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1 Introduction

The need to measure the distance between two systems is basic in control theory. Indeed, it arises
naturally when one talks of approximating a system with another, for instance in the context of
the important engineering problem of model reduction. In robust control theory, one investigates
the uncertainties that can be tolerated in a system without loss of characteristics such as stability
under the application of feedback.

In the classical Kalman finite dimensional state space theory, the gap metric (denoted through-
out this note by δ ) serves as a tool for the qualitative analysis and design of feedback systems
(see for instance, Georgiou and Smith [4], Zames and El-Sakkary [13]). It is the weakest topol-
ogy in which closed loop stability is a robust property, or in which the closed loop system varies
continuously as a function of the open loop system.
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In the behavioral setting of Willems (see Polderman and Willems [7] for an elementary intro-
duction), a notion of distance was introduced in [10]. Here the set of controllable (distributional)
behaviors (L q

c ) was equipped with a metric d such that (L
q
c ,d) is a metric space. In the case of

state space systems, that is systems described by

Σ :

{
dx
dt (t) = Ax(t)+Bu(t),
y(t) = Cx(t)+Du(t),

this behavioral distance d between two minimal stable systems of state space dimension n, num-
ber of inputs equal to m and number of outputs equal to p, was expressed in terms of the gap
between a natural (closed) subspace of H2(C+,Cm+p) associated with the linear system, namely:

Ge(Σ) =

[
I

MG

]
H2(C+,Cm)+

[
0

C(·I−A)−1

]
C

n,

where MG : H2(C+,Cm) → H2(C+,Cp) denotes the multiplication map by the transfer function
G(·) = D+C(·I−A)−1B ∈ H∞(C+,Cp×m). This subspace Ge(Σ) differs from the classical graph
of the system by [

0
C(·I−A)−1

]
C

n. (1)

The presence of such an extra subspace is natural, since in the behavioral framework, as opposed
to the traditional transfer function set up, instead of the initial conditions being zero, one expects
a term in the graph of the system which reflects all possible initial conditions: (1) is precisely
that, since for given u ∈ L2((0,∞),Cp) and x0 ∈ Cn, the Laplace transform of the output with this
input u and the initial state x0 is given by G(s)û(s)+C(sI−A)−1x0.

The question of whether these two metrics, namely the behavioral distance d and the gap
metric δ , are equivalent, is a natural one. In this note we prove that in fact the topology induced
by the gap metric is the same as the topology induced by the behavioral metric when restricted
to the class of stable state space systems with a fixed MacMillan degree.

The outline of this article is as follows. In §2, we recall a few facts about the gap metric. In the
next section we prove that the topology induced by the behavioral distance is stronger/finer than
that induced by the gap metric. Subsequently in §4, we prove the converse result: using a special
realization of the transfer function obtained via an extremal factorization of the Hankel operator,
we show that the topology induced by the behavioral distance is weaker/coarser than that induced
by the gap metric. The results from §3 and §4 are summarized in the final §5, where we state our
main theorem concerning the equivalence of the gap metric and the behavioral distance.

2 Preliminaries

In this section we quickly recall the definitions of the behavioral distance d and the gap metric δ .

Behaviors. We will use the following standard notation: D(R) denotes the space of test func-
tions, that is the set of compactly supported infinitely many times differentiable functions; D ′(R)
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denotes the space of distributions on R; L2(R,Cq) denotes the space of Cq-valued square inte-
grable functions on R. Consider the polynomial matrix

R =




r11 . . . r1q
...

...
rg1 . . . rgq


 ∈ C[ξ ]g×q.

The polynomial matrix R gives rise to a map DR : D ′(R)q → D ′(R)g, which acts as follows:

DR




w1
...

wq


=




∑q
k=1 r1k

( d
dt

)
wk

...
∑q

k=1 rgk
( d

dt

)
wk


 .

The behavior described by a mixed representation given by (R,M), where R ∈ C[ξ ]g×q and
M ∈ C[ξ ]g×l is defined to be

B(R,M) =
{

w ∈ D
′(R)q | there exists l ∈ D

′(R)l such that DRw = DMl
}

.

By a behavior we then mean a behavior described by a mixed representation given by (R,M),
where R and M are some polynomial matrices in C[ξ ]g×q and C[ξ ]g×l, respectively. The set of
all behaviors in D ′(R)q that are given by a mixed representation given by some pair (R,M) will
be denoted by L q.

A behavior B is said to be controllable if for every w1,w2 ∈ B and every pair of open sets
O1,O2 in R with disjoint closures (O1 ∩O2 = /0), there exists a w ∈ B such that w|O1 = w1|O1

and w|O2 = w2|O2 . The subset of L q comprising controllable behaviors will be denoted by L
q

c .

Distance between behaviors. Given a behavior B, let B
0 := {w ∈ B∩D(R)q}. If A is a subset

of L2(R,Cq), then we denote the distance of a point w ∈ L2(R,Cq) to A by dist(w,A):

dist(w,A) = inf{‖w− w̃‖L2 | w̃ ∈ A} .

