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Abstract. The problem NASH is that of finding one Nash equilibrium of a bimatrix game. The
computational complexity of this problem is a long-standing open question. The Lemke—Howson
algorithm is the classical algorithm for NASH. In an earlier paper, this algorithm was shown to be
exponential, even in the best case, for square bimatrix games using dual cyclic polytopes. However
the games constructed there are easily solved by another standard method, support enumeration. In
this paper we present “challenge instances” for NASH. We extend the use of dual cyclic polytopes and
construct a class of games which are shown to be hard to solve for both the Lemke—Howson algorithm
and support enumeration. Other general methods for NASH are discussed. It is not obvious that they
could solve these games efficiently.

1 Introduction

NOTE: This paper extends [13]. The reader is referred to that paper for the required back-
ground material as we have tried not to duplicate such material here.

The problem NASH is that of finding one Nash equilibrium (NE) of a bimatrix game.
The computational complexity of this problem is a classic open question [10]. Instances
from well-known classes of bimatrix games can be solved efficiently by one of the standard
methods available. In this paper we presemillenge instancefr NASH, that is, games
for which no efficient solution method is known.

The main algorithm for NASH is the Lemke—Howson (LH) algorithm [4], which is a
pivoting algorithm similar to the simplex algorithm for linear programming. The algorithm is
started by choosing a pure strategy of one of the players. For each such choice the algorithm
progresses deterministically, giving rise to a different LH path, which terminates at some
equilibrium of the game. In [13] a class df x d games, for everd, is presented with
the property that the lengths afl LH paths grow exponentially with the dimension of the
game. Thus the LH algorithm was shown to be inefficient for NASH. However, the games



presented in [13] are easy to solve by another methogport enumeratigrand so do not
serve as challenge instances.

The supportof a mixed strategy is the set of pure strategies that have positive proba-
bility under that strategy. Aupport profilefor a bimatrix game is a pair of supports, one
for each player. It is easy to efficiently check if a NE with a particular support profile exists.
One method for NASH is support enumeration: Support profiles are enumerated one by one
and the existence of a corresponding NE is checked. The games constructed in [13] possess
a unigue equilibrium, where both players use full support, that is, all pure strategies are used
with positive probability. Therefore these games cannot serve as challenge instances as this
support profile is guessed easily; there is no way to “hide” the equilibrium, since both players
use full support.

Random gamegenerated with payoff matrix entries drawn from uniform distributions,
tend to possess pure strategy equilibria. For a recent study on the expected number of pure
strategy equilibria in random games, and related work, see [12] and the references therein. A
pure NE will be found by some LH path in a single step, and could easily be found by support
enumeration. Thus, these random games do not provide challenge instances for NASH.

A recent study [6] includes a taxonomy of many “interesting” classes of bimatrix games
from the literature. In [11] tests show that support enumeration tends to work well on (ran-
dom) instances from all the classes of [6], and so none of these can serve as challenge in-
stances.

In this paper we extend the construction in [13] to crehte 2d games where all LH
paths are exponentially long. These games possess exponentially many equilibria, where
each player used strategies, but their supports form an exponentially small fraction of all
(2(;1) supports of player 2 of sizé. We show that support enumeration takes an exponential
expected number of attempts to find an NE.

Another method of finding equilibria is to enumerate the vertex pairs of the best re-
sponse polyhedra, and test them for the equilibrium property. In general, the number of
vertices is exponential. However, there are many vertex enumeration methods, and we do
not analyse whether they solve our games in expected exponential time. In fact, knowing
the exact way that our games are constructed, it is possible to “unscramble” the hidden sup-
port by special pivoting steps, and thus arrive quickly at an equilibrium. However, this very
specialized method only applies to our construction, and does not compute an equilibrium
for any other games. Hence, we consider the games constructed here as suitable challenge
instances for general algorithms for NASH. This is discussed further in Section 7. For an
introduction to bimatrix games, their equilibria, the relevant complexity classes, a detailed
description of the LH algorithm, and further discussion of related approaches to NASH see
[13] and [16].



The next section outlines the construction, and describes the equilibria of the games. In
Section 3 we show that all the LH paths are exponentially long. In Section 4 we show that
support enumeration is inefficient for these games. We argue in Section 5 that general vertex
enumeration may also be inefficient for these games, but that further analysis is required.
A highly specialized pivoting method for efficiently finding a sample equilibrium, when the
construction is known, is described in Section 6. We conclude in Section 7.

