Embeddings and other mappings of rooted trees into complete trees

Nicholas Georgiou Department of Mathematics London School of Economics Houghton Street London WC2A 2AE U.K.

November 2004

CDAM Research Report LSE-CDAM-2004-16

Abstract

Let T^n be the complete binary tree of height n, with root 1_n as the maximum element. For T a tree, define $A(n;T) = |\{S \subseteq T^n : 1_n \in S, S \cong T\}|$ and C(n;T) = $|\{S \subseteq T^n : S \cong T\}|$. We disprove a conjecture of Kubicki, Lehel and Morayne, which $|\{S \subseteq I^n : S = I_j|$, we disploye a conjecture of $I^{(n)}$ is claims that $\frac{A(n;T_1)}{C(n;T_1)} \leq \frac{A(n;T_2)}{C(n;T_2)}$ for any fixed n and arbitrary rooted trees $T_1 \subseteq T_2$. We show that A(n;T) is of the form $\sum_{j=0}^{l} q_j(n) 2^{jn}$ where l is the number of leaves of the two provides an algorithm for calculating the two T, and each q_j is a polynomial. We provide an algorithm for calculating the two leading terms of q_l for any tree T. We investigate the asymptotic behaviour of the ratio A(n;T)/C(n;T) and give examples of classes of pairs of trees T_1, T_2 where it is possible to compare $A(n;T_1)/C(n;T_1)$ and $A(n;T_2)/C(n;T_2)$. By calculating these ratios for a particular class of pairs of trees, we show that the conjecture fails for these trees, for all sufficiently large n. Kubicki, Lehel and Morayne have proved the conjecture when T_1, T_2 are restricted to being binary trees. We also look at embeddings into other complete trees, and we show how the result can be viewed as one of many possible correlation inequalities for embeddings of binary trees. We also show that if we consider strict order-preserving maps of T_1, T_2 into T^n (rather than embeddings) then the corresponding correlation inequalities for these maps also generalise to arbitrary trees.

1 Introduction

We disprove a conjecture of Kubicki, Lehel and Morayne first stated in [2] concerning embeddings of rooted trees into a complete binary tree. Here, we assume all trees to be rooted, with the root being the unique maximum element. The *complete binary tree* T^n of height n is a ranked poset with n levels, having 2^{n-1} leaves, where every element that is not a leaf has 2 distinct lower covers. So there are 2^{n-i} elements in level i, i = 1, ..., n. The root (in level n) is labelled 1_n . For example, Figure 1 shows the Hasse diagram of T^5 .

Figure 1: The complete binary tree, T^5

For T a tree, define $A(n;T) = |\{S \subseteq T^n : 1_n \in S, S \cong T\}|$ and $B(n;T) = |\{S \subseteq T^n : 1_n \in S, S \cong T\}|$ $T^n : 1_n \notin S, S \cong T$. Define $C(n;T) = |\{S \subseteq T^n : S \cong T\}|$, so that $C(n;T) = |\{S \subseteq T^n : S \cong T\}|$, so that $C(n;T) = |\{S \subseteq T^n : S \cong T\}|$. A(n;T) + B(n;T). In [2], Kubicki, Lehel and Morayne proved that $\frac{A(n;T_1)}{B(n;T_1)} \leq \frac{A(n;T_2)}{B(n;T_2)}$ for any fixed *n* and rooted binary trees T_1, T_2 , such that T_2 contains a subposet isomorphic to T_1 . They conjectured that the ratio A/B also increases with T for arbitrary trees. In this paper, we will use the ratio $\frac{A(n;T)}{C(n;T)}$ rather than $\frac{A(n;T)}{B(n;T)}$, but since $\frac{C(n;T)}{A(n;T)} = \frac{B(n;T)}{A(n;T)} + 1$ any A(n;T)statement about $\frac{A(n;T)}{C(n;T)}$ can be rewritten as an equivalent statement about $\frac{A(n;T)}{B(n;T)}$. So, the result above is equivalent to $\frac{A(n;T_1)}{C(n;T_1)} \leq \frac{A(n;T_2)}{C(n;T_2)}$ for any fixed *n* and rooted binary trees T_1, T_2 , such that T_2 contains a subposet isomorphic to T_1 . The equivalent conjecture is that A/Calso increases with T for arbitrary trees. This was proved for chains in [5] and for stars rooted at the centre in [4]. Informally, the conjecture claims that for larger trees there is a greater proportion of embeddings that map the root of the tree to 1_n . This seems plausible; when constructing an embedding from a tree T to T^n , the higher we choose to map the root of T, the more of T^n there is to map the rest of the tree T into. The intuition is that this extra space has more effect for a larger tree. Since a larger tree has more elements to embed, there should be relatively more embeddings that map the root to 1_n . So, we expect the ratio A/C to be larger for T_2 than for T_1 . However, in Section 2 we show that the conjecture is false. For some trees $T_1 \subseteq T_2$ the extra elements in T_2 actually restrict the embeddings into T^n , so that this "extra space" gained by mapping the root to 1_n has less effect for T_2 than for T_1 . It is the smaller tree that has relatively more embeddings mapping the root to 1_n , and so the ratio A/C is larger for T_1 than for T_2 .

In fact, the conjecture fails even for ternary trees, as exhibited by the following example, where T_1, T_2 are as in Figure 2. This is a counterexample to the conjecture for small n (less than 6) and also for all n greater than 11. Intriguingly the inequality does hold for $n = 6, \ldots, 11$ for this pair of trees.

Figure 2: Counterexample to the conjecture of Kubicki, Lehel and Morayne

In [3], Kubicki, Lehel and Morayne proved an asymptotic version of the inequality, that $\lim_{n\to\infty} \frac{A(n;T_1)}{B(n;T_1)} \leq \lim_{n\to\infty} \frac{A(n;T_2)}{B(n;T_2)}$. They proved this by showing that $\lim_{n\to\infty} \frac{A(n;T)}{B(n;T)} = 2^{l(T)-1}-1$, where l(T) is the number of leaves of T. Since $l(T_1) \leq l(T_2)$ the inequality follows. Working with $\frac{A(n;T)}{C(n;T)}$ the equivalent limit is $\lim_{n\to\infty} \frac{A(n;T)}{C(n;T)} = 1 - 1/2^{l(T)-1}$. In Section 4, we show that this limiting effect is misleading as regards the conjecture; we can find many examples $T_1 \subseteq T_2$ where $l(T_1) = l(T_2)$, so that the asymptotic inequality holds with equality, but for all sufficiently large n we have $\frac{A(n;T_1)}{C(n;T_1)} > \frac{A(n;T_2)}{C(n;T_2)}$. Moreover, we show that for certain pairs of trees T_1, T_2 it is possible to show that $A(n; T_1)/C(n; T_1)$ is asymptotically larger than $A(n; T_2)/C(n; T_2)$, either by simply comparing the trees themselves, or by calculating the leading terms of A(n;T) for each tree. Using this, we show that for a particular class of ternary trees $T_1 \subseteq T_2$, we have $\frac{A(n;T_1)}{C(n;T_1)} > \frac{A(n;T_2)}{C(n;T_2)}$ for arbitrarily large n. This seemingly destroys all hope of recovering a weaker-but-true statement from the conjecture; even when restricting T_1, T_2 to being ternary trees we can find counterexamples to the conjecture for arbitrarily large n.

In Section 5 we examine other generalisations to the binary case inequality. Let T_p^n be the complete *p*-ary tree of height *n*, a ranked poset with *n* levels, which has p^{n-1} leaves and every element that is not a leaf has *p* distinct lower covers. So, there are p^{n-i} elements in level *i*, i = 1, ..., n. Define $A_p(n;T) = |\{S \subseteq T_p^n : 1_n \in S, S \cong T\}|$ and $C_p(n;T) = |\{S \subseteq T_p^n : 1_n \notin S, S \cong T\}|$ as the obvious analogues to the complete binary tree case. We prove that $\frac{A_p(n;T_1)}{C_p(n;T_1)} \leq \frac{A_p(n;T_2)}{C_p(n;T_2)}$ for any fixed *n* and binary rooted trees $T_1 \subseteq T_2$. Moreover, we prove the result using the FKG-inequality, which places the result in the framework of correlation inequalities on distributive lattices. Using the FKG-inequality we can find many other correlation inequalities for embeddings of binary trees. We also show that if we look at strict order-preserving maps into T_p^n , rather than embeddings, the situation is simplified; here the corresponding correlation inequalities hold without any need for T_1, T_2 to be binary. An example of this is the result that if $T_1 \subseteq T_2$ are arbitrary trees, then the ratio of strict order-preserving maps that map the root of T_1 to 1_n to those that do not is smaller for T_1 than it is for T_2 .

Let us introduce some notation. For a tree T, an embedding ϕ is a map from T to T^n such that $\phi(x) \ge \phi(y)$ in T^n if and only if $x \ge y$ in T. That is, T and $\phi(T)$ are isomorphic as labelled trees. For a tree T with root 1_T , define $A_T(n)$ to be the number of embeddings ϕ of T into T^n with $\phi(1_T) = 1_n$, and define $C_T(n)$ to be the total number of embeddings of T into T^n . As explained in [2], since A(n;T) and C(n;T) count the number of subposets of T^n isomorphic to T as unlabelled trees, whereas $A_T(n)$ and $C_T(n)$ count the number of subposets of T^n isomorphic to T as labelled trees, we have $A_T(n) = |G|A(n;T)$ and $C_T(n) = |G|C(n;T)$, where G is the group of symmetries of the (unlabelled) tree T. Since the ratio A/C is unaffected we can work with either labelled or unlabelled trees. We shall use labelled trees, and think of the labelled subposets of T^n as embeddings.

2 **Recurrence relations**

We can use the regular structure of T^n to find recurrence relations for $A_T(n)$ and $C_T(n)$. Let t_1, t_2 be the 2 lower covers of 1_n in T^n . Write T_1^n for the set of all elements that are lower than or equal to t_1 in T^n , and similarly for T_2^n . So, T_1^n and T_2^n are both copies of T^{n-1} . For any embedding of a tree T into T^n the root 1_T of T is either mapped to 1_n , or mapped into T_1^n or T_2^n . Counting these embeddings of T into T^n gives

$$C_T(n) - 2C_T(n-1) = A_T(n).$$
(1)

So, once we have calculated $A_T(n)$ we can solve a simple linear recurrence to find $C_T(n)$.

We now show that $A_T(n)$ also satisfies a linear recurrence relation. For any $x \in T$ we write D[x] for the set of all elements in T that are lower than or equal to x in T. Let T be a tree and suppose the root 1_T has r lower covers x_1, \ldots, x_r . For any subset $L \subseteq [r]$ write T_L for the tree formed by removing the subtrees $D[x_j]$ for all $j \in L^c$. (Here, $L^c = [r] \setminus L$.) Notice that $T_{\{j\}} \setminus \{1_T\} = D[x_j], T_{[r]} = T$ and $T_{\emptyset} = \{1_T\}$.

We will count the embeddings of T into T^n by considering the possible places to map the elements x_1, \ldots, x_r . In particular we are interested in the partition of $\{x_1, \ldots, x_r\}$ defined by which of the two subtrees T_1^n, T_2^n an element x_i is mapped to.

Write $A_{T_L}^-(n)$ for the number of embeddings of T_L into T^n that map the root 1_T of T_L to 1_n and map x_j into T_1^n , for each $j \in L$. By the symmetry of T^n this is the same as the number of embeddings of T_L into T^n that map 1_T to 1_n and map x_j into T_2^n , for each $j \in L$.