If A is a subset of L2(R,Cq), then SA denotes the set {w ∈ A | ‖w‖L2 = 1}. Define

δ (B1,B2) = supw1∈S
B

0
1

dist(w1,B
0
2), (2)

d(B1,B2) = max{δ (B1,B2),δ (B2,B1)}. (3)

It is clear that if B
0
1 6= 0, then δ (B1,0) = 0. However, (2) has no meaning if B

0
1 = 0. In this

case we simply set δ (0,B2) = 0. The function d is called the behavioral distance. In [10], it was
shown that (L

q
c ,d) is a metric space. Also in the case of stable state space systems, it was shown

that the behavioral distance turns out to be equal to the gap between certain natural subspaces
(of the Hardy space H2(C+,Cm+p)) associated with the system. But before we quote this result
from [10], we recall a few more definitions.
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The gap between subspaces of a Hilbert space. Given two closed subspaces V1 and V2 of a
Hilbert space H , one defines the gap, denoted by g, between V1 and V2 as follows:

g(V1,V2) =
∥∥ΠV1 −ΠV2

∥∥ ,

ΠVi : H → H denote the projections onto Vi, i ∈ {1,2}. It can be verified that g makes the set
of all closed linear subspaces of a Hilbert space into a (complete) metric space. Furthermore, it
can also be shown that

g(V1,V2) = max{~g(V1,V2),~g(V2,V1)} ,

where
~g(V1,V2) =

∥∥(I −ΠV2)ΠV1

∥∥= sup
v∈V1, ‖v‖=1

dist(v,V2)

is the directed-gap. For more details about the gap metric, we refer the reader to Kato [6] and
the references therein.

Behavioral distance between state space systems. We denote the open right half complex plane
by C+, that is, C+ = {s ∈ C | Re(s) > 0}. If (E ,‖ · ‖E ) is a Banach space, then

H∞(C+,E ) =

{
f : C+ → E

∣∣∣∣∣ f is analytic and sup
Re(s)>0

‖ f (s)‖E < ∞

}
.

If (H ,〈·, ·〉H ) is a Hilbert space, then let

H2(C+,H ):=

{
f : C+→ H

∣∣∣∣∣ f is analytic and ‖ f‖H2(C+,H ) = sup
ζ>0

(
1

2π

∫ ∞

−∞
‖ f (ζ + iω)‖2

H dω
)

<∞

}
.

It can be shown that each f ∈ H2(C+,H ), there exists a unique f̃ ∈ L2(iR,H ) such that

lim
ζ↓0

f (ζ + iω) = f̃ (iω) for almost all ω ∈ R and lim
ζ↓0

‖ f (ζ + ·)− f̃ (·)‖L2(iR,H ) = 0.

The Hardy space H2(C+,H ) is a Hilbert space with the inner product defined by

〈 f ,g〉H2(C+,H ) =
1

2π

∫ ∞

−∞
〈 f̃ (iω), g̃(iω)〉H dω.

Given a linear system

Σ :

{
dx
dt (t) = Ax(t)+Bu(t)
y(t) = Cx(t)+Du(t)

where A∈Cn×n, σ(A)⊂{s∈C |Re(s) < 0}, B ∈Cn×m, C ∈Cp×n and D ∈Cp×m, let its transfer
function be denoted by G:

G(s) = D+C(sI−A)−1B, s ∈ C+.
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We define the graph of the system Σ by

G (Σ) =

{[
I

MG

]
u

∣∣∣∣ u ∈ H2(C+,Cm)

}
,

where MG : H2(C+,Cm) → H2(C+,Cp) denotes the multiplication map by G ∈ H∞(C+,Cp×m):

(MGu)(s) = G(s)u(s), s ∈ C+, for u ∈ H2(C+,Cm).

This is a closed subspace of H2(C+,Cm+p). The extended graph of the system Σ is defined as
follows:

Ge(Σ) =

{[
I

MG

]
u+

[
0

C(sI−A)−1

]
x

∣∣∣∣ u ∈ H2(C+,Cm), x ∈ C
n
}

.

It is easy to see that this is a closed subspace of H2(C+,Cm+p). We recall the following from
[10] (see Theorem 7 on page 1221):

Theorem 2.1 Let Σ1 and Σ2 be the following two stable, minimal state space systems with state
space dimension n, number of inputs equal to m and number of outputs equal to p:

Σ1 :

{ dx1
dt (t) = A1x1(t)+B1u1(t)
y1(t) = C1x1(t)+D1u1(t)

and Σ2 :

{ dx2
dt (t) = A2x2(t)+B2u2(t)
y2(t) = C2x2(t)+D2u2(t)

.

Let B1 and B2 denote the behaviors described by mixed representation given by (R1,M1),
(R2,M2), where

Rk =

[
I −Dk

0 Bk

]
and Mk =

[
Ck

ξ I −Ak

]
, k ∈ {1,2}.

Then
d(B1,B2) = g(Ge(Σ1),Ge(Σ2)).

The classical gap between systems and the set S. In the classical state space theory, the gap
metric between two systems of the type in the above Theorem 2.1 is defined to be the gap between
the corresponding graphs, that is

δ (Σ1,Σ2) = g(G (Σ1),G (Σ2)).