2 The construction

In this section we describe the construction of the challenge instances and their equilibria.
We extend [13] and the reader is referred to that paper for more detailsd beteven.

Here, unlike [13], we construct non-square games, where players 1 and 21 leawe2d

pure strategies respectivélyNow the best response polytopes of the two players are not
identical, but are still botldual cyclic polytope$18][3]. Player 1's best response polytope,

P, is in dimensiond with 3d facets, and player 2'9Q, is in dimension2d with 3d facets.

A standard method of obtaining these polytopes is described in [15] and [13].

We recall the Gale evenness condition [2]. It says that for a suitable ordering of the
inequalities in the description of a dual cyclic polytope [13]: A bitstring with 1's in positions
corresponding to binding inequalities represents a vertex if and only if any substring of the
form 01 ---10 has even length, sb1 10, 011110, etc., is allowed, but ndt10, 01110, and so
on. A maximal substring of’s is called arun. We only consideevendimensionsd and2d,
where the allowed odd runs dfs at both ends of the string can be glued together to form an
even run, which shows the cyclic symmetry of the Gale evenness conditios (bety) be
the set of these Gale evenness bitstrings of lemgttith p ones. Vertices oP andQ are
represented as bitstrings and their vertex set&dte 3d) andG(2d, 3d), respectively.

The equilibrium condition and the LH algorithm depend on which facets a vertex be-
longs to, as encoded in the Gale evenness bitstringg ih3d) andG(2d, 3d), and on the
facet labels. These are defined by permutatioasdl’ of 1,...,3d for P andQ, respec-
tively. For a vertexu € G(d,3d) of P its labels are given byl(k) : w = 1}, and the
labels of a vertew € G(d,3d) of Q are{l’(k) : v, = 1}, for 1 < k < 3d. Thekth facet
of P (corresponding to th&th position in a bitstring) has labél{k) = k, sol is simply the
identity permutation. Théth facet ofQ has labell’(k). The permutatiorl’ has the fixed
pointsl’(1) = 1 andl’(d) = d, and otherwise exchanges adjacent numbers, as follows:

LIn fact we have observed thdtx d + k games, withk > 0 even, constructed in an analogous way, with
the labeling changed appropriately, yield exponentially long LH paths. The cholce-al means that in any
equilibrium player 2 playsl out of 2d strategies, which is best for making the equilibrium support of player 2
hard to guess.



K, k=1,d,
Uk)=<Sk+ (=% 2<k<d-1, (1)
k—(=1)% d+1<k<3d.

Notice that the number of facets in [13] wad and is now3d but otherwise the setup
is completely analogous. Before looking at the LH paths in the next section, we study the
equilibria of these games. The artificial equilibriu$ is a vertex paif(u,v) € P x Q, so
thatu has labelsl, ..., d andv labelsd + 1,...,3d. In terms of bitstringsy = 14024
(which ared ones followed by2d zeros) and> = 04124, so that

ed = (190%¢,09129) € G(d, 3d) x G(2d,3d). 2)

The equilibria of the games, which correspond to the complementary vertex pairs of
P x Q, excludingég, are characterized by the following two lemmas. Lemma 1 says that in
any NE player 1 uses full support.

Lemma 1 In any complementary vertex pdit, v) of P x Q, excepted, u; = ---uq = 0.

Proof. Suppose thafu, v) is a complementary vertex pair 8fx Q other tharé$. Assume
thatug = 0. Now uyq = 0 impliesvyq = 1 by complementarity. We show that this means
u =u; =--- =uy = 0. Suppose not. Consider the largést0 < k < d, such that
v = 0. If kisodd thervg,; = 1 by Gale evenness. Thery,, = 0 by complementarity and
soug,1 = 0 by Gale evenness. Then ., = 1 by complementarity. By repeatedly using the
Gale evenness condition and complementarity in this way, we seg the=--- =v3q4 = 1.
This is a contradiction. Ik is even we see that,  ; = 1 butw, = u,, = 0, which violates
Gale evenness. Similarly, it can be shown that there is no complementary pait ythi
other tharég.

