider #ratiéd

81



refinement that is obtained by adding the set of vert{ags...,vn} — {v\} in canon-

ical order. Continuing with the second-to-last vertex tvas added to the boundary
of A™1 and so forth finally gives an iterated refinement with no vesgiadded to the
boundary ofA™ ! that, by Lemma 3.12, is regular (see also Lemma 4.2 in the next

chapter).

It remains to show that the deletion of vertices on the bonndaes not create
completely labelled simplices. Legtbe a vertex that was added to the boundary. Then
v= 3l WV with i > 0 and'p= 1, for somevy,...,v. Note that the retraction
is the identity on the boundary @t™1. In particular, the labelling satisfidgv) =
L(v) for somei € {1,...,1}. So the face spanned Hys,...,Vi_1,V,Vi;11,...,V} has
the same labels as the face spannedWy...,Vvi_1,Vi,Vit1,...,%}. S0 a simplex
spanned by{vi,...,Vi_1,V,Vi+1,..., vk} and some{Viy1,...,vm} is fully labelled if

3 3

and only if the simplex spanned Ry, ..., Vi_1,Vi,Vit1,..., W} and{Vky1,...,Vm} iS

fully labelled. Hences can be removed without creating a completely labelled sempl

(see also Lemma 4.4 in the next chapter). ]

McLennan and Tourky (2004) have recently shown how Kakigdnied point
theorem can be proven by game theoretic concepts. Theyeageates whose Nash
equilibria yield approximate fixed points, where the exiseof the Nash equilibria is
ensured by the Lemke-Howson algorithm. The authors arcatéttie Lemke-Howson
algorithm embodies, in algebraic form, the fixed point pipleitself, and not merely
the existence theorem for finite two person games” (p. 3—HAg dnalysis above sup-

ports this view.

This section concludes with an observation that shows hdvatslate the labelled
dual constructiorX into a labelled triangulation that satisfies the Sperneditim

such that it reflects the combinatorial propertieS(ﬁf.

Proposition 3.14 Let X" be the labelled dual construction for sorfra x n)-bimatrix
game, and letX” | denote the regular triangulation of’X. Then there exists a labelled
refinement ofX”| such that a vertex in the refinement has label i if and only i it
contained in the region with label i and such that a simplegampletely labelled if

and only if it contains a completely labelled poirg WX’
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Proof. Take some simplex”. The polyhedral division is generally not such that one
can just label the vertices of* with the respective best reply labels without refining
v2. Consider for example the polyhedral subdivisions defiateFigure 3.10. In the
first case, just labelling the vertices would yield a lalmgjlsuch that the simplex is not
completely labelled, although it contains a fully labelfeaint. In the second case, one
would obtain a completely labelled simplex, although itslaet contain a completely

labelled point. Therefore, refinement is necessary.

Figure 3.10: A refinement of*

Now one can refine the mesh p€2|. This can, for example, be achieved by an

iterated refinement. If the refinement is sufficiently smal§implex contains a fully

labelled point if and only if all its vertices lie in distinbest reply regions. Labelling

the vertices according to the best reply region yields treree labelled refinement.
O]

A possible refinement for the game in Example 2.3 is depictdéigure 3.11. In
this case, itis sufficient to add a vertex to the edge betwedites representing strate-

gies 4 and 7. The resulting refinement fulfils the requiresenProposition 3.14.

Figure 3.11: A labelled triangulation for the game in ExaenpI3

.
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3.3 A Topological Interpretation of the Dual Construc-
tion

In the Sperner case above, a mappfifgcharacterises the completely labelled sim-
plices in the sense that a simplex is completely labellechd anly if it contains a
point that is mapped to the completely labelled paint A™ 1. This mapping can
be described by the Sperner matAR(A) for each simplexA in the triangulation.
The aim of this section is to construct a similar mappfityfor X*A via the artificial
payoff matrixA(v). This mapping is used in extending the dual constructiorutside
option equilibrium components and when giving a new charaation of index +1

equilibria.

Take the payoff matriXA for player I. First the columng; of A, for j € J, are
normalised as follows. Without loss of generality it can lssuaned that all entries
of Aj are greater than zero. Otherwise one can add a positiveardristall payoffs
without affecting the best reply regions and hence the #ujial of the game. Let
IAj| = SN, Ajj, i.e. |Aj| denotes the sum of entries in columy. By assumption
|Aj| # 0. Let Amax= maxcj|Aj|. Add the positive constarﬁf%w to columnj.
Adding a positive constant to a column of player I's payofftrixaalso leaves the
equilibria and best reply regions invariant. In the modifi@goff matrix, the entries in
each column add up tAynax. Now divide all payoffs byAnmax This, again, leaves the
Nash equilibria invariant. Hence one obtains an equivgdagbff matrix, also denoted

asA, in which all entries are positive and in which the columrriestadd up tor1.

Now consider a simplex” in |X”|. Letws be a point inv®. The pointws can be
described by convex coordinates with respect to the vertée”. So for a poiniws
in v that is given by its coordinates with respect to the vertice®ne can simply
definefy(ws) = A(V)ws. Thenfy(w) € A™ 1 since
AVW = (AVW)i =3 5 AV)ijwj =3 S AV)ijwj = Wj Y AV)ij =Y wj=1.

[ T ] [ J [ J

A depiction off, is given in Figure 3.12. It shows a simpleX spanned by vertices
v1,V2 andvs and its image im\™1. The columns of\(v) are given byA;, Ay andAgs.
By construction, the columns (i = 1, 2, 3) are elements ch™ 1. So the image ofy

is the subset oA™ 1 that is spanned by the payoff vecta¥s A, andAz in A™ L, In

84



particular, the image is some simplex that lieg\fi—* (this simplex is not necessarily
full dimensional, even for non-degenerate payoff vectofBe division ofv2 into
best reply regions is an affine transformation of the divisibthe simplex spanned by

A1, A2 andAg, whose division is that induced by the divisionf™ .

Figure 3.12: The mapping,

If v andv, share a common face, the mappirfgsand fy, are identical on that

face. Hence, by definin§ piecewise on each simplex’ as f,, one obtains a mapping

f: (X2,0X5) — (AML aam-1), (3.3)

Note that the mapping on the boundary6t is given by the unit vectors as com-
ponents ofA(v), so f maps boundary on boundary. Furthermore, by constructien, t
labels of a pointvs are the same as the labels of its image. The mappimg(3.3) is
referred to as thpayoff mappingsince the value of is the expected payoff of player |
under a strategy profiles of player Il (including the slack variables). A depiction of
the underlying geometry is given in Figure 3.13. It showd tha simplex marked in
dashed lines is mapped affinely on a simplex\ifi—2, also described by dashed lines.

The vertices of the simplex in™ 1 are the images of the vertices|X?*|.

This is a crucial difference to the Sperner case. There ntlagées of simplices are
either the simplexA™ 1 itself (if the simplex is completely labelled), or the image
are faces o\™1 (if the simplex is not completely labelled). In the dual castion,
the images of simpliceg™ are simplices which are containedAx™ 1. Nevertheless,
the simplexv® contains a completely labelled point if and only if its imageder f

contains the completely labelled point

Note thatX = A™ 1. So, so far,f is a mappingf : X2 — X. To define the

index via a mapping, it is more convenient to have a mapmﬁg—> X2, whereX? is
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Figure 3.13: The payoff mappinig

divided into best reply regions asﬁlf, i.e. via the unit matrix that assigns each vertex
—mug of X2 the artificial payoffg. The simplicesA™ 1 andX” are homeomorphic
via the mapping 1@ that is described by the matrixm?- Id, where 1d is thenx m
identity matrix. In particular, the labels of a pointc A™1 are the same as the labels
of its image Id*(w). This is due to the fact that the vertex ik™ ! with labeli is

mapped to the vertex &~ with labeli.

Using Id™, one defines thdual payoff mapping 4 as the composition of ftl and
f,i.e.f =Id” o f. This yields

2 (X2,0X5) — (X2,0X5) (3.4)

A depiction of f2 is given in 3.14. The only difference to the payoff mappinig that

it mapsX” on X2 instead ofA™ 1,

The difference betweeX” and A™ 1 is that they have the same orientation rela-
tive to projection poinv, = (—mv,...,—nmV) for oddm, and opposite orientation for

evenm. This is depicted in Figure 3.15, and can be verified usinghdngtive argu-

ment.

For notational convenience, lef denote the completely labelled pointXf* (as
it does inA™1). Note that both completely labelled pointsXf and A™1 have
coordinateg ..., 3) with respect to the vertices &~ andA™ 1. So the equilibria
of a game are represented by exactly those pewthat are mapped te, under the

mappingf”. Also, the index can be described by the local degre& of
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Figure 3.14: The dual payoff mappirfg*

Figure 3.15: The orientation of th¢* and A™1

O S
12 1 R 2
. ' \\\
o y
(~mv,0) | 2 1

(1,0

' (O-my) X

Lemma 3.15 Let ws € (f*)1(vi). Then the index of yas in Definition 2.9 is the

same as the local degree of fat w.

Proof. The index in Definition 2.9 is defined by a permutation of tHeelal of a sim-
pIexvaA, which corresponds to a permutation of vertices. For a nmapibiat permutes
the vertices of a simplex, the degree equals the sign of tirauiation (see e.g. Dold
(2972, 1V, 4, Example 4.3)). ]

Using the mapping” and degree theory, it follows that the sum of indices over
the equilibria of a game equalsl, so the number of equilibria is odd. This can be seen
as follows. The degree of the mappifi§ has similar properties to the degree of the
Sperner mappind® described on page 72. Similar to the Sperner mapping, thedeg

of the mapping* counts the number of completely labelled pointxfﬁ, where each
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point is counted with its local degree. This local degredysl.emma 3.15, the same

as the index.

Furthermore, the degree of the mappiffg is the same as the degree I re-
stricted to the boundary CX*A. Similar to the Sperner mapping, the degreef 6f
restricted to the boundary o counts, for a fixed labek € 1, the number of almost
completely labelled points on the boundar%ﬁ’ with labelsl — {k}, counted by their
local orientation. The orientation on the boundary is iretlby the orientation of the
boundary ofX2. This number is independent kf For eactk € |, there is exactly one
point on the boundary ok’ with labels| — {k}. The local orientation of this point
is +1 as it is contained in the face Bf* spanned by-mve, i e | — {k}. Alternatively,
one sees that” restricted to the boundary is the identity, and hence itseteip+1

(for a detailed account of degree theory see e.g. Dold (1&32)ted on p. 72).
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Chapter 4

A Strategic Characterisation of the

Index

This chapter provides a new characterisation of the index dquilibria in
non-degenerate bimatrix games in terms of a strategic psopk is shown that an
equilibrium has index-1 if and only if one can add strategies with new payoffs to the

game such that the equilibrium is the unique equilibriunheféxtended game.

Suppose one can add strategies to a game such that an eguonlf@mains the
unique equilibrium of the extended game. Since the indi¢de=qailibria of a game
have to add up toe+1, it follows that the equilibrium must have indexl in the
extended game. But the index only depends on the stratel@igadowith positive
probability, so it follows that the index of the equilibrium the original game also
equals+1. Hence, if one can extend the game such that the equilidvecomes the
unique equilibrium of the extended game, the index of thatlggium must equak-1.
Here it is shown that the converse is also true, i.e. if anldggiwim has indext-1 then
one can add strategies such that the equilibrium becomesmitee equilibrium of the
extended game. This yields a new characterisation of thexipdrely in terms of a

strategic property.

The structure of this chapter is as follows. Section 4.1 shtive result for the
special case of pure strategy equilibria (Lemma 4.1) andvatess the general result
by examining particular examples. Section 4.2 providesestgnhnicalities that are

also needed in Chapter 6. Section 4.3 shows that an equitiin a non-degenerate
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bimatrix game has index1 if and only if one can add strategies to the game such that
the equilibrium is the unique equilibrium of the extendedhgg Theorem 4.6). It turns

out to be sufficient to just add strategies for one player.

4.1 A Geometric Interpretation

The properties of the index imply that the index of an equiilitm is +1 if one can add
strategies such that the equilibrium becomes the uniquaitegum in the extended
game. The indices of equilibria of a game have to add upo So the index of a
unigue equilibrium in an extended game equals But the index does only depend
on strategies played with positive probability, and herneeibhdex of the equilibrium

in the original game equals1.

Pure strategy equilibria in non-degenerate bimatrix gah@e® index+1. For
these it is easy to see that they can be made the unique eguilin some extended

game.

