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Abstract

This paper examines the methodology and assumptions of Ashton,
D., Cooke, T.,Tippett, M., Wang, P. (2004) employing recursion value η
as an explanatory single-variable in a model of the firm, first introduced
by Ashton, D.,Cooke,T.,Tippett in (2003). A qualitative analysis of all
of their numerical findings is given together with an indication of how
more useful is the tool of special function theory, here requiring conflu-
ent hypergeometric functions associated with the Merton-style valuation
equation
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2
ζη

d2V

dη2
+ (r − q)η

dV

dη
− rV = 0.

A justification and a wider interpretation of their model and findings is
offered: these come from inclusion of strictly convex dissipating frictions
arising either as insurance costs, replacement costs of funds paid out, or
of debt service, and from the inclusion of alternative adaptation options
embedded in the equity value of a firm; these predict not only a J-shaped
equity curve, but also, under the richer modelling assumption, a snake-
like curve that may result from financial frictions like insurance. These
‘smirks’ in the equity curve may be empirically tested. It is shown that
the inclusion of frictions in dividend selection (e.g. the signalling costs
of Bhattacharya) leads to an optimal dividend payout of αη that is a
constant coupon for an interval of η values preceded by an interval in which
α = r; this is at variance with the ACTW model where the exogeneous
assumption of a constant α is made.

This is the full, detailed, version of a discussion paper presented at
State of the Art International Advances in Accounting Based Valuation
at the Cass Business School, a conference held in association with the jour-
nal, Accounting & Business Research, London, December 12th and 13th
2003. I am indebted to Ken Peasnell for suggesting the word ‘smirk’. I
am grateful to Jim Ohlson, Mark Tippett, Miles Gietzmann, to colleagues
at LSE, and to colleagues at University College London Mathematics De-
partment, particularly Susan Brown and S.N. Timoshin for very helpful
discussions.
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1 Introduction

Ashton, D., Cooke, T.,Tippett, M. (2003) and Ashton, D.,Cooke, T.,Tippett,
M.,Wang, P. (2004), henceforth referred to as ACTW, offer an elegant and
ground-breaking continuous-time model for the evolution of accounting values
over time, blending the approaches of Accounting Theory and Finance Theory.
The significance of the analysis in ACTW is three-fold: firstly it gives an insight
- through the prism of an accounting variable - into how a firm’s dividend policy
has a controlling role in the determination of equity value; secondly, it explains
in terms of one type of embedded option an important empirical observation re-
garding the J-shaped functional relation between earnings and equity, a feature
not explicitly modelled until quite recently - see also Gietzmann and Ostaszewski
(2004); and thirdly (though this may be seen as secondary to the main thrust
of the argument) it admits the so-called dirty surplus accounting systems (i.e.
it allows earnings to be partitioned into exceptional and non-exceptional with
both these evolving separately, though not necessarily independently).

The essential assumption of ACTW is the adoption of so-called recursion-
value, denoted by η, as the explanatory variable. This variable is at any time
the expected present value of the future dividend stream, given the current
information, and contingent on the assumption that the production technol-
ogy/environment is to remain unchanged. They examine a specific stochas-
tic model written in accounting terms, namely the natural, constant-matrix,
continuous-time generalization of the Ohlson (1995) discrete-time linear model
as governing the evolution of earnings, with uncertainty modelled by a square-
root process driven by η. Theirs is thus a state space model with

dy = Cydt + ηδdzt, (1)

where abnormal earnings a, dirty surplus adjustment ε, and one additional
information variable v make up the state vector at any instant, yt, while zt

is a vector of Brownian motions, and δ is assumed not to exceed 1/2. The
technology regime thus remains unchanged as long as the matrix C at the heart
of the model is constant. They also assume the firm has access to alternative
modes of operation giving it what they term an ‘adaptation value’. Further
simplifying assumptions (several) lead them to an ordinary differential equation
for the valuation of the firm and to a unique solution which exhibits the J-shape.
Based on this solution function ACTW conduct comparative statics to show the
influence of dividend policy over equity value.

The simplifying assumptions are: a single sde, a specific dividend policy and
just one type of adaptation technology which is characteristic of a firm entering
a contraction phase.