U

Let d = 21. Let S(1) be the set of bitstrings of lengthl, containing2l ones, and
composed only of contiguous substrin@d, 11, and0110. If s € S then lets be the
bitstring of length4l with a one in theith position if and only ifs contains a zero in thih
position. The set of complementary vertex pairot Q is characterized by lemma 2, the
proof of which is omitted, since given Lemma 1, it is very similar to Proposition 3.2 of [15].

Lemma 2 Every complementary vertex pair Bfx Q, exceptey, is of the form(04s, 14s)
wheres € S(1).

If a string in S(1) containsk substrings 000 < k < 1, then it contains the same
number of substrings 11, arid- k substrings 0110. These substrings may be arranged in
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any manner, witHl + k)!/(k! k! (1 — k)!) many possibilities. Hence,
1

B L+K)! o« [l+Kk) (1
_k_ok!k!(l—k)!_z< K )(k)

k=0

o(l)

An asymptotic approximation, which is proved in [15], states that

1+ V2 (V224144
= e 8=

Suppose that, using the labelingandl’, we generate theé x 2d bimatrix game A, B)
according to Proposition 2.1 of [15], which gives details on how to generate the payoff
matrices of a bimatrix game corresponding to a pair of labeled polytopes with a least one
complementary vertex pair. Then the order of facets given by taking the rows and then the
columns ofA or B in order is consistent with the Gale evenness condition. Thus Lemma 2
could be used to immediately find an NE(@f, B): When presented with & x 2d game, a
trivial addition to any general algorithm for NASH is to check if there is an NE corresponding
to the support profile where player 1 uses full support and player 2 usésshdrstrategies,
which indeed corresponds to an equilibrium(éf, B). Since our goal is to construct “hard
to solve” bimatrix games, we therefore disguise the structure of the equilibria, in order to
ensure that Lemma 2 cannot be used to find a sample equilibrium quickly.

o(l) ~a(l)

There is no way to “hide” a strategy that uses full support, which was precisely the lim-
itation, in terms of support guessing, of the construction in [13]. In the present construction
we can however “hide” the equilibrium supports of player 2, which use dnbut of 2d
possible pure strategies. This is done by randomly permuting the payoff matrices. Although
it is only necessary to permute the columns of the payoff matrices to hide the structure of
player 2's equilibrium supports, we permute the rows as well. The reason for this is that
vertex enumeration depends upon the indexing of variables, which is affected by permuting
the rows (see Section 5).

Let[d] ={1,...,d}, and letS4 be the set of permutations @], and defing2d] and
S,q similarly. We choosety € S4 according to a uniform distribution o#y, and similarly
chooser,y € S,q. We randomly permute the rows @ and B according torty and the
columns according tex,4 to produce(A, B), which is an instance of our construction.

3 The LH paths

The LH path$in the present construction are obtained as mappings of the paths in [13]. For
each LH pathd contiguous bits of every vertex iQ on the path are constantht(The Gale

2Permuting the payoff matrices amounts to a relabeling (see [13]) and does not affect the LH paths beyond
permuting all the bitstrings that represent vertices. For simplicity we study the LH paths using the unpermuted
labeling, which is consistent with the Gale evenness condition.
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evenness condition shows that such intersections of facets are also dual cyclic polytopes in
lower dimension.) The following lemmas describe the paths in this new construction through
their relationship to the paths in [13].

Denote byp(d, k) the LH path, for the present construction, when labé& dropped
from €3 in P x Q. The path is regarded as a sequefe®&v°) (u',v') --- (UM, vM) of
vertex pairs inG(d, 3d) x G(2d,3d). Let M(d, k) = M be the length of that path. We
now call the best response polytopes from the construction inf18hd Q, usingP and
Q for the best response polytopes in the present construction. Following the definitions of
[13], denote byrt(d, k) the path when labek is dropped fromed in P and Q, which is a
sequence of vertex pairs i@(d,2d) x G(d,2d). LetL(d,k) be the length of that path.
These paths are studied and fully described in [13]. Lemma 3 is analogous to Theorem 8 (a)
of [13] in both content and proof; it describes a relationship among the paths arising from the
cyclic symmetry of the Gale evenness condition, and simplifies the work needed to describe

the lengths of the paths for labeld + 1 < k < 3d.
Lemma 3 M(d, k) = M(d,d+1—k)andM(d, d+k) = M(d,2d+1—k),for1 <k < d.