For a fixed set $L \subseteq [r]$ we can count the number of embeddings ϕ of T into T^n with $\phi(x_i)$ in T_1^n for all $i \in L$, and $\phi(x_i)$ in T_2^n for all $i \in L^c$. Since the two trees T_1^n and T_2^n are below incomparable elements t_1 and t_2 , we have that the number of such embeddings that also map 1_T to 1_n is exactly the product $A_{T_L}^-(n)A_{T_L}^-(n)$. So,

$$A_T(n) = \sum_{L \subseteq [r]} A^-_{T_L}(n) A^-_{T_{L^c}}(n).$$
(2)

For $L = \emptyset$, we have $T_{\emptyset} = \{1_T\}$ and $A_{T_L}^-(n)$ is equal to 1. For L a singleton, $A_{T_L}^-(n)$ is the number of embeddings of $T_L \setminus \{1_T\} = D[x_j]$ into T_1^n , which itself is a copy of T^{n-1} . So $A_{T_L}^-(n) = C_{D[x_j]}(n-1)$. Finally, for $|L| \ge 2$, $A_{T_L}^-(n)$ is the number of embeddings that map 1_T to 1_n and map x_j to an element of T_1^n for all $j \in L$. Since $|L| \ge 2$ any such embedding ϕ cannot map any of the x_j to t_1 . So, for each embedding ϕ we can construct a new embedding ψ of T into T^n by defining $\psi(1_T) = t_1$ and $\psi(x) = \phi(x)$ for all $x \in T_L \setminus \{1_T\}$. Now, ψ is an embedding into T_1^n which maps 1_T to t_1 , the root of T_1^n . Since T_1^n is a copy of T^{n-1} the number of these embeddings ψ is $A_{T_L}(n-1)$. Since each ϕ corresponds uniquely to a ψ , and vice-versa, we must have $A_{T_L}^-(n) = A_{T_L}(n-1)$. To summarise,

$$A_{T_{L}}^{-}(n) = \begin{cases} 1 & L = \emptyset \\ C_{D[x_{j}]}(n-1) & L = \{j\} \\ A_{T_{L}}(n-1) & \text{otherwise} \end{cases}$$
(3)

for i = 1, 2.

It will also be useful to have another expression for $A_{T_L}^-(n)$ when $L = \{j\}$. We have that $A_{T_L}^-(n)$ is the number of embeddings of T_L into T^n that map 1_T to 1_n and map x_j to an element in T_1^n . By symmetry of T^n it is also the number of embeddings of T_L into T^n that map 1_T to 1_n and map x_j to an element in T_2^n . Since, every embedding of T into T^n that maps 1_T to 1_n must map x_j to an element in either T_1^n or T_2^n we have $2A_{T_L}^-(n) = A_{T_L}(n)$ or

$$A_{T_L}^{-}(n) = \frac{A_{T_L}(n)}{2}$$
(4)

for $L = \{j\}.$

We can use equations (1)–(4) to find $A_T(n)$ and $C_T(n)$ inductively. Recall that for a tree T, the number of leaves of T is denoted by l(T).

Theorem 1. For any tree T, the number of embeddings of T into T^n is of the form

$$C_T(n) = \sum_{j=0}^{l(T)} g_j(n) 2^{jn},$$

where each g_i is a polynomial.

For T the 1-element tree, the number of these embeddings that map the root of T to 1_n , $A_T(n)$, is equal to 1. Otherwise, for T with |T| > 1, the number is of the form

$$A_T(n) = \sum_{j=0}^{l(T)} q_j(n) 2^{jn},$$

where each q_j is a polynomial.

The following lemma on recurrence relations will be useful. The result is standard and the proof is omitted.

Lemma 2. Suppose l is some fixed positive integer. Then the solution to the equation

$$y_n - 2y_{n-1} = \sum_{j=0}^{l} f_j(n) 2^{jn}, \quad y_1 = 0,$$
 (5)

where each f_j is a polynomial, is

$$y_n = \sum_{j=0}^l g_j(n) 2^{jn}$$

where each g_j is a polynomial. Furthermore, for $j \neq 1$, the polynomial g_j is the unique polynomial satisfying the identity

$$g_j(n) - 2^{1-j}g_j(n-1) = f_j(n),$$

and g_1 satisfies the identity

$$g_1(n) - g_1(n-1) = f_1(n),$$

where the constant term of g_1 is given by

$$\sum_{j=0}^{l} g_j(1)2^j = 0$$

Proof of Theorem 1. We include the case of T being a 1-element set for completeness. In this case, we see immediately that there are $2^n - 1$ embeddings of T into T^n , which is exactly the number of elements in T^n . Also, only one of these embeddings maps the root of T to 1_n . So, $A_T(n) = 1$ as claimed, and $C_T(n) = 2^n - 1$ is of the required form.

For $|T| \ge 2$, we simultaneously prove that $A_T(n)$ and $C_T(n)$ are of the required form by induction on the size of T. We shall make use of Lemma 2 to solve recurrence relations for $A_T(n)$ and $C_T(n)$. We use induction to show that the recurrence is of the form of equation (5), and since we will only be considering trees with $|T| \ge 2$ we have the initial conditions $A_T(1) = 0, C_T(1) = 0$ as in (5).

For |T| = 2 the only tree is the 2-element chain, which has one leaf. Label the root 1_T and the leaf x_1 . Since 1_T has only one lower cover, r = 1 in equation (2) and the subtrees of interest are $T_{\{1\}} = T$ and $T_{\emptyset} = \{1_T\}$. Using equations (2) and (3) we have

$$A_T(n) = A^-_{T_{\emptyset}}(n)A^-_{T_{\{1\}}}(n) + A^-_{T_{\{1\}}}(n)A^-_{T_{\emptyset}}(n) = 2C_{\{x_1\}}(n-1)$$

But we have shown earlier that $C_{\{x_1\}}(n) = 2^n - 1$. Therefore $A_T(n) = 2^n - 2$ which is of the required form (where l(T) = 1, $q_0(n) = -2$ and $q_1(n) = 1$).

In fact, we can see immediately that $A_T(n) = 2^n - 2$, since this is exactly the number of places to embed x_1 in T^n (anywhere except at 1_n , where x is embedded). Using (1) and Lemma 2 we have that $C_T(n) = (n-2)2^n + 2$ which is of the required form $(g_1(n) = n - 2)$ and $g_0(n) = 2$).

Suppose the result is true for all T with |T| < k and let T be any tree with |T| = k. There are two cases to consider, depending on whether the root of T has exactly one lower cover. If the root has exactly one lower cover, x_1 , equation (2) reduces, in a similar way to the base case, to

$$A_T(n) = 2C_{D[x_1]}(n-1).$$

Applying the inductive hypothesis to $D[x_1]$, a tree with $l(D[x_1]) = l(T)$ leaves, we have that

$$C_{D[x_1]}(n) = \sum_{j=0}^{l(T)} g_j(n) 2^{jn}$$

where g_j are polynomials. Therefore, $A_T(n) = 2 \sum_{j=0}^{l(T)} g_j(n-1) 2^{j(n-1)} = \sum_{j=0}^{l(T)} q_j(n) 2^{jn}$ where q_j are polynomials.

If the root of T has r > 1 lower covers x_1, \ldots, x_r then we can write equation (2) as

$$A_{T}(n) = A_{T_{\emptyset}}^{-}(n)A_{T_{[r]}}^{-}(n) + A_{T_{[r]}}^{-}(n)A_{T_{\emptyset}}^{-}(n) + \sum_{\substack{L \subseteq [r] \\ L \neq \emptyset, [r]}} A_{T_{L}}^{-}(n)A_{T_{L^{c}}}^{-}(n)$$

which can be rearranged to

$$A_T(n) - 2A_T(n-1) = \sum_{\substack{L \subseteq [r] \\ L \neq \emptyset, [r]}} A^-_{T_L}(n) A^-_{T_{L^c}}(n).$$
(6)

We use equations (3) and (4) in order to apply the inductive hypothesis. Terms in the sum where L is not a singleton or complement of a singleton are of the form $A_{T_L}(n-1)A_{T_{L^c}}(n-1)$. Terms where L is a singleton, but L^c is not are of the form $A_{T_L}(n)A_{T_{L^c}}(n-1)/2$, terms where L is not a singleton, but L^c is are of the form $A_{T_L}(n-1)A_{T_{L^c}}(n-1)/2$, terms where L is not a singleton, but L^c is are of the form $A_{T_L}(n-1)A_{T_{L^c}}(n)/2$ and terms where both L and L^c are singletons (this will only be for r = 2) are of the form $A_{T_L}(n)A_{T_{L^c}}(n)/4$.

By our inductive hypothesis we have $A_{T_L}(n) = \sum_{j=0}^{l(T_L)} q_j(n) 2^{jn}$ for polynomials q_j . This means that the right hand side of equation (6) is of the form $\sum_{j=0}^{l(T)} h_j(n) 2^{jn}$ for polynomials h_j . That is, $A_T(n)$ satisfies a recurrence relation and applying Lemma 2 gives the result for $A_T(n)$. Finally, we use (1) and Lemma 2 which gives the result for $C_T(n)$.

Note that the proof of Theorem 1 actually shows how to find the polynomials q_j and g_j in the expressions for $A_T(n)$ and $C_T(n)$. However, for a particular tree T, in order to calculate $A_T(n)$ and $C_T(n)$ we need to calculate $A_{T_L}(n)$ for all subtrees T_L . For small trees the calculations are still relatively simple. We use the algorithm given in the proof of Theorem 1 to find explicit expressions for the two trees T_1, T_2 in Figure 2.

To find these expressions we need to also calculate A_S and C_S for subtrees S of T_1 and T_2 . Define the subtrees $S_1 = \begin{pmatrix} \\ \\ \\ \end{pmatrix}$, $S_2 = \begin{pmatrix} \\ \\ \\ \end{pmatrix}$, $S_3 = \begin{pmatrix} \\ \\ \\ \end{pmatrix}$, $S_4 = \bigwedge$, $S_5 = \bigwedge$. In order to find A_{T_1} we need to calculate A_{S_1} , A_{S_2} , A_{S_3} , A_{S_4} , and to find A_{S_1} we need to calculate C_{S_2} . For A_{T_2} we also need to calculate A_{S_5} and to find this we need to calculate C_{S_4} . These calculations are left as an exercise for the reader. We have

$$A_{T_1}(n) = (n - 14/3)8^n + (-3n^2 + 24n - 34)4^n + (n^3/3 - 8n^2 + 65n/3 + 44/3)2^n + 24n^3/3 + 6n^3/3 + 6n$$

$$A_{T_2}(n) = (2n/3 - 20/9)8^n + (-n^3 + 8n^2 - 30n + 58)4^n + (-2n^3/3 + 2n^2 - 40n/3 - 430/9)2^n - 8$$

and, using (1), we have

$$C_{T_1}(n) = (4n/3 - 20/3)8^n + (-6n^2 + 60n - 134)4^n + (n^4/12 - 5n^3/2 + 83n^2/12 + 145n/6 + 494/3)2^n - 24$$

$$C_{T_2}(n) = (8n/9 - 88/27)8^n + (-2n^3 + 22n^2 - 110n + 250)4^n + (-n^4/6 + n^3/3 - 35n^2/6 - 487n/9 - 6878/27)2^n + 8$$

So, $A_{T_1}(4)/C_{T_1}(4) = 99/101 > 67/69 = A_{T_2}(4)/C_{T_2}(4)$, a counterexample to the conjecture of Kubicki, Lehel and Morayne. We also have

$$\frac{A_{T_1}(5)}{C_{T_1}(5)} = \frac{2635}{2837} > \frac{1783}{1921} = \frac{A_{T_2}(5)}{C_{T_2}(5)}$$

but

$$\frac{A_{T_1}(6)}{C_{T_1}(6)} = \frac{44147}{49821} < \frac{31055}{34897} = \frac{A_{T_2}(6)}{C_{T_2}(6)}$$

So, for n = 4, 5 these trees give a counterexample, but not for n = 6. In fact, for $n = 6, \ldots, 11$ the conjectured inequality holds, but for larger n it does not. Asymptotically, we have

$$\frac{A_{T_1}(n)}{C_{T_1}(n)} = \frac{(n-14/3)8^n + O(4^n)}{(4n/3 - 20/3)8^n + O(4^n)} = \frac{3}{4} + \frac{1}{4}n^{-1} + \frac{5}{4}n^{-2} + o(n^{-2})$$

and

$$\frac{A_{T_2}(n)}{C_{T_2}(n)} = \frac{(2n/3 - 20/9)8^n + O(4^n)}{(8n/9 - 88/27)8^n + O(4^n)} = \frac{3}{4} + \frac{1}{4}n^{-1} + \frac{11}{12}n^{-2} + o(n^{-2}),$$

so A_{T_1}/C_{T_1} is asymptotically larger than A_{T_2}/C_{T_2} .

This asymptotic difference is very subtle. Here, the ratios A_{T_1}/C_{T_1} , A_{T_2}/C_{T_2} differ only in the n^{-2} terms and terms of lower order. We will show, in Section 4, that for any $T_1 \subseteq T_2$ which have A_{T_1}/C_{T_1} asymptotically larger than A_{T_2}/C_{T_2} the ratios differ only in the n^{-2} terms and terms of lower order.