The first aim of the current paper is to widen the argument, so as to support
the simplifying assumptions, given the remarkable insight ACTW offer. Such an
argument is called for, since the assumptions are contentious on the grounds of
an apparent inconsistency with the starting linear model. The second aim is to
widen the perspective, so as to embrace a richer structure of embedded options,
including not only contraction options but also expansion options; this opens up
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an analysis of firms according to their embedded option structure, and a realiza-
tion that J-shapes are not the only shapes that may be observed; we indicate a
contrasting ‘snake-like’ shape driven by a ‘cost of finance’ friction. A third aim
is to offer two further simplifications: one in respect of the method employed
for solving the underlying differential equation (in particular this insight rids
the model of an unrealistic ‘cusp-like’ feature - a vertical tangency at the ori-
gin), but more significantly is more helpful to analyzing the solutions than the
quadrature (which ACTW use to investigate their own integral representation
of the solution); the other simplification is in respect of the comparative statics
which are here derived from an even simpler perspective (a stripping down to an
appropriate exponential decay, which is thus seen to be an important controlling
feature of the value function). A final aim is to endogenize the choice of dividend
policy. It will be clear from the analysis here that the next step in a research
programme is to perform a taxonomy of switching models consistent with the
multitude of qualitatively different solutions available by ‘patching solutions’
from a collection of broadly similar, underlying, differential equations.

The structure of this paper is the following. A brief description generalizing
some aspects of the model is given first. Various consequences of the ACTW
paradigm and an apparent inconsistency is analyzed as a thought experiment;
then reference to the Bugstahler-Dichev (1997) model which inspires the ACTW
paradigm indicates why, in principle, smooth-pasting of solutions from two dif-
ferential equations is a must, and why, nonetheless, the simplification adopted
by ACTW is justifiable. In section 4.2 a qualitative analysis of the single differ-
ential equation approach is given and it is shown that introduction of a friction
term not only removes the ‘cusp-like’ feature on the short lip of the J-shape,
but also permits a snake-like shape. Comparative statics from a simplified per-
spective are given in section 7 and these relate to issues of monotonicity (in µ),
location of the minimum equity value (‘the bottom of the smirk’), and compar-
ison against the non-dividend regime. The final section considers endogenizing
the dividend policy when frictions are included; there is a growing literature
concerned with dividend policy as a control variable and just a few recent pa-
pers are cited. The conclusion short-lists how this approach might throw further
light on a more significant number of dividend-related questions. The Appendix
collects proofs, and en passant, a brief summary of some pertinent facts concern-
ing the solution of the confluent hypergeometric differential equation (which is
at the heart of the ACTW model) including series as well as Laplace Transform
approaches to the equation.

2 A more general model

ACTW have as a starting point the introduction of a continuous variable ε(t)
which is the instantaneous value of the so-called exceptional items (the “dirty
surplus” adjustment) with the consequence that cost of capital i is charged only
to adjusted earnings (excess) earnings x(t); residual income/abnormal earnings
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are thus defined instantaneously by

a = x− ib,

so that unadjusted earnings over an interval of length ∆t are (x + ε)∆t; here
i denotes the riskless interest rate, as in ACTW. The modelling of firm value
proceeds by connecting the value of assets in hand (bookvalue, i.e. historic value
of the assets held by the firm) and the expectation of the discounted stream of
future dividends (see Miller-Modigliani (1961)) and begins by writing change in
the bookvalue b as a change in earnings less dividend payout:

db = (x + ε)dt− dD = (ib + a + ε)dt− dD, (2)

where D = D(t) denotes at time t the cumulative outflows from the firm (divi-
dends in the ACTW case). Define

η = E[
∫ ∞

0

e−itdD(t)]. (3)

Absent any bubble phenomena at infinity, i.e. assuming

lim
t→∞

e−itbt = 0 (4)

integration by parts gives
∫ ∞

0

e−itdD(t) =
∫ ∞

0

e−it[ib + a + ε]dt−
∫ ∞

0

e−itdb

=
∫ ∞

0

e−it[ib + a + ε]dt−
(

[e−itb]∞0 + i

∫ ∞

0

be−itdt

)

= b0 +
∫ ∞

0

e−it[a + ε]dt. (5)

The expected value on the left-hand side is interpreted as the recursion value of
the firm denoted η and this assumes the “firm’s existing investment opportunity
set will remain in force indefinitely” - with “opportunity set” defined by the
modelling assumption of the linear system C given by (1).