Proof. Let\{ be defined byp(k) =d—k+1for1 <k <dandy(d+k)=3d—k+1
for 1 < k < 2d. Applied to the bitstrings of vertices) is a cyclic shift by2d positions
to the right, followed by a reversal. This leaves the $&td, 3d) and G(2d, 3d) invariant.
Furthermore,p commutes with the labelingsand 1’ of P and Q, so the LH algorithm
proceeds in the same manner. That is to say, the vertex pairs on theg(dak), seen as a
pairs of 0-1 strings, are step by step the same when the positions in each string are permuted
according to. Under, the first vertex pai€d is mapped to itself, but the positions are
changed as above. This means that undethe pathp(d, k) is mapped to(d,d —k + 1),
so these two paths have the same length, and similarly(ibrd + k) andp(d,2d +1—k).

O

In the following three lemmas;, ¢, andn are mappings from the vertices Bfx Q to
the vertices oP x Q. We represent the vertices as bitsrings so,

€,(,n:G(d,2d) x G(d,2d) — G(d,3d) x G(2d,34d).

Each mapping induces, in the obvious way, an injective mapping from the lapels 2d
of P x Q to the labelsl,...,3d of P x Q.

Lemma 4 describes the paths for dropped labdl < i < d. Lemma 5 describes the
paths for dropped labels+ 1 < i < 2d andi even. Then the paths for labald + 1 < i <
3d andi odd are described by Lemmas 5 and 3. Lemma 6 describes the paths for dropped
labels with2d + 1 < k < 3d andk even. Then the paths for labeds+ 1 < k < 2d
with k odd are described by Lemmas 6 and 3. Thus all paths in the present construction are
described by Lemmas 3,4,5, and 6 in terms of the paths in [13].

6



Lemma4 M(d, k) =1L(d, k), forT <k <d.

Proof. We show thap(d, k) = e(mt(d,k)) fork =1,...,d, where

e(uv) = {(LH - U2a K0MU2a w1 - U2a, V1 Vaa T Vaa kit - Vaa), k even
V) =

a
(Wy - U2q . 10M2q 127+ W2a, V1 - V2 k11 Vag k2 -+ vaa), kodd

The starting point oft(d, k) is eS and of p(d, k) is €. Now e(ed) = &¢ as re-
qguired. Complementarity of the constant positionsdé immediate. Both pathg(d, k)
ande(7t(d, k)) start by dropping the same label, that is, considedras a mapping of la-
bels, e(k) = k. Now e cyclically preserves the adjacency of all labels except for a single
pair in P and a single pair ifQ. (If k = 1 it preserves the adjacency of all pairsfirand
Q.) In P andQ these pairs correspond to positicht— k and (2d — k +1 mod2d) if k
isevenand®d —k+ 1 and(2d —k+2 mod2d) if k is odd. Now the proof of Theorem 8
c) of [13] shows that no “action” occurs across these positions. O]

Lemma5 M(d,d + k) =L(d,d+k),for1 <k < dandk even.

Proof. We show thab(d,d + k) = {(nt(d,d + k)) fork =1,...,d andk even, where

d d
C(u,v) = (w - - wamOUagis1 -+ U2, V1 -+ - Vasr ] “Vagrst -+ - V2a)

The starting point oft(d, d+k) is e and ofp(d, d+k) is ég. Now ((ed) = €3 as required.
Complementarity of the constant positionsdis immediate. Both pathg(d, d + k) and
C(m(d, d+k)) start by dropping the same label, that is, considedjlag a mapping of labels,
((d + k) = d + k. Now ( cyclically preserves the adjacency of all labels except a single
pair in P and a single pair irQ. In P and Q this pair corresponds to positiors+ k and
(d+k+ 1 mod2d). The proof of Theorem 8 d) of [13] shows no “action” occurs across
these positions. O

Lemma6 M(d,2d+k) =L(d,1)+1,for1 <k < dandk even.
Proof. We show thaip(d,2d + k) = €, +n(m(d, 1)) for k = 1,...,d andk even, where
the “+” denotes joining, to that first vertex pair ofi(7t(d, 1)) by an edge, and

T](u,v) = (Uod, Tv, - - -\;Zd]kfzvﬂdfkﬂ).