Lemma 4.1 Let G be an nx n non-degenerate bimatrix game. Then every pure strat-

egy equilibrium of the game is the unique equilibrium in sextended game.

Proof. Let G be represented by x n payoff matricesA andB. Without loss of general-
ity (otherwise one can reorder the strategies) assumehiaiure strategy equilibrium
is given by player | playing strategy 1 and player Il playiggegym-+ 1 (i.e. both
play their first strategy). Then add strategy with label n+ 1 for player Il with

payoff column, for smal¢ > 0,

1./ b]_]_— €

0,maxi—1. . nboj+¢€
XJ 17. ’n 2] (4.1)

0,maxj—1,. nbmj+e
Then strategyn+ n+ 1 strictly dominates all other strategies except for stpate+ 1
of player Il. Note thab;; > byj forall j € J, for j # 1. So strategieg=m+2,...,m+
n can be deleted. Thereatfter, strategy 1 strictly domindtedheer strategies 2..,m
of player I. By iterated elimination of strictly dominatettategies, only the strategy

pair (1, m+ 1) remains. |
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Adding strategies as in Lemma 4.1 alters the dual constnuébir the game. Take,

for example, gameél~ as in (1.13). The game is given by

13,13 7,12 114
H =|127 88 21
141 12 11
This game has three equilibria. The mixed equilibrium witdéx—1 in which both
players play(%, %,O), the pure strategy equilibrium with indexd in which both play-
ers play(0, 1,0), and the completely mixed equilibrium with indext in which both
players play(3, 5, ). The labelled dual construction for the game is depictechen t

left in Figure 4.1.

Figure 4.1: An indext+1 equilibrium inH~

Now suppose the game is extended in the following way, sodhBbt the pure

strategy equilibrium remains.

13,13 712 114 020
H™ =127 88 21 1073
141 12 11 0,20
The added strategy dominates strategies 4 and 6 of play®o Btrategies 4 and 6 can
be deleted. Then strategy 2 of player | is the best reply th bategies 5 and 7, and
the best reply to strategy 2 is 5. Thus the pure strategyibguin in which player |
plays strategy 2 and player Il plays strategy 5 (with paydibi8both players) is the

unique equilibrium of the extended game.

Adding strategies changes the dual construction for theeg&uansider the labelled

dual construction for the extension of the game (1.13), Wikadepicted on the right
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in Figure 4.1. The paths that start from the completely lagboint that represents
the pure strategy equilibrium lead directly to the boundarthe original game some
paths in the dual construction lead to other equilibria efgame as shown on the left
in Figure 4.1. So, in order to make an index equilibrium the unique equilibrium

of an extended game, the paths that start in the fully latbgil@nt representing the
equilibrium have to be “re-routed” such that they connectaiy with the boundary

of the dual construction, also not creating other equdil{g.g. pairs of inaccessible

equilibria).

The idea of “re-routing” the paths is the main idea in the pr@oTheorem 4.6
below. To give the reader an idea of the process, the proeaddirst applied to ex-
amples before it is technically specified in the proof of Titeeo 4.6. Take for example

the following game.

1,3 02 10

. (4.2)
00 1,2 03

Game (4.2) has 3 equilibria. The pure strategy equilibridn®), (1,0,0) with in-

dex +1, the mixed equilibriunt3, 3), (3. 3.,0) with index—1, and the mixed equilib-

rium (3,%), (0,3, 1) with index +1. The dual construction for this game is given on

the left in Figure 4.2 (the dots represent the vertices ostlmlicesv?).

Figure 4.2: An index+1 equilibrium form= 2

Now suppose one wants to make the equilibrit§ng), (0,3, 3) the unique equi-

librium of an extended game. The dual construction showsthaehieve this. Add a
strategy 6 for player Il, covering the best reply region oatgy 3 and a small part of
the best reply region of strategy 4. This can, for exampledbeeved by choosing the

payoff vector(g) for player Il. The new division oK and its dual are depicted on the
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right in Figure 4.2. Then choose strategy 2 to be the besy tephe new strategy 6
by, for example, choosing the payoff vecid) for player I. Then(3,2),(0,1,1,0) is

the unique equilibrium of the extended game

(4.3)

1,3 0,2 10 04
00 12 03 10|

The orientation around an indexl equilibrium in the labelled dual construction
agrees with the orientation 0¢~. This allows one to “re-label” the regions in the
dual construction by adding strategies such that the irderquilibrium remains the
unique equilibrium in the extended game. For any2game the procedure is very
straightforward and easy. It can easily be verified that o loas to add at most two
strategies for player Il to make any index equilibrium the unique equilibrium in an

extended game.

In higher dimensions, the process of eliminating the otlgeiildria without cre-
ating new equilibria is more advanced. Consider, for examitle following 3x 3
coordination game.

10,10 QO 0,0

0,0 1010 00 |- (4.4)

0,0 0,0 1010
Game (4.4) is the same as the garhegiven by (1.16). All three pure strategy equi-
libria have index+1, the three mixed equilibria with two strategies as suppexe
index—1, and the completely mixed equilibrium has indek again. Making a pure
strategy equilibrium of (4.4) the unique equilibrium in axtended game is straight-
forward (see Lemma 4.1). So suppose one wants to make thdetehgpnixed equi-
librium the unique equilibrium of some extended game. Ireord do so, one first
has to cover the old equilibria with new strategies. Thisloamone, for example, by
adding strategies with labels&and 9 for player 1l as shown in Figure 4.3. In a neigh-
bourhood of the vertex= (3, §,3) € X, the structure of the best reply regions remains
unchanged. This implies that the simpleX containing the completely labelled point
remains unaffected by the added strategies. This first stegrrdines the payoffs of
player Il for the added strategies and gives a triangulatgti in which the original

simplexv” and its division are as in the original game.
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Figure 4.3: A unique index1 equilibrium in an extension of the coordination game

Second, one has to choose the appropriate payoffs for playée right of Fig-
ure 4.3 shows how the paths starting in the correspondinigaditiae equilibrium can
be “re-routed”. So the payoffs for player | are chosen in saeiray that the almost
completely labelled points on the boundarywdf are connected with the respective
almost completely labelled points on the boundary of thd.dliae game that corre-

sponds with the labelled dual on the right in Figure 4.3 i®gity

10,10 00 00 011 105 0,—-10
0,0 1010 00 0,-10 011 105 . (4.5)
0,0 00 1010 105 0,-10 011

So, in order to prove that an indext is the unique equilibrium in some extended
game, one essentially has to show two things. First, thap#tles can in fact be re-
routed. This is ensured by the index condition. Second, one has to show that these
paths can actually be created by extending the game. Thismytthat in the labelled
dual construction of the extended game the paths startitigeiequilibrium connect
directly with the boundary. Adding columns to the payoff maB refines the mesh of

X%/, and the payoffs for player | determine the paths.

4.2 Some Technical Requisites

The proof of Theorem 4.6 below is based on the approximatfaa ltomotopy that
“re-routes” the paths. In order to show that the approxiomatf the homotopy can

be achieved by adding strategies, this section provideg s$eamnical results that are
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required in the proof of Theorem 4.6. These technical resaié also used in the

characterisation of index zero outside option equilibricomponents in Chapter 6.

Let A be an(m— 1)-simplex in a regular triangulationA™ 1| of A™1 with no
vertices on the boundary df™ 1 other tharg, i € I. Now consider an iterated refine-
ment of| A™-1| — A that is achieved by subsequently adding verticest—1| — A,
allowing to add vertices on the boundary|at™ 1| or A. Let the added vertices be
denoted as1,...,vN, Where the subscript denotes the order in which the ventiess
added. Now add the simplex. The resulting object is a division ofA™ 1| into
simplices that is not a triangulation pA™1|. Such a division of A™1| is referred
to as anterated pseudo refinemerfn illustration of an iterated pseudo refinement is

given in Figure 4.4.

Figure 4.4: An iterated pseudo refinement

Lemma 4.2 Given an iterated pseudo refinementdf—2, one can subsequently delete
those vertices that were added to the boundaryrxadnd A™1 in order to obtain a

regular refinement of A™1|.

Proof. Letvs,...,vy be the set of vertices added to the triangulation, whereube s
script reflects the order in which the vertices are addedALet{1,...,N} denote the
ordered subset for those vertices that were added to thedbopof A or A™ 1, Now
take the vertex,, for A € A\, thatis added last to the triangulation, and consider #re it
ated pseudo refinement that is obtained by adding the settafe& vy, ..., vw} —{w}

in canonical order. Continuing with the second last vertex tvas added to the bound-
ary of A or A™ 1 and so forth, finally gives an iterated pseudo refinement nith
vertices added to the boundary 6f or A™ 1. Hence, the refinement achieved by
adding the set of vertices/, ..., vn} — {vy | A € A} (in canonical order) is regular by

Lemma 3.12. [l
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Figure 4.5: The regular refinement obtained from the iterpseudo refinement

The refinement that is obtained by the iterated pseudo reéinem Figure 4.4 is
depicted in Figure 4.5. The result of Lemma 4.2 extends irraigsttforward way
to collections of simplicesJ; 2j in a triangulation| A™ 1| and iterated pseudo re-
finements that are obtained by refining™ 1| — U, Ai. So every iterated pseudo
refinement yields a regular refinement by omitting thoseiaestthat were added to
the boundary of J; Aj or A™1,

Now consider an iterated pseudo refinemenkdf| —v*. Vertices that were added
to the boundary oK or v* are referred to agseudo verticesAssign a payoff vector
Ay to each added vertex. If the added vertex is a pseudo vertex, then the payoff
vector is referred to as@seudo payoff vectoEach pseudo vertexcan be described
as a convex combination ofi— 1 verticesvy, ..., Vm_1 on the boundary oK” or the

3 3

boundary o/, i.e.v= 3™ v, with 17 u= 1 andy; > 0.
Definition 4.3 The pseudo payoffs are callednsistentf Ay = Zin;_llu'AVi-

For each simplex in the pseudo refinementXf | — v, the payoff vectors and
pseudo payoff vectors induce a division into labelled regias described by (2.7),
where the columns of the payoff matrix consist of the payeffters and pseudo payoff
vectors that are assigned to the vertices of the simplexs dikision is referred to as a

pseudo division

Now consider the regular refinement induced by an iteratedgisrefinement. The
following lemma is similar to what was used in the proof of @lary 3.13. That s, if
the pseudo vectors have consistent payoffs, then the iddiigision of | X”| —v2 into
labelled regions is unaffected by deleting the pseudo ved¢tom the iterated pseudo

refinement.
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Lemma 4.4 If the pseudo payoffs are consistent, then the pseudoafinagiX | — v
into labelled regions is identical with the division p¢2| — v* into labelled regions

that is obtained by deleting the pseudo vertices from thiatiée pseudo refinement.

Proof. The proof is illustrated in Figure 4.6. The consistency & gayoff ensures
that the division of a larger simplex is given by the diviswithe smaller simplices.
In the figure, the payoff fow is consistent with the payoffs farn andv,. Then the

union of the simplices spanned by;, v2, v} and{v,,Vvs, v} yields the same division as

the simplex spanned by, vo, v} .

Figure 4.6: Pseudo vertices with consistent payoffs

V.

K V3

.V,

Let v denote the simplex that was last added to the fac&”obr X2. Thenv =
z}‘zluvi, with 11 u= 1 andy; > 0, where the verticeg span thek — 1)-simplex on
the (m— 2)-face that contains. These vertices might be original vertices or pseudo
vertices. In any case, one hag= T¥ ; wA,,. Now deletev from the iterated pseudo
refinement. Consider a simplex spanned by, ..., Vk and somev.1,...Vm. The

) )

division of A is induced by the payoff vectors,,, ..., Ay,

The simplexA is the union of smaller simplices for which the verteveplaces one
of the verticey;, 1 <i <k, of A. Since the payoffs are consistent, the induced division
of A into labelled regions is also the same as the union of thelensainplices divided

into labelled regions. ]

Finally, one needs a topological lemma, which says that #y®fb mappingf (as
in (3.3)) restricted to the boundary ef can be deformed into a mapping that maps

the boundary of” on the boundary of\™ 1,

Lemma 4.5 Let V™ be a simplex inX”|. Then there exists a homotopy h that deforms

f (or f2) restricted to the boundary of?vinto a mapping that maps the boundary
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of V> on the boundary oA™1 (or the boundary of X). The homotopy is such that
h(x,t) # V. V(x,t) € av® x [0, 1].