We begin by observing the following
Proposition 1. With η defined by (3) and assuming the dynamics of book-

value given by (2) satisfy (4), we have that

E[dηt] = iηtdt− dD(t), (6)

provided the processes (a(t), v(t), ε(t)) are continuous and D(t) is non-anticipating,
e.g. dD(t) = f(η(t))dt for some deterministic function f(.).

In particular, if a and ε are given by the linear stochastic differential equa-
tion (1), then for some combination q of the original noise generators,

dη = iηdt− dD + ζηδdq.
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Proof. See Appendix 1.

It follows that a stochastic model based on a standard Wiener process zt

will take the form
dηt = iηtdt− dD(t) + ζ(ηt)dzt

and ACTW study the case
ζ(η) = ζ0η

1/2

with ζ0 a positive constant. Their theorem identifies the constant ζ0 corre-
sponding to the linear model (1) in terms of the Wiener processes generating
a(t), v(t), ε(t).

We now consider a variant of the ACTW deterministic dividend policy in
which the firm makes two payments: a constant coupon C per unit time and a
proportion α(η) of the recursive value η. The coupon may be thought of as a
constant debt-service covenant, but other interpretations are also appropriate
(see section 8); this component is absent in the ACTW model but we need it
at two junctures, in particular to remove the ‘cusp-like’ phenomenon (infinite
slope at the origin).

Assuming therefore that for all time

dη = iηdt− dD + ζ(η)dz

and that for some deterministic function α(.) it is the case that

dD(t) = [α(η(t))η + C]dt,

then the equity value satisfies the equation

1
2
ζ(η)2

d2V

dη2
+ (iη − αη − C)

dV

dη
− iV + αη + C = 0. (7)

Note that V = η is a particular solution (as it must be in the absence of any
switching options), so that the general solution is given by:

V (η) = η + W (η),

where W solves the complementary equation

1
2
ζ(η)2

d2W

dη2
+ ((i− α)η − C)

dW

dη
− iW = 0. (8)

This is a minor modification to a well-known argument attributed to Merton
(1974); see also Black and Cox (1975).

For the case ζ(η) =
√

ζη with ζ a positive constant, rescaling the independent
variable to y = 2λη, where λ = 2(i−α)/ζ (assuming that α < i), and tidying up
of parameters (by setting κ = i/(i− α) and c = 2C/ζ) we find that the format
of the governing differential equation is thus

y
d2W

dy2
+ (y − c)

dW

dy
− κW = 0. (9)
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We will refer to this as the generalized Merton valuation equation. It may
be solved by reference to the Kummer equation. The latter is obtained from (9)
by setting x = −y and w(x) = W (y) and writing1 A = −κ and B = −c, so that

x
d2w

dx2
+ (B − x)

dw

dx
−Aw = 0. (10)

There are a number of established special functions which may be used to solve
the equation (10) and mention should be made in particular of the Kummer
functions and of the Whittaker functions. See Slater (1960). In section 4.3 two
independent solutions of (10) of financial significance are found to be given by
the Kummer functions M(A,B, x) and U(A,B, x), so that the Merton valuation
equation has the two solutions

C(y) = M(−κ,−c,−y), P (y) = U(−κ,−c,−y).

An alternative notation for M(A,B, x) is 1F1(A; B; x), a notation which refers to
the coefficients in the hypergeometric series expansion of the Kummer function
M.2 The reader should be warned that in the domain of financial interest there
are potential difficulties in accessing the special functions on computer (problems
with integer values for A, B). Some useful formulas are collected in Appendix
2 for ease of reference.

There is an immediate payoff to this extra level of generality: in the special
case of c = κ the equation (9) has an obvious put-like solution: W (y) = e−y. Its
call-like second solution is close to being a simple power function yκ. See section
6. This makes the model a hybrid of the arithmetic Brownian (with exponential
solution) and geometric-Brownian (with power solution).