Let S denote the set of stable, minimal state space systems Σ with state space dimension n,
number of inputs equal to m and number of outputs equal to p. It is known that in the set S,
convergence in the gap metric δ is the same as convergence in H∞(C+,Cp×m) (see for instance
Georgiou and Smith [5]):

Theorem 2.2 If (Σk)k≥1 is a sequence in S, Σ ∈ S and then the following are equivalent:

1. g(G (Σk),G (Σ)) → 0 as k → ∞,

2. ‖Gk −G‖H∞(C+,Cp×m) → 0 as k → ∞.

In this note we prove that d and δ are equivalent on S.
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3 The topology induced by the behavioral distance is finer
than that induced by the gap metric on the set S.

We prove that the topology induced by the behavioral distance is finer than that induced by the
gap metric on the set S by appealing to Theorem 2.2: we show in Theorem 3.3 that if the extended
graphs converge in the gap topology of subspaces, then this implies that the transfer functions
converge in the H∞ norm.

We begin by proving two preliminary lemmas which will be used in proving Theorem 2.2: in
Lemma 3.1, we express the gap between two extended graphs as the gap between the graphs of
multiplication operators on the orthogonal complement of the range of the observability map in
the frequency domain, and in Lemma 3.2, we express the orthogonal complement of the range
of the observability map as the range of a multiplication map by an inner function.

We first fix some notation: for K ∈ H∞(C+,Ck2×k1), the linear map MK : H2(C+,Ck1
+ ) →

H2(C+,Ck2) denotes the analytic Toeplitz operator of multiplication by K:

MK : f 7→ K f ∈ H2(C+,Ck2) for f ∈ H2(C+,Ck1).

The adjoint operator M∗
K : H2(C+,Ck2) → H2(C+,Ck1) is then given by

M∗
K : f 7→ PH2(C+,Ck1)(K

∗ f ) for f ∈ H2(C+,Ck2),

where K∗ is the matrix-valued function

K∗(s) = K(−s)∗,

and PH2(C+,Ck1) : L2(iR,Ck1) → H2(C+,Ck1) denotes the projection onto the closed subspace

H2(C+,Ck1) of L2(iR,Ck1).
Let C : Cn → L2([0,∞),Cp) denote the observability map

x 7→Ce·Ax, x ∈ C
n,

(where t 7→ e·A is the (stable) strongly continuous semigroup with infinitesimal generator A) and
Ĉ = F ◦C with F equal to the Fourier transform, so

Ĉ : x 7→C(sI−A)−1x, x ∈ C
n.

Lemma 3.1 If Σk,Σ ∈ S, then

g(Ge(Σk),Ge(Σ)) = g

([
−M∗

Gk

I

]
(ran Ĉk)

⊥,

[
−M∗

G
I

]
(ran Ĉ )⊥

)
.

Proof Using Theorem 2.9 on page 201 of Kato [6], we know that

g(Ge(Σk),Ge(Σ)) = g((Ge(Σk))
⊥,(Ge(Σ))⊥).
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So the claim would be proved if we show that for any Σ0 ∈ S,

(Ge(Σ0))
⊥ =

[
−M∗

G0

I

]
(ran Ĉ0)

⊥.

If

[
u0

y0

]
∈ (Ge(Σ0))

⊥, then for all u ∈ H2(C+,Cm) and all x ∈ Cn, there holds that

0 = 〈u0,u〉+ 〈y0,MG0u+ Ĉ0x〉

= 〈u0,u〉+ 〈y0,MG0u〉+ 〈y0, Ĉ0x〉

= 〈u0,u〉+ 〈M∗
G0

y0,u〉+ 〈y0, Ĉ0x〉

= 〈u0 +M∗
G0

y0,u〉+ 〈y0, Ĉ0x〉. (4)

In particular, with u = 0, we obtain that 〈y0, Ĉ0x〉 = 0 for all x ∈ Cn and so y0 ∈ (ran Ĉ0)
⊥.

From (4), it now follows that since 〈u0 +M∗
G0

y0,u〉 = 0 for all u ∈ H2(C+,Cm), there holds that
u0 +M∗

G0
y0 = 0, that is, u0 = −M∗

G0
y0. Consequently,

[
u0

y0

]
∈

[
−M∗

G0

I

]
(ran Ĉ0)

⊥.

Conversely, if

[
u0
y0

]
∈

[
−M∗

G0

I

]
(ran Ĉ0)

⊥, then y0 ∈ (ran Ĉ0)
⊥ and u0 = −M∗

G0
y0. Let

[
u
y

]
∈ Ge(Σ0), that is y = MG0u+ Ĉ0x for some x ∈ Cn. Then

〈[
u0

y0

]
,

[
u
y

]〉
= 〈u0,u〉+ 〈y0,y〉

= 〈−M∗
G0

y0,u〉+ 〈y0,MG0u+ Ĉ0x〉

= −〈y0,MG0u〉+ 〈y0,MG0u〉+ 〈y0, Ĉ0x〉

= 0,

and so

[
u0

y0

]
∈ (Ge(Σ0))

⊥. This completes the proof.

Lemma 3.2 If Σ ∈ S, then there exists an inner Θ ∈ H∞(C+,Cp×p) and a F ∈ H∞(C+,Cm×p)

such that G = ΘF∗ and (ran Ĉ )⊥ = MΘH2(C+,Cp).