Proof. Take a simplex” in |X|, and letdv” denote its boundary. If the image ot
containsv,, thenv, must lie in the interior off (v**). If the image does not contain,
thenv, must have a positive distance frohiv®*). This is due to the non-degeneracy

assumption.

Then one can retract the image of the boundb@v”) as follows: Letx be a
point on f(dv®). Then take the line betweenandv, in direction ofx, and define
the retractiorr (x) as the point on the boundary 6f™1 in which the line intersects
with the boundary ofA™-1. Algebraically, the point(x) is the normalised form of
the vectorx — (mine %) - 1,.  The retractiorr (x) can be described as a homotopy
h: ov® x [0,1] — A™ 1 given byh(x,t) =t-r(x) + (L—t)-x. Note thath(x,t) #

v, ¥ (x,t) € av™ x [0, 1], sincex andr (x) have the same labels.

A deformation off restricted t@v” yields a deformation of ~ restricted ta@v>,

sincef® = 1d% o f. ]

Lemma 4.2 and 4.4 are needed in the proof of Theorem 4.6 béfotine proof,
a certain mapping is approximated. For this one needs totrtmhs triangulation
with a sufficiently small mesh. This can only be achieved byiiagl vertices to certain
boundary faces. However, if the payoffs are consistenty these vertices can be
omitted, as it does not change the combinatorial divisida best reply regions. In
particular, one obtains a regular triangulation and a ainisnto labelled regions that
can be obtained as the dual construction for some bimatmegédemma 4.5 is needed

to construct the mapping that is approximated.

4.3 A Game Theoretic Characterisation of the Index

This section proves the main result of this chapter, i.e.canlierium in a game has
index +1 if and only if one can add strategies to the game such thagdh#ibrium
becomes the unique equilibrium in the extended game. Tleeatithe proof is to “re-

route” the paths as described earlier. $av) is an equilibrium. In the labelled dual
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construction, this equilibrium is represented by some V. In particular, if the in-
dex of the equilibrium is+-1, the dual payoff mappiné” restricted to the boundary of
v2 has also degree1. By a well-known result from algebraic topolody: restricted
to the boundary of® and 2 restricted to the boundary of th¢” are homotopic
via some homotop¥. This allows one to “re-route” the paths startingwg so as to

connect them directly with the boundary without creating reuilibria.

Theorem 4.6 Let G be some non-degenerate bimatrix game.(L&t) € X x Y be an
equilibrium of the game. Thefv,w) has index+1 if and only if one can add finitely
many strategies such thét,w) is the unique equilibrium of the extended game. It

suffices to add strategies for only one player.

Proof. Let (v,w) € X x Y be an equilibrium of the game. First, all unplayed strategie
of player Il can be eliminated by new strategies that doneitlaé¢m. If pure strategy

j € Jis not played in equilibrium, one can add a pure stratggyith payoff Bj + ¢,
wheree € R™ is a vector with small positive entries. This replaces thgioal vertex

in [X”| representing strategywith a vertex representing the new stratggyIn the
dual polytopeP?, this corresponds to adding a vertex to the boundaf‘othat lies
slightly above the original vertex. This yields the sameutagtriangulationX*| as

before.

Now consider the boundary of*. Without loss of generality assume that all pay-
offs for player | are positive and that the payoffs in the cohs of A add up to 1, i.e.
|Aj| =1 for j € J as assumed in the constructionfof. Let (v,w) be an equilibrium

and consider the restriction 6f* to v2*. Denote this restriction a§€A.

The degree of the equilibrium is given by the local degreﬁé@faround the com-
pletely labelled pointvs, wherews denotes the lifted point ofv. The local degree is

the same as the degree k‘@ restricted to the boundary ef*, denoted aé@vA, and

A
XA

is also+1. Considering the payoff mappirfginstead of the dual payoff mapping, this

has degree-1. The degree of 2 restricted to the boundary &, denoted ag
implies thatf‘a\,A andf‘axA are homotopic (see e.g. Spanier (1966, 7.5.7)). Firstatetra

f‘avA to the boundary oA™ ! as shown in Lemma 4.5, then deform it irfquA along

dA™ 1 The construction is such that no point along the homotopyapped orv,.
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Denote this homotopy ds The homotopyis given a: d A™ 1 x[0,1] — A1
such that(-,0) = f,s andh(-,1) = faya. If V2 shares a commokface withX*
(i.e. not all strategies of player | are played with positwebability inv), then the
mappingsf, and fgxa agree on that face by construction, and it can be assumed

thath(x, -) = f3,a (x) for pointsx on that face.

But this gives a mapping, also denotechasen the spacX” — v that agrees with

f on the boundaries of~ andv® and whose image does not contain So

h: X2 —v® — AM 1 (4.6)

This yields a division oX” — v/ into labelled regions such that no point is com-
pletely labelled. The regions are defined as the pre-imagis cegions iA™ 1. The
division of v* is as before. This is depicted in Figure 4.7 for the equilibrivy, w;)

in the game of Example 2.3.

Figure 4.7: A homotopy

Now consider the triangulatioXX |, and consider an iterated pseudo refinement of
X2 — V2. This iterated pseudo refinement can be assumed to be suctotsianplex
has a diameter more than sode- O (see Lemma 3.11). Now assign payoffs for
player | to the added vertices according&op= h(v). If the simplices are small, their
images inA™ 1 are also small simplice$ s uniformly continuous), and no simplex

containsv,. This is depicted in Figure 4.8.

The pseudo payoffs for vertices that were added to the beiesdaf X~ andv”
are consistent with the payoffs for the verticeéf andv”. Therefore, these vertices
can safely be omitted without creating fully labelled psiatcording to Lemma 4.4,

and the resulting refinement is regular by Lemma 4.2. Thisegfent is a regular
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triangulation and can be achieved by a payoff matrix wheedesgies for player Il are
added (Lemma 3.12). The refinement determines the payoffddger Il. The payoffs
for player | are given by the homotopy O

Figure 4.8: An approximation of the homotopy

In the proof of Theorem 4.6, the simplices in the refinemeatcéiosen to be suffi-
ciently small since the homotogyis not further specified. It is likely that, in the case
of the payoff mappind, one can easily describe the deformatiorf @éstricted to the
boundary, especially if considering the combinatorialez$p of the problem (instead
of describing it as a topological problem). Furthermoreg @not necessarily bound
to refining|X“|, but can actually create a new regular triangulation theatde the sim-
plexv”® unaffected. So, instead of adding sufficiently many stiatedt is likely that

“a few” added strategies are enough.

As for the equilibrium(vy,w;) of the game in Example 2.3, it is sufficient to just
add one strategy instead of many as suggested by Figure 4&.gdme described

below only has the equilibriurtvy, w;) as a unique equilibrium.

0,0 1010 00 10-10 011
1000 00 010 08 11
8,10 00 100 88 01
Figure 4.9 depicts the corresponding labelled dual for gtereled game.
So the natural question arises about the minimal numberatesgfies one needs to

add in order to make an equilibrium the unique equilibriunanfextended game. In

the 2x n player case, it is sufficient to just add two strategies fayef Il to make any
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Figure 4.9: The labelled dual for an extension of the gamexemtple 2.3

index+1 equilibrium the unique equilibrium of an extended game eibr addingn

or 2m strategies suffices in higher dimensions is unclear.

Remark 4.7 Instead of considering the homotopy h o X v2, one can actually
define it on the “cylinder” that is obtained by deleting™¥and V* from the surface of

the polar polytope P that corresponds to the game.

Hofbauer (2000) defines two paii&, (v,w)), (G, (V,w)), where(v,w) is an equi-
librium of G, and(V/,w) is an equilibrium ofG’, equivalent if the gam& restricted
to the support ofv,w) is the same as the gar® restricted to the support ¢/, w).
He calls an equilibriungv,w) of a gameG sustainable if there exists an equivalent pair
(G, (V,w)) such thatV',w) is the unique equilibrium o&’. He conjectures that an
equilibrium has index-1 if and only if it is sustainable. The results from above grov

this conjecture in the case of non-degenerate bimatrix game
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Chapter 5

Outside Option Equilibrium

Components

The aim of this chapter is to extend the dual constructionutside option equilibrium
components. This yields a new interpretation of the indexofdside option equilib-
rium components that is very similar to a generalisation pér8er's Lemma which
is in the literature referred to as thedex Lemmdsee e.g. Henle (1994), p. 47). The
Index Lemma applies to more general boundary conditiorts séates that the sum of
orientations of completely labelled simplices can be dedufcom the boundary con-
dition. This new approach allows a new characterisatiomdé&x zero outside option

equilibrium components in bimatrix games, which is the sabpf Chapter 6.

An outside option can be thought of as an initial move thatayed can make
which terminates further play, and gives a constant pagpdibth players. If the player
has not chosen his outside option, the original game is dlayake for example the
game described in (1.15) in Chapter 1. A representation@fimeG? is given in
Figure 5.1, where the bottom left entries in a cell are theofidpr player | and the
top right entries in a cell are the payoffs for player Il. Th@me has two equilibrium
components: The single equilibrium &f~ with payoff 10 to both players, and the
outside option equilibrium component with payoff 9 for pdayl and payoff O for
player I.

In terms offorward inductionthe only reasonable equilibrium is that with pay-

off 10. Not playingOut in the first place is only reasonable if player Il plays theiequ
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Figure 5.1: A representation of an outside option game

13 12 14
13 7 1 9
7 8 1 0
12 8 2
1 2 1
14 1 1

librium strategy that yields payoff 10 id~. Player | knows this and plays accordingly
once the gamel ~ is entered. The notion of forward induction is a concept dpglies
to extensive form games (van Damme (1989)). Other authosaiticular Kohlberg
and Mertens (1986), argue that games should be analysegiimtrmal form and that
solution concepts should be independent of the repregemtzitthe game. The index
of an equilibrium component is an invariant, i.e. the samaliequivalent games and
hence independent of the representation of the game. Thereihderstanding the na-
ture of the index for outside option equilibrium componesda help in understanding
which solution concepts might capture the notion of forwiatliction (see e.g. Hauk
and Hurkens (2002)). In Chapter 6, it is shown that an outsdien equilibrium com-
ponent is hyperessential if and only if it has non-zero indefollows that an outside
option outcome cannot be hyperessential if the forwardatida equilibrium is a pure
strategy equilibrium that is strict (that is, all unplayad@strategies have a payoff that

is strictly lower than the equilibrium payoff).

The structure of this chapter is as follows. Section 5.1ewsia generalisation
of Sperner’s Lemma which is sometimes referred to as thexihdenma (Proposi-
tion 5.2). In Section 5.2 it is shown how this relates to algsoption equilibrium
components (Corollary 5.4). Section 5.3 discusses peateg¢ineralisations and the
apparent limitations of the dualisation method regardiegegal components of equi-

libria.
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5.1 A Generalised Version of Sperner’'s Lemma

In Sperner’s Lemma, the existence of a completely labellaplex is ensured by the
Sperner condition. Moreover, accounting for the orieotgtthe boundary condition
determines that there exists one more completely labeleplex with orientation+1
than with orientation—1. In this section, it is shown how Sperner's Lemma can be
extended to cope with more general boundary conditionss Yikids a generalisation
of Sperner's Lemma that is in the literature referred to asltidex Lemma (see e.g.
Henle (1994, p. 47)).

Let P be an(m— 1)-dimensional polytope. Furthermore, |4 be a triangulation
of P into simplices of dimensiom— 1. A triangulation ofP is a finite collection of
simplices whose union B, and that is such that any two of the simplices intersect in
a face common to both, or the intersection is empty. A tridetgan of P induces a
triangulation|dP| of the boundaryP into simplices of dimensiom— 2. LetL be a
labelling of the vertices ofP| with labels inl = {1,...,m}. As before, one can define

a Sperner mapping
£S: (P, |0P|) — (AT H,0A7 )

?

whereA™ 1 denotes the canonical division described in Chapter 3 (séiaibon 3.4):
Every vertex of P| is mapped to the vertex in™ ! with the corresponding label, i.e.
L(v) = L(fS(v)). ThenfSis obtained by linearly extending it to the simplices .
Note that if a(k — 1)-simplex hasj < k distinct labeld; C I, then it is mapped on the
(j — 1)-face of AT 1 that is spanned by the vertices with labglsThe restriction of

fS to the boundary oP is denoted asﬁgp.