For small values of n there are two competing factors which determine whether the conjectured inequality holds. Since A_T and C_T are related by (1), we have $A_T(n)/C_T(n) = 1 - 2C_T(n-1)/C_T(n)$. So, the conjectured inequality is equivalent to

$$\frac{C_{T_2}(n-1)}{C_{T_1}(n-1)} \le \frac{C_{T_2}(n)}{C_{T_1}(n)}.$$

We can think of the ratio $C_{T_2}(n)/C_{T_1}(n)$ as the expected number of embeddings of T_2 into T^n that are an extension of a randomly chosen embedding of T_1 into T^n . So, for n = 3, each embedding of T_1 into T^3 can only be extended one way (there is only one place in T^3 to which we can map the extra element of T_2), therefore $C_{T_2}(3)/C_{T_1}(3) = 1$. For larger values of n, some embeddings of T_1 into T^n have no extensions to an embedding of T_2 into T^n , others will have many extensions to an embedding of T_2 into T^n . In this example, as n increases there will tend to be a larger fraction of embeddings of T_1 into T^n with no

Figure 3: Counterexample to the conjecture of Kubicki, Lehel and Morayne

extension to an embedding of T_2 into T^n . However, those embeddings of T_1 into T^n that do have extensions to embeddings of T_2 into T^n will tend to have more of them, as n increases. These two competing effects determine whether the ratio $C_{T_2}(n)/C_{T_1}(n)$ will increase or decrease for an increase in n. In this example the two effects are quite equally balanced, making it difficult to see intuitively why the inequality holds for some values of n and fails for others.

The following example better illustrates the failure of the conjectured inequality, as in this example one effect dominates the other. Let T_1 and T_2 be as shown in Figure 3, where k is some fixed integer. As we have explained, the conjecture claims that $C_{T_2}(n)/C_{T_1}(n)$ is increasing in n. However, we show that for these trees, the ratio is considerably larger for small n than it is for large n, since for small n there is a higher proportion of embeddings of T_1 that can be extended to an embedding of T_2 .

For any n with $n \ge k+1$, an embedding of T_2 into T^n must map all the leaves $x_1, \ldots, x_{2^{k-1}}$ into the same half of T^n , and it must map all the leaves $x_{2^{k-1}+1}, \ldots, x_{2^k}$ into the same half of T^n . This is a restriction imposed by the elements y_1 and y_2 . Embeddings of T_1 into T^n do not have this restriction, and any embedding of T_1 into T^n , which does not partition the leaves in the same way cannot be extended to an embedding of T_2 .

Now, for n = k + 1, the tree T^{k+1} has 2^k leaves, so all embeddings of T_1 into T^{k+1} map the leaves of T_1 to the leaves of T^{k+1} . Therefore, we know that half the leaves of T_1 are mapped into one half of T^{k+1} and the other half into the other half of T^{k+1} . So whether the embedding extends to an embedding of T_2 depends only on which particular set of 2^{k-1} leaves are mapped into one of the halves of T^{k+1} . Since there are $\binom{2^k}{2^{k-1}}$ subsets of size 2^{k-1} , and two of these yield an extendible embedding (when we choose $\{x_1, \ldots, x_{2^{k-1}}\}$ or $\{x_{2^{k-1}+1}, \ldots, x_{2^k}\}$), each with one possible extension, the ratio $C_{T_2}(k+1)/C_{T_1}(k+1)$ is equal to $2/\binom{2^k}{2^{k-1}}$.

For $n \gg k+1$, most mappings from T_1 into T^n are embeddings, but only those which partition the leaves as described above can be extended. Moreover, most of the embeddings that can be extended map the leaves $x_1, \ldots, x_{2^{k-1}}$ into one half of T^n , and the leaves $x_{2^{k-1}+1}, \ldots, x_{2^k}$ into the other half of T^n (rather than the same half) and most of these extendible embeddings have only one possible extension. So of the total number of embeddings of T_1 into T^n the fraction that are extendible is roughly 2^{-2^k} and most extendible embeddings have just one possible extension. Therefore, $C_{T_2}(n)/C_{T_1}(n)$ is roughly $1/2^{2^k}$, which is considerably smaller than $C_{T_2}(k+1)/C_{T_1}(k+1) = 2/\binom{2^k}{2^{k-1}}$.

3 Asymptotic behaviour of A_T and C_T

We have shown that $A_T(n) = \sum_{j=0}^l q_j(n) 2^{jn}$, where each q_j is a polynomial. We wish to examine the asymptotic behaviour of $A_T(n)$ and so we need to calculate the leading terms of the dominant polynomial $q_l(n)$. Throughout this section we use the symbol \sim to mean "asymptotically equivalent to"; we write $f(n) \sim g(n)$ if f(n)/g(n) tends to 1 as ntends to infinity. We also use \sim in a shorthand for recurrence relations, writing for example $y_n - 2y_{n-1} \sim f(n)$ if $y_n - 2y_{n-1} = g(n)$ and $g(n) \sim f(n)$. We shall make use of the following lemma which gives the solutions to some particular recurrence relations.

Lemma 3. The recurrence relation

$$y_n - 2y_{n-1} \sim (\alpha n^d + \beta n^{d-1})2^{ln}$$

where d > 0 has solution

$$y_{n} \sim \begin{cases} \left(\frac{\alpha}{d+1}n^{d+1} + \left(\frac{\beta}{d} + \frac{\alpha}{2}\right)n^{d}\right)2^{n} & \text{if } l = 1\\ \frac{2^{l-1}}{2^{l-1} - 1}\left(\alpha n^{d} + \left(\beta - \frac{\alpha d}{2^{l-1} - 1}\right)n^{d-1}\right)2^{ln} & \text{if } l \ge 2. \end{cases}$$
(7)

The recurrence relation

has solution

$$y_n \sim \begin{cases} \alpha n 2^n & \text{if } l = 1\\ \\ \frac{2^{l-1}}{2^{l-1} - 1} \alpha 2^{ln} & \text{if } l \ge 2. \end{cases}$$
(8)

Proof. It is a simple exercise to check that equations (7) and (8) do give a particular solution to the exact recurrence relations $y_n - 2y_{n-1} = (\alpha n^d + \beta n^{d-1})2^{ln}$ and $y_n - 2y_{n-1} = \alpha 2^{ln}$. Since the complementary solution to both recurrences is $y_n = K2^n$, this is dominated by the particular solutions given, and so the asymptotic solution is as claimed.

 $y_n - 2y_{n-1} \sim \alpha 2^{ln}$

Theorem 4. The leading polynomial $q_l(n)$ in the expression $A_T(n) = \sum_{j=0}^{l(T)} q_j(n) 2^{jn}$ has degree d(T), where $d(T) = |\{x \in T : x \text{ not the root or a leaf, } D[x] \text{ is a chain}\}|$. The coefficient α_T of $n^{d(T)}$ satisfies the following equations.

If T is the 2-element chain, then $\alpha_T = 1$. Otherwise, if the root of T has r lower covers, then

$$\alpha_{T} = \begin{cases} \frac{\alpha_{D[x_{1}]}}{d(T)} & r = 1 \text{ and } T \text{ a chain} \\ \frac{\alpha_{D[x_{1}]}}{2^{l(T)-1}-1} & r = 1 \text{ and } T \text{ not a chain} \\ \frac{\alpha_{T_{\{1\}}}\alpha_{T_{\{2\}}}2^{l(T)-2}}{2^{l(T)-1}-1} & r = 2 \\ \frac{\sum_{j=1}^{r}\alpha_{T_{\{j\}}}\alpha_{T_{\{j\}}c}2^{l(T_{\{j\}})-1} + \sum_{2 \le |L| \le r/2}\alpha_{T_{L}}\alpha_{T_{L^{c}}}}{2^{l(T)-1}-1} & r \ge 3 \end{cases}$$
(9)

Moreover, if d(T) > 0 the coefficient β_T of $n^{d(T)-1}$ satisfies the following equations.

If T is the 3-element chain, then $\beta_T = -3$. Otherwise, if the root of T has r lower covers, then

$$\beta_{T} = \begin{cases} \frac{\beta_{D[x_{1}]}}{d(T) - 1} - \frac{d(T)\alpha_{T}}{2} & r = 1 \text{ and } T \text{ a chain} \\ \frac{\beta_{D[x_{1}]} - d(T)\alpha_{T}2^{l(T) - 1}}{2^{l(T) - 1} - 1} & r = 1 \text{ and } T \text{ not a chain} \\ \frac{(\alpha_{T_{\{1\}}}\beta_{T_{\{2\}}} + \alpha_{T_{\{2\}}}\beta_{T_{\{1\}}})2^{l(T) - 2} - d(T)\alpha_{T}}{2^{l(T) - 1} - 1} & r = 2 \\ \frac{\sum_{j=1}^{r} (\alpha_{T_{\{j\}}}\beta_{T_{\{j\}c}} + \alpha_{T_{\{j\}c}}\beta_{T_{\{j\}}} - d(T_{\{j\}c})\alpha_{T_{\{j\}c}})2^{l(T_{\{j\}c}) - 1}}{2^{l(T) - 1} - 1} & r = 2 \\ \frac{\sum_{j=1}^{r} (\alpha_{T_{\{j\}}}\beta_{T_{\{j\}c}} + \alpha_{T_{\{j\}c}}\beta_{T_{L^{c}}} - d(T_{\{j\}c})\alpha_{T_{\{j\}c}})2^{l(T_{\{j\}c}) - 1}}{2^{l(T) - 1} - 1} & r \ge 3 \\ + \frac{\sum_{2 \le |L| \le r/2} (\alpha_{T_{L}}\beta_{T_{L^{c}}} + \alpha_{T_{L^{c}}}\beta_{T_{L}} - d(T)\alpha_{T_{L}}\alpha_{T_{L^{c}}}) - d(T)\alpha_{T}}{2^{l(T) - 1} - 1}} & r \ge 3 \end{cases}$$

$$(10)$$

where $\beta_S = 0$ for any subtree $S \subseteq T$ with d(S) = 0.

Proof. We proceed by induction on |T|. For |T| = 2 we have already shown that T is the 2-element chain and $A_T(n) = 2^n - 2$. For this tree d(T) = 0, l(T) = 1, so $q_l(n) = 1$ a polynomial of degree 0, with leading coefficient equal to 1. That is, $\alpha_T = 1$ as claimed.

Suppose the result is true for all T with |T| < k and let T be any tree with |T| = k. As in the proof of Theorem 1, there are two cases to consider, depending on whether the root of T has exactly one lower cover. If the root has exactly one lower cover, x_1 , we have equation $A_T(n) = 2C_{D[x_1]}(n-1)$. But by Theorem 1, and our inductive hypothesis, we know that

$$A_{D[x_1]}(n) \sim \alpha_{D[x_1]} n^{d(D[x_1])} 2^{l(D[x_1])n}.$$

If T is a chain, then $l(T) = l(D[x_1]) = 1$ and $d(T) = d(D[x_1]) + 1$ since the element x_1 contributes to d(T) but not $d(D[x_1])$. So, by Lemma 3,

$$C_{D[x_1]}(n) \sim \frac{\alpha_{D[x_1]}}{d(D[x_1]) + 1} n^{d(D[x_1]) + 1} 2^n = \frac{\alpha_{D[x_1]}}{d(T)} n^{d(T)} 2^n.$$

So

$$A_T(n) = 2C_{D[x_1]}(n-1) \sim 2\frac{\alpha_{D[x_1]}}{d(T)}(n-1)^{d(T)}2^{n-1} = \frac{\alpha_{D[x_1]}}{d(T)}(n-1)^{d(T)}2^n$$

Therefore $\alpha_T = \alpha_{D[x_1]}/d(T)$, as claimed. If T is not a chain, then $l(T) = l(D[x_1]) > 1$ and $d(T) = d(D[x_1])$ since the element x_1 does not contribute to either d(T) or $d(D[x_1])$. So, by Lemma 3,

$$C_{D[x_1]}(n) \sim \frac{2^{l(T)-1}}{2^{l(T)-1}-1} \alpha_{D[x_1]} n^{d(T)} 2^{l(T)n}$$

So

$$A_T(n) = 2C_{D[x_1]}(n-1) \sim 2\frac{2^{l(T)-1}}{2^{l(T)-1}-1} \alpha_{D[x_1]}(n-1)^{d(T)} 2^{l(T)(n-1)}$$
$$= \frac{\alpha_{D[x_1]}}{2^{l(T)-1}-1} (n-1)^{d(T)} 2^{l(T)n}.$$

Therefore $\alpha_T = \alpha_{D[x_1]}/(2^{l(T)-1}-1)$, as claimed.