Proof Consider first the scalar case m = p = 1. We assume in addition that the poles of G are all
simple. Then G(s) has a partial fraction representation G(s) = D+ ∑n

j=1
r j

s−p j
with distinct poles

p1, . . . , pn in the right half plane. Then G(s) = D +C(sI −A)−1B is a minimal realization for G
with

C =
[

1 . . . 1
]
, A =




p1
. . .

pn


 , B =




r1
...

rn


 .

7



Let Θ(s) = ∏n
j=1

s+p j
s−p j

be the inner function with poles at p1, . . . , pn. Set F(s) = Θ(s)G(−s).

Then we see that the zeros of Θ(s) cancel out the poles of G(−s) in C+ and hence F ∈ H∞(C+).
Moreover we have the representation G(s) = Θ(s)F(−s) for G.

Note next that

ran Ĉ =

{
c1

s− p1
+ · · ·+

cn

s− pn

∣∣∣∣ c j ∈ C for 1 ≤ j ≤ n

}
.

Thus f ∈ (ran Ĉ )⊥ means that f ⊥ 1
·−p j

, or
∫

iR
1

s+p j
f (s) ds = 0, for j = 1, . . . ,n. Viewing the

integral as a contour integral and using the Residue Theorem, we see that this is equivalent to
f (−p j) = 0 for j = 1, . . . ,n. This in turn amounts to f having a factorization f = Θg with g

analytic on C+. We conclude that (ran Ĉ )⊥ = ΘH2(C+), and the lemma is proved for the scalar
simple-pole case

For the general case, the ideas are the same but it is convenient to use the formalism from [2]
to handle the additional matrix zero-pole structure. Let G(s) = D +C(sI −A)−1B be a minimal
realization for G. As we are assuming that G is stable, σ(A) ⊂ {s ∈ C | Re(s) < 0}. Let Θ(s) be
the p× p-matrix inner function having right pole pair (C,A), i.e., Θ(s) = I −C(sI−A)−1H−1C∗

where H is the unique solution of the Lyapunov equation

HA+A∗H +C∗C = 0 (5)

(see [2, Theorem 6.1.4]). As Θ and G have the same right pole pair (C,A) over C− and Θ(s)−1 =
Θ(−s)∗ is analytic on C−, it follows that G has a factorization G = ΘF ′ with F ′ analytic on C−

(see [2, Proposition 12.1.1] for a precise statement). If we then set F(s) = F ′(−s)∗, we have
G(s) = Θ(s)F(−s)∗ with F ∈ H∞(C+,Cm×p).

By definition ran Ĉ = {C(·I−A)−1x | x ∈ Cn}. Thus f ∈ (ran Ĉ )⊥ means that
∫

iR
(sI +A∗)−1C∗ f (s) ds = 0.

From Theorem 12.3.1 in [2] (using that a C+-null-pole-triple for Θ is (0,0;−A∗,C∗;0)), we see
that this condition is equivalent to f having a factorization as f = Θg with g analytic on C+. We
conclude that (ran Ĉ )⊥ = ΘH2(C+,Cp) as asserted.

Using the results from Lemmas 3.1 and 3.2, we are now ready to prove the following result.

Theorem 3.3 Let (Σk)k≥1 be a sequence of systems in S and let Σ ∈ S. For each k ≥ 1, let Gk

denote the transfer function of Σk and let let G denote the transfer function of Σ.
If

g(Ge(Σk),Ge(Σ)) → 0 as k → ∞, (6)

then
‖Gk −G‖H∞(C+,Cp×m) → 0 as k → ∞. (7)

8



Proof The proof is long and so we have divided it into a sequence of steps.

STEP 1. From Lemma 3.1, it follows that

g(Ge(Σk),Ge(Σ)) = g

([
−M∗

Gk

I

]
(ran Ĉk)

⊥,

[
−M∗

G
I

]
(ran Ĉ )⊥

)
.

Using Lemma 3.2, we have
(ran Ĉk)

⊥ = MΘkH2(C+,Cp),

and so [
−M∗

Gk

I

]
(ran Ĉk)

⊥ =

[
−MFk

MΘk

]
H2(C+,Cp),

where Θk is inner, Gk = ΘkF∗
k , and Fk ∈ H∞(C+,Cm×p). Similarly

[
−M∗

G
I

]
(ran Ĉ )⊥ =

[
−MF

MΘ

]
H2(C+,Cp),

where Θ is inner, G = ΘF∗, and F ∈ H∞(C+,Cm×p). Hence

g(Ge(Σk),Ge(Σ)) = g

([
−MFk

MΘk

]
H2(C+,Cp),

[
−MF

MΘ

]
H2(C+,Cp)

)
. (8)

STEP 2. The projection Πk onto

[
−MFk

MΘk

]
H2(C+,Cp) is given by

Πk =

[
−MFk

MΘk

]
(M∗

Fk
MFk +M∗

Θk
MΘk)

−1 [ −M∗
Fk

M∗
Θk

]

=

[
−MFk

MΘk

]
(I +M∗

Fk
MFk)

−1 [ −M∗
Fk

M∗
Θk

]
, (9)

since Θk is inner. Similarly the projection Π onto

[
−MF

MΘ

]
H2(C+,Cp) is given by

Π =

[
−MF

MΘ

]
(I +M∗

FMF)−1 [ −M∗
F M∗

Θ
]
. (10)