Definition 5.1 The index of the labelling L dP| is defined as
(L) = degf3p, (5.1)

wheredeg f‘gp denotes the degree of the mappi@,.f

As for the Sperner case, the degree cﬂ%,g measures, for an arbitrary but fixed label
k € I, the number of almost completely labelled points with laldel {k} on the
boundary, where each such point is counted with its oriemtatThe orientation on

the boundary is induced bga™*. This is depicted in Figure 5.2. The dotted line
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represents the image of the bounda®y/around”dA™ 1. The mapping in Figure 5.2
has degree-1. The image of the boundary is homotopic to a single windmgiad
A1 So the index of the labelling in Figure 5.24<l.

Figure 5.2: A general version of Sperner’'s Lemma

The degree deg‘gp on the boundary is the same as the degreefdayf the map-
ping fS. The proof of this claim is equivalent to the constructiorhie proof of The-
orem 3.3. There, the orientations @h— 2)-faces in the interior cancel out. The
degreefS measures the number of completely labelled points, i.epteémages of
V., Where each pre-image is counted with its orientation, twis¢he local degree (see
Figure 5.2). This fact that dqup is the same as defy® yields the following, well-
known result, which says that the labelling of the verticesh®e boundary determines
the number of completely labelled simplices in the triaagjoh (for a detailed account

of degree theory see e.g. Dold (1972) as cited on p. 72).

Proposition 5.2 (Index Lemma) Let |P| be as above with labelling L. Then the sum

of orientations of the completely labelled simplicesRhequals [L).

Proof. The pre-images of, correspond to the completely labelled simplices, and the
local degree at a pre-image is the same as the orientatidre @limplex that contains
it. The degree equals the sum of local degrees, and is detednfiy the boundary

condition.

Alternatively, one can use the same approach as in the pfobfieorem 3.3 to
obtain the result without using degree theory. In this case,would essentially show

that degf‘%P on the boundary is the same as the degreefdeg ]
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The Index Lemma is sometimes summarised with the phraseititlex equals the
content” (see e.g. Henle (1994, p. 47)), meaning that thedany condition (i.e. the
index) determines the number of completely labelled sio@slin the triangulation (i.e.
the content), accounting for orientation. In the next settit is shown that a similar

description applies to outside option equilibrium compuee

5.2 The Index for Outside Option Equilibrium Compo-

nents

In Chapter 3 above it is shown how the classical Sperner tondipplies to equilibria

in non-degenerate bimatrix games. This section demoesttaiw the Index Lemma
relates to components of equilibria. The dual construcsioows that the index of a
component is defined by a boundary property similar to thexridemma. This bound-
ary property determines the sum of indices of equilibriselto the component if the
game is generically perturbed by small generic perturbatitn particular, it is shown

that the sum of indices of equilibria close to the componemdependent of the per-
turbation. This “invariance” property of the index for coaments of equilibria is not a
new result (see the properties for components of equilllstied in Section 1.3). What
is new, however, is the geometric-combinatorial view onitfiex for components of

equilibria.

The analysis is restricted to generic outside option dopiilm components in bi-
matrix games represented in strategic form by payoff medcandB. Without loss
of generality it is assumed that the player with the outsipion is player Il. When
player Il plays the outside option, the payoffs for playendig@layer Il are independent
of player I's strategy choice. So the columnfothat represents the payoffs for player |
in the outside option has identical entries, and so has thencoof B that represents
the payoffs for player Il in the outside option. An outsidgiop equilibrium compo-
nent is referred to agenericif the payoffs for player Il are generic and if all payoffs for
player | other than the outside option payoffs are geneteisithe only degeneracy of

the game arises through the payoffs to player I in the outgpdien. This implies that
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the payoffs for the equilibria that are cut off by the outsigi¢ion are strictly smaller

than the payoff in the outside option.

When constructing components of equilibria via outsideayst (see Section 1.4),
it is possible to compute the index of such components puwelgrounds of basic
properties of the index. In particular, one does not havetmtp details regarding the
geometric-combinatorial aspects. These aspects, nelest) play an important role
in the characterisation of index and (hyper)essentiatitChapter 6. The examples
given below are meant to illustrate the geometry behind idex for outside option
equilibrium components by means of the labelled dual canstm X2, A formal

definition is given later in this section.

The problem with degenerate games is that, instead of haumeton solutions,
one has to consider components of equilibria. This is dubdddct that the number
of best reply strategies is not bounded by the size of themtgee Definition 1.1).
In the case of an outside option in anx n bimatrix game with an outside option for
player Il, the pure strategy representing the outside agtioplayer Il hasn pure best
reply strategies since all the payoffs for player | are thees@ the outside option. In

this case, the outside option equilibrium compor@r given by
C={(x,0ut) € X xY | Outis best reply tok},

whereOut denotes the pure strategy that represents the outsidenoptio

In general, the dual construction cannot be applied to degém games. This is
due to the fact thatX”| is not well-defined if the payoff matriB is degenerate. In
the case of generic outside options in bimatrix games, hewehre payoff matrix8
IS generic, since it does not matter if a columrBofias identical entries. This allows
one to apply the dual construction to such games. Consmlegxample, the following

3 x 4 coordination game with an outside option for player II:

10,10 Q0 00 0,9
0,0 1010 00 09|. (5.2)
0,0 00 1010 09

This is the same gam@& 2 in (1.17) in Chapter 1. The outside option equilibrium

component has index2. The three pure strategy equilibria of the game with payoff
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10 (which are not cut off by the outside option) each havexngdg. Since the sum of
indices over all equilibrium components must equal the outside option equilibrium
component has index2. This can be interpreted geometrically in the followingywa
Label the strategies of player | with4 and 3, and those of player Il with® 6 and
Out. Then apply the dual constructionXato obtainX*A. Figure 5.3 shows the division
of X into best reply regions on the left. Next to it is the correggiag labelled dual
constructionX” . StrategyOut yields a constant payoff to player I. Therefore, the best
reply regions in simplices” for which a vertex o represent®©ut all join in the

vertex that represen@®ut.

Figure 5.3: An outside option component with indef

The dual payoff mapping” as in (3.4) is, however, well-defined &, including
those simplices that are the duals of the vertices of therlkgst region forOut. In
particular, the dual payoff mappinif* is well-defined on the boundary of the dual of

the outside option component.

Thedual of the outside option componésthe union of all those simplices that are
the duals of the vertices of the best reply region@ut. These are the simplices that
haveOut as a vertex. The vertex that represedtg has all labels, since every strategy
of player | is a best reply again€ut. In particular, the completely labelled point
does not lie in the interior of a simplex, which would be theecfor non-degenerate

bimatrix games. This is depicted on the right in Figure 5.3.

The dual of the component can now be used to define the indax efjailibrium
component. For this, consider the dual payoff mappingictstt to the boundary of
the dual of the component. For the example in Figure 5.3,rttagye off~ restricted
to the boundary cycles twice around the completely labeléstexv,, but in opposite

direction: Following the boundary of the component in adiekwise direction in
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X*A, the resulting paths runs in clockwise direction arownd Hence, the index of
the component is-2. As in the case of the Index Lemma, the index counts, for a
fixedk € I, the number of almost completely labelled points with lalbet {k} on the
boundary of the dual of the component, where each such Eoouunted by is local
orientation. For the example in Figure 5.3, there are twagsamn the boundary of the
dual of the component with labels3, both of which are oriented in the opposite way
as the point with labels,B on the boundary ok”. The same holds when considering

points with labels 12 or 2 3.

As another example, consider thexd game with an outside option for player I

as shown below.
13,13 7,12 114 Q9

127 88 21 09|. (5.3)
141 12 11 09
This is the gam&+? (1.15) as in Chapter 1. The outside option has, by the same rea

soning as before, index2. Figure 5.4 depicts the division &finto best reply regions

Figure 5.4: An outside option component with indef

and the dual constructiod” for this game. For the above example, the mapgifig

restricted to the boundary of the dual of the component gialghath running twice
aroundv,. This time, the orientations of the boundary and its imageegFor every
kel ={1,2 3}, there are exactly two points on the boundary of the dual@tcthm-
ponent with label$ — {k} and whose orientation is the same as that of the point on the

boundary ofX* with labelsl — {k}. Therefore, the index of this componentig.

These observations can be formalised as follows. Consid@aran bimatrix game
with an outside option for player II. Note that it is not nes&ay to assume that < n.

Let C denote the outside option equilibrium component. ebe the set of those
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vertices in player I's strategy spagethat haveOut as a best reply, sSd = {ve V |
Oute L(v)}. Now take the union of thosé® for whichv € V, soC® = [Jyy V2. This
union is referred to as th@ual of the component Gr thedual of the outside option
equilibrium componentFor generic outside options, the regk(Out), i.e. the region
in X whereOut is a best reply, is a full-dimensional and convex region wiitices
that havem labels (or it is empty). Hence, the €& is a union of(m— 1)-simplices.
These simplices yield a triangulation 6f*. If voy denotes the vertex i@~ that
represents the best reply region with laBelt, thenC? is star-shaped with respect to
Vout. This follows from the fact thaE2 is a union of simplices who all hawe as a

vertex.

The boundary o€” is denoted a8C%. The simplex” is an(m— 1)-simplex for
all ve Vv, and the boundar§C” is the union of thgm— 2)-faces inC* that do not
include the vertex that represer@sit. From the dual construction it follows that the
pair (C2,0C%) is homeomorphic t§A™ 1,0A™ ). The dual payoff mapping” as
in (3.4) is well-defined on the boundadZ” . The restriction off 2 to the boundary of
C” is denoted asﬁ@CA. @C
in X that are spanned by the images of vertices of(the 2)-faces on the boundary

A
Ele

thought of as somén— 2)-sphere around, that consists ofm— 2)-faces.

The image off - .. consists of the union dim— 2)-simplices

of C2. The image off itself does not contain,. So the image of@cA can be

Definition 5.3 Let C be an outside option equilibrium component of a gamb wit

generic outside option. Then the indegC) of the component C is defined as the

degree of the mappinq?&.

So, as in the Index Lemma, the index is defined by the divisioa boundary into
labelled regions. In the Index Lemma, the regions arise fiteermappingf S, defined

by unit vectors on eactm— 2)-face. In the game theoretic context, the regions arise
from the mappingf®, defined by a mixture of payoff vectors and unit vectors. As
in the Index Lemma, however, the index of a component meastoea fixed label

k, the number of almost completely labelled points on the dawnof the dual of the
component. Each such point is counted with its local ortemtaand the measure does

not depend on the choice kf
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Note that the image of@CA can be retracted to the boundary)f. This works

A
Eey

traction as the intersection of the line betwegrmandp, in the direction ofp, with the

in the same way as Lemma 4.5: gfis a point in the image of define the re-

boundary ofX”. Note thatv, does not lie in the image of~... This is due to the

acA
non-degeneracy of the payoffs representing other stegegarOut.

For generic outside options, only payoff perturbationsgdiayer | in the outside
option are of relevance. This can also be seen using thdddbalial construction.
Small perturbations of the payoff matri&leave the combinatorial structure P~ |
invariant, since the combinatorial structure of the beglyreegions inX is unaffected.
Small perturbations of the payoff matrix leave the combinatorial division @C*
into best reply regions invariant, since for all simplis€sand their faces that do not
involve Out, the combinatorial division into best reply regions is ingat with respect
to small perturbations. It follows from Definition 5.3 thahall perturbations of the
payoffs leave the indel{C) invariant. Perturbations of player I's payoffs in the odési
option, however, spli€® generically into labelled regions and determine thosetpoin
in the interior ofC” that are mapped ta.. These are the Nash equilibria that “survive”

perturbations of the payoffs.

The local degree of 2 at these pre-images is the index of the equilibrium (see
Lemma 3.15). But the sum of local degrees equals the degrde ohapping, which
is again the same as the degreef6éf restricted to the boundary of the dual of the

component. As a consequence, one obtains the followindxkuelvn result.

Corollary 5.4 Let the index of a generic outside option equilibrium conmgrdrbe
I (C). Then every small generic perturbation yields equilibriase to the component

C such that the indices of these equilibria add up(©)L

Proof. The proof follows the same lines as the proof of the Index Lemand is a
consequence of the fact that the degree of a mapping is the aarthe degree of a

mapping restricted to its boundary.

An illustration of the proof is given in Figure 5.5 for a pattation ofG=2 as in
(1.17) (compare Figure 5.3). The perturbation that is degdics given by the payoff
vector(g,0,0) " for player | in the outside option. For the illustratianis chosen to

be large. It should be noted, however, that the combindiixiesion of the dual of the
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component does not depend on the magnitude(sée also Lemma 6.4 in Chapter 6).

