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Abstract. The problem NASH is that of finding one Nash equilibrium of a bimatrix game. The
computational complexity of this problem is a long-standing open question. The Lemke–Howson
algorithm is the classical algorithm for NASH. In an earlier paper, this algorithm was shown to be
exponential, even in the best case, for square bimatrix games using dual cyclic polytopes. However
the games constructed there are easily solved by another standard method, support enumeration. In
this paper we present “challenge instances” for NASH. We extend the use of dual cyclic polytopes and
construct a class of games which are shown to be hard to solve for both the Lemke–Howson algorithm
and support enumeration. Other general methods for NASH are discussed. It is not obvious that they
could solve these games efficiently.

1 Introduction

NOTE: This paper extends [13]. The reader is referred to that paper for the required back-
ground material as we have tried not to duplicate such material here.

The problem NASH is that of finding one Nash equilibrium (NE) of a bimatrix game.
The computational complexity of this problem is a classic open question [10]. Instances
from well-known classes of bimatrix games can be solved efficiently by one of the standard
methods available. In this paper we presentchallenge instancesfor NASH, that is, games
for which no efficient solution method is known.

The main algorithm for NASH is the Lemke–Howson (LH) algorithm [4], which is a
pivoting algorithm similar to the simplex algorithm for linear programming. The algorithm is
started by choosing a pure strategy of one of the players. For each such choice the algorithm
progresses deterministically, giving rise to a different LH path, which terminates at some
equilibrium of the game. In [13] a class ofd × d games, for evend, is presented with
the property that the lengths ofall LH paths grow exponentially with the dimension of the
game. Thus the LH algorithm was shown to be inefficient for NASH. However, the games
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presented in [13] are easy to solve by another method,support enumeration, and so do not
serve as challenge instances.

Thesupportof a mixed strategy is the set of pure strategies that have positive proba-
bility under that strategy. Asupport profilefor a bimatrix game is a pair of supports, one
for each player. It is easy to efficiently check if a NE with a particular support profile exists.
One method for NASH is support enumeration: Support profiles are enumerated one by one
and the existence of a corresponding NE is checked. The games constructed in [13] possess
a unique equilibrium, where both players use full support, that is, all pure strategies are used
with positive probability. Therefore these games cannot serve as challenge instances as this
support profile is guessed easily; there is no way to “hide” the equilibrium, since both players
use full support.

Random games, generated with payoff matrix entries drawn from uniform distributions,
tend to possess pure strategy equilibria. For a recent study on the expected number of pure
strategy equilibria in random games, and related work, see [12] and the references therein. A
pure NE will be found by some LH path in a single step, and could easily be found by support
enumeration. Thus, these random games do not provide challenge instances for NASH.

A recent study [6] includes a taxonomy of many “interesting” classes of bimatrix games
from the literature. In [11] tests show that support enumeration tends to work well on (ran-
dom) instances from all the classes of [6], and so none of these can serve as challenge in-
stances.

In this paper we extend the construction in [13] to created × 2d games where all LH
paths are exponentially long. These games possess exponentially many equilibria, where
each player usesd strategies, but their supports form an exponentially small fraction of all(

2d
d

)
supports of player 2 of sized. We show that support enumeration takes an exponential

expected number of attempts to find an NE.

Another method of finding equilibria is to enumerate the vertex pairs of the best re-
sponse polyhedra, and test them for the equilibrium property. In general, the number of
vertices is exponential. However, there are many vertex enumeration methods, and we do
not analyse whether they solve our games in expected exponential time. In fact, knowing
the exact way that our games are constructed, it is possible to “unscramble” the hidden sup-
port by special pivoting steps, and thus arrive quickly at an equilibrium. However, this very
specialized method only applies to our construction, and does not compute an equilibrium
for any other games. Hence, we consider the games constructed here as suitable challenge
instances for general algorithms for NASH. This is discussed further in Section 7. For an
introduction to bimatrix games, their equilibria, the relevant complexity classes, a detailed
description of the LH algorithm, and further discussion of related approaches to NASH see
[13] and [16].
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The next section outlines the construction, and describes the equilibria of the games. In
Section 3 we show that all the LH paths are exponentially long. In Section 4 we show that
support enumeration is inefficient for these games. We argue in Section 5 that general vertex
enumeration may also be inefficient for these games, but that further analysis is required.
A highly specialized pivoting method for efficiently finding a sample equilibrium, when the
construction is known, is described in Section 6. We conclude in Section 7.