In view of (8), the assumption that g(Ge(Σk),Ge(Σ)) → 0 as k → ∞ means simply that Πk → Π
in operator norm, from which we get, using (9) and (10), that

MFk(I +M∗
Fk

MFk)
−1M∗

Fk
−→ MF(I +M∗

FMF)−1M∗
F (11)

MΘk(I +M∗
Fk

MFk)
−1M∗

Fk
−→ MΘ(I +M∗

FMF)−1M∗
F (12)

MΘk(I +M∗
Fk

MFk)
−1M∗

Θk
−→ MΘ(I +M∗

FMF)−1M∗
Θ (13)

in operator norm as k → ∞.
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STEP 3. If T is a bounded linear operator on a Hilbert space H such that I +T ∗T is invertible,
then I +T T ∗ is also invertible and

(I +T T ∗)−1 = I −T (I +T ∗T )−1T ∗. (14)

This can be verified directly by checking that

(I−T (I +T ∗T )−1T ∗)(I +T T ∗) = I = (I +T T ∗)(I −T (I +T ∗T )−1T ∗).

From (14),
T (I +T ∗T )−1T ∗ = I − (I +T T ∗)−1. (15)

Since (I + T ∗T )T ∗ = T ∗(I + T T ∗), by operating from the left and right by (I + T ∗T )−1 and
(I +T T ∗)−1, respectively, we also obtain the identity

T ∗(I +T T ∗)−1 = (I +T ∗T )−1T ∗. (16)

Applying the identity (15) to (11), we obtain

I − (I +MFkM
∗
Fk

)−1 −→ I − (I +MFM∗
F)−1,

and so
(I +MFkM

∗
Fk

)−1 −→ (I +MFM∗
F)−1

in operator norm as k → ∞. Since the inverse map ·−1 is continuous on the Banach space of
continuous linear operators on a Hilbert space, it follows that

I +MFkM
∗
Fk
−→ I +MFM∗

F (17)

in operator norm as k → ∞.
Applying the identity (16) to (12), we obtain

MΘkM∗
Fk

(I +MFkM
∗
Fk

)−1 −→ MΘM∗
F(I +MFM∗

F)−1 (18)

in operator norm as k → ∞.
Finally, multiplying the sequence (18) by (I +MFkM

∗
Fk

) and using that (17) and together with
the fact that operator multiplication is continuous in the uniform topology, it follows that

MGk = MΘkM∗
Fk
−→ MG = MΘM∗

F

in operator norm as k → ∞. Thus we obtain (7).

Corollary 3.4 The topology induced by the behavioral distance d is finer than that induced by
the gap metric δ on the set S.
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4 The topology induced by the behavioral distance is coarser
than that induced by the gap metric on the set S.

In this section we show that the topology induced by the behavioral distance is also coarser than
that induced by the gap metric on the set S, by showing that if the transfer functions converge in
the H∞ norm, then the extended graphs converge in the gap topology of subspaces.

We show that under some conditions on the chosen realizations,

Gk
H∞(C+,Cp×m)

−→ G implies that Ck−→C (19)

in Theorem 4.4 below, which (together with some other properties of the chosen realizations)
will enable us to prove the convergence of the Θk and Fk constructed in Lemma 3.2. This then
yields convergence of the extended graphs in Theorem 4.5.

The simple example with

Gk(s) =
1

s+1
, Ak = −1, Bk =

1
k
, Ck = k, Dk = 0, and

G(s) =
1

s+1
, A = −1, B = 1, C = 1, D = 0

demonstrates that (19) does not hold with every realization of the transfer function. So one
looks for an appropriate realization for which the implication in (19) holds. We do this by
appealing to Theorem 1.3 (page 303, Staffans [11]), where it is shown that every factorization
of the Hankel operator induces a realization of the transfer function. For our purposes, we will
use the following extreme factorization: Γ = ΓIL2. Recall that if h ∈ L1((0,∞),Cp×m) denotes
the inverse Laplace transform of a transfer function in S, then the associated Hankel operator
Γ ∈ L (L2((0,∞),Cm),L2((0,∞),Cp)) is defined by

(Γu)(t) =
∫ ∞

0
h(t + τ)u(τ)dτ, t ≥ 0, for u ∈ L2((0,∞),Cm).

Let X = ran(Γ∗Γ)
1
2 ⊂ L2((0,∞),Cm), and let PX : L2((0,∞),Cm) → L2((0,∞),Cm) denote the

projection operator onto the closed subspace X . (Note that X is finite dimensional.)

Lemma 4.1 Let (Σk)k≥1 be a sequence of systems in S and let Σ ∈ S. For each k ≥ 1, let Gk

denote the transfer function of Σk and let let G denote the transfer function of Σ. Furthermore,
let Γk and Γ be the Hankel operators associated with the inverse Laplace transforms hk and h of
Gk and G respectively, with Xk = ran(Γ∗

kΓk)
1
2 and X = ran(Γ∗Γ)

1
2 .

If Gk → G in H∞(C+,Cp×m) as k → ∞, then

1. Γk → Γ in the operator norm as k → ∞.