Figure 5.5: A perturbation of an index2 component

The combinatorial and geometric properties of the map[b‘m are not affected
by small perturbations. Generic perturbations, howewvantupb the dual payoff map-
ping f2 in the interior ofC2. Let the restriction of 2 to C> be denoted aﬁéA. Thus
every small generic perturbation of the game gives a mapt@g: CA — XA, Al-
though the mapping itself does depend on the perturbatienindexl (C) does not,
since the degree o‘f@cA stays invariant under small perturbations for the reasgns e
plained above. The payoff perturbation renders the gamergeand, hence, yields a
generic division of£2 into labelled best reply regions (see Figure 5.5).

A
ca

sum of local degrees at the pre-images.,oin C2. These are the completely labelled

The degree of _, is the same as the degreef@@, and can be computed as the
points inC” that represent equilibria in whidbut is played with positive probability.

This local degree is the same as the index of an equilibrium.

Since the perturbation is generic, these pre-images ligsiinterior of some” in

C” and, for small perturbations, lie close to the vertex thatesentut. ]

For example, in Figure 5.5 one obtains two completely |&gefloints that read
1,2,3 in clockwise direction, i.e. both have indexl. As noted above, Figure 5.5
depicts the case for a large For a smalk, the completely labelled points lie close to

the original vertex representir@ut, but the combinatorial division stays invariant.
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Corollary 5.4 is of course not a new result (see Section 1NBw, however, is
how it relates to the Index Lemma. In the Index Lemma, thexnaas defined as
the degree offS on the boundary. For outside options it is the degreé‘ofon the
boundary of the dual of the component. Althouffharises from unit vectors while
f£ arises from general payoff vectors, in both cases the divisf the boundary into
labelled regions determines the sum of orientations of detaly labelled points (or
simplices) in the interior. As for the Index Lemma, one camsarise the result under
‘The index equals the content”. The boundary condition {he degree of the mapping
on the boundary of the dual of the component) determinesuhger of completely
labelled points in the interior of the dual of the componeet (he Nash equilibria that

useOut), accounting for orientation.

5.3 Degenerate Games and General Equilibrium Com-

ponents

This section describes how the dual construction might péegbto other components
of equilibria. For example, the above analysis does notiredbat the payoffs for
player Il in the component are constant and independentayepll’s strategy choice
(as it is the case for outside options). Nevertheless, therdimits to the application
of the dual construction to general components of equdiloni degenerate bimatrix

games.

Take anm x n bimatrix game. If the payoffs for player Il are non-degeterthe
triangulation|X2| is well-defined. Furthermore, the dual payoff mappirigin (3.4)
is well-defined since the payoff mappirfgis well-defined. It is easy to verify that
the Nash equilibria correspond with those points that arpped tov, underf”. So
the Nash equilibria still correspond to completely labetlpoints. This follows from
the definition of the payoff mapping as in (3.3) via the artificial payoff matrix. The
difference is that completely labelled points might, foaeple, lie on the boundary of
a simplexv2, or that almost completely labelled points lie on some logierensional
k-face of some/® for k < m—2. Also, there can be connected sets of completely

labelled points in the labelled dual construction.
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The latter case is illustrated by the following example.

0,0 1010 00 0,-10
0,0 00 010 08 (5.4)
0,10 00 100 08

This is a variant of Example 2.3. Against strategies 4 and @lafer II, player | is
indifferent between strategies2land 3. So the equilibrium component here is for
player | to play some strategy in the union of the best repyoresX (4) andX(7), and

for player Il to play a best reply strategy, which is eitheastgy 4 or 7, or a mixture of
both. In the latter case, the strategy of player | lies in thersection of the best reply

regionsX(4) andX(7), and player Il can play any mixture between strategies 4 and 7

The dual of this component is depicted in Figure 5.6, in whilah union of the
best reply regionX(4) andX(7) is represented by a dashed line between the vertices
that represent the best reply regions with labels 4 and 7. ritaygping f£ is well-
defined. In particular, it is well-defined on the boundaryha tdual of the component
C, and has degree zero: There is no point on the boundary otii@tithe component
with labels 23, and there are exactly two points on the boundary with &ah&, and
exactly two points with labels,B. Each such pair of points is such that one almost
completely labelled point has the opposite orientatiorhefdather almost completely

labelled point.

Hence, every (small) perturbation that makes the payoffdayfer | generic yields
a game with equilibria involving strategies 4 or 7 and whos#ides add up to zero.
Take, for example, the original game as in Example 2.3. Tamais a perturbation
of player I's payoffs in strategies 4 and 7, and has two eopigliusing strategies with
labels 4 or 7 and whose indices add up to zero. Multiplyingcdblemns ofA repre-
senting strategies 4 and 7 with some small constan0 yields a game with the same

combinatorial properties that is close to the original gésee also Lemma 6.4).

The problem is that, in general, degeneracies occur in thefpanatrices of both
players. Furthermore, components (and hence their duas)c necessarily homeo-
morphic to some simplex. This limits the direct applicatmfrthe dual construction

to general components of equilibria. Consider, for example following game con-
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Figure 5.6: The dual of the componentin (5.4)

structed by Kohlberg and Mertens (1986):

1,1 0-1 -11
-1,0 00 -1,0 (5.5)
1,-1 0,-1 —-2,-2

In this example, the equilibrium component is a cycle, baotiplayer I's as well as
in player II's strategy space. It can easily be verified that¢omponent in (5.5) has
index+1. It is the unigue component, and strategies 1 and 4 weaktyirdde the
other strategies, so a slight perturbation only leaves one gtrategy equilibrium. The
dual construction cannot be applied directly, since neithe “vertices” inX nor the
“vertices” inY are well-defined, i.e. they have more than three labels. ¥ample,
the “vertex” corresponding to pure strategy 1 by player |laagls 23 (the unplayed

strategies) and,& (best replies). Thus neith¥“ norY% are well-defined.

Nevertheless, there are ways of still applying the dual tanson to such compo-
nents. Take am x n bimatrix game (withm < n). Then the payoffs for, say, player II,
can be made non-degenerate by small payoff perturbatidres|X*| is well-defined
for the perturbed payoff matri®. This then yields the mappinf/® and a division of
X% into labelled regions. The drawback of this approach isttretiual construction

IX®| and hence are not independent of the payoff perturbations used foepli.
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Chapter 6

Index Zero and Hyperstability

This chapter shows that outside option equilibrium comptséhat have index zero
are not hyperessential. This yields a characterisationypétessentiality of outside
option equilibrium components in terms of the index: An algsoption equilibrium
component is hyperessential if and only if it has non-zedei In a parallel and
independent work, Govindan and Wilson (2004) show thatékalt presented here for
outside option equilibrium components also holds for galeguilibrium components
in N-player games. The merit of the approach presented herati tlequires only

basic tools from algebraic topology and provides a geomattuition.

An equilibrium component is said to lessentialf for every small perturbation of
the game there exists an equilibrium of the perturbed gaataditiose to the compo-
nent (Wu and Jiang (1962); Jiang (1963)). Kohlberg and Ner{@986) extend the
concept of essentiality to perturbations of all equivalgarhes, i.e. games obtained by
adding convex combinations of existing strategies as puategies. A component is
referred to adyperessentiaif it is essential in all equivalent games. They define a

component that is a minimal hyperessential componehypsrstable

This chapter addresses the question how (hyper)essgntrala game theoretic
context and essentiality in a topological context (i.e.-zero index) are linked (see
e.g. Govindan and Wilson (1997a;b) for a discussion). It iseli-established fact
that topological essentiality implies strategic essdiffiaThe converse, however, is
not true, as an example of an equilibrium component withxrmko that is essential

shows (Hauk and Hurkens (2003)). However, until recenthyas unknown whether
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hyperessentiality implies topological essentiality. STfuestion is answered affirma-
tively for outside option equilibrium components in bimaiames by employing the

dual construction to outside option components.

The structure of this chapter is as follows. Given the sintits between the Index
Lemma and the index for outside option equilibrium compase8ection 6.1 studies
index zero labellings in case of the Index Lemma. It is shdvat tor every index zero
boundary labelling there exists a triangulation and a laige(subject to the division
on the boundary) such that the triangulation does not corgaiompletely labelled
simplex (Theorem 6.1). Section 6.2 reviews the conceptssémiality and hyper-
essentiality, and it is shown how the results for index zafmellings apply to index
zero outside option equilibrium components. It is showr Hraoutside option equi-
librium component is hyperessential if and only if it has fz@mo index (Theorem 6.7).
The result is based on duplicating the outside option, wiields a refinement of the
triangulation of the dual of the component. This allows amélivide the dual of the
component into labelled regions such that no point is cotalyléabelled. This work
concludes with Section 6.3. It gives an example of an outsid®n equilibrium com-
ponent that is essential in all equivalent games that doardam a copy of the outside

option (Lemma 6.10).

6.1 Index Zero Labellings

This section discusses index zero labellings for triartiuria of (m— 1)-dimensional
polytopesP. Given a triangulation ofdP| into (m— 2)-simplices with a labelling. of

the vertices ofdP|, the definition of the index as in Definition 5.1 is well-definéa
the Sperner mapping®. The Index Lemma implies that every labelled triangulation
of P that agrees with the given triangulation and labellingg@hmust contain com-
pletely labelled simplices whose orientations add up toinkex of the labelling on
the boundary. This section shows that if the boundary laigetin 0P has index zero,
then there exists a labelled triangulationPothat agrees with the given triangulation

and labelling oroP and that does not contain a completely labelled simplex.
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Let P be an(m— 1)-dimensional polytope. Furthermore, |8P| be a triangulation
of dP into (m— 2)-simplices together with a labelling of the vertices|@P|. This
defines the Sperner mappirfg on the boundaryP as in (3.1). The index of the
boundary labelling is defined as the degred®festricted to the boundary and counts,
for a given labek € I, the almost completely labelled points on the boundary with
labelsl — {k}, accounting for their orientation. The following results fabellings as
in the Index Lemma might not be new (Theorems 6.1 and 6.3).alitleor, however,

is not aware of results as stated below in the literature.

Theorem 6.1 Let |0P| be a labelled triangulation odP into (m— 2)-simplices with
index zero. Then there exists a labelled triangulatipnthat agrees with the given
labelled triangulation of the boundary and that does notteama completely labelled

simplex.

Proof. Let fjgp denote the restriction ofS to the boundary. The fact that dééP =0
implies thatfsP is homotopic to some constant map via a homotofsee e.g. Bredon
(1994, 11, Corollary 16.5 and V, Lemma 11.13)). This mearet P ~, x, wherex
denotes some constant map. In other words, there exists pimgdp: dP x [0,1] —
dA™ 1 such thath(x,0) = fS(x) andh(x,1) = * for all x € dP. Sinceh is constant
ondP x 1, one obtains a mapping, which is also denoteti,dsom oP x [0, 1]/N(,’1)

to dAM 1, wheredP x [0, 1]/~(.,1) denotes the quotient space that is generated by the
equivalence relation that identifiés 1) with a single point; the spa@¥® x [0,1], .

can be thought of as a “cone” ové®, which is homeomorphic tB.

Figure 6.1: The cone oveP

This is depicted in Figure 6.1 fé? being the 2-dimensional disk. The boundary of
the disk is the 1-dimensional sphede ThenS' x [0,1] is a cylinder as depicted on the
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left. Identifying (-,1) with a single point yields the “cone” as depicted in the m&jd|

which is homeomorphic to the 2-dimensional disk depictetherright.

Thush can be seen as a mappihg P — dA™ ! that agrees withfS on the
boundary. This is a well-known result that states that a nmgpfpom the unit(m— 1)-
sphere to the unitm— 1)-sphere that has degree zero can be extended to a mapping
from the unitm-ball D™ to the unit(m— 1)-sphere. The result goes back to Hopf (see

e.g. Bredon (1994) as cited above).

The mappingh divides P into labelled regions which are the pre-images of the
regions inA™ 1. This is depicted in Figure 6.2. Now choose a triangulatibf o
with no vertices on the boundary other than the originalizestondoP. This can, if
necessary, be achieved by adding a single vertex in theecef®; sinceP is convex.
Next, choose an iterated pseudo refinement of this triatigalthat allows vertices on
the boundary and that is such that each simplex is smalleameter than some given
d > 0. Now label every vertex in the interior {?| according td_(v) € L(h(v)), where
L(h(v)) are the labels of the image wofin AT (see Figure 6.2). There is no point
on the boundarg A™ ! that has alimlabels, so no simplex in the refinement can have
more thamim— 1 distinct labels, as long as the simplices are sufficiemtigls Notice

that, sinceP is compact, the mappingis uniformly continuous.