2 The construction

In this section we describe the construction of the challenge instances and their equilibria.
We extend [13] and the reader is referred to that paper for more details. Letd be even.
Here, unlike [13], we construct non-square games, where players 1 and 2 haved and 2d
pure strategies respectively1. Now the best response polytopes of the two players are not
identical, but are still bothdual cyclic polytopes[18][3]. Player 1’s best response polytope,
P, is in dimensiond with 3d facets, and player 2’s,Q, is in dimension2d with 3d facets.
A standard method of obtaining these polytopes is described in [15] and [13].

We recall the Gale evenness condition [2]. It says that for a suitable ordering of the
inequalities in the description of a dual cyclic polytope [13]: A bitstring with 1’s in positions
corresponding to binding inequalities represents a vertex if and only if any substring of the
form 01 · · · 10 has even length, so0110, 011110, etc., is allowed, but not010, 01110, and so
on. A maximal substring of1’s is called arun. We only considerevendimensionsd and2d,
where the allowed odd runs of1’s at both ends of the string can be glued together to form an
even run, which shows the cyclic symmetry of the Gale evenness condition. LetG(p, q) be
the set of these Gale evenness bitstrings of lengthq with p ones. Vertices ofP andQ are
represented as bitstrings and their vertex sets areG(d, 3d) andG(2d, 3d), respectively.

The equilibrium condition and the LH algorithm depend on which facets a vertex be-
longs to, as encoded in the Gale evenness bitstrings inG(d, 3d) andG(2d, 3d), and on the
facet labels. These are defined by permutationsl andl ′ of 1, . . . , 3d for P andQ, respec-
tively. For a vertexu ∈ G(d, 3d) of P its labels are given by{l(k) : uk = 1}, and the
labels of a vertexv ∈ G(d, 3d) of Q are {l ′(k) : vk = 1}, for 1 ≤ k ≤ 3d. Thekth facet
of P (corresponding to thekth position in a bitstring) has labell(k) = k, so l is simply the
identity permutation. Thekth facet ofQ has labell ′(k). The permutationl ′ has the fixed
pointsl ′(1) = 1 andl ′(d) = d, and otherwise exchanges adjacent numbers, as follows:

1In fact we have observed thatd × d + k games, withk ≥ 0 even, constructed in an analogous way, with
the labeling changed appropriately, yield exponentially long LH paths. The choice ofk = d means that in any
equilibrium player 2 playsd out of 2d strategies, which is best for making the equilibrium support of player 2
hard to guess.
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l ′(k) =


k, k = 1, d,

k+ (−1)k, 2 ≤ k ≤ d− 1,

k− (−1)k, d+ 1 ≤ k ≤ 3d.
(1)

Notice that the number of facets in [13] was2d and is now3d but otherwise the setup
is completely analogous. Before looking at the LH paths in the next section, we study the
equilibria of these games. The artificial equilibrium̂ed

0 is a vertex pair(u, v) ∈ P ×Q, so
that u has labels1, . . . , d andv labelsd + 1, . . . , 3d. In terms of bitstrings,u = 1d02d

(which ared ones followed by2d zeros) andv = 0d12d, so that

êd
0 = (1d02d, 0d12d) ∈ G(d, 3d)×G(2d, 3d). (2)

The equilibria of the games, which correspond to the complementary vertex pairs of
P ×Q, excludingêd

0 , are characterized by the following two lemmas. Lemma 1 says that in
any NE player 1 uses full support.

Lemma 1 In any complementary vertex pair(u, v) of P ×Q, except̂ed
0 , u1 = · · ·ud = 0.