2. PXk → PX in the operator norm as k → ∞.

11



Proof The first part follows for instance from Lemma 8.2.3.c (page 397, Curtain and Zwart [3])
combined with Lemma 8.1.2.a (page 388 of [3]):

‖Γk −Γ‖ ≤ ‖Gk −G‖H∞(C+,Cp×m) → 0 as k → ∞.

That PXk → PX can be seen as follows. Let σ (k)
1 ≥ . . . ≥ σ (k)

n > 0 denote the n Hankel singular
values of Γk, and σ1 ≥ . . . ≥ σn > 0 those of Γ. From the convergence of Γk to Γ in the operator
norm, and the upper semicontinuity of the spectrum in the operator norm (see Theorem 3.1 on
page 208 of Kato [6]), there exists an open interval (a,b) with 0 < a,b < +∞, such that for

n sufficiently large, σ (k)
1 , . . . ,σ (k)

n ∈ (a,b) and σ1, . . . ,σn ∈ (a,b). Let C be a simple, closed,
rectifiable curve that encloses an open set containing (a,b) in its interior. Then we have

PXk
=

1
2πi

∫

C
(λ I − (Γ∗

kΓk)
1
2 )−1dλ .

From the continuity of the resolvent and the square root it follows easily that PXk
→ P.

The closed subspace X induces a decomposition of L2((0,∞),Cm):

L2((0,∞),Cm) = X
⊥⊕X .

Lemma 4.2 Let (Σk)k≥1 be a sequence of systems in S and let Σ ∈ S. For each k ≥ 1, let Gk

denote the transfer function of Σk and let let G denote the transfer function of Σ. Furthermore,
let Γk and Γ be the Hankel operators associated with the inverse Laplace transforms hk and h of
Gk and G respectively, with Xk = ran(Γ∗

kΓk)
1
2 and X = ran(Γ∗Γ)

1
2 .

If Gk → G in H∞(C+,Cp×m) as k → ∞, then there exists a k0 (large enough) such that for
k ≥ k0,

Xk = {Wkx+Ux | x ∈ C
n} (20)

for a unique bounded linear operator Wk : Cn → X ⊥(⊂ L2((0,∞),Cm)), and a fixed unitary
identification map U : C

n → X (⊂ L2((0,∞),Cm)).

Proof We show that for large k, Xk satisfies

Xk+̇X
⊥ = L2((0,∞),Cm). (21)

We begin by showing that
Xk ∩X

⊥ = {0}. (22)

Suppose that x ∈ L2((0,∞),Cm) is in Xk ∩X ⊥ with ‖x‖ = 1. Then we have

‖PXk −PX ‖ = sup
{v | ‖v‖=1}

‖(PXk −PX )v‖ ≥ sup
{x | ‖x‖=1 x∈X ⊥}

‖(PXk −PX )x‖ = ‖x‖ ≥ 1.

Since PXk
→ PX , it follows that there exists a k0 such that k ≥ k0 implies that ‖PXk

−PX ‖ < 1.
So we have proved (22).

12



Next we show that
Xk +X

⊥ = L2((0,∞),Cm). (23)

Suppose that there exists x ∈ L2((0,∞),Cm) with ‖x‖ = 1 and x ⊥ (Xk +X ⊥). In particular,
x ⊥ X ⊥ so x ∈ X . Then also x ⊥ Xk. Thus

‖PXk
−PX ‖ ≥ ‖(PXk

−PX )x‖ = ‖PX x‖ = ‖x‖ = 1.

Hence for k large enough, no such x can exist, and we conclude that Xk + X ⊥ is dense in
L2((0,∞),Cm). Since X ⊥ has finite codimension, every superspace of X ⊥ is closed. So Xk +
X ⊥ is closed and consequently (23) holds. From (22) and (23), we obtain that (21) holds.

Now we show that any subspace Xk satisfying (21) is a graph space, that is, there exists a
unique bounded linear operator Wk ∈L (Cn,L2((0,∞),Cm)) such that (20) holds. Note that from
(21), in particular, given x ∈ X , there exists x⊥ ∈ X ⊥ such that

x+ x⊥ ∈ Xk.

This x⊥ is unique. Indeed if x′⊥ ∈ X ⊥ is also such that x′⊥ + x ∈ Xk, then

(x⊥ + x)− (x′⊥ + x) = x⊥− x′⊥ ∈ Xk ∩X
⊥ = {0}

which implies that x⊥ = x′⊥. Define Mk : X → X ⊥ by Mkx = x⊥. Then it can be checked that
Mk is linear and that

Xk = {Mkx+ x | x ∈ X }.

As a consequence of the closed graph theorem, Mk is bounded. Since X is a finite dimensional
space with dimension n, it follows that there is an isomorphism U : Cn → X . Then Wk defined
by MkU satisfies (20).

Define
Uk = (Wk +U)(I +W ∗

k Wk)
− 1

2 ∈ L (Cn,L2((0,∞),Cm)). (24)

As W ∗
k U = U∗Wk = 0 (since U and Wk have orthogonal ranges) and U ∗U = ICn , we see that

U∗
k Uk = ICn . It is also easily checked that PXk

= UkU∗
k .

Lemma 4.3 Let (Σk)k≥1 be a sequence of systems in S and let Σ ∈ S. For each k ≥ 1, let Gk de-
note the transfer function of Σk and let let G denote the transfer function of Σ. Let the associated
operators Wk,Uk,U be given as in (20).