In the first step ob(d, 2d + k) label 2d + k is dropped inQ, label1 is picked up, and we
reach the vertex pairu',v'). Notice thatn(u',v') = ed. Label 1 is duplicate irfP and is
dropped in the next step. Because no edge of the path1) wraps-aroundsee [13]) the
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rest of pathp(d, 2d + k) continues ag(7(d, 1)). So label 1 is never dropped @, that is,
vi=1foralli=1,...,M. Inthe second to last step afd, 1) label d is picked up inP
and then dropped i) in the last step, as labélis picked up. In(uM~',vM~), the second

to last vertex pair op(d, 2d + k), labeld is duplicate, and in the last step it is dropped in
Q. Now however, label 1 is already present@nand this last edge wraps-around and the
missing labeld + k being picked up, thus terminating the paitd, 2d + k). O

We have now showed that the length of any LH path(d, k), in the present con-
struction is equal to the length of some path from [13]l, k), possibly plus one. Thus the
lengths of the LH paths in the present construction and [13] have the same exponential order
of growth.

4 Support enumeration

In this section we show that support enumeration cannot be used to efficiently find a sample
equilibrium of these games. Lek(d) be the “universe” of all sets af-subsets ofi, ..., 2d],

which corresponds to all player 2’s supports of sizeand letu(d) = |U(d)| = (25‘).

Let N(d) C U(d) be the set of supports of player 2 corresponding to equilibria, and let
n(d) = [N(d)|. In what follows we refer tdl, N, u, andn for convenience, sincd is

fixed.

Suppose an oracl@, presented with a support profile, answers the question of the ex-
istence of a corresponding equilibrium. The following lemma shows the power of randomly
permuting the payoff matrices as a method for hiding equilibria from support enumeration:
If N is known, a negative query 10 rules out certain permutations, but the lemma says that
this does not help to pick subsequent supports. In the following, U is a query to the
oracleO. Forx,y € U andm € S,4 the conditiont(y) = x means thatt(i) € x, Vi € y.

Lemma 7 Vx € U, we have,

€ Saq: Fy € N withmt(y) = x}

2d)! = /.

Proof. The left hand side of this equation is the number of permutations you can exclude
following a negative query X, the right hand side is the trivial success rate. This holds because
for all Vx,y € U, [{r € S»q : (y) = xJ| = (d!)?, which divided by(2d!) gives exactly

1/u, and ifx andx’ are distinct thedr € Sy4 : t(y) = x} and{m € S,4 : ®(y) = x'} are
disjoint, because the permutations are bijections. ]

We show that a support enumeration algorithm that only looks at support profiles where
player 1 uses full support and player 2 uses a support ofdsizél require an exponential
expected number of guesses to find an NE. (So a general support enumeration algorithm
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will do worse in expectation.) Index the elementslof\ N by i, with 1 < 1 < u —n.
Assume that the elements bf are enumerated in some order. Mt be the event that

the ith support profile comes before all members\bin the enumeration order dfl. Let

1w, be an indicator function, that is, @1 random variable, that takes the valligf the

ith support profile comes before all membersifin the enumeration order dfl. Let

W = Y ""1w,, which is a random variable equal to the number of supports checked
before the first equilibrium is found. Then, using the linearity of expectation, we have

u—n u—mn u—n
1 u—nm

szE(Zﬂwi):Z]E(ﬂwi):ZnH =T

i=T1 i= i=T1

So the expected number of guesses to find a sample NE is

u—mn
__|_])
n+1

which is exponential ind sinceu/n is exponential. The variance ¥ is about(EW)?2.

5 \ertex enumeration

In this section we consider using vertex enumeration of the best response polytopes to find
a sample equilibrium in our games. Unlike support enumeration, vertex enumeration is not
SO0 easy to analyse. Here we consider a general method for NASH; in the next section we
consider a method specialized to the present construction.