Proof. Suppose that(u, v) is a complementary vertex pair ofP×Q other than̂ed
0 . Assume

thatud = 0. Now ud = 0 implies vd = 1 by complementarity. We show that this means
u1 = u2 = · · · = ud = 0. Suppose not. Consider the largestk, 0 < k < d, such that
vk = 0. If k is odd thenvd+1 = 1 by Gale evenness. Thenud+2 = 0 by complementarity and
soud+1 = 0 by Gale evenness. Thenvd+2 = 1 by complementarity. By repeatedly using the
Gale evenness condition and complementarity in this way, we see thevk+1 = · · · = v3d = 1.
This is a contradiction. Ifk is even we see thatuk+1 = 1 butuk = uk+2 = 0, which violates
Gale evenness. Similarly, it can be shown that there is no complementary pair withud = 1,
other than̂ed

0 .

Let d = 2l. Let S(l) be the set of bitstrings of length4l, containing2l ones, and
composed only of contiguous substrings00, 11, and 0110. If s ∈ S then let s̄ be the
bitstring of length4l with a one in theith position if and only ifs contains a zero in theith
position. The set of complementary vertex pairs ofP ×Q is characterized by lemma 2, the
proof of which is omitted, since given Lemma 1, it is very similar to Proposition 3.2 of [15].

Lemma 2 Every complementary vertex pair ofP ×Q, except̂ed
0 , is of the form(0ds, 1ds̄)

wheres ∈ S(l).

If a string in S(l) containsk substrings 00,0 ≤ k ≤ l, then it contains the same
number of substrings 11, andl − k substrings 0110. These substrings may be arranged in
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any manner, with(l+ k)!/(k!k! (l− k)!) many possibilities. Hence,

σ(l) =

l∑
k=0

(l+ k)!

k!k! (l− k)!
=

l∑
k=0

(
l+ k

k

)(
l

k

)
.

An asymptotic approximation, which is proved in [15], states that

σ(l) ∼ σ̃(l) :=
1+

√
2

25/4
√
π

(1+
√
2)2l

√
l

≈ 0.812.414
d

√
d
.

Suppose that, using the labelingsl andl ′ , we generate thed×2d bimatrix game(A,B)

according to Proposition 2.1 of [15], which gives details on how to generate the payoff
matrices of a bimatrix game corresponding to a pair of labeled polytopes with a least one
complementary vertex pair. Then the order of facets given by taking the rows and then the
columns ofA or B in order is consistent with the Gale evenness condition. Thus Lemma 2
could be used to immediately find an NE of(A,B): When presented with ad× 2d game, a
trivial addition to any general algorithm for NASH is to check if there is an NE corresponding
to the support profile where player 1 uses full support and player 2 uses herfirst d strategies,
which indeed corresponds to an equilibrium of(A,B). Since our goal is to construct “hard
to solve” bimatrix games, we therefore disguise the structure of the equilibria, in order to
ensure that Lemma 2 cannot be used to find a sample equilibrium quickly.

There is no way to “hide” a strategy that uses full support, which was precisely the lim-
itation, in terms of support guessing, of the construction in [13]. In the present construction
we can however “hide” the equilibrium supports of player 2, which use onlyd out of 2d
possible pure strategies. This is done by randomly permuting the payoff matrices. Although
it is only necessary to permute the columns of the payoff matrices to hide the structure of
player 2’s equilibrium supports, we permute the rows as well. The reason for this is that
vertex enumeration depends upon the indexing of variables, which is affected by permuting
the rows (see Section 5).

Let [d] = {1, . . . , d}, and letSd be the set of permutations of[d], and define[2d] and
S2d similarly. We chooseπd ∈ Sd according to a uniform distribution onSd, and similarly
chooseπ2d ∈ S2d. We randomly permute the rows ofA andB according toπd and the
columns according toπ2d to produce(A,B), which is an instance of our construction.