If the root of T has two lower covers x_1, x_2 then equations (6) and (4) give $A_T(n) - 2A_T(n-1) = A_{T_{\{1\}}}(n)A_{T_{\{2\}}}(n)/2$. So,

$$A_T(n) - 2A_T(n-1) \sim \alpha_{T_{\{1\}}} n^{d(T_{\{1\}})} 2^{l(T_{\{1\}})n} \alpha_{T_{\{2\}}} n^{d(T_{\{2\}})} 2^{l(T_{\{2\}})n} / 2$$
$$= \alpha_{T_{\{1\}}} \alpha_{T_{\{2\}}} n^{d(T)} 2^{l(T)n} / 2$$

since $d(T_{\{1\}}) + d(T_{\{2\}}) = d(T)$ and $l(T_{\{1\}}) + l(T_{\{2\}}) = l(T)$. Since l(T) > 1 applying Lemma 3 gives

$$A_T(n) \sim \frac{2^{l(T)-1} \alpha_{T_{\{1\}}} \alpha_{T_{\{2\}}}}{(2^{l(T)-1}-1)2} n^{d(T)} 2^{l(T)n}$$

and α_T is as claimed.

Finally, if the root of T has $r \ge 3$ lower covers x_1, \ldots, x_r we can write (6) as

$$A_T(n) - 2A_T(n-1) = 2\sum_{j=1}^r \frac{1}{2} A_{T_{\{j\}}}(n) A_{T_{\{j\}^c}}(n-1) + 2\sum_{2 \le |L| \le r/2} A_{T_L}(n-1) A_{T_{L^c}}(n-1).$$

Terms in the first sum are of the form

$$\alpha_{T_{\{j\}}} n^{d(T_{\{j\}})} 2^{l(T_{\{j\}})n} \alpha_{T_{\{j\}^c}} (n-1)^{d(T_{\{j\}^c})} 2^{l(T_{\{j\}^c})(n-1)} \sim \frac{\alpha_{T_{\{j\}}} \alpha_{T_{\{j\}^c}}}{2^{l(T_{\{j\}^c})}} n^{d(T)} 2^{l(T)n}$$

and terms in the second sum are of the form

$$2\alpha_{T_L}(n-1)^{d(T_L)}2^{l(T_L)(n-1)}\alpha_{T_{L^c}}(n-1)^{d(T_{L^c})}2^{l(T_{L^c})(n-1)} \sim 2\frac{\alpha_{T_L}\alpha_{T_{L^c}}}{2^{l(T)}}n^{d(T)}2^{l(T)n}$$

Applying Lemma 3 gives

$$A_{T}(n) \sim \frac{2^{l(T)-1}}{2^{l(T)-1}-1} \left(\sum_{j=1}^{r} \frac{\alpha_{T_{\{j\}}} \alpha_{T_{\{j\}c}}}{2^{l(T_{\{j\}c})}} n^{d(T)} 2^{l(T)n} + \sum_{2 \le |L| \le r/2} 2 \frac{\alpha_{T_{L}} \alpha_{T_{L^{c}}}}{2^{l(T)}} n^{d(T)} 2^{l(T)n} \right)$$
$$= \frac{\sum_{j=1}^{r} \alpha_{T_{\{j\}}} \alpha_{T_{\{j\}c}}}{2^{l(T_{\{j\}})-1} + \sum_{2 \le |L| \le r/2} \alpha_{T_{L}} \alpha_{T_{L^{c}}}}}{2^{l(T)-1}-1} n^{d(T)} 2^{l(T)n}.$$

Therefore α_T is as claimed.

We omit the proof that β_T is as claimed, which can be shown by also considering the coefficient of $n^{d(T)-1}2^{l(T)n}$ in the above calculations.

We have that for T a tree with |T| > 1, $A_T(n) \sim \alpha_T n^{d(T)} 2^{l(T)n}$, for α_T some constant that can be found. We can see that $A_T(n) = \Omega(n^{d(T)} 2^{l(T)n})$ as follows. For any tree T, call the elements counted by d(T) lower bead elements of T. So, a lower bead element of T is an element x such that D[x] is a chain, and x is not a leaf or the root. Call an element which has more than one lower cover a branching element of T. Call the remaining elements of Tupper bead elements of T. These are elements x which have only one lower cover, but D[x]is not a chain. Therefore, upper bead elements only occur on a chain above a branching element. Note that, depending on the tree T, the root can be either a branching element or an upper bead element.

So, if T is a chain, then T has a root and one leaf, joined by a chain of d(T) lower bead elements. Otherwise, for l(T) > 1, the tree T has a root, the root and the branching elements are joined by (possibly empty) chains of upper bead elements, and some branching elements are joined by (possibly empty) chains of lower bead elements (of which there are d(T)) to the l(T) leaves.

To see that $A_T(n) = \Omega(n^{d(T)}2^{l(T)n})$, first consider T a chain. We count the embeddings that map the root of T to 1_n and the leaf of T to some leaf of T^n . We have 2^{n-1} choices for where to map the leaf. Once we have fixed the leaf of T^n , this defines a path from 1_n to the leaf of T^n . This gives a choice of n-2 elements of T^n into which we can map the d(T) lower bead elements of T. So, asymptotically we have $\Theta(n^{d(T)})$ choices for where to map the d(T) lower bead elements. Therefore $A_T(n) = \Omega(n^{d(T)}2^n)$, and since l(T) = 1 we have that $A_T(n) = \Omega(n^{d(T)}2^{l(T)n})$ for T a chain.

For T not a chain, so there exist branching elements of T, let ϕ be some embedding which maps the root of T to 1_n , and maps the branching elements of T to as high a level of T^n as possible. Consider, for large n, the number of embeddings of T into T^n that agree with this fixed ϕ on the root, branching elements and upper bead elements. Let us only consider those embeddings which map the leaves of T to the leaves of T^n . Let x be a branching element. Since the elements $\phi(x)$ will take up some constant number of the levels of T^n , $\phi(x)$ will have some constant fraction c_x of leaves of T^n below it. Now, as explained above, each leaf y in T is joined to a branching element, x_y say, by a chain of lower bead elements. So, each leaf y can be mapped to $c_{xy}2^{n-1}$ leaves in T^n , and the total number of choices for all the leaves is asymptotically $\Theta(2^{l(T)n})$. (The over-counting due to the possibility that two leaves that are below the same branching point are mapped to the same leaf of T^n is negligible for large n.) It remains to choose where to map the lower bead elements. However, in a similar way to the case where T is a chain, a lower bead element on the chain between the branching point x and the leaf y must be mapped to an element on the path between the images of x and y. Since x is mapped to a high level, and y to a leaf, the path has asymptotically $n - c'_x$ elements, for some constant c'_x . Since there are d(T) lower bead elements, we have asymptotically $\Theta(n^{d(T)})$ choices for where to map the lower bead elements. So, the number of embeddings that agree with ϕ is asymptotically $\Omega(n^{d(T)}2^{l(T)n})$, and we have $A_T(n) = \Omega(n^{d(T)}2^{l(T)n})$ for T not a chain.

By Lemma 3 we also have the asymptotic behaviour of $C_T(n)$, given in the following corollary.

Corollary 5. For any tree T with l(T) = 1 the number of embeddings of T into T^n is asymptotically

$$C_T(n) \sim \frac{\alpha_T}{d(T) + 1} n^{d(T) + 1} 2^n$$

and if d(T) > 0 then

$$C_T(n) \sim \left(\frac{\alpha_T}{d(T)+1} n^{d(T)+1} + \left(\frac{\beta_T}{d(T)} + \frac{\alpha_T}{2}\right) n^{d(T)}\right) 2^n$$

For any tree with l(T) > 1 the number of embeddings of T into T^n is asymptotically

$$C_T(n) \sim \frac{2^{l(T)-1}}{2^{l(T)-1}-1} \alpha_T n^{d(T)} 2^n$$

and if d(T) > 0 then

$$C_T(n) \sim \frac{2^{l(T)-1}}{2^{l(T)-1}-1} \left(\alpha_T n^{d(T)} + \left(\beta_T - \frac{d(T)\alpha_T}{2^{l(T)-1}-1} \right) n^{d(T)-1} \right) 2^{l(T)n}$$

Proof. We have that $A_T(n) \sim \alpha_T n^{d(T)} 2^{l(T)n}$, and if d(T) > 0 then $A_T(n) \sim (\alpha_T n^{d(T)} + \beta_T n^{d(T)-1}) 2^{l(T)n}$. So $C_T(n)$ satisfies the recurrence relation (1) which is of the form in Lemma 3. Applying Lemma 3 with $\alpha = \alpha_T$ and $\beta = \beta_T$ gives the result.

This tells us that for a tree T not a chain, a typical embedding of T into T^n maps the leaves of T to the low levels of T^n , the branching points and upper bead elements of T to the high levels of T^n , and the lower bead elements of T will be mapped to elements spread roughly evenly along the paths in T^n defined by the images of branching elements and leaves of T, as explained earlier. There are $\Theta(n^{d(T)}2^{l(T)n})$ of these embeddings.

For T a chain, a typical embedding maps the leaf of T to a low level of T^n , and the remaining elements of T are mapped to elements spread roughly evenly on the path from 1_n to image of the leaf in T^n . Here the root is not necessarily mapped to 1_n , and the root can be thought of as a lower bead element, so there are d(T) + 1 elements to position on this path. So, we get $\Theta(n^{d(T)+1}2^n)$ of these embeddings.

4 Asymptotics of the ratio $A_T(n)/C_T(n)$

In [3], Kubicki, Lehel and Morayne proved that $\lim_{n\to\infty} \frac{A(n;T_1)}{B(n;T_1)} \leq \lim_{n\to\infty} \frac{A(n;T_2)}{B(n;T_2)}$, by showing that $\lim_{n\to\infty} A(n;T)/B(n;T) = 2^{l(T)-1}-1$ (Proposition 2.3 in [3]). Here, using Theorem 4 and Corollary 5 we have

$$\lim_{n \to \infty} \frac{A_T(n)}{C_T(n)} = \frac{2^{l(T)-1} - 1}{2^{l(T)-1}}$$

which is equivalent to Proposition 2.3 in [3], since $B_T(n)/A_T(n) = C_T(n)/A_T(n) - 1$. This tells us that for trees T_1, T_2 with $l(T_1) < l(T_2)$ there exists some n_0 such that $A_{T_1}(n)/C_{T_1}(n) < A_{T_2}(n)/C_{T_2}(n)$ for all $n \ge n_0$. Here, we show that there exist trees $T_1 \subseteq T_2$, with $l(T_1) = l(T_2)$, with the inequality the other way round. That is, there is an n_0 such that $A_{T_1}(n)/C_{T_1}(n) > A_{T_2}(n)/C_{T_2}(n)$ for all $n \ge n_0$. All such pairs T_1, T_2 are counterexamples to the conjecture, for all $n \ge n_0$.