Suppose we have a genenalx n bimatrix game with best response polytofes R™
andQ € R™ (see [16]). One approach for NASH is as follGw&numerate the vertices of
one of the best response polytopes, Bapne by one. If the game is not square it is better
to enumerate the polytope in lower dimension as this will have fewer vertices in general.
For each vertex € P, there will bem of the n + m inequalities that describ that are
binding. For simplicity we only consider nondegenerate games, in which case the remaining
n inequalities will have positive slacks. Theaeinequalities correspond to pure strategies
that are either played with positive probability or that are not best responses. In equilibrium
these must be best responses or not played, respectively, for the other player, which means
that the corresponding inequalities inQ must be binding. Thus, we consid@x,, which is
obtained fromQ by turning thosen inequalities to equalities. We enumerate the vertices of
Q. and if this polytope is nonempty, its unique point, saycorresponds to an equilibrium
strategy, which together with, corresponds to an NE, wherandw are normalized, so that
they are probabilities. 1, is empty we continue the enumerationRof

3Enumerating all vertices of either best response polytope cannot be efficient for NASH as the polytopes
may have an exponential number of vertices in the dimension, as indeed the dual cyclic polytopes used in the
present construction do.



The polytopes andQ in the present construction have

5d/2 -1 2d —1

6<d/2—1 ) and3(d_])
vertices, respectively. These numbers are, according to Stirling’s formula, of the order
©(3.49...4/y/d) and®(44/+/d) respectively. To find an NE of an instance of the present
construction the vertex enumeration must reach a vertékaf Q that corresponds to full
support for player 1. Such a vertex will be represented by a bitstring of the@hme P or
14y € Q, wherex andy are bitstrings of lengt2d with d ones. If this fact is known then
one could enumerate only vertices@fof this form, as we can fix the firgt inequalities in

the description of) as equalities. (Thesé binding inequalities say that all player 1's pure
strategies are best responses.) This yields a new pol@dpenhich is ad dimensional face

of Q, and has
4 3d/2 -1
d/2—-1

vertices. This number is of the ordéx(2.598 ...4/4/d). EnumeratingQ’ would clearly be
preferable to enumeratin@ for the present construction, but we can actually do better, if
the construction is known. In the next section we describe a specialized vertex enumeration
method to find an NE in no more thald + 1 steps. The number of equilibria is of the
order©(2.414...4/1/d), therefore, forP, Q, or Q’, the ratio of equilibria to vertices is
exponentially small.

A rigorous analysis of the efficiency of vertex enumeration on these games will depend
on the actual enumeration method used. No such analysis is attempted here. It is worth
noting that any such method must use a rule to determine a unique variable to use in each
step, in order that no vertices are overlooked. One possible enumeration method is Avis and
Fukuda’s reverse search methdd, [1]. For Irs, a rule is required (e.g. Bland's rule) to
uniquely determine which variable will “enter the basis” at each step. An analogous rule
will be needed for any enumeration method, and will depend on the indexing of the variables
(order of the columns) in the polytope description. For this reason, the random permutation
of columns, used to produce an instafée B) of the present construction frof, B), will
affect the order in which vertices are enumerated (by any method). However, the permutation
will not make the order of enumeration of vertices random. (If this were so, then vertex
enumeration would be exponential in expectation by the same reasoning used in Section 4
for support enumeration.) Yet, it is conceivable that the expected number of vertices that
must be enumerated before an NE is found is still exponential, although this needs further
study.
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6 Quickly discovering a sample NE by pivoting

In this section we describe a method, using pivoting, to find a sample equilibriur, &)

in at most2d + 1 steps. It only works for the present construction and does not provide
a general method for NASH. Suppose that a gdmeB) is constructed as in Section 2.
We assume that the game is known, but tffatB), 7y, andm,4 are not. The method we
describe will find one of two equilibria, either corresponding to supports of player 2 equal to
ma{1,...,d}) or ma({2d + 1,...,3d}). The method does not distinguish between these
two equilibria.

The best response polytopes are

P = {xeRdIXZO,ETxél}, (3)
Q = {yeR*|Ay<1,y>0} (4)

These are identical to the polytopes

P = (xeRY x>0 B'x <1}, (5)
Q = {yeR*[Ay<1y=>0)} (6)

except that the order of the firgtinequalities have been permuted by and the order of
the second@d inequalities bym,4. The origin is a vertex of), and can be represented as
the bitstring0912¢, where, as usual, thigh position in this bitstring corresponds to tité
inequality in (4). Because of the permutation of the rows and colufnasdB, the ordering