3 The LH paths

The LH paths2 in the present construction are obtained as mappings of the paths in [13]. For
each LH path,d contiguous bits of every vertex inQ on the path are constant at1. (The Gale

2Permuting the payoff matrices amounts to a relabeling (see [13]) and does not affect the LH paths beyond
permuting all the bitstrings that represent vertices. For simplicity we study the LH paths using the unpermuted
labeling, which is consistent with the Gale evenness condition.
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evenness condition shows that such intersections of facets are also dual cyclic polytopes in
lower dimension.) The following lemmas describe the paths in this new construction through
their relationship to the paths in [13].

Denote byρ(d, k) the LH path, for the present construction, when labelk is dropped
from êd

0 in P × Q. The path is regarded as a sequence(u0, v0) (u1, v1) · · · (uM, vM) of
vertex pairs inG(d, 3d) × G(2d, 3d). Let M(d, k) = M be the length of that path. We
now call the best response polytopes from the construction in [13]P̂ and Q̂, usingP and
Q for the best response polytopes in the present construction. Following the definitions of
[13], denote byπ(d, k) the path when labelk is dropped fromed

0 in P̂ andQ̂, which is a
sequence of vertex pairs inG(d, 2d) × G(d, 2d). Let L(d, k) be the length of that path.
These paths are studied and fully described in [13]. Lemma 3 is analogous to Theorem 8 (a)
of [13] in both content and proof; it describes a relationship among the paths arising from the
cyclic symmetry of the Gale evenness condition, and simplifies the work needed to describe
the lengths of the paths for labels2d+ 1 ≤ k ≤ 3d.

Lemma 3 M(d, k) = M(d, d+1−k) andM(d, d+k) = M(d, 2d+1−k), for 1 ≤ k ≤ d.

Proof. Let ψ be defined byψ(k) = d− k+ 1 for 1 ≤ k ≤ d andψ(d+ k) = 3d− k+ 1

for 1 ≤ k ≤ 2d. Applied to the bitstrings of vertices,ψ is a cyclic shift by2d positions
to the right, followed by a reversal. This leaves the setsG(d, 3d) andG(2d, 3d) invariant.
Furthermore,ψ commutes with the labelingsl and l ′ of P andQ, so the LH algorithm
proceeds in the same manner. That is to say, the vertex pairs on the pathρ(d, k), seen as a
pairs of 0-1 strings, are step by step the same when the positions in each string are permuted
according toψ. Underψ, the first vertex pair̂ed

0 is mapped to itself, but the positions are
changed as above. This means that underψ, the pathρ(d, k) is mapped toρ(d, d− k+ 1),
so these two paths have the same length, and similarly forρ(d, d+k) andρ(d, 2d+ 1−k).

In the following three lemmas,ε, ζ, andη are mappings from the vertices ofP̂× Q̂ to
the vertices ofP ×Q. We represent the vertices as bitsrings so,

ε, ζ, η : G(d, 2d)×G(d, 2d) → G(d, 3d)×G(2d, 3d).

Each mapping induces, in the obvious way, an injective mapping from the labels1, . . . , 2d

of P̂ × Q̂ to the labels1, . . . , 3d of P ×Q.

Lemma 4 describes the paths for dropped labeli, 1 ≤ i ≤ d. Lemma 5 describes the
paths for dropped labelsd+ 1 ≤ i ≤ 2d andi even. Then the paths for labels2d+ 1 ≤ i ≤
3d andi odd are described by Lemmas 5 and 3. Lemma 6 describes the paths for dropped
labels with2d + 1 ≤ k ≤ 3d andk even. Then the paths for labelsd + 1 ≤ k ≤ 2d

with k odd are described by Lemmas 6 and 3. Thus all paths in the present construction are
described by Lemmas 3,4,5, and 6 in terms of the paths in [13].
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Lemma 4 M(d, k) = L(d, k), for 1 ≤ k ≤ d.

Proof. We show thatρ(d, k) = ε(π(d, k)) for k = 1, . . . , d, where

ε(u, v) =

{
(u1 · · ·u2d−k0

du2d−k+1 · · ·u2d, v1 · · · v2d−k1
dv2d−k+1 · · · v2d), k even,

(u1 · · ·u2d−k+10
du2d−k+2 · · ·u2d, v1 · · · v2d−k+11

dv2d−k+2 · · · v2d), k odd.