Theorem 6. For any tree T with l(T) > 1 and d(T) > 0, we have

$$\frac{A_T(n)}{C_T(n)} = 1 - \frac{1}{2^{l(T)-1}} \left(1 - \frac{d(T)}{n} + \frac{\binom{d(T)}{2}}{n^2} + \frac{b_T}{n^2} \right) + o(n^{-2})$$
(11)

where

$$b_T = \frac{\beta_T}{\alpha_T} - \frac{d(T)}{2^{l(T)-1} - 1}.$$
(12)

For any tree T with l(T) > 1 and d(T) = 0, we have

$$\frac{A_T(n)}{C_T(n)} = 1 - \frac{1}{2^{l(T)-1}} + O(2^{-n}).$$
(13)

For any tree T with l(T) = 1, we have

$$\frac{A_T(n)}{C_T(n)} = \frac{d(T)+1}{n} + o(n^{-1}).$$
(14)

Proof. Let T be a tree with l(T) > 1 and d(T) > 0. By (1) it is sufficient to work with the ratio $C_T(n-1)/C_T(n)$. By Theorem 1 we have that $C_T(n) = \sum_{j=0}^{l(T)} q_j(n) 2^{jn}$ and by Lemma 3 we have that

$$q_l(n) \sim \frac{2^{l(T)-1}}{2^{l(T)-1}-1} \left(\alpha_T n^d(T) + \left(\beta_T - \frac{\alpha_T d(T)}{2^{l(T)-1}-1} \right) n^{d(T)-1} \right).$$

So,

$$C_T(n) = 2^{l(T)n} a_T(n^{d(T)} + b_T n^{d(T)-1} + c_T n^{d(T)-2} + o(n^{d(T)-2}))$$

where

$$a_T = \frac{2^{l(T)-1}}{2^{l(T)-1}-1} \alpha_T, \qquad b_T = \frac{\beta_T}{\alpha_T} - \frac{d(T)}{2^{l(T)-1}-1}$$

and c_T is an unspecified constant. Note that this equation is true for $d \ge 2$, and can be made true for d = 1 by setting c_T to 0. We have

$$\frac{C_T(n-1)}{C_T(n)} = \frac{2^{l(T)(n-1)}a_T((n-1)^{d(T)} + b_T(n-1)^{d(T)-1} + c_T(n-1)^{d(T)-2} + o(n^{d(T)-2}))}{2^{l(T)n}a_T(n^{d(T)} + b_Tn^{d(T)-1} + c_Tn^{d(T)-2} + o(n^{d(T)-2}))} \\
= \frac{1}{2^{l(T)}} \frac{(1-1/n)^{d(T)} + \frac{b_T}{n}(1-1/n)^{d(T)-1} + \frac{c_T}{n^2}(1-1/n)^{d(T)-2} + o(n^{-2})}{1+b_T/n + c_T/n^2 + o(n^{-2})} \\
= \frac{1}{2^{l(T)}} \left(1 - \frac{d(T)}{n} + \frac{\binom{d(T)}{2}}{n^2} + \frac{b_T}{n} - \frac{b_T(d(T)-1)}{n^2} + \frac{c_T}{n^2} + o(n^{-2})\right) \\
\times \left(1 - \frac{b_T}{n} - \frac{c_T}{n^2} + \frac{b_T^2}{n^2} + o(n^{-2})\right) \\
= \frac{1}{2^{l(T)}} \left(1 - \frac{d(T)}{n} + \frac{\binom{d(T)}{2}}{n^2} + \frac{b_T}{n^2} + o(n^{-2})\right)$$

and, using (1), we have

$$\frac{A_T(n)}{C_T(n)} = 1 - \frac{1}{2^{l(T)-1}} \left(1 - \frac{d(T)}{n} + \frac{\binom{d(T)}{2}}{n^2} + \frac{b_T}{n^2} + o(n^{-2}) \right)$$

as required.

Now, suppose l(T) > 1 and d(T) = 0. So, $C_T(n) = 2^{l(T)n} a_T(1 + O(2^{-n}))$ and

$$\frac{C_T(n-1)}{C_T(n)} = \frac{1}{2^l(T)} (1 + O(2^{-n}))$$

which by (1) gives the required result.

If l(T) = 1, then $A_T(n) = 2^n \alpha_T (n^{d(T)} + o(n^{d(T)}))$ and $C_T(n) = 2^n \frac{\alpha_T}{d(T)+1} (n^{d(T)+1} + o(n^{d(T)+1}))$. So,

$$\frac{A_T(n)}{C_T(n)} = \frac{2^n \alpha_T(n^{d(T)} + o(n^{d(T)}))}{2^n \frac{\alpha_T}{d(T) + 1}(n^{d(T)+1} + o(n^{d(T)+1}))} = \frac{d(T) + 1}{n}(1 + o(1))$$

Corollary 7. For any two trees T_1, T_2 , if either

- (i) $l(T_1) > l(T_2)$, or
- (*ii*) $l(T_1) = l(T_2)$ and $d(T_1) > d(T_2)$, or
- (*iii*) $l(T_1) = l(T_2), d(T_1) = d(T_2) > 0 \text{ and } \alpha_{T_1} / \beta_{T_1} > \alpha_{T_2} / \beta_{T_2},$

then there exists an integer n_0 such that

$$\frac{A_{T_1}(n)}{C_{T_1}(n)} > \frac{A_{T_2}(n)}{C_{T_2}(n)}$$

for all $n \geq n_0$.

Proof. (i) If $l(T_1) > l(T_2)$ then we can just compare the limits of the ratios $A_{T_1}(n)/C_{T_1}(n)$ and $A_{T_2}(n)/C_{T_2}(n)$. By Theorem 6 (or from [3]) we have that

$$\lim_{n \to \infty} \frac{A_T(n)}{C_T(n)} = 1 - \frac{1}{2^{l(T)-1}}.$$

Note that this also holds for trees T with l(T) = 1. Since the limit is increasing in l(T) the result follows.

(ii) If $l(T_1) = l(T_2)$ and $d(T_1) > d(T_2)$ there are two cases to consider. If $l(T_1) = l(T_2) = 1$ then using equation (14) from Theorem 6 we have that

$$\frac{A_{T_1}(n)}{C_{T_1}(n)} = \frac{d(T_1) + 1}{n} + o(n^{-1}) \qquad \qquad \frac{A_{T_2}(n)}{C_{T_2}(n)} = \frac{d(T_2) + 1}{n} + o(n^{-1})$$

and since $d(T_1) > d(T_2)$ there exists an n_0 such that $A_{T_1}(n)/C_{T_1}(n) > A_{T_2}(n)/C_{T_2}(n)$ for all $n \ge n_0$.

If $l(T_1) = l(T_2) > 1$ then using equation (11) from Theorem 6, and considering only terms up to n^{-1} we have

$$\frac{A_{T_1}(n)}{C_{T_1}(n)} = 1 - \frac{1}{2^{l(T_1)-1}} \left(1 - \frac{d(T_1)}{n}\right) + o(n^{-1}), \quad \frac{A_{T_2}(n)}{C_{T_2}(n)} = 1 - \frac{1}{2^{l(T_2)-1}} \left(1 - \frac{d(T_2)}{n}\right) + o(n^{-1}).$$

This is also true for $d(T_2) = 0$ by equation (13). Since $l(T_1) = l(T_2)$ and $d(T_1) > d(T_2)$ there exists an n_0 such that $A_{T_1}(n)/C_{T_1}(n) > A_{T_2}(n)/C_{T_2}(n)$ for all $n \ge n_0$.

(iii) If $l(T_1) = l(T_2)$ and $d(T_1) = d(T_2) > 0$ and $\alpha_{T_1}/\beta_{T_1} > \alpha_{T_2}/\beta_{T_2}$, we first note that $l(T_1)$ cannot be equal to 1. (If $l(T_1) = l(T_2) = 1$ then $d(T_1) = d(T_2)$ implies that T_1 and T_2 are the same tree, the (d+2)-element chain.) So we have $l(T_1) = l(T_2) > 1$ and using equation (11), we see that $A_{T_1}(n)/C_{T_1}(n)$ and $A_{T_2}(n)/C_{T_2}(n)$ differ only in the n^{-2} term and in terms of lower order. Therefore, it is enough to show that $b_{T_1} < b_{T_2}$. But this follows immediately from the inequality $\alpha_{T_1}/\beta_{T_1} > \alpha_{T_2}/\beta_{T_2}$ and (12).

Corollary 7 provides a simple method for comparing the asymptotics of the ratios $A_{T_1}(n)/C_{T_1}(n)$ and $A_{T_2}(n)/C_{T_2}(n)$. Firstly, we compare the number of leaves of the two trees, the tree with more leaves being the tree with the asymptotically larger ratio A/C. If the trees have the same number of leaves, then we compare the values of $d(T_1)$ and $d(T_2)$; the tree with the larger d has the asymptotically larger ratio A/C. Both the number of leaves, l(T), and d(T) are very easily obtained from the Hasse diagram of the tree. If both of these are the same for the two trees, then we need to compare the ratios α_{T_1}/β_{T_1} and α_{T_2}/β_{T_2} . The tree with the larger ratio α/β has the asymptotically larger ratio A/C. This comparison involes rather more calculation, using the algorithm provided by Theorem 4. These calculations can be simplified if the two trees have a very similar structure, for example, as we will see later, if the trees are identical except for the addition of one element to one of the trees.

Corollary 7 also guides our search for more counterexamples to the conjecture of Kubicki, Lehel and Morayne. The counterexample given in Section 1 has two important properties, namely that $l(T_1) = l(T_2)$ and $d(T_1) = d(T_2)$. That this is a necessary condition for a pair of trees to be an asymptotic counterexample follows from Corollary 7. Since we are only considering trees $T_1 \subseteq T_2$ we must have $l(T_1) \leq l(T_2)$. But we are looking for trees T_1, T_2 where the ratio A/C is asymptotically larger for T_1 than for T_2 , so we need to look at trees with $l(T_1) = l(T_2)$. If $T_1 \subseteq T_2$ and the trees have the same number of leaves we must have $d(T_1) \leq d(T_2)$. (Each element counted by $d(T_1)$ must also be counted by $d(T_2)$ otherwise T_2 would have more leaves than T_1 .) So, to find our counterexamples we need to look at trees with $d(T_1) = d(T_2)$.

The following theorem gives an infinite family of pairs of trees which form counterexamples. We do not claim, or believe, that this is the only way to construct counterexamples. However, the construction is relatively simple, which makes the calculations much more manageable. Also, there are many ternary tree pairs in this family, including the counterexample given in Section 1, which shows that the conjecture does not just fail for trees with high branching numbers.

Theorem 8. Let T be a tree whose root x has three lower covers x_1, x_2, x_3 , and let T' be formed from T by adding a new element y below x and above x_2 and x_3 (see Figure 4). If d(T) > 0 and d(D[y]) = 0, then there exists n_0 such that $A_T(n)/C_T(n) > A_{T'}(n)/C_{T'}(n)$ for all $n \ge n_0$.

Figure 4: General counterexample for d(T) > 0, d(D[y]) = 0

Proof. We have l(T) = l(T') and d(T) = d(T') > 0 so by Corollary 7 it is enough to show that $\alpha_T \beta_{T'} > \alpha_{T'} \beta_T$. We use equations (9) and (10) to express these α and β in terms of some other α_S and β_S for common subtrees S of T and T'. As before, for $L \subseteq [3]$ write T_L for the subtree formed from T by removing the elements in $D[x_j]$ for each $j \in L^c$. Write $T'_{\{1\}}$ for the subtree formed from T' by removing elements in D[y] and write T_y for the subtree formed by removing elements in $D[x_1]$. We have that $T_{\{1\}} = T'_{\{1\}}$ and $T_{\{2,3\}} = D[y]$. By the assumption that d(D[y]) = 0 we have that $d(T) = d(T') = d(T_{\{1,2\}}) = d(T_{\{1,3\}}) = d(T_{\{1\}})$, and we denote this common value by d. We also have that $d(T_{\{2\}}) = d(T_{\{3\}}) = d(T_{\{y\}}) =$ d(D[y]) = 0. For ease of notation, we write l for the common value l(T) = l(T'), write l_1 for $l(T_{\{1\}})$, l_{12} for $l(T_{\{1,2\}})$, etc., and we use a similar notation for α and β . For example, writing α_1 for $\alpha_{T_{\{1\}}}$. Using equation (10) to find β_T and $\beta_{T'}$, we have

$$\beta_T = \frac{\alpha_{23}\beta_1 2^{l_1 - 1} + (\alpha_2\beta_{13} - d\alpha_2\alpha_{13})2^{l_2 - 1} + (\alpha_3\beta_{12} - d\alpha_3\alpha_{12})2^{l_3 - 1} - d\alpha_T}{2^{l_1 - 1} - 1}$$
$$\beta_{T'} = \frac{\alpha_y \beta_1 2^{l_2 - 2} - d\alpha_{T'}}{2^{l_1 - 1} - 1}$$

 \mathbf{SO}

$$\alpha_T \beta_{T'} - \alpha_{T'} \beta_T = \frac{\alpha_T \alpha_y \beta_1 2^{l-2} - \alpha_{T'} \left(\alpha_{23} \beta_1 2^{l_1 - 1} + (\alpha_2 \beta_{13} - d\alpha_2 \alpha_{13}) 2^{l_2 - 1} + (\alpha_3 \beta_{12} - d\alpha_3 \alpha_{12}) 2^{l_3 - 1} \right)}{2^{l-1} - 1}$$

and using (9) to find α_T and $\alpha_{T'}$ we have

$$\alpha_T = \frac{\alpha_1 \alpha_{23} 2^{l_1 - 1} + \alpha_2 \alpha_{13} 2^{l_2 - 1} + \alpha_3 \alpha_{12} 2^{l_3 - 1}}{2^{l_1 - 1} - 1}$$
$$\alpha_{T'} = \frac{\alpha_1 \alpha_y 2^{l_2 - 2}}{2^{l_1 - 1} - 1}$$