If Gk → G in H∞(C+,Cp×m) as k → ∞, then

1. Wk → 0 in the operator norm as k → ∞.

2. Uk →U in the operator norm as k → ∞.

Proof Since

PXk = UkU
∗
k = (Wk +U)(I +W ∗

k Wk)
−1(W ∗

k +U∗) −→ PX = UU∗

13



it follows that
PX ⊥PXk

PX ⊥ −→ PX ⊥UU∗PX ⊥ = 0

as k → ∞, where

PX ⊥PXkPX ⊥ = Wk(I +W ∗
k Wk)

−1W ∗
k = −I +(I +WkW

∗
k )−1.

We conclude that (I +WkW ∗
k )→ I and hence Wk → 0. As Uk = (Wk +U)(I +W ∗

k Wk)
−1/2, we see

next that Uk →U in operator norm as k → ∞.

Following Staffans [11] (Theorem 1.3 on page 302), by using the extremal factorization Γk =
ΓkIL2 for the Hankel associated with the inverse Laplace transform of Gk, it can be checked that
Gk has a realization (Ak,Bk,Ck,Dk) with state space Cn, input space Cm and output space Cp

such that:

1. Ak ∈Cn×n is the infinitesimal generator of the semigroup etAk =U∗
k S(t)Uk, for t ≥ 0, where

S(τ) : L2((0,∞),Cm) → L2((0,∞),Cm) denotes the shift operator:

(S(τ) f )(t) = f (t + τ), t ∈ (0,∞), for f ∈ L2((0,∞),Cm).

2. The input map Bk : L2((0,∞),Cm) → Cn is given by Bk = U∗
k .

3. The output map Ck : Cn → L2((0,∞),Cp) is given by Ck = ΓkUk.

4. The input-output map Dk : L2((0,∞),Cm) → L2((0,∞),Cp) is given by

Dku = F
−1
p (Gk(Fmu)), u ∈ L2((0,∞),Cm),

where Fm : L2((0,∞),Cm) → H2(C+,Cm) and F−1
p : H2(C+,Cm) → L2((0,∞),Cp) de-

note the Fourier transformation and the inverse Fourier transformation, respectively.

In light of these remarks, we have the following result:

Theorem 4.4 Let (Σk)k≥1 be a sequence of systems in S and let Σ ∈ S. For each k ≥ 1, let Gk

denote the transfer function of Σk and let Ak,Bk,Ck,Dk be defined as in items 1, 2, 3 and 4 above.
Furthermore, let G denote the transfer function of Σ and let A,B,C,D be defined as in items 1, 2,
3 and 4 above. If Gk → G in H∞(C+,Cp×m) as k → ∞, then

1. Θk → Θ in L∞(iR,Cp×p) as k → ∞,

2. F∗
k → F∗ in L∞(C+,Cp×m) as k → ∞,

where Θk,Fk and Θ,F are constructed as in the proof of Lemma 3.2.
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Proof

STEP 1. In this step we use the Lebesgue dominated convergence theorem to prove that Ak → A
in operator norm as k → ∞.

By the previous Lemma, we know that Uk → U in operator norm as k → ∞. Since etAk =
U∗

k S(t)Uk and etA = U∗S(t)U , we conclude that for each fixed t, etAk → etA, and so we have
pointwise convergence on (0,∞).

As Uk converges to U in operator norm, it is uniformly bounded: there exists a M > 0 such
that ‖Uk‖ = ‖U∗

k ‖ ≤ M for all k. But (S(t))t≥0 is a contraction semigroup and so ‖etAk‖ ≤
M2. Thus the semigroups are uniformly bounded with a uniform bound M2, and so we have a
dominating function M2e−Re(ω)t for each ω ∈ C+: ‖e−ωtetAk‖ ≤ M2e−Re(ω)t ∈ L1(0,∞).

Using the fact that the resolvent of the infinitesimal generator of a strongly continuous semi-
group is the Laplace transform of the semigroup (see for instance Theorem 3.2.9.(i) on page 103
of Staffans [12]), and the Lebesgue dominated convergence theorem, we obtain

(ωI −Ak)
−1 =

∫ ∞

0
e−ωtU∗

k S(t)Ukdt
k→∞
−→

∫ ∞

0
e−ωtU∗S(t)Udt = (ωI −A)−1.

By the continuity of the inverse, we conclude that Ak → A in operator norm as k → ∞.

STEP 2. We have that Γk → Γ and Uk → U as k → ∞ in the respective operator norms. Since
Ck = ΓkUk, it is evident that Ck → C in L (Cn,L2((0,∞),Cp)) as k → ∞. We claim that in fact

Ck → C in L (Cn,W 1,2((0,∞),Cp)) as k → ∞, (25)

where W 1,2((0,∞),Cp) denotes the Sobolev space:

W 1,2((0,∞),Cp) :=

{
f ∈ L2((0,∞),Cp)

∣∣∣∣
d f
dt

∈ L2((0,∞),Cp)

}
,

equipped with the norm

‖ f‖W 1,2 =

(
‖ f‖2

L2
+

∥∥∥∥
d f
dt

∥∥∥∥
2

L2

) 1
2

.