The starting point ofπ(d, k) is ed
0 and of ρ(d, k) is êd

0 . Now ε(ed
0 ) = êd

0 as re-
quired. Complementarity of the constant positions ofε is immediate. Both pathsρ(d, k)
andε(π(d, k)) start by dropping the same label, that is, consideringε as a mapping of la-
bels,ε(k) = k. Now ε cyclically preserves the adjacency of all labels except for a single
pair in P̂ and a single pair in̂Q. (If k = 1 it preserves the adjacency of all pairs inP̂ and
Q̂.) In P̂ andQ̂ these pairs correspond to positions2d− k and(2d− k + 1 mod 2d) if k
is even and2d− k+ 1 and(2d− k+ 2 mod 2d) if k is odd. Now the proof of Theorem 8
c) of [13] shows that no “action” occurs across these positions.

Lemma 5 M(d, d+ k) = L(d, d+ k), for 1 ≤ k ≤ d andk even.

Proof. We show thatρ(d, d+ k) = ζ(π(d, d+ k)) for k = 1, . . . , d andk even, where

ζ(u, v) = (u1 · · ·ud+k0
dud+k+1 · · ·u2d, v1 · · · vd+k1

dvd+k+1 · · · v2d)

The starting point ofπ(d, d+k) is ed
0 and ofρ(d, d+k) is êd

0 . Now ζ(ed
0 ) = êd

0 as required.
Complementarity of the constant positions ofζ is immediate. Both pathsρ(d, d + k) and
ζ(π(d, d+k)) start by dropping the same label, that is, consideringζ as a mapping of labels,
ζ(d + k) = d + k. Now ζ cyclically preserves the adjacency of all labels except a single
pair in P̂ and a single pair in̂Q. In P̂ andQ̂ this pair corresponds to positionsd + k and
(d + k + 1 mod 2d). The proof of Theorem 8 d) of [13] shows no “action” occurs across
these positions.

Lemma 6 M(d, 2d+ k) = L(d, 1) + 1, for 1 ≤ k ≤ d andk even.

Proof. We show thatρ(d, 2d + k) = ê0 + η(π(d, 1)) for k = 1, . . . , d andk even, where
the ‘‘+ ′′ denotes joininĝe0 to that first vertex pair ofη(π(d, 1)) by an edge, and

η(u, v) = (u0d, 1v2 · · · v2d1
k−2v11

d−k+1).

In the first step ofρ(d, 2d + k) label2d + k is dropped inQ, label1 is picked up, and we
reach the vertex pair(u1, v1). Notice thatη(u1, v1) = ed

0 . Label 1 is duplicate inP and is
dropped in the next step. Because no edge of the pathπ(d, 1) wraps-around(see [13]) the
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rest of pathρ(d, 2d+ k) continues asη(π(d, 1)). So label 1 is never dropped inQ, that is,
vi

1 = 1 for all i = 1, . . . ,M. In the second to last step ofπ(d, 1) labeld is picked up inP̂
and then dropped in̂Q in the last step, as label1 is picked up. In(uM−1, vM−1), the second
to last vertex pair ofρ(d, 2d + k), labeld is duplicate, and in the last step it is dropped in
Q. Now however, label 1 is already present inQ and this last edge wraps-around and the
missing label2d+ k being picked up, thus terminating the pathρ(d, 2d+ k).

We have now showed that the length of any LH path,M(d, k), in the present con-
struction is equal to the length of some path from [13],L(d, k), possibly plus one. Thus the
lengths of the LH paths in the present construction and [13] have the same exponential order
of growth.

4 Support enumeration

In this section we show that support enumeration cannot be used to efficiently find a sample
equilibrium of these games. LetU(d) be the “universe” of all sets ofd-subsets of[1, ..., 2d],
which corresponds to all player 2’s supports of sized, and letu(d) = |U(d)| =

(
2d
d

)
.

Let N(d) ⊂ U(d) be the set of supports of player 2 corresponding to equilibria, and let
n(d) = |N(d)|. In what follows we refer toU, N, u, andn for convenience, sinced is
fixed.