3 Consequences of aggregation and the simpli-
fying paradigm

ACTW derive two consequences of the modelling assumption (1).
The first is that in such a framework the current value of η can be expressed

in terms of book-value and the current state variables in the form

η(t) = b(t) + H




a
v
ε


 , (11)

where H = (1, 0, 1)(iI − C)−1 is a row vector computed from C. It is tacitly
assumed that i is not an eigenvalue of C. Though ACTW do not consider this

1Traditional notation, see Slater(1960), uses lower case letters which we avoid since a, b
already denote abnormal earnings and book-value.

2The n-th term of the series pFq (a;b; t) is

[a1(a1 + 1)...(a1 + n− 1)]...[ap(ap + 1)...(ap + n− 1)]

[b1(b1 + 1)...(b1 + n− 1)]...[bq(bq + 1)...(bq + n− 1)]

tn

n!
.
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point, it is a justified enquiry, given that optimal activity is predicated on η
alone, whether, at least in principle, the state vector (a(t), v(t), ε(t)) is recov-
erable from knowledge of η obtained within some, or any (no matter even how
short), time interval starting at t. Set the volatility to zero for a simpler and
more achievable task and the answer is no. This makes the findings of ACTW
all the more remarkable.

Proposition 2. The state vector (a(t), v(t), ε(t)) of the linear system C
given by (1) is not recoverable from knowledge of η obtained within some, or
any (no matter even how short), time interval starting at t.

Proof. The reconstruction question has a well-known equivalent in the
deterministic setting (see Russell (1979)); the equivalent statement is that the
following matrix has rank 3. We compute the form of the required matrix to be



H
HC
HC2


 =




(1, 0, 1)(iI − C)−1

(1, 0, 1)(iI − C)−1C
(1, 0, 1)(iI − C)−1C2


 =




(1, 0, 1)(iI − C)−1

(1, 0, 1)[i(iI − C)−1 − I]
(1, 0, 1)[i2(iI − C)−1 − (1 + i)I]




=




H
iH − (1, 0, 1)

i2H − (1 + i)(1, 0, 1)


 ,

since

(iI − C)−1C = i(iI − C)−1 − I,

(iI − C)−1C2 = i(iI − C)−1C − C = i2(iI − C)−1 − iI − I.

However, this matrix cannot have rank 3 since after subtracting appropriate
multiples of H we obtain the equivalent matrix




H
(1, 0, 1)

(1 + i)(1, 0, 1)


 ,

which has rank at most 2.

Secondly, they show that since the stochastic driver for each accounting
variable is a square-root process in η, it follows that the stochastic differential
equation obeyed by η is

dηt = iηtdt− dD(t) + ζη1/2dzt, (12)

where i is the required rate of return on investment, D(t) is the cumulative
dividend, ζ is a positive volatility constant and zt is a Wiener process (derived
as a linear combination of the Wiener processes driving the assumed linear
system). The equation (12) is critical to the ground-breaking developments
from here on.

ACTW at this point show that it is possible to abandon the state-space
model of a firm, run essentially by noise, in favour of a managed firm. In the
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managed firm managers monitor at each moment the expected value of the sum
total of discounted dividends, η, assuming no intervention, but may, if they so
choose, intervene and so let the firm run under a different technology. This
option to switch adds value to the firm, lifting it from the original η to V (η).
ACTW assume that (12) holds for all time. Though they do not say this, the
implication of the assumption is that even when the firm has switched to a dif-
ferent technology, at which stage the corresponding new variable η might have
evolved differently, they assume that volatility is unchanged. (The assumption
thus excludes investment of liquidated value in government bonds of zero volatil-
ity, in favour of technologies more in keeping with the original model C.) They
also assume that the firm pursues throughout time an exogeneously selected
proportionate dividend policy whereby

dD(t) = α · ηdt, (13)

with α a constant. Assuming 0 < α < i this form of dividend ensures that the
firm continues to have value (is not expected to go bankrupt). ACTW thus in
effect posit that the infinitely-lived firm’s value V (η) is a Merton-style perpetual
option written on η with η regarded as a traded asset and with price described
by (12). This is an ordinary differential equation and is the time-invariant
generalization of the Black-Scholes equation when inflows and outflows of cash
occur in the firm. We will refer to it simply as the standard Merton valuation
equation. Here it takes the form