Indeed (25) amounts to showing that for each x ∈ Cn,

d
dt

Ckx →
d
dt

C x in L2((0,∞),Cp) as k → ∞,

which is the same as CkAkx → C Ax in L2((0,∞),Cp) as k → ∞. As we know that Ck → C and
Ak → A in the appropriate spaces, the claim (25) follows. Since point evaluation is continuous in
the Sobolev norm, for each x ∈ Cn we have

Ckx = (Ckx)(0)
k→∞
−→ (C x)(0) = Cx in C

p.

Thus Ck →C in matrix norm as k → ∞.

15



STEP 3. The solution to the Lyapunov equation (5) is given by Hk = C ∗
k Ck and so we see that

Hk → H in C
n×n as k → ∞. From the continuity of the inverse, it also follows that H−1

k → H−1

in Cn×n as k → ∞.

STEP 4. We know that Ak → A in Cn×n as k → ∞, and so using the continuity of the spectral set
(see for instance Theorem 10.20 on page 257 of Rudin [9]), we see that given ε > 0, there exists
a large enough K such that k ≥ K implies that σ(Ak) ⊂ σ(A)+B(0,ε). Here B(0,ε) denotes the
ball with center 0 and radius ε in C, and for a square matrix M, σ(M) is used to denote its set
of eigenvalues. Since σ(A) ⊂ {s ∈ C | Re(s) < 0}, it follows that there exists a positive ε and a
K ∈ N such that for all k ≥ K,

σ(A)∪σ(Ak) ⊂ {s ∈ C | Re(s) < −ε}.

Consequently, there exist positive constants M1,M2 such that

‖etAk − etA‖ ≤ M1e−εt +M2e−εt = (M1 +M2)e
−εt .

Hence from the Lebesgue dominated convergence theorem, we have

‖e·Ak − e·A‖L1((0,∞),Cn×n) → 0

as k → ∞. Using continuity of the Laplace transform (see for instance Property A.6.2.a on page
636 of Curtain and Zwart [3]), it follows that

‖(·I−Ak)
−1 − (·I−A)−1‖H∞(C+,Cn×n) → 0

as k → ∞. Hence

Θk(·) = I −Ck(·I−Ak)
−1H−1

k C∗
k −→ Θ(·) = I −C(·I−A)−1H−1C∗

in L∞(iR,Cp×p) as k → ∞. Since L∞(iR,Cp×p) is a Banach algebra, from the continuity of the
inverse, we have Θ−1

k → Θ−1 in L∞(iR,Cp×p) as k → ∞. Finally

F∗
k = Θ−1

k Gk −→ Θ−1G = F∗

in L∞(iR,Cp×m) as k → ∞.

Using the above result, we now obtain the following:

Theorem 4.5 If (Σk)k≥1 is a sequence in S, Σ ∈ S and there holds that

‖Gk −G‖H∞(C+,Cp×m) → 0 as k → ∞,

then g(Ge(Σk),Ge(Σ)) → 0 as k → ∞.

Proof We use the formula established in STEP 1 of the proof of Theorem 3.3. Indeed from
Theorem 4.4 above, we know that MΘk → MΘ and MFk → MF in operator norm as k → ∞.
Consequently from (9) and (10), we see that Πk → Π in operator norm as k → ∞, and so
g(Ge(Σk),Ge(Σ)) → 0 as k → ∞.

Corollary 4.6 The topology induced by the behavioral distance d is coarser than that induced
by the gap metric δ on the set S.
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5 The topologies induced by the behavioral distance and the
gap metric coincide on the set S.

We summarize the results from §3 and §4 below:

Theorem 5.1 Let (Σk)k≥1 be a sequence in S, and let Σ ∈ S. The following are equivalent:

1. g(Ge(Σk),Ge(Σ)) → 0 as k → ∞

2. g(G (Σk),G (Σ)) → 0 as k → ∞

3. ‖Gk −G‖H∞(C+,Cp×m) → 0 as k → ∞.

Proof This follows from Theorems 2.2, 3.3 and 4.5.

Corollary 5.2 The topologies induced by the behavioral distance and the gap metric coincide
on the set S.
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Écoles des Mines, Sophia-Antipolis, 1992.

[6] T. Kato. Perturbation Theory for Linear Operators. Springer, 1995.

[7] J.W. Polderman and J.C. Willems. Introduction to Mathematical Systems Theory. Springer,
1998.

[8] W. Rudin. Real and Complex Analysis. McGraw-Hill, 3rd edition, 1987.

17



[9] W. Rudin. Functional Analysis. McGraw-Hill, 2nd edition, 1991.

[10] A.J. Sasane. Distance between behaviours. International Journal of Control, 76:1214–
1223, 2003.

[11] O.J. Staffans. Admissible factorizations of Hankel operators induce well-posed linear sys-
tems. Systems and Control Letters, 37:301–307, 1999.

[12] O.J. Staffans. Well-Posed Linear Systems. To be published by Cambridge University Press
in 2004. Electronic copy available at http://www.abo.fi/~staffans/publ.htm.

[13] G. Zames and A.K. El-Sakkary. Unstable systems and feedback: the gap metric. In Pro-
ceedings of the Allerton Conference, 380–385, 1980.

18