This gives

$$\frac{(\alpha_T \beta_{T'} - \alpha_{T'} \beta_T)(2^{l-1} - 1)^2}{\alpha_y 2^{l-2}} = (\alpha_2 \alpha_{13} 2^{l_2 - 1} + \alpha_3 \alpha_{12} 2^{l_3 - 1}) \beta_1$$

- $\alpha_1 ((\alpha_2 \beta_{13} - d\alpha_2 \alpha_{13}) 2^{l_2 - 1} + (\alpha_3 \beta_{12} - d\alpha_3 \alpha_{12}) 2^{l_3 - 1})$
= $2^{l_2 - 1} \alpha_2 (\alpha_{13} \beta_1 - \alpha_1 \beta_{13} + d\alpha_1 \alpha_{13})$
+ $2^{l_3 - 1} \alpha_3 (\alpha_{12} \beta_1 - \alpha_1 \beta_{12} + d\alpha_1 \alpha_{12})$

Finally, we have

$$\beta_{13} = \frac{\beta_1 \alpha_3 2^{l_{13}-2} - d\alpha_{13}}{2^{l_{13}-1} - 1} \quad \text{and} \quad \alpha_{13} = \frac{\alpha_1 \alpha_3 2^{l_{13}-2}}{2^{l_{13}-1} - 1}$$

 \mathbf{SO}

$$\begin{aligned} \alpha_{13}\beta_1 - \alpha_1\beta_{13} + d\alpha_1\alpha_{13} &= \frac{\alpha_1\alpha_3 2^{l_{13}-2}}{2^{l_{13}-1}-1}\beta_1 - \alpha_1\frac{\beta_1\alpha_3 2^{l_{13}-2} - d\alpha_{13}}{2^{l_{13}-1}-1} + d\alpha_1\alpha_{13} \\ &= \frac{d\alpha_1\alpha_{13} 2^{l_{13}-1}}{2^{l_{13}-1}-1} \end{aligned}$$

and similarly

$$\alpha_{12}\beta_1 - \alpha_1\beta_{12} + d\alpha_1\alpha_{12} = \frac{d\alpha_1\alpha_{12}2^{l_{12}-1}}{2^{l_{12}-1}-1}$$

Therefore

$$\begin{aligned} \alpha_T \beta_{T'} - \alpha_{T'} \beta_T &= \frac{\alpha_y 2^{l-2}}{(2^{l-1} - 1)^2} \left[2^{l_2 - 1} \alpha_2 \frac{d\alpha_1 \alpha_{13} 2^{l_{13} - 1}}{2^{l_{13} - 1} - 1} + 2^{l_3 - 1} \alpha_3 \frac{d\alpha_1 \alpha_{12} 2^{l_{12} - 1}}{2^{l_{12} - 1} - 1} \right] \\ &= \frac{\alpha_y \left(2^{l-2} \right)^2 d\alpha_1}{(2^{l-1} - 1)^2} \left[\frac{\alpha_2 \alpha_{13}}{2^{l_{13} - 1} - 1} + \frac{\alpha_3 \alpha_{12}}{2^{l_{12} - 1} - 1} \right] \\ &= \frac{d\alpha_{T'} 2^{l-2}}{2^{l-1} - 1} \left[\frac{\alpha_2 \alpha_{13}}{2^{l_{13} - 1} - 1} + \frac{\alpha_3 \alpha_{12}}{2^{l_{12} - 1} - 1} \right] \end{aligned}$$

and since $\alpha_S > 0$ for all trees S, we have $\alpha_T \beta_{T'} - \alpha_{T'} \beta_T > 0$ as required.

5 Embeddings and other mappings into the complete *p*-ary tree

We have shown that the result of Kubicki, Lehel and Morayne, that

$$\frac{A(n;T_1)}{C(n;T_1)} \le \frac{A(n;T_2)}{C(n;T_2)}$$

for binary trees T_1, T_2 such that T_2 contains a subposet isomorphic to T_1 , does not extend to arbitrary trees $T_1 \subseteq T_2$. Here, we look at generalisations of the result in other directions, for example by looking at embeddings into the complete *p*-ary tree, for any $p \ge 2$. We will also generalise the result to strict order-preserving maps of arbitrary trees into the complete *p*-ary tree.

Recall that T_p^n is the complete *p*-ary tree with root 1_n , $A_p(n;T) = |\{S \subseteq T_p^n : 1_n \in S, S \cong T\}|$ and $B_p(n;T) = |\{S \subseteq T_p^n : 1_n \notin S, S \cong T\}|$. Define $C_p(n;T)$ to be the sum $A_p(n;T) + B_p(n;T)$. Recall that in these definitions the isomorphisms are on unlabelled trees.

Let $A_T^{(p)}(n)$ be the number of embeddings of T into T_p^n that map the root 1_T of T to 1_n and let $B_T^{(p)}(n)$ be the number of embeddings that do not map the root to 1_n . Let $C_T^{(p)}(n) = A_T^{(p)}(n) + B_T^{(p)}(n)$ be the total number of embeddings of T into T_p^n . As before, we have $A_T^{(p)}(n) = |G|A_p(n;T), B_T^{(p)}(n) = |G|B_p(n;T)$ and $C_T^{(p)}(n) = |G|C_p(n;T)$ where G is the group of symmetries of the (unlabelled) tree T.

We prove the result that

$$\frac{A_{T_1}^{(p)}(n)}{C_{T_1}^{(p)}(n)} \le \frac{A_{T_2}^{(p)}(n)}{C_{T_2}^{(p)}(n)}$$

for binary trees T_1, T_2 such that T_2 contains a subposet isomorphic to T_1 . We do so by defining an appropriate distributive lattice and then applying the FKG-inequality. The FKG-inequality is a powerful corollary of the Four Functions Theorem by Ahlswede and Daykin. See, for example, [1] for a background to the FKG-inequality and examples of its use in probabilistic combinatorics. We state a form of the inequality that we will use repeatedly.

Theorem 9 (Fortuin, Kasteleyn, Ginibre (1971)). If $(\mathcal{F}, <)$ is a finite distributive lattice and if α, β are both increasing (or both decreasing) non-negative functions on \mathcal{F} and μ is a non-negative function on \mathcal{F} such that $\mu(f)\mu(g) \leq \mu(f \vee g)\mu(f \wedge g)$ for all $f, g \in \mathcal{F}$, then

$$\sum_{f \in \mathcal{F}} \mu(f)\alpha(f) \sum_{f \in \mathcal{F}} \mu(f)\beta(f) \le \sum_{f \in \mathcal{F}} \mu(f) \sum_{f \in \mathcal{F}} \mu(f)\alpha(f)\beta(f)$$
(15)

A function μ on a lattice \mathcal{F} is said to be *log-supermodular* if

$$\mu(f)\mu(g) \le \mu(f \lor g)\mu(f \land g) \quad \text{for all } f, g \in \mathcal{F}.$$
(16)

The power of this result means that Theorem 12 can be viewed as just one of many correlation inequalities for embeddings of binary trees into complete trees. We define an appropriate distributive lattice \mathcal{F} and log-supermodular function μ so that $\sum_{f \in \mathcal{F}} \mu(f)$ equals the number of embeddings into T_p^n . Then we have the FKG-inequality (15) for any pair of increasing functions α, β . As we will see, the definition of the lattice \mathcal{F} means that the indicator functions of events like "the root of T is mapped to 1_n " or "element $x \in T$ is mapped to a high level of T_p^{n} " will be increasing on \mathcal{F} . The FKG-inequality then tells us that events like this are positively correlated, i.e., the probability that one event occurs increases if we condition on the other event occurring.

We only need consider the case where $T_1 \cong T_2 \setminus \{m\}$, since we can reduce to this case by the following lemmas. Lemma 10 is obvious, and the proof of Lemma 11 can be found in [2].

Lemma 10. Given a binary tree, the following types of operation produce another binary tree with one element fewer.

- (a) Removing a leaf,
- (b) Removing the lower cover of an element that has exactly one lower cover.

Note that if an element has exactly one lower cover and the lower cover is also a leaf, removing this leaf can be considered as an operation of both types. Also, note that we can think of operation (b) as contracting the edge between the element and its lower cover, that is, identifying them in the new tree.

Lemma 11. If T_1 and T_2 are binary trees and T_2 contains a subposet isomorphic to T_1 , then there is a sequence of operations of type (a) and (b) leading from T_2 to an isomorphic copy of T_1 through binary trees.

Theorem 12. If T_1 and T_2 are binary trees such that T_2 contains a subposet isomorphic to T_1 , then

$$\frac{A_{T_1}^{(p)}(n)}{C_{T_1}^{(p)}(n)} \le \frac{A_{T_2}^{(p)}(n)}{C_{T_2}^{(p)}(n)} \tag{17}$$

Proof. From Lemma 11 it is enough to show (17) for the particular cases where T_1 is isomorphic to the subposet $T_2 \setminus \{m\}$ produced from T_2 by exactly one operation of either type (a) or (b). For ease of notation we identify T_1 with the subposet $T_2 \setminus \{m\}$.

Firstly, we define a distributive lattice. Write [n] for the chain on the *n*-element set $\{1, 2, \ldots, n\}$ with the natural ordering. For any binary tree T, write $\mathcal{F}_T = \mathcal{F}(n;T)$ for the lattice of strict order-preserving maps from T to [n]. So $f \in \mathcal{F}_T$ is a function from T to [n] such that x > y in T implies f(x) > f(y) in [n]. The ordering on \mathcal{F}_T is $f \ge g$ if and only if $f(x) \ge g(x)$ for all $x \in T$. The join, $f \lor g$, is the pointwise maximum of f and g, and the meet, $f \land g$, is the pointwise minimum of f and g. It is relatively simple to check that \mathcal{F}_T is a distributive lattice.

We call a function in \mathcal{F}_T a *level function*. If we have an embedding ϕ of T into T_p^n , we can construct a function f by setting f(x) equal to the level of $\phi(x)$ in T_p^n . Since ϕ is an embedding, x > y in T implies that the level of $\phi(x)$ is greater than the level of $\phi(y)$, and so f(x) > f(y). Therefore, f is a level function and we say that ϕ corresponds to f. In fact, we can do this for any strict order-preserving map ϕ from T to T_p^n . For each level function $f \in \mathcal{F}_T$ we can count the number of embeddings from T to T_p^n that correspond to f. This defines a function μ from \mathcal{F}_T to \mathbb{R}_+ : $\mu(f) = \mu_1(f)\mu_2(f)$ where μ_1, μ_2 are defined as

$$\mu_1(f) = p^{n-f(1_T)} \prod_{\substack{x > y, \text{ an edge in } T \\ y \text{ has } 2 \text{ lower } \\ \text{covers, } z_1, z_2}} p^{f(x)-f(y)},$$

Here, $\mu_1(f)$ counts the number of strict order-preserving maps from T to T_p^n that correspond to the level function f. However, a strict order-preserving map from \dot{T} to T_p^n need not be an embedding of T into T_p^n . The term $\mu_2(f)$ is exactly the fraction of those strict order-preserving maps from T to T_p^n corresponding to the level function f that are also embeddings of T into T_p^n . To see that $\mu_1(f)$ and $\mu_2(f)$ are as claimed, suppose we are constructing a strict order-preserving map ϕ that corresponds to f, by choosing the element $\phi(x)$ from level f(x), for each x from the root, 1_T , downwards. We have $p^{n-f(1_T)}$ choices for $\phi(1_T)$, and then for each edge x > y in T, once we have chosen $\phi(x)$ we have $p^{f(x)-f(y)}$ choices for $\phi(y)$. This gives a total of $\mu_1(f)$ strict order-preserving maps. Since we have $\phi(x) > \phi(y)$ for all x > y in T, the map ϕ is an embedding if $\phi(z_1)$ and $\phi(z_2)$ are incomparable for all elements z_1 , z_2 with a common upper cover in T. Let y be some element of T which has two lower covers z_1, z_2 and, without loss of generality, suppose that $f(z_1) \ge f(z_2)$. When constructing ϕ , once we have chosen $\phi(y)$ and $\phi(z_2)$ (elements in the levels f(y) and $f(z_2)$) respectively), there are $p^{f(y)-f(z_1)}$ choices for $\phi(z_1)$. One of these choices (the element on the path between $\phi(y)$ and $\phi(z_2)$ will give $\phi(z_1) > \phi(z_2)$ in T_p^n , meaning that ϕ is not an embedding. The other choices mean $\phi(z_1)$ and $\phi(z_2)$ are incomparable as required for ϕ to be an embedding. Because of the regularity of T_p^n , these numbers are independent of the choice of $\phi(z_2)$, so the fraction of choices which allow ϕ to be an embedding is $1 - p^{-(f(y)-f(z_1))}$. So, taking the product over all such y gives the expression $\mu_2(f)$ as the fraction of strict order-preserving maps (corresponding to f) that are also embeddings.