Suppose an oracleO, presented with a support profile, answers the question of the ex-
istence of a corresponding equilibrium. The following lemma shows the power of randomly
permuting the payoff matrices as a method for hiding equilibria from support enumeration:
If N is known, a negative query toO rules out certain permutations, but the lemma says that
this does not help to pick subsequent supports. In the following,x ∈ U is a query to the
oracleO. Forx, y ∈ U andπ ∈ S2d the conditionπ(y) = x means thatπ(i) ∈ x, ∀i ∈ y.

Lemma 7 ∀x ∈ U, we have,

|{π ∈ S2d : ∃y ∈ N with π(y) = x}|

(2d)!
= n/u.

Proof. The left hand side of this equation is the number of permutations you can exclude
following a negative query x, the right hand side is the trivial success rate. This holds because
for all ∀x, y ∈ U, |{π ∈ S2d : π(y) = x}| = (d!)2, which divided by(2d!) gives exactly
1/u, and if x andx ′ are distinct then{π ∈ S2d : π(y) = x} and{π ∈ S2d : π(y) = x ′} are
disjoint, because the permutations are bijections.

We show that a support enumeration algorithm that only looks at support profiles where
player 1 uses full support and player 2 uses a support of sized will require an exponential
expected number of guesses to find an NE. (So a general support enumeration algorithm
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will do worse in expectation.) Index the elements ofU \ N by i, with 1 ≤ i ≤ u − n.
Assume that the elements ofU are enumerated in some order. LetWi be the event that
the ith support profile comes before all members ofN in the enumeration order ofU. Let
1Wi

be an indicator function, that is, a0-1 random variable, that takes the value1 if the
ith support profile comes before all members ofN in the enumeration order ofU. Let
W =

∑u−n
i=1 1Wi

, which is a random variable equal to the number of supports checked
before the first equilibrium is found. Then, using the linearity of expectation, we have

EW = E(

u−n∑
i=1

1Wi
) =

u−n∑
i=1

E(1Wi
) =

u−n∑
i=1

1

n+ 1
=
u− n

n+ 1
.

So the expected number of guesses to find a sample NE is

u− n

n+ 1
+ 1,

which is exponential ind sinceu/n is exponential. The variance ofW is about(EW)2.

5 Vertex enumeration

In this section we consider using vertex enumeration of the best response polytopes to find
a sample equilibrium in our games. Unlike support enumeration, vertex enumeration is not
so easy to analyse. Here we consider a general method for NASH; in the next section we
consider a method specialized to the present construction.

Suppose we have a generalm×n bimatrix game with best response polytopesP ∈ Rm

andQ ∈ Rn (see [16]). One approach for NASH is as follows3: Enumerate the vertices of
one of the best response polytopes, sayP, one by one. If the game is not square it is better
to enumerate the polytope in lower dimension as this will have fewer vertices in general.
For each vertexv ∈ P, there will bem of then +m inequalities that describeP that are
binding. For simplicity we only consider nondegenerate games, in which case the remaining
n inequalities will have positive slacks. Thesen inequalities correspond to pure strategies
that are either played with positive probability or that are not best responses. In equilibrium
these must be best responses or not played, respectively, for the other player, which means
that the correspondingn inequalities inQ must be binding. Thus, we considerQv, which is
obtained fromQ by turning thosen inequalities to equalities. We enumerate the vertices of
Qv and if this polytope is nonempty, its unique point, sayw, corresponds to an equilibrium
strategy, which together withv, corresponds to an NE, whenv andw are normalized, so that
they are probabilities. IfQv is empty we continue the enumeration ofP.