Figure 6.2: A labelling with index zero

Finally, one has to get rid of the vertices that were addetedbundaryP. This
works in the same way as in Lemma 4.4, since the labellingiices on the boundary

isconsistentThat s, if a vertex lies on ark-face of the original triangulation spanned
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by original verticesvy,...,V, thenL(v) € {L(v1),...,L(w)}. This is the labelling

3 3 3

equivalent to the consistency as in Definition 4.3.

So let the vertices that were added by the iterated pseud@nedint bevy, ..., vy,
and let/\ be the ordered index set of the vertices that were added tootinedary. Let
v be a vertex on the boundary. Thenr= ZLlM‘Vi with p; > 0, for somevy,...,v.
In particular, the labelling satisfidgv) = L(v;) for somei € {1,...,1}. So the face
spanned by{vi,...,Vi_1,V,Vi+1,...,Vk} has the same labels as the face spanned by
{v1,...,Vi—1,Vi,Vi+1,...,V}. A simplex spanned byvy,...,Vi_1,V,Viy1,...,V} and

some {Vki1,...,Vm} is fully labelled if and only if the simplex spanned by

{V1,. o Vim1, Vi, Vig 1, - -, Vb and{ Vs 1, ..., v} is fully labelled.
So the vertices that were added by the iterated pseudo redimteand that lie on
the boundary 0P can be removed (in reverse order) to obtain a refinement waith n

vertices added to the boundary and no completely labeltagisi. ]

Remark 6.2 In Figure 6.2, the Sperner mapping bn the boundary has index zero,
but is onto. Suppose one is restricted in subdividing P. kangple, assume a trian-
gulation |P| with the same boundary labelling as in Figure 6.2, but thas baly one
vertex in the interior of P. This is depicted in Figure 6.3.eflevery labelling of the
interior vertex yields (pairs of) completely labelled siiops. The reason is that the
interior vertex is connected to all boundary faces. For gMabel ke {1,2,3}, there
are faces on the boundary with missing label k, that is, faeis labels1,2 or 2,3
or 1,3. These almost completely labelled faces come in pairs cbsifgorientation
because of the index zero property. Thus, in the restrictsa,cone always obtains
completely labelled simplices whose orientations add ugeto. In the next section,
it is shown how this restricted case compares with the esdigyniof an equilibrium
component as in the example by Hauk and Hurkens (2002), andh®unrestricted

case compares with the hyperessentiality of an equilibsomponent.

For non-zero labellings one obtains the following result.

Theorem 6.3 Let |0P| be a labelled triangulation adP with index k. Then there exists

a labelled triangulation P| that agrees with the given labelled triangulation of the
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Figure 6.3: A labelling with index zero and a restrictedrigalation

boundary and is such thaP| contains|k| completely labelled simplices, each with

orientationsignk.

Proof. The idea is to divide into labelled regions such that there exist exadtly
completely labelled points iR with orientation sigrk. This division is then covered

by small simplices.

Choose a subs@& in the interior of P that is homeomorphic to afm— 1)-ball.
Define a mappind sg on the boundary oB that maps the boundary & on anm-1
and that is such that each almost completely labelled pairthe boundary ofA™1
has exactlyk| pre-images irdB with orientation sigrk. Such a mapping exists and
can be constructed as follows. Identify the bound@Bywith the unit sphere&s™ 1,
For (Xg,---,Xm) € S™ 1, the tuple(xy, X2) can be seen as a complex numpeand the

mappingf os(z,Xa, -+ ,Xm) = (Z,Xa, -+, Xm) Will do.

The mappingdf sg has the same degree as the Sperner magipig the boundary
of P. Hence, the mappin§® restricted to the boundadP and flog are homotopic via
some homotopy, denoted sThe homotopy can be identified with a mapping from
P—B to 0A™ 1, since[0,1] x aP is homeomorphic td® — B. Note thatoB andoP
are homeomorphic t8A™ 1, and are hence themselves homeomorphic. This yields a
divisionP — B into labelled regions with no completely labelled pointbeathe region
B with some arbitrary but fixed label. Then the divisionPinto labelled regions is
such that there exist exactly points that are completely labelled. These lie on the

boundary ofB. This is depicted in Figure 6.4 for a boundary mapping witheix+1.

From here, the proof follows the same lines as the proof obfdra 6.1. Cover

P with sufficiently small simplices and label the vertices@ding to the regions they
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Figure 6.4: Obtaining a division with exactly completely labelled points

are contained in. The vertices that are added to the bourdd®can be omitted by

the same argument as in the proof of Theorem 6.1 and Lemma 4.4. O

As explained in Chapter 5, there are strong similaritiesvben the situation in
the Index Lemma and outside option equilibrium componéeFig. next section shows
how the results from above translate into the game thearetitext and how one can
divide the dual of an outside option into best reply regigngn the boundary division,
such that it does not contain a completely labelled poiet,an equilibrium. This can

be achieved by duplicating the outside option only.

6.2 Index Zero Outside Option Equilibrium Compo-

nents

In this section, it is shown that an outside option equilibricomponent (in a bimatrix
game with generic outside option) is hyperessential if arlg ibit has non zero index.

It is also explained how the results of the previous sectibmfthe game theoretic
context. Before proving the main result of this section,dbecepts of essentiality and

hyperessentiality are briefly reviewed.

Wu and Jiang (1962) define essential fixed points. The exiensicompact sets
of Nash equilibria is described by Jiang (1963), and is alsoussed in van Damme
(1991, Section 10.2). In analogy to the concept of essefitiedl point sets (Fort
(1950)), an equilibrium componefit of a gameG is calledessentialif and only if

for every small payoff perturbation of the gar@ethere exists an equilibrium of the
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perturbed game that is close@o A gameG is called an equivalent game &if G can
be obtained fronG by adding a finite number of convex combinations of strategfe
G as pure strategies. In other words, the ga@esdG have the same reduced normal

form. For example, the two games shown below are equivalent.

10,10 00 55 33

10,10 00 3
G= 00 1010; G=| 00 1010 55 77
’ ’ 1,1 99 55 ¥I

A strategy in an equivalent game can be interpreted as &gyraf the original game
and vice versa by rescaling the probabilities for the sgiase An equilibrium com-
ponentC of a gameG is referred to afiyperessentialf it is essential in all equivalent
gamesG. Kohlberg and Mertens (1986) define a Satshyperstabléf it is minimal
with respect to the following property8is a closed set of Nash equilibria Gf such
that, for any equivalent game, and for every perturbatiothefnormal form of that
game, there is a Nash equilibrium closeSolt follows that a hyperessential equilib-
rium component must contain a hyperstable set (Kohlberg\derdens (1986)): Let
F denote the family of subsets of a single connected compdhahis hyperessential,
ordered by set inclusion. Every decreasing chain of elesnerit has a lower bound,

and therefore, applying Zorn’s Lemma, the fanfilymust have a minimal element.

It is a well-established fact that non zero equilibrium cam@nts are both essen-
tial and hyperessential. The index of a Nash equilibriumponent is invariant under
addition or deletion of redundant strategies Govindan afdoV (1997a, Theorem 2;
2004, Theorem A.3). Therefore the index of a component issttmee in all equiv-
alent games. Since the index measures the sum of indicesutibbei@ close to the
component if the game is slightly perturbed, a non-zeroxmafplies both essentiality
and hyperessentiality of the component (see also Sect®fodthe properties of the

index).

Whether the converse is also true was an open question anghtly. In fixed
point theory, a component of fixed points under a mapgirgycalled essential if every
mapping close td has fixed points close to the component. O’'Neill (1953) shibab
a fixed point component is essential if an only if it has norezedex. In game theory,
the Nash equilibria can be described as the fixed points ofpa Aaerturbation of the

game yields a mapping for the game that is close to the ofifik&al point mapping.
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So the question arises whether, by suitably perturbing #maeg one can show
equivalence between strategic and topological essawpti&eferring to the results of
O’Neill (1954), Govindan and Wilson (1997b) write: “The odstion of this puzzle is
important for axiomatic studies because in a decisionf#tendevelopment it would
be implausible to impose topological essentiality as amraxunless it is provable
that the space of games is rich enough to obtain equivalesiveebn strategic and

topological essentiality.”

Hauk and Hurkens (2003) found an example of a bimatrix gantle &an outside
option in which the outside option equilibrium componens lredex zero and that is
nonetheless essential. This shows that game theoretiopotbgical essentiality are
not equivalent. If restricted to perturbations of the orgjigame, the space of games
is not rich enough to obtain equivalence between topolbgicd strategic essential-
ity. However, their example fails the requirement of hygsentiality. So the ques-
tion arises whether the concept of hyperessentiality ig#mee theoretic equivalent of

topological essentiality.

In this section, it is shown that this is the case for outsiglgom equilibrium com-
ponents with a generic outside option. Furthermore, it maestrated why an index-
zero component can be strategically essential, but notragpential. Comparing it
with the case of the Index Lemma, essentiality comparesavttangulation in which
one is restricted in the number of simplices in the subdwisand hyperessentiality
compares with the unrestricted case (see Remark 6.2). @amviand Wilson (2004),
in a parallel and independent work, show that index zero asmapts cannot be hyper-
essential in general. Their approach is discussed at thefahds section. The merit
of the proof presented here is that it only needs basic toota filgebraic topology.
Also, since the dual construction can easily be visualigedso provides a geometric

and combinatorial intuition for the result.

The idea of the proof can be explained by considering an ebaofpan outside
option equilibrium component that is essential but not hgpgential. Such an example

is given by the game in (6.1). This is the game by Hauk and HgK2002) showing
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that topological essentiality is not the equivalent of togacal essentiality.

45 0-23 2-1 00
0,-15 8-1 —-2,-21 00 (6.1)
2,-11 13 31 00
The dual construction for this game is given in Figure 6.5.e Tual payoff map-
ping f2, restricted to the boundary of the dual of the outside optimmponent, has
degree zero. The image does not complete a full cycle. Heheegutside option
equilibrium component has index zero. This can also be edrbiiy a simple counting
argument. There is only one other equilibrium of the gamejaig the pure strategy

equilibrium with payoffs(4,5).

Figure 6.5: An index zero essential component

Hauk and Hurkens show that the component is essential. itldhie noted that
only payoff perturbations of the payoffs for player I in thetside option are of impor-
tance. All other payoffs are generic. Looking at the dualstarction of the game, it

can be seen that the restricted dual payoff mapp‘m : 9C”™ — X2 is such that the

A

image off‘acA

“wraps” completely around,, but does not complete a full cycle.

A more detailed depiction of the image quA is given in Figure 6.6. The image
of f\?cA consists of a union ofm— 2)-simplices inX®. These are the images of the
faces ofC”, and are depicted in bold dashed lines. In the figusg, is the image under
2 of the vertex inX” that represents best reply regi®ut in X, and the vertices,
are the images of the verticesXt* that represent a best reply region with laber

an unplayed stratedyin X (I = 2,5, 6).

Now suppose one perturbs the payoffs in the outside optibanVo lies close to

V.. Consider, for example, a perturbation@fit such that strategy 1 of player | is the
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Figure 6.6: The essentiality of the component

5 \

best reply toOut. Thenvpy lies in the region with label 1 close tq, as depicted in
Figure 6.6. So there are two simplices in the imag€®fthat contairv,, namely the
simplex spanned bys, vg andvoy: and the simplex spanned by, vo andvoy. The
former simplex represents the vertex{iwith labels 5, 6 an@®ut, the latter represents
the vertex inX with labels 6, unplayed strategy 2 a@dit. A similar analysis applies if
Vout lies in one of the regions with label 2 or 3. Therefore, the pornent is essential.

This is the game theoretic counterpart to the situationrde=t in Remark 6.2.