Claim 1. μ is log-supermodular on \mathcal{F}_T .

Proof of Claim. Since $(f \wedge g)(x) + (f \vee g)(x) = \min(f(x), g(x)) + \max(f(x), g(x)) = f(x) + g(x)$ for all $x \in T$, we have that $\mu_1(f)\mu_1(g) = \mu_1(f \wedge g)\mu_1(f \vee g)$. So, it is enough to prove (16) for μ_2 . For each $y \in T$ with two lower covers, z_1, z_2 , write $\sigma(f) = \max(f(z_1), f(z_2)) - f(y)$. Since μ_2 is a product of terms indexed by such y, it is sufficient to prove that

$$(1 - p^{\sigma(f)})(1 - p^{\sigma(g)}) \le (1 - p^{\sigma(f \land g)})(1 - p^{\sigma(f \lor g)})$$
(18)

for all $y \in T$ with two lower covers.

Without loss of generality, we can assume that
$$f(z_1) \ge f(z_2), g(z_1), g(z_2)$$
. So
 $\sigma(f \land g) + \sigma(f \lor g) = \max\{\min(f(z_1), g(z_1)), \min(f(z_2), g(z_2))\} - \min\{f(y), g(y)\}$
 $+ \max\{\max(f(z_1), g(z_1)), \max(f(z_2), g(z_2))\} - \max\{f(y), g(y)\}$
 $= \max\{g(z_1), \min(f(z_2), g(z_2))\} + f(z_1) - f(y) - g(y)$
 $\le \max\{g(z_1), g(z_2)\} + f(z_1) - f(y) - g(y)$
 $= \sigma(f) + \sigma(g)$

(with equality unless both $g(z_1) < g(z_2)$ and $f(z_2) < g(z_2)$). Moreover, since $\sigma(f \lor g) = f(z_1) - \max\{f(y), g(y)\}$, if $f(y) \ge g(y)$ then $\sigma(f \lor g) = \sigma(f)$ and so $\sigma(f \land g) \le \sigma(g)$ and then (18) follows. Otherwise, f(y) < g(y). Set s = g(y) - f(y) > 0. Then $\sigma(f \lor g) = f(z_1) - g(y) = \sigma(f) - s$ and $\sigma(f \land g) = \max\{g(z_1), \min(f(z_2), g(z_2))\} - f(y) \le \sigma(g) + s$. Also, $\sigma(g) + s = \max\{g(z_1), g(z_2)\} - g(y) + s \le f(z_1) - f(y) = \sigma(f)$. So,

$$(1 - p^{\sigma(f \land g)})(1 - p^{\sigma(f \lor g)}) \ge (1 - p^{\sigma(g) + s})(1 - p^{\sigma(f) - s})$$

= $1 - p^{\sigma(g) + s} - p^{\sigma(f) - s} + p^{\sigma(f) + \sigma(g)}$
 $\ge 1 - p^{\sigma(g)} - p^{\sigma(f)} + p^{\sigma(f) + \sigma(g)}$
= $(1 - p^{\sigma(f)})(1 - p^{\sigma(g)}),$

where the second inequality holds since the function $\chi : x \mapsto p^x$ is convex for all $x \in \mathbb{R}$, and $\sigma(g) \leq \sigma(g) + s, \sigma(f) - s \leq \sigma(f)$ with s > 0.

So, we have that μ is log-supermodular on \mathcal{F}_T , and therefore the restriction μ' of μ to any sublattice \mathcal{F}' of \mathcal{F}_T is log-supermodular on \mathcal{F}' .

We have that the number of embeddings of T into T_p^n is $\sum_{f \in \mathcal{F}_T} \mu(f)$. Also, we can split a tree T at any point and perform similar sums on the two subtrees. Let x be an element of T and define subtrees $S_1 = T \setminus D(x)$ and $S_2 = D[x]$ and consider two lattices $\mathcal{F}_1(k) = \{ f \in \mathcal{F}(n; S_1) : f(x) = k \}$ and $\mathcal{F}_2(k) = \{ f \in \mathcal{F}(k; S_2) : f(x) = k \}$, where $1 \le k \le n$. The $\sum_{f \in \mathcal{F}_1(k)} \mu(f)$ is the number of embeddings of S_1 into T_p^n that map x to an element of T_p^n in level k, and $\sum_{f \in \mathcal{F}_2(k)} \mu(f)$ is the number of embeddings of S_2 into T_p^k that map x to the root (the only element in level k of T_p^k). Consider any pair of embeddings (ϕ_1, ϕ_2) where ϕ_1 is an embedding of S_1 into T_p^n that maps x to an element in level k, and ϕ_2 is an embedding of S_2 into T_p^k that maps x to the root of T_p^k . We can construct an embedding ϕ of T into T_p^n as follows. For any point $y \in S_1$, define $\phi(y)$ to be $\phi_1(y)$. So, the point $x \in S_1$ is mapped to $\phi(x) = \phi_1(x)$, an element in level k. So, ϕ_1 defines a unique copy of T_p^k in T_p^n , namely the down-set of $\phi_1(x)$ in T_p^n . So, for elements $y \in S_2$ define $\phi(y)$ to be the element corresponding to $\phi_2(y)$ in this copy of T_p^k . Since the only element in $S_1 \cap S_2$ is x and $\phi_2(x)$ is by definition the root of T_p^k , we have a well defined function ϕ . It is easy to see that ϕ is indeed an embedding of T into T_p^n . Therefore, ϕ is an embedding of T into T_p^n that maps x to an element in level k. Since any embedding of T into T_p^n that maps x to an element in level k can be split into two embeddings by reversing this process, we have that the number of embeddings of T into T_p^n that map x to an element in level k is $\sum_{f \in \mathcal{F}_1(k)} \mu(f) \sum_{g \in \mathcal{F}_2(k)} \mu(g)$ and therefore the total number of embeddings of T into T^n

$$\sum_{k=1}^{n} \sum_{f \in \mathcal{F}_1(k)} \mu(f) \sum_{g \in \mathcal{F}_2(k)} \mu(g).$$
(19)

Note that this holds for any element x in T.

Recall that m is the point removed from T_2 to obtain T_1 . Let l be the upper cover of m in T_2 . Write T_t for the subtree $T_1 \setminus D(l)$, and T_b for D[l] as a subtree of T_1 . Note that we have split T_1 into two trees T_t and T_b as explained earlier. Write T_b+ for the tree D[l] as a subtree of T_2 , so that $T_b+=T_b \cup \{m\}$. Therefore, we have split T_2 into two trees T_t and T_b+ . So, T_t is common to both trees T_1, T_2 and T_b and T_b+ differ by only one element. Furthermore, since we have that T_1 is obtained from T_2 either by (a) removing a leaf, or (b) removing the lower cover of an element with exactly one lower cover, we know that either (a) T_b+ has the extra element m as a leaf, directly below the root l of T_b+ , or (b) T_b+ has the extra element m as the only lower cover of l. (See Figure 5.)

Figure 5: The two cases for T_b +

Let us look at the sublattice \mathcal{F}' of $\mathcal{F}(n; T_t)$ defined by $\mathcal{F}' = \{f \in \mathcal{F}(n; T_t) : f(l) = k \text{ or } f(l) = k + 1\}$, for $1 \leq k < n$. We have μ defined on \mathcal{F}' as described earlier, and μ is log-supermodular. Define $\alpha(f) = I\{f(1_{T_t}) = n\}$ as the indicator function of the event $f(1_{T_t}) = n$ and define $\beta(f) = I\{f(l) = k + 1\}$ as the indicator of the event f(l) = k + 1. Both α and β are increasing functions, since the sets $\{f : f(1_{T_t}) = n\}$ and $\{f : f(l) = k + 1\}$ are both up-sets of \mathcal{F}' .

For k = 1, ..., n, let a_k be the number of embeddings of T_t into T_p^n that map l to an element in level k, and let b_k be the number of embeddings of T_t into T_p^n that map l to an element in level k and map the root 1_{T_t} to the root 1_n . Then,

$$\sum_{f \in \mathcal{F}'} \mu(f)\alpha(f) = b_k + b_{k+1}, \qquad \sum_{f \in \mathcal{F}'} \mu(f) = a_k + a_{k+1},$$
$$\sum_{f \in \mathcal{F}'} \mu(f)\beta(f) = a_{k+1}, \qquad \sum_{f \in \mathcal{F}'} \mu(f)\alpha(f)\beta(f) = b_{k+1},$$

and applying Theorem 9 to $\mathcal{F}', \mu, \alpha, \beta$ gives $(b_k + b_{k+1})a_{k+1} \leq (a_k + a_{k+1})b_{k+1}$ or

$$\frac{b_k}{a_k} \le \frac{b_{k+1}}{a_{k+1}}$$

for all $k, 1 \leq k < n$.

Now let us look at the trees T_b and T_b+ . Let c_k be the number of embeddings of T_b into T_p^k that map l to 1_k , and let d_k be the number of embeddings of T_b+ into T_p^k that map l to 1_k , for $k = 1, \ldots, n$. First consider case (a), where m is a leaf of T_b+ .

Each embedding of T_b + with l mapped to 1_k can be thought of as an extension of an embedding of T_b with l mapped to 1_k . Moreover, since l has at most two lower covers in T_b +, one of which is m, every embedding of T_b with l mapped to 1_k can be extended to at least $p^{k-1}-1$ distinct embeddings of T_b + with l mapped to 1_k , but to at most $(p^k-1)/(p-1)-1$ distinct embeddings of T_b + with l mapped to 1_k . Therefore,

$$\frac{d_k}{c_k} \le \frac{p^k - 1}{p - 1} - 1 < p^k - 1 \le \frac{d_{k+1}}{c_{k+1}}$$

We now show that $d_k/c_k \leq d_{k+1}/c_{k+1}$ also holds in case (b), again using Theorem 9. Let \mathcal{F}'' be the sublattice of $\mathcal{F}(k+1;T_b)$ defined as $\mathcal{F}'' = \{f \in \mathcal{F}(k+1;T_b) : f(l) = k \text{ or } f(l) = k+1\}$, for $1 \leq k < n$. Take μ defined on this sublattice as before, so that μ is log-supermodular. Define $\alpha(f) = I\{f(l) = k+1\}$ and define $\beta(f) = (p^{f_{min}} - 1)/(p-1) - 1$, where $f_{min} = \min_{x \in T_b} f(x)$. We have that α is increasing on \mathcal{F}'' , and f_{min} is increasing on \mathcal{F}'' therefore β is also increasing on \mathcal{F}'' . Before applying Theorem 9 we show what each of the terms in (15) is.

Since there are p elements in level k of T_p^{k+1} each of the c_k embeddings corresponds to p embeddings in the sum $\sum_{f \in \mathcal{F}''} \mu(f)$, so this equals $pc_k + c_{k+1}$. The sum $\sum_{f \in \mathcal{F}''} \mu(f) \alpha(f)$ equals c_{k+1} . The sum $\sum_{f \in \mathcal{F}''} \mu(f) \beta(f)$ counts the number of embeddings of T_b^{k+1} into T_p^{k+1} that map l to an element in level k or k+1. To see this, fix f in \mathcal{F}'' and let ϕ be an embedding of T_b into T_p^{k+1} that corresponds to f. By definition the lowest level mapped to by ϕ is f_{min} , so ϕ maps the elements of T_b to elements of T_p^{k+1} between levels f_{min} and f(l) inclusive. In fact, it maps T_b into a copy of $T_p^{f(l)-f_{min}+1}$ defined as the elements in the down-set of $\phi(l)$ that are in levels f_{min} to f(l) of T^{k+1} , inclusive. Call this copy T_f . We can construct an embedding ψ of T_b + into T_p^{k+1} as follows. Choose some integer *i* between 1 and $f_{min} - 1$, this is the number of levels by which we will "push down" the embedding ϕ so as to "fit in" the element m. (So, if $f_{min} = 1$ this construction does not yield an embedding of T_b , which agrees with $\mu(f)\beta(f) = 0$ for $f_{min} = 1$.) Define $\psi(l)$ to be $\phi(l)$ and define $\psi(m)$ to be any element in level f(l) - i that is below $\psi(l)$. Once this choice is made ψ is then determined. Consider the copy of $T_p^{f(l)-i}$ that is the down-set of $\psi(m)$. By the choice of i, this has at least as many levels as T_f , so just considering the top $f(l) - f_{min} + 1$ levels, we have a copy of T_f . Then, for all $x \in T_b$ + with $x \neq l, m$, define $\psi(x)$ to be the element in this copy of T_f that corresponds to the element $\phi(x)$ in the original T_f . Since for each i we have a choice of p^i elements for $\psi(m)$, the total number of distinct embeddings this construction yields for a particular ϕ that corresponds to f is

$$\sum_{i=1}^{f_{min}} p^i = \frac{p^{f_{min}} - 1}{p - 1} - 1 = \beta(f)$$

Since there are $\mu(f)$ distinct embeddings that correspond to f, this construction yields $\sum_{f \in \mathcal{F}''} \mu(f)\beta(f)$ distinct embeddings of T_b + into T_p^{k+1} that map l to an element in level k or k+1.