3Enumerating all vertices of either best response polytope cannot be efficient for NASH as the polytopes
may have an exponential number of vertices in the dimension, as indeed the dual cyclic polytopes used in the
present construction do.
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The polytopesP andQ in the present construction have

6

(
5d/2− 1

d/2− 1

)
and3

(
2d− 1

d− 1

)
vertices, respectively. These numbers are, according to Stirling’s formula, of the order
Θ(3.49 . . .d/

√
d) andΘ(4d/

√
d) respectively. To find an NE of an instance of the present

construction the vertex enumeration must reach a vertex ofP or Q that corresponds to full
support for player 1. Such a vertex will be represented by a bitstring of the formOdx ∈ P or
1dy ∈ Q, wherex andy are bitstrings of length2d with d ones. If this fact is known then
one could enumerate only vertices ofQ of this form, as we can fix the firstd inequalities in
the description ofQ as equalities. (Thesed binding inequalities say that all player 1’s pure
strategies are best responses.) This yields a new polytopeQ ′ , which is ad dimensional face
of Q, and has

4

(
3d/2− 1

d/2− 1

)
vertices. This number is of the orderΘ(2.598 . . .d/

√
d). EnumeratingQ ′ would clearly be

preferable to enumeratingQ for the present construction, but we can actually do better, if
the construction is known. In the next section we describe a specialized vertex enumeration
method to find an NE in no more than2d + 1 steps. The number of equilibria is of the
orderΘ(2.414 . . .d/

√
d), therefore, forP, Q, or Q ′ , the ratio of equilibria to vertices is

exponentially small.

A rigorous analysis of the efficiency of vertex enumeration on these games will depend
on the actual enumeration method used. No such analysis is attempted here. It is worth
noting that any such method must use a rule to determine a unique variable to use in each
step, in order that no vertices are overlooked. One possible enumeration method is Avis and
Fukuda’s reverse search method,lrs [1]. For lrs, a rule is required (e.g. Bland’s rule) to
uniquely determine which variable will “enter the basis” at each step. An analogous rule
will be needed for any enumeration method, and will depend on the indexing of the variables
(order of the columns) in the polytope description. For this reason, the random permutation
of columns, used to produce an instance(A,B) of the present construction from(A,B), will
affect the order in which vertices are enumerated (by any method). However, the permutation
will not make the order of enumeration of vertices random. (If this were so, then vertex
enumeration would be exponential in expectation by the same reasoning used in Section 4
for support enumeration.) Yet, it is conceivable that the expected number of vertices that
must be enumerated before an NE is found is still exponential, although this needs further
study.
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6 Quickly discovering a sample NE by pivoting

In this section we describe a method, using pivoting, to find a sample equilibrium of(A,B)

in at most2d + 1 steps. It only works for the present construction and does not provide
a general method for NASH. Suppose that a game(A,B) is constructed as in Section 2.
We assume that the game is known, but that(A,B), πd, andπ2d are not. The method we
describe will find one of two equilibria, either corresponding to supports of player 2 equal to
π2d({1, . . . , d}) or π2d({2d + 1, . . . , 3d}). The method does not distinguish between these
two equilibria.

The best response polytopes are

P = {x ∈ Rd | x ≥ 0, B
>
x ≤ 1 }, (3)

Q = {y ∈ R2d | Ay ≤ 1, y ≥ 0 }. (4)

These are identical to the polytopes

P = {x ∈ Rd | x ≥ 0, B>x ≤ 1 }, (5)

Q = {y ∈ R2d | Ay ≤ 1, y ≥ 0 } (6)

except that the order of the firstd inequalities have been permuted byπd and the order of
the second2d inequalities byπ2d. The origin is a vertex ofQ, and can be represented as
the bitstring0d12d, where, as usual, theith position in this bitstring corresponds to theith
inequality in (4). Because of the permutation of the rows and columnsA andB, the ordering
of the inequalities in (3) and (4) will not in general be consistent with the Gale evenness
condition. Afacetof P orQ is defined by a single inequality turned into an equality. Let the
facets ofP andQ be labeled1, . . . , 3d according to the order of inequalities in (3) and (4)
respectively. The best response polytopesP andQ aresimple, that is, each vertex is defined
by d and2d facets respectively. There are2d possible pivots away from the origin. Half
of these pivots lead onto the facet corresponding to the first inequality in (5). The otherd

pivots will take us onto the facet corresponding to inequalityd in (5). These will appear as
theπ(1)th andπ(d)th inequalities in 4, respectively. The figure that follows illustrates these
2d pivots for the cased = 4.
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inequality ofQ 1 2 3 4 5 6 7 8 9 10 11 12

inequality ofQ π(1) π(4)