It should be noted, however, that it is not sufficient to justiat the almost com-
pletely labelled points on the boundary of a component tovdeether a component
is essential or not. The payoff mapping is generally moremerthan the Sperner
mapping, since the payoff vectors are generally not unitorsc Consider, for exam-
ple, the component depicted in Figure 6.7. This componesitmgar to that of game
(6.1). The difference is that the payoffs for player | in tlkoduenn of (6.1) representing
strategy 6 are modified such thatis shifted to the left compared witly in Figure
6.6. There are two points on the boundaryCéf with labels 12, two with labels 13
and two with labels 23, and each pair is such that the points have opposite cti@mta
But the component is not essential. There is a “gap” in thegemaoundv,. If the
perturbation of the outside option for player | were such thg: lies in the shaded
area as depicted, then there would not exist an equilibrhanuse®©ut. A necessary
and sufficient condition for the essentiality of a componstiat the retraction of the

image ofdC2 is onto. The retraction is defined as on page 112 for comperent is

A
Ees

retraction as the intersection of the line betweegmnd p, in the direction ofp, with

similar to that described in Lemma 4.5:gfis a point in the image of define the
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the boundaryX”. This condition ensures that there is no “gap” in the imagaGst,

so the image “wraps” completely around

Figure 6.7: A non-essential component

Now suppose one duplicat€ait and perturbs the payoff for player Il such that the
original regions inX whereOut is a best reply is divided as depicted in Figure 6.8.
This yields two vertices in the dual construction that argoagted with the outside
option. Hence, by looking at equivalent games in whalt is duplicated, one obtains
“richer” divisions of C2 into best reply regions. For example, if one makes strategy 2
of player | the best reply t@ut;, and strategy 1 the best reply @ut, one obtains a
perturbation of the equivalent game that has no equilibrilmse to the component.
The associated labelled dual of this perturbed equivalantegis illustrated in Fig-
ure 6.8. Since there is no completely labelled point in thal dfi the outside option,
there is no equilibrium that involveSut, and hence no equilibrium close to it. The

associated payoff perturbations are given in (6.2).

45 0,-23 2-1 00 €0
0,—15 8-1 -2,-21 €0 O¢ (6.2)
2,-11 13 31 02 0,0

The method of duplicatin@ut is the underlying idea in the proof of Theorem 6.7.
The idea is to divide the dual of the component into labelkgians such that there
exists no completely labelled point, as in Theorem 6.1. Owma thas to show that
such a division can in fact be created by duplicatihg and perturbing the payoffs in

the duplicates oDut. DuplicatingOut and perturbing the payoffs for player Il in the
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Figure 6.8: Duplication of the outside option

duplicates refines the triangulation®f* into simplicesv®. The difference to Theo-
rem 6.1 is that the new vertices are close to the vertex reptiegOut. Perturbing the
payoffs for player I then divides the simplices in the refitegngulation into labelled
regions. Unlike the proof of Theorem 6.1, this is achieve@ssigning payoffs to the

vertices, as opposed to assigning labels.

Consider an outside option game with a generic outside ogto player Il. It
is first shown that the magnitude of the perturbations foyed in the outside op-
tion does not matter when analysing the essentiality of aside option equilibrium
component. The following lemma shows first that the comioinak division ofx*A
into simplices and labelled regions is invariant under plying payoff columns of
player | with some positive constant. Twiox n games are referred to aesmbinatori-
ally equivalentf both yield combinatorially equivalent triangulatiop$”| and if the

divisions of the simplices in the triangulation are comianally the same.

Lemma 6.4 Let G be an mx n bimatrix game represented by payoff matrices A and
B. LetG be represented b= [A1Aq, ..., AnAn] and B, wheré\j > 0, for j=1...,n.

Then G and5 are combinatorially equivalent.

Proof. LetA1 > 0 andA; =0 for j # 1. Let(x,y) be a Nash equilibrium oB. Define

equilibrium of G. Continuing in the same fashion with the otigryields the desired

result. O

Lemma 6.4 shows that the combinatorial equilibrium prapsrof a game are un-

affected if a column ofA or a row ofB is multiplied by some positive constant. One
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just has to adjust the weights on the strategies to accouthidéamultiplication of the
columns and rows. It also shows that the combinatorial siraof| X~ | and the com-
binatorial divisionX’" is invariant under such operations. As a corollary one obtai

the following result.

Corollary 6.5 Let G be a game with outside option for player Il in which théstle
option equilibrium component has index zero. Gebe obtained from G by copying
Out a finite number of times. If there exists a perturbatiorGoWith small payoff
perturbations for player Il and large payoff perturbatiofts player | in the copies of
Out such that there is no equilibrium that plays a copy of Ottt wositive probability,
then there exists a small perturbation®fsuch that there exists no equilibrium close

to the outside option equilibrium component.

Proof. Without loss of generality it can be assumed that the payoffdayer I in the
outside option are zero. Adding or subtracting some cohstatihe payoff columns
of A does not change the best reply properties. The payoffs &yepll in G can be

described as follows.

A 5

Ar...,A-1 | Aouwy -+ Aoug
|

Let (y'",y°") be a strategy profile that makes player | indifferent betweest reply

strategiesy, ..., ix. Now multiply the column#\oy; by somee > 0, and consider the

n t
strategy(%./ yoit/s), wherec = 3 ; y'jn + 3 @ Then strategies, ..., ik are still the
best reply strategies. Thus one can easily switch from lpag&urbations to small

perturbations for player | in copies @fut, and vice versa, without changing the equi-

librium properties of the game. ]

The proof of Theorem 6.7 below uses a similar argument as inlfaoy 6.5 for the
payoff perturbations for player Il in the copies@tit. In the proof of Theorem 6.7 one
divides the dual of an outside option into smaller simpliog@dding vertices. These
vertices correspond to added strategies for player 1l. dHewing lemma shows that

one can obtain a combinatorially equivalent refinement shahthe added vertices are
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close to the vertex representi@ut. Any two vertices that are close have payoffs to
player Il that are close. This follows from Lemma 2.2. Twahgulations with vertices
Vkek andvy are calledcombinatorially equivalenif the affine linear extension of
g(Vk) = Vi, k € K, on the vertices is an isomorphism that maps simplices oplgies

and faces on faces.

Lemma 6.6 Let C® be the dual of an outside option equilibrium component, and |
vout denote the vertex in € representing Out. Consider an iterated refinement of C
with no vertices added to the boundary of C Then there exists a combinatorially

equivalent iterated refinement in which the added verticescbse to w;.

Proof. The proof is by induction on the number of added vertices.eNbatC” is

star-shaped (see page 111). So the case is clear for justidad aertex.

Now suppose one has an iterated refinement witldded vertices. Consider the
refinement that is obtained by adding the fikst 1 vertices. For this refinement, there
exists a combinatorially equivalent refinement wkth 1 vertices close t@g,;. The
vertex added last in the iterated refinement lies in some Isknp this refinement
(which might not be unique, in case it lies on some face). Shigplex corresponds
to a simplex in the refinement where all vertices are closestp Hence, one can
add a vertex close taoyt to thek — 1 other vertices close tapt in order to obtain a

combinatorially equivalent iterated refinement. ]

The following theorem is the game theoretic equivalent a#drem 6.1. The index
is given by a division of the boundary into labelled regiotighe index is zero, this
division can be extended to a division®f* such that no point it is completely
labelled. As in the proof of Theorem 4.6, one then has to aucfmu the restriction
imposed by the game theoretic context. In particular, osgdahow that this division
can be achieved by perturbing an equivalent game in wbighis duplicated a finite

number of times.

Theorem 6.7 Let C be an outside option equilibrium component in a geneuiside

option game. Then C is hyperessential if and only@)I+ O.

Proof. Without loss of generality assume that all payoffs for playare positive and

that the payoffs in the columns éfadd up to 1, i.e|A;| = 1 (this can be achieved by
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first adding a suitable constant to each column and themsgaee Section 3.3). Let

I (C) = 0, so the dual payoff mappin has degree zero. Instead of considering

ocs
the dual payoff mappinQ@CA, it is more convenient to consider the payoff mapping
f and its restrictionf yc» to the boundaryC*. Note thatf~ is simply Id" o f. In
particular, the image of@CA completes a cycle around if and only if the image of

f‘acA completes a cycle around. Therefore, the mappingaCA has also degree 0.

It follows that f‘acA is homotopic to some constant magsee e.g. Bredon (1994,
II, Corollary 16.5 and V, Lemma 11.13)), where the consta# bn the boundary of
A™ 1 First the mapping can be retracted to the boundam:Bf ! (see Lemma 4.5
and p. 112), and can then be deformed into a constant map ddhd. Let this
homotopy be denoted s Soh: aC” x [0,1] — A™ 1, andv, does not lie in the

image ofh.

Figure 6.9: A homotopy for outside option equilibrium compats

As in the proof of Theorem 6.1, the mappirﬁ‘gCA extends to a mapping d@*
such that no point is mapped en. This can be seen as follows. The homotopy is
constant o{dC*, 1). This yieldsh: (6C* x [0,1]) /.1y — A1, wheredC” x 1 is
identified with a single point. The dual compon@tt is star-shaped (see page 111),
s0(aC> x [0, 1]) /~(.,1) is homeomorphic t€2. This gives a mapping, also denoted as
h, that map<” — A™ 1 such thaw, does not lie in the image df. The pre-images
of the labelled regions il\™ 1 now divideC” into labelled regions such that no point
in C2 is completely labelled. This is depicted in Figure 6.9 fae tomponent in the

example (6.1).

One now has to show that such a division can be achieved in & gagoretic

context as a division into best reply regions by refining ti@ngulation ofC® and
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choosing the payoffs for player | accordingly. For this,rathie proof of Theorem 4.6,
choose an iterated pseudo refinement of the triangulatid®othat allows one to
add vertices to the boundary 6. Now assign a payoffi(v) to each vertex in the
iterated pseudo refinement. Then the paybffg for vertices added to the boundary
are consistent with the payoffs for the original verticestomboundary o€2. If the
simplices in the refinement have a sufficiently small diaméte image of a simplex
is a simplex inA™ 1 that does not contain,.. This is ensured by being uniformly

continuous.

Now delete all vertices that were added to the boundar{C6f. According to
Lemma 4.4, this does not create completely labelled poamis, by Lemma 4.2, yields
a regular triangulation. This results in a division@t as depicted in Figure 6.10 for

the component in the example (6.1).

Figure 6.10: An approximation of the homotopy

So far, one has created an extended game in which strateg@ayer Il are added
(see Lemma 3.12). Each added vertex corresponds to an auldesyg. The corre-
sponding payoffs to player Il in the added strategies arerdenhed by Lemma 2.2, and
those for player | are given by the value of the homotopy awtdréex that represents
the added strategy. The extended game is such that n@tiieror any of the added

strategies are played in an equilibrium.

It remains to show that a similar game, 1.e. one that yieldsalbinatorially equiv-
alent division ofc” into simplices and best reply regions, can be created agurped
equivalent game. This is achieved by duplicatigt and perturbing the payoffs in the

copies ofOult.
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Let ek be the set of vertices added, whe€eis an ordered set, reflecting the
order in which the vertices were added. From the above amigin each vertexy
has a payofh(vc). Lemma 6.6 shows that there exists a combinatorially etgriva
refinement of£” in which all added vertices lie close ., the vertex representing
Outin C~. Let the set of the vertices in this refinement be denoted as wherev

is close tovoy: and corresponds .

Now assign the payoffa(v) to vertexv,. This yields a division o2 into best
reply regions that is combinatorially equivalent to thegoral division. In particular,
it does not contain a completely labelled point. This is degal in Figure 6.11 for the

componentin (6.1).

Now every vertex inX”| that is close to the vertevo, has payoffs to player II
that are close to the payoffs Gt to player Il if the regular triangulation is translated
into an extended payoff matrB (see Lemma 2.2). S® consists o8 and perturbed
copies ofOut. As for the payoffsh(v,) for player I, Corollary 6.5 shows that one can
make them arbitrarily small without creating equilibriaemte, one created a game
that is a perturbed equivalent game in which the outsideonps duplicated a finite

number of times. O

Figure 6.11: Adding vertices close Yo

In the same way as an outside option equilibrium componethtindlex zero might
be essential (i.e. having at least(R2 > 0) equilibria for every small perturbation), an
index k outside option equilibrium component might hake+ 21 (I > 0) equilibria
for every small perturbation of the original game. Usingdial construction, such an

example would be easy to create (a 8 game would be sufficient for that). Allowing
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perturbations of equivalent games, one gets, similarlylteofem 6.3, the following

result.

Proposition 6.8 Let C be an outside option equilibrium component with ind&X
k. Then there exists an equivalent game and a perturbatidheoequivalent game

such that there are onlik| equilibria close to C and whose indices add up to k.