Since each embedding of T_b into T_p^{k+1} that maps l to level k or k+1 can be converted to an embedding of T_b into T_p^{k+1} that maps l to level k or k+1 by reversing the above construction, we have that the total number of embeddings of T_b into T_p^{k+1} that map l to an element in level k or k+1 is exactly $\sum_{f \in \mathcal{F}''} \mu(f)\beta(f)$. Therefore, $\sum_{f \in \mathcal{F}''} \mu(f)\beta(f) =$ $pd_k + d_{k+1}$ and $\sum_{f \in \mathcal{F}''} \mu(f)\alpha(f)\beta(f) = d_{k+1}$. So, applying Theorem 9 gives $c_{k+1}(pd_k +$ $d_{k+1}) \leq (pc_k + c_{k+1})d_{k+1}$ which is equivalent to the inequality $d_k/c_k \leq d_{k+1}/c_{k+1}$.

So, we have two increasing sequences (b_k/a_k) and (d_k/c_k) for k = 1, ..., n. We need to apply Theorem 9 once more to a very simple lattice, namely the *n*-element chain, [n]. A chain is obviously a distributive lattice, and moreover any function μ is log-supermodular, since $\{k, k'\} = \{k \land k', k \lor k'\}$ for all $k, k' \in [n]$. Define $\mu(k) = a_k c_k$, define $\alpha(k) = b_k/a_k$, and define $\beta(k) = d_k/c_k$. Then α and β are increasing on [n], and applying Theorem 9 gives

$$\sum_{k=1}^{n} b_k c_k \sum_{k=1}^{n} a_k d_k \le \sum_{k=1}^{n} a_k c_k \sum_{k=1}^{n} b_k d_k.$$
 (20)

But $\sum_{k=1}^{n} a_k c_k$ is the total number of embeddings of T_1 into T_p^n , as we split T_1 into T_t and T_b . Similarly, $\sum_{k=1}^{n} a_k d_k$ is the total number of embeddings of T_2 into T_p^n , as we split T_2 into T_t and T_b +. Since b_k only counts those embeddings counted by a_k that also map the root of T_t to 1_n , we have that $\sum_{k=1}^{n} b_k c_k$ is the number of embeddings of T_1 into T_p^n that map the root of T_1 to 1_n , and $\sum_{k=1}^{n} b_k d_k$ is the number of embeddings of T_2 into T_p^n that map the root of T_2 to 1_n .

Therefore equation (20) becomes

1

$$A_{T_1}^{(p)}(n)C_{T_2}^{(p)}(n) \le C_{T_1}^{(p)}(n)A_{T_2}^{(p)}(n)$$

as required.

Note that the proof is similar in its approach to the original proof by Kubicki, Lehel and Morayne, however in the set-up where we can apply the FKG-inequality we can view this result as one of many possible correlation inequalities on the lattice $\mathcal{F}(n;T)$, for Tsome binary tree. Informally, in the proof of Theorem 12 we first show that the events "the root of T_t is mapped to a high level of T_p^n " and "the element l is mapped to a high level of T_p^n are positively correlated on the lattice $\mathcal{F}(n;T_t)$. We then show that in the lattice $\mathcal{F}(k;T_b)$ having "l mapped to a high level of T_p^k " means "the number of ways to embed an extra element" increases. We combine these correlations to show that if the root of T_1 is embedded "higher up" in T_p^n , then there are more embeddings of an extra element into T_p^n . We can use the lattice $\mathcal{F}(n;T)$ and the function μ and other pairs of increasing functions on \mathcal{F} , to find other correlation inequalities. For example, we have the following result, which informally says that for any binary tree T and any two elements x, y in T, the events "xis mapped to a high level of T_p^{n} " and "y is mapped to a high level of T_p^{n} " are positively correlated.

Theorem 13. For any binary tree T, and any elements $x, y \in T$, and for any k and l with $1 \le k, l < n$, we have

$$\frac{E(k+1,l)}{E(k,l)} \le \frac{E(k+1,l+1)}{E(k,l+1)},$$

where E(i, j) is the number of embeddings of T into T_p^n that map x into level i, and y into level j.

Proof. Consider the sublattice \mathcal{F}' of $\mathcal{F}(n;T)$ defined by $\mathcal{F}' = \{f \in \mathcal{F}(n;T) : f(x) = k, k+1 \text{ and } f(y) = l, l+1\}$. We take μ to be our log-supermodular function as described above, so that $\sum_{f \in \mathcal{F}'} \mu(f)$ is exactly E(k,l) + E(k+1,l) + E(k,l+1) + E(k+1,l+1). Define $\alpha(f) = I\{f(x) = k+1\}$ as the indicator of the event f(x) = k+1, and define $\beta(f) = I\{f(y) = l+1\}$ as the indicator of the event f(y) = l+1. Both α and β are increasing on \mathcal{F}' and so we can apply Theorem 9. This gives the inequality

$$\{E(k+1,l) + E(k+1,l+1)\} \{E(k,l+1) + E(k+1,l+1)\}$$

$$\leq \{E(k,l) + E(k+1,l) + E(k,l+1) + E(k+1,l+1)\} E(k+1,l+1)$$

which is equivalent to the required inequality.

This statement is not true if T is allowed to be arbitrary, as illustrated by the following example. Let T be a tree with 4 elements, the root x and its three lowers covers x_1, x_2, x_3 . Suppose we are embedding T into T^4 , the complete binary tree on 4 levels. We can calculate the different number of embeddings that map the elements x_1 and x_2 into particular levels. There are 12 embeddings that map x_1 to level 3 and x_2 to level 2, there are 32 embeddings that map x_1 to level 3 and x_2 to level 1, there are 76 embeddings that map x_1 to level 2 and x_2 to level 2 and there are 184 embeddings that map x_1 to level 2 and x_2 to level 1. So, if we consider a uniform probability distribution over all embeddings of T into T^n , we have that the conditional probability that an embedding maps x_2 into level 2, given that it maps x_2 into either level 1 or 2 and maps x_1 into level 3, is 12/32 = 3/8. However, the conditional probability that an embedding maps x_2 into level 2, given that it maps x_2 into either level 1 or 2 and maps x_1 into level 2, is 76/184 = 19/46 which is greater than 3/8. In other words, it is more likely for x_2 to be in the higher of the two levels 1 and 2, if x_1 is in the lower of the two levels 2 and 3. This is still true for embeddings of T into T_n^4 for p > 2. This means that we are unable to use this approach even for embeddings of p-ary trees into the complete *p*-ary tree.

In this sense the case of T being binary is special. For arbitrary T we cannot define a logsupermodular function μ on $\mathcal{F}(n;T)$ so that $\sum_{f \in \mathcal{F}(n;T)} \mu(f)$ is the number of embeddings of T into T_p^n . However, we can look at other types of mapping from T into T_p^n , for example strict order-preserving maps. In this case, the situation is very much simplified; as we have seen in the proof of Theorem 12 the function μ_1 , which counts the number of strict order-preserving maps, is log-supermodular on \mathcal{F} . Moreover, if we allow T to be arbitrary, the function μ_1 still counts the number of strict order-preserving maps. This is essentially because a strict order-preserving map only needs to preserve edges and not incomparability between elements. Therefore we can generalise the correlation inequalities for embeddings of binary trees to correlation inequalities for strict-order preserving maps of arbitrary trees.

For example, if we define $\tilde{A}_T^{(p)}(n)$ to be the number of strict order-preserving maps of T into T_p^n that map the root of T to 1_n , and define $\tilde{C}_T^{(p)}(n)$ to be the total number of strict order-preserving maps of T into T_p^n , then we have the following result, corresponding to the inequality of Theorem 12.

Theorem 14. If T_1 and T_2 are trees such that T_2 contains a subposet isomorphic to T_1 , then

$$\frac{A_{T_1}^{(p)}(n)}{\tilde{C}_{T_1}^{(p)}(n)} \le \frac{A_{T_2}^{(p)}(n)}{\tilde{C}_{T_2}^{(p)}(n)}$$

Proof. We follow through the proof of Theorem 12, making the following necessary changes for strict order-preserving maps of arbitrary trees.

Firstly, note that we can define a distributive lattice of level functions $\mathcal{F}(n;T)$ when T is an arbitrary tree. We take μ_1 as our log-supermodular function. This satisfies log-supermodularity with equality (as noted in the proof of Theorem 12). Also, for any tree T, the sum $\sum_{f \in \mathcal{F}(n;T)} \mu_1(f)$ is the number of strict order-preserving maps of T into T_p^n , as explained above.

If we define \tilde{a}_k to be the number of strict order-preserving maps of T_t into T_p^n that map l to an element of level k, and define \tilde{b}_k to be the number of strict order-preserving maps of T_t into T_p^n that map l to an element of level k and map the root of T_t to the root 1_n , then

$$\frac{\tilde{b}_k}{\tilde{a}_k} \le \frac{\tilde{b}_{k+1}}{\tilde{a}_{k+1}}$$

as in the proof of Theorem 12.

Now when comparing the trees T_b , T_b+ , define \tilde{c}_k to be the number of strict orderpreserving maps of T_b into T_p^k that map l to 1_k , and define \tilde{d}_k to be the number of strict order-preserving maps of T_b+ into T_p^k that map l to 1_k . Whereas in the proof of Theorem 12 we had two cases to consider, here we just need that m is the lower cover of l in T_b+ , where l is the root of T_b+ .

We use a similar construction to the one in the proof of Theorem 12 when considering case (b). However, since we are counting strict order-preserving maps and not embeddings, we can position m as if it were the only lower cover of l. Let D(m) be the elements in T_b that are below m in the tree T_b +. Define $\tilde{f}_{min} = \min_{x \in D(m)} f(x)$, unless D(m) is empty, in which case let $\tilde{f}_{min} = f(l)$. Define $\beta(f) = (p^{\tilde{f}_{min}} - 1)/(p-1) - 1$. We have that each strict order-preserving map of T_b into T_p^{k+1} that corresponds to f yields $\beta(f)$ strict order-preserving maps of T_b + into T_p^{k+1} , and so applying Theorem 9 yields

$$\frac{\tilde{d}_k}{\tilde{c}_k} \le \frac{\tilde{d}_{k+1}}{\tilde{c}_{k+1}}.$$

Finally, the last part of the proof is identical to the proof of Theorem 12 and we have

$$\tilde{A}_{T_1}^{(p)}(n)\tilde{C}_{T_2}^{(p)}(n) \le \tilde{C}_{T_1}^{(p)}(n)\tilde{A}_{T_2}^{(p)}(n)$$

as required.

As with embeddings of binary trees, by applying the FKG-inequality to different increasing functions, versions of this proof can be used to establish other correlation inequalities for strict order-preserving maps of arbitrary trees into the complete *p*-ary tree.

References

- [1] Anderson, I., Combinatorics of Finite Sets, Oxford University Press, 1987.
- [2] Kubicki, G., Lehel, J. and Morayne, M., A ratio inequality for binary tree and the best secretary, Combinatorics, Probability and Computing 11 (2002), 149–161.
- [3] Kubicki, G., Lehel, J. and Morayne, M., An asymptotic ratio in the complete binary tree, Order **20** (2003), 91–97.
- [4] Kubicki, G., Lehel, J. and Morayne, M., Counting chains and antichains in the complete binary tree, Unpublished.
- [5] Morayne, M., Partial-order analogue of the secretary problem: The binary tree case. Discrete Math. 184 (1998), 165–181.