0 ∈ Q 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 1 1 1 1 1 1 1

0 0 0 1 1 0 1 1 1 1 1 1

1 0 0 0 1 1 0 1 1 1 1 1

0 0 0 1 1 1 1 0 1 1 1 1

1 0 0 0 1 1 1 1 0 1 1 1

0 0 0 1 1 1 1 1 1 0 1 1

1 0 0 0 1 1 1 1 1 1 0 1

0 0 0 1 1 1 1 1 1 1 1 0

First we try out the2d pivots from the origin, one by one, using matrix operations. We
stop as soon as two distinct facets are reached (i.e. two different inequalities have become an
equality for different pivots). This can take no more thand+1 pivots. We can not distinguish
between inequalitiesπ(1) andπ(d), which is why this method might find either one of two
equilibria. Next we pivot in the other best response polytope,P. The origin is a vertex
of P and corresponds to the bitstring1d02d. We choose either one of the two inequalities
we know to correspond toπ(1) or π(d), calling this choice of inequalitya, and the other
inequality, which we didn’t choose,b (a, b ∈ [3d]). We pivot away from the origin inP by
leavinga. We reach a new vertexv1, picking up a new facet, sayf1. We pivot away from
v1 by leavingb, thereby hitting facetf2 and reaching a new vertexv2. Then we pivot way
from vertexv2 by leaving facetf1. We proceed in this manner, pivoting away from vertex
vi by leaving facetfi−1, which was reached in the previous pivot, thereby hitting facetfi+1

and reaching vertexvi+1. Depending on our choice ofa each facetfi either corresponds to
inequalityπ(d+ i) or to inequalityπ(3d− i+ 1) of (3). When we reachvd we stop. Then
an equilibrium support of player 2 is given by the strategies corresponding to inequalities
{fi : i = 1, . . . d} in (3). Thus the equilibrium support profile is given by all player 1’s pure
strategies and columns{fi − d : i = 1, . . . d} for player 2. We illustrate the cased = 4

anda = π(1) in the following table.

inequality ofP 1 2 3 4 5 6 7 8 9 10 11 12

inequality ofP π(1) π(4)

0 ∈ P 1 1 1 1 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0 0 0

0 1 1 0 1 1 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 0 0 0

0 1 1 0 0 0 1 1 0 0 0 0

equilibrium support 0 0 0 0 1 1 1 1 0 0 0 0
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7 Conclusions and open questions

In this paper we have presented challenge instances for the problem NASH, of finding one
NE of a bimatrix game. The games constructed are hard to solve for both the Lemke–
Howson algorithm and support enumeration. The first part of the construction yields games
whose equilibrium support profiles have a simple structure. This structure is hidden using
random permutations of the payoff matrices. This is an effective method of hiding the sup-
port structure of equilibria from support enumeration, even in a general setting. Even if the
construction is known, support enumeration is still not efficient. On the other hand, vertex
enumeration is more powerful than support enumeration and if the construction is known a
sample NE can be found quickly this way. The method used is not general though. Analysis
of the efficiency of general vertex enumeration methods for these games is not straightfor-
ward.

It would be preferable if challenge instances were “hard to solve”, even if the construc-
tion is known, but this is a lot to ask. In this case the construction was possible because
the combinatorial structure of dual cyclic polytopes is completely known. It is this fact that
allows a sample NE to be found quickly when the construction is known. It seems unlikely
that games that defeat the LH algorithm and support enumeration can be constructed with-
out using polytopes whose combinatorial structure then makes the games open to attack by
specialized methods, if the construction is known.

The games we construct are proposed as challenge instances for NASH, and we feel
that a general method that solves these games may shed valuable light on the complexity of
NASH. Several directions of further work deserve attention: analyzing general vertex enu-
meration methods for these games; testing Lemke’s algorithm, a variant of the LH algorithm,
on these games [17]; analyzing randomized algorithms for NASH.
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