of the inequalities in (3) and (4) will not in general be consistent with the Gale evenness
condition. Afacetof P or Q is defined by a single inequality turned into an equality. Let the
facets ofP and Q be labeledl, ..., 3d according to the order of inequalities in (3) and (4)
respectively. The best response polytopeend Q aresimple that is, each vertex is defined
by d and2d facets respectively. There aZe possible pivots away from the origin. Half
of these pivots lead onto the facet corresponding to the first inequality in (5). Theddther
pivots will take us onto the facet corresponding to inequality (5). These will appear as
thert(1)th and7t(d)th inequalities in 4, respectively. The figure that follows illustrates these
2d pivots for the casel = 4.
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inequalityofQ | 1 2 3 4 5 6 7 8 9 10 11 12
inequality ofQ | 7(1) m(4)
0€Q o 00 O 1T 1 111 1 1 1
1 oo o o1 1T 1T 1T 1 1 1
0 00 1 T o1 1 1 1 1 1
1 00 0 T 10 1 1 1 1 1
0o o0 0 1 T 1101 1 1 1
1 oo o 1T 11 10 1T 1 1
0 00 1 T 1111 0 1 1
1 00 0 T 11 11 1 0 1
0 00 1 T 11 11 1 1 0

First we try out the2d pivots from the origin, one by one, using matrix operations. We
stop as soon as two distinct facets are reached (i.e. two different inequalities have become an
equality for different pivots). This can take no more thieA1 pivots. We can not distinguish
between inequalitieg(1) andt(d), which is why this method might find either one of two
equilibria. Next we pivot in the other best response polytdpe, The origin is a vertex

of P and corresponds to the bitstriig02¢. We choose either one of the two inequalities
we know to correspond ta(1) or 7t(d), calling this choice of inequalityt, and the other
inequality, which we didn’t choosé, (a,b € [3d]). We pivot away from the origin if? by
leavinga. We reach a new vertex;, picking up a new facet, safy;. We pivot away from

v; by leavingb, thereby hitting facet, and reaching a new vertex. Then we pivot way

from vertexv, by leaving facetf;. We proceed in this manner, pivoting away from vertex

v; by leaving faceftf;_;, which was reached in the previous pivot, thereby hitting facat

and reaching vertex;, ;. Depending on our choice af each facef; either corresponds to
inequality7t(d + i) or to inequalityn(3d — i+ 1) of (3). When we reach, we stop. Then

an equilibrium support of player 2 is given by the strategies corresponding to inequalities
{fi:1=1,...d}in (3). Thus the equilibrium support profile is given by all player 1's pure
strategies and columr$; — d : i = 1,...d]} for player 2. We illustrate the case = 4

anda = 7t(1) in the following table.

inequality ofP 1 23 4 5 6 7 8 9 10 11 12
inequality ofP | m(1) m(4)

0eP 1 11 1 000 O0O0 0O 0 O

o 11 1 10000 0 0 O

o 11 o0 11000 0 0 O

o 11 o0 01100 0 0 O

o 11 0 00110 0 0 O

equilibbriumsuppory 0 0 0 o0 1 1 1 1 0 0 0 O
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7 Conclusions and open questions

In this paper we have presented challenge instances for the problem NASH, of finding one
NE of a bimatrix game. The games constructed are hard to solve for both the Lemke—
Howson algorithm and support enumeration. The first part of the construction yields games
whose equilibrium support profiles have a simple structure. This structure is hidden using
random permutations of the payoff matrices. This is an effective method of hiding the sup-
port structure of equilibria from support enumeration, even in a general setting. Even if the
construction is known, support enumeration is still not efficient. On the other hand, vertex
enumeration is more powerful than support enumeration and if the construction is known a
sample NE can be found quickly this way. The method used is not general though. Analysis
of the efficiency of general vertex enumeration methods for these games is not straightfor-
ward.

It would be preferable if challenge instances were “hard to solve”, even if the construc-
tion is known, but this is a lot to ask. In this case the construction was possible because
the combinatorial structure of dual cyclic polytopes is completely known. It is this fact that
allows a sample NE to be found quickly when the construction is known. It seems unlikely
that games that defeat the LH algorithm and support enumeration can be constructed with-
out using polytopes whose combinatorial structure then makes the games open to attack by
specialized methods, if the construction is known.

The games we construct are proposed as challenge instances for NASH, and we feel
that a general method that solves these games may shed valuable light on the complexity of
NASH. Several directions of further work deserve attention: analyzing general vertex enu-
meration methods for these games; testing Lemke’s algorithm, a variant of the LH algorithm,
on these games [17]; analyzing randomized algorithms for NASH.
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