Proof. The proof follows the same lines as the one of Theorem 6.7jsatite game
theoretic equivalent of Theorem 6.3. If the index of a comguris|(C) = k, then
there exists a homotopy between the payoff mappf“;@ and a mapping that maps
an (m— 2)-ball exactlyk times around itself. This homotopy is used to div@le into
labelled regions such that there exist exadtl\completely labelled points 6% with
local degree sighk (as in the proof of Theorem 6.3). Then this division@f can be
imitated by duplicatingut a sufficient number of times and choosing the payoffs for

player | accordingly, just as in the proof of Theorem 6.7. ]

Section 5.3 above discusses the limits of the dualisatioinods with respect to
general components of equilibria. Problems arise from #oe that, in general, de-
generacies occur in the payoff space of both players. Toexrethe above method is

insufficient to prove that general index zero componentactbe hyperessential.

In a parallel and independent work, Govindan and Wilson 2Ghow that an
equilibrium component has non-zero index if and only if ihigeressential. Their
results are based on results from fixed point theory and ajgpbyeneralN-player

games, and their proof uses highly technical arguments.

In fixed point theory, a fixed point component of a mappfng called essential if
every mapping close td has fixed points close to the component (Fort (1950)). It is
a well-known result in fixed point theory that if the fixed pbindex of a component
is zero, and if the underlying space is “well behaved”, thHegre exists a fixed point
free mapping close to the original mapping (O’Neill (1953 game theory, the Nash
equilibria can be described as the fixed points of a suitalalppimg. A perturbation
of the game yields a mapping for the perturbed game that sedtwthe original fixed
point mapping. The Hauk and Hurkens example and the examgdepted in the next
section, however, show that just considering perturbatafrthe original game is not

sufficient to obtain equivalence between strategic andlégpoal essentiality.
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The index of a component is the same in all equivalent gamesif@an and Wil-
son (1997a, Theorem 2; 2004, Theorem A.3)). By consideripgvalent games, one
increases the space of possible perturbations. Thus tlee spanappings that can be
obtained from perturbing equivalent games increases iew&on. This is the under-
lying idea in the proof of Govindan and Wilson for general gaments of equilibria.
The authors show that, if allowing equivalent games, thesphgames, i.e. the space
of perturbed equivalent games, is rich enough to obtainvatgnce between topolog-

ical and game theoretic essentiality.

The authors start from a map that has no fixed points closeeadmponent.
Such a map exists after O’Neill (1953). From this map the engticreate a perturbed
equivalent game that is such that the Nash map for this gamethe mapping that
describes the Nash equilibria of the game as fixed pointsesdpe properties of the
original fixed point free map. That is, the Nash map does ne¢ lfiaed points close
to the component. Thus a component is hyperessential if ahlydifat has non-zero

index.

In essence, the key idea of the approach by Govindan and Walsd of the ap-
proach presented here is the same. One has the existencepinggwith certain
properties. For outside option components, the mapping doemap a point in the
dual of the component to the completely labelled point. @areng the parallels with
the Index Lemma, the index reflects a combinatorial propartiie component. In the
case of Govindan and Wilson, one has a fixed point free mappimgindex describes
a topological property of the component. By adding redubhdamategies it is shown

that the these mappings can arise as mappings from a pettegoe/alent game.

Remark 6.9 The combinatorial nature of the approach presented abogeich that,
by duplicating Out, one createme equivalent game such that, for al> 0, there
exists a perturbation of that game smaller thathat has no nearby equilibria. In
particular, the equivalent game is independent.of his is not the case for the equiv-
alent game constructed by Govindan and Wilson (2004), wthereequivalent game
depends orz. Typically, one has to add more and more redundant strasegee

becomes smaller.
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6.3 Restricted Duplication of Strategies and Index Zero:

An Example

Hauk and Hurkens (2002) show the non-hyperessentialithefcomponent in the
game (6.1) by adding a convex combination of strategies asvastrategy for player I,

i.e. not by duplicating@ut. The added strategy is a convex combination of strategies 1
and 2 (for details see Hauk and Hurkens (2002)).

This section provides an example of an index zero outsidemptuilibrium com-
ponent that is not only essential, but is essential in alivadent games that do not
contain a duplicate oDut. It shows that duplicatin@ut is not only sufficient, but in
cases also necessary to create an equivalent game in whiobeanzero outside op-
tion equilibrium component is not essential. For generdéinzero equilibrium com-
ponents, this suggests that it is necessary to add redustlateégies for both players

in order to create an equivalent game in which the composentit essential.

The example is constructed as follows. Consider the fohgvgame.

o |H®? 0 09
G’ = , (6.3)
0 H- 0,9
with
1313 7,12 114
, 10,10 00 ~
H2 = , H™ =127 88 21]. (6.4)
0,0 1010

141 12 11

GameG? is the same as the game in (1.18) in Section 1.4. The2ZyameH? in

the upper left part irG° is a 2x 2 coordination game, and thex33 gameH ™~ in the
lower middle part ofz° is a game where the mixed strategy equilibrium in which both
players mix uniformly between their first two strategiedgsethe highest equilibrium
payoff, which is 10 to both players (see also (1.13) and (fd6further discussion).

In Section 1.4, it is shown that the outside option equilibricomponent of the game
GY has index 0. The only equilibria that are not “cut off” by thetside option are the
pure strategy equilibria ifl? and the mixed strategy equilibrium K~ with payoff

10 for both players. The two former ones have indel the latter one has index1.

Hence, the outside option equilibrium component has index 0
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Lemma 6.10 The outside option equilibrium componer(iG®) of the game in (6.3) is
essential in all equivalent games that do not contain a aapdi of Out. In particular,

the component is essential.

Proof. Consider the games? andG 1 as below.
0,9 0,9
| L | H
S G? = : (6.5)
0,0 49 0,0

Gl= H
09

Then the outside option equilibrium component§&handG 1 are both essential and
hyperessential. The gamé&&€ andG ! are variants of the game? as in (1.15) and
Gl asin (1.17). By the same reasoning as in Section 1.4, it ig ®aserify that
C(G?) has index +2, and th&(G1) has index—1, whereC(-) denotes the outside
option equilibrium component of a game. Thus b6(it:2) andC(G 1) are essential
and hyperessential. Now consider the equivalent game te@rsG, in which one

adds convex combinations for player I. Then every such gaméthe form

H¥2 00 09 |
£9 <9 !
=] <9 <9 : |, (6.6)

<9 £9 09
| 0.0 H-

where the entry£ 9’ means that at least one payoff for player Il in that partha t
game is larger than 9, ang’9’ means that all the payoffs for player Il in that part of
the matrix are less than or equal to 9. Note that the payoff$fiA andH~ are such
that a convex combination does not allow entries larger thanboth parts of a row,
i.e. in both theH 2 and theH ~ part of a convex combination of original columns. It is
now sufficient to consider only payoff perturbations foryg@al in the outside option,
since all other payoffs of the gan@&® are generic. Let the perturbation vectors of
player I's payoffs in the outside option be denotectbye™ ande! for perturbations in
the upper, middle and lower part of the game (6.6). Withoss laf generality it can be
assumed that > 0, €™ > 0 ande' > 0. It can also be assumed that the perturbation
is generic, i.e. there is a unique maximal perturbation. peap there were two (or
more) maximal perturbations. If one is among #Yeand one among thq‘, then

player | mixing uniformly between the strategies with theximaal perturbation and
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player Il playingOut is an equilibrium clos€(GP). All other cases of non-generic

perturbations are covered by the three cases below.

1)

2)

The maximal perturbation is among te8. In this case, player | playing the
strategy with that maximal perturbation and player Il phay©ut is an equilib-

rium close taC(GP).

The maximal perturbation is among téfe Then consider the game consisting
of the first two strategies of player Il ar@ut and the strategies as in (6.6) for

player I, with payoffs and perturbations as above, i.e. icans

- H+2 £29 ]
£9 :
51,9
- €9
<9
0,0

T is an perturbed equivalent form of the ga@e? in (6.5). SinceC(é*l) is
hyperessential, there exists a strategy pay) that is an equilibrium close to the
outside option equilibrium compone@tG—1). Itis now shown that this strategy
pair, if interpreted as a strategy pair of the gafeis also an equilibrium close
to C(G®). First consider player |. By construction, player | has nceimtive to
deviate from the strategy, seen as a strategy of the ga® as in (6.6), if

player Il plays strategy as a strategy of the gan®?.

It remains to show that player Il has no incentive to deviabenfy, seen as a
strategy for the gam&° via the mappingy1, Y2, yout) — (Y1,Y2,0,0,0,You)-
The strategy profil is such that the first two strategies of player Il must yield
a payoff of less than or equal to 9, where at least one must gigayoff of 9.
Otherwise, player Il would pla@ut only, and this cannot be an equilibrium for
the gamel due to the maximal perturbati(ah But, by the choice of the payoffs
in the gamedH 1?2 andH~, this means that the other strategies of player II's
(except forOut) cannot be best replies againsti.e. they all yield a payoff
strictly less than 9. This is because either the first styatdgplayer | or the

second strategy of player | must have a weight of aroi%dahis implies that
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the remaining weight is not sufficient to yield an expectegbfidarger than 9 for
player Il in the other strategies (except fr@ut). Thus(x,y) is an equilibrium

of the gameGP, which is also close t€(G?).

3) The maximal perturbation is among tkle Then consider the game consisting
of the third, fourth and fifth strategy of player Il a@lt and the strategies as in

GO for player I, with payoffs and perturbations as above, iogsider

— 8%79 -

T=|<9 ' |, (6.8)

9

€
£9
-

Then the analysis is analogous to the one above. The Jdnsea perturbed
equivalent form of the gam®? in (6.5). The componer@(G?) is both essential
and hyperessential. Thus there exists an equilibriung) of T’ that is close
to C(G?). In the same way as above it can be verified thay) is also an

equilibrium of the gam&? that is close t€(GP).

Thus the component is essential in all equivalent gameseofaim (6.6). It remains

to show that it is also essential when adding convex comioinsifor player I, but no
copies ofOut. For this, extend the gameas in (6.7) by three columns of zeros, and
the gamel’ as in (6.8) by two columns of zeros. Then the index of the camepts

in these modified games stays invariant, and the componemtsim hyperessential.
Now consider the gamé? as in (6.6) and add convex combinations of strategies for
player II, but no duplicate oDut. If the maximal perturbation in the outside option
lies in the upper part, the added convex combinations camaoslated into convex
combinations of the modified ganieby assigning the weight on columng435 to the
added columns of zerosn The component in the modified garhes hyperessential,
and one shows that the equilibrium close to the componetiemtodified gaméd is
also an equilibrium of the equivalent game of (6.6). For mreadi perturbations in
the lower part of the game one does the same analysis with tified gamesS by
treating the weights on columns2las weights on the two added columns of zeros. If

the maximal perturbation lies in the middle part, the cagavil. ]
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Index of Symbols

Symbol

1

Description

vector inR¥ with entry 1 in every row

the standardm— 1)-simplex

standard m— 1)-simplex with canonical division
simplicial division of the standar@in— 1)-simplex
division of | A™1| into labelled regions
Sperner matrix

artificial payoff matrix

payoff matrixes for player | and Il

outside option equilibrium component

dual of a component of equilibria

Sperner mapping fromA™ 1| to AM-1

payoff mapping

dual payoff mapping

best reply polyhedron

the index for equilibria as defined by Shapley
mapping identifying<” with A™1

set of pure strategies of player | and Il
projection ofL(-) onl

projection ofL(-) onJ

labelling function for points irX andY

lifting of w € V" into v**

set of L-H paths irX x Y with missing labek
the set of L-H paths ih(*A with missing labek

best reply polytope
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15
16
69
65
71
71
46
15
32,110
111
70
85
86
18
25
86
15
16
16
16
53
23
51
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polar of the best reply polytope

simplicial surface of the polar polytope
labelled surface of the polar polytope
projection ofws € v on the best reply facé®™”
k-dimensional real space

support of mixed strategy

(m— 1)-simplex in|X*|

best reply face o¥”

completely labelled point ilA™ 1 and X4

set of vertices irX andY

a point inv®

the simplex containingys in X*A

mixed strategy spaces of player | and Il
enlarged strategy spaces spanneXIgfy) and O
best reply regions iX andY

unplayed strategy faces ®fandY

the dual space of

dual construction

labelled dual construction
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49
49
48
15
16
41
a7
69, 86
17
46
56
15
23
16
16
41
41
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