1
2
ζη

d2V

dη2
+ (i− α)η

dV

dη
− iV + αη = 0. (14)

ACTW go on to assume that the option to switch out of recurring activity is
one which is only attractive at low values of η (see below for details); this single
assumption enables them to identify a unique function P (η) such that V (η) =
η + P (η) solves (14), so that P (η) identifies the value of such an adaptation
option. Let us call this real option, the adaptation put. Given that η is
a particular solution of (14), the function P (η) is of course a solution to the
complementary equation obtained from (14) by setting V (η) = η+W (η), where

1
2
ζη

d2W

dη2
+ (i− α)η

dW

dη
− iW = 0. (15)

The assumptions which lead to a unique adaptation put may be likened
to the cutting of the Gordian knot rather than to its unravelling. There is a
devil of a potential over-simplification; yet in this special case the approach is
instrumental to yielding a valuable insight. We offer explanations in the next
sections, warning the reader that assumptions alternative to having (12) hold
for all η would lead to alternative adaptation put functions (especially so if the
alternative is investment in high-grade bonds).

In summary: set aside any particular choice of linear model C for the vari-
ables a(t), v(t), ε(t), and instead take as starting point (6); if we assume that
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(12) holds for some ζ = ζ(η), then (14) describes the value of any claim on
η. For the simplest model, with ζ a constant, it is possible to characterize all
non-negative solutions. This is done in section 4.

3.1 A thought experiment for and against the simplifica-
tion paradigm

We indulge in what is only a thought experiment to understand the status of
the assumptions ACTW make. If the firm has one mode/technology of oper-
ation, say that described by C above, then its equity value at any time t is
given by ηC(t) (as a discounted sum of dividends) governed by (12) in which
ζ = ζ(C). Suppose that the firm has access to alternative technology to which
it may switch its operation by transferring all resources to it, i.e. it may at a
time of its own choosing replace C by a matrix C̄. This is supposed to be its
‘adaptation technology’. In the new context its equity value, as determined by
C̄, is ηC̄(t) with a stochastic differential equation formally like (12) though in
general with a different volatility ζ = ζ(C̄). At this point it is worth referring
to the paper by Radner and Shepp (1996), where switching to alternative tech-
nologies leads to a change both in drift and in volatility; but note that there the
state variable is quite different, as it represents accumulated net revenue and
allows for bankruptcy.

Returning to the thought experiment, if the switch occurs at a time θ,
when ηC(θ) first achieves some appropriate moving target η̄(t), the equity value
thereafter is given by the process ηC̄(t) started at the target value (assuming
no further switches are allowed). If the governing equation is still (12), i.e.
ζ(C) = ζ(C̄), then it is difficult to distinguish between the two modes of oper-
ation from only a knowledge of η, and the need for a switch is placed in doubt
(particularly, as neither system is likely to be reconstructible from a knowledge
of only η). Assume now that the volatilities are distinct. At any time t the target
value η̄(t) for switching must depend on all of C, C̄, perhaps η(t), as well possi-
bly as t (but given the infinite horizon and the stationary framework this should
immediately be ignored), and presumably, though not necessarily, on the vector
of state variables (a(t), v(t), ε(t)). This latter point is a subtle one, but ACTW
have implicitly shown elsewhere (footnote 14 in Ashton, D.,Cooke,T.,Tippett
(2003)) that the consequences of writing V = V (b, a, v, ε; C, C̄) is a valuation
equation that is a pde in the variables b, a, v, ε and that the assumption that this
equation has a solution in the form v = V (η, C, C̄), given the linear form (11),
reduces the pde to the ode (14). An invocation of a uniqueness theorem (for
the solution of the pde), then validates the intuition that η(t) is enough! Hence
the form of the optimal switching policy is that η achieves a value η̄ = η̄(C, C̄).

So assuming it is enough to know η to determine the optimal switching, the
value of the firm at time t takes the form V (η(t)). It follows that the functional
equation

V (η) = dD(t) + e−idtE[V (η + dη)), (16)

correctly describes the risk-neutral valuation V of the dividend flow, i being
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the required rate of return. To deduce a Merton valuation equation one in
principle needs to assume as data a form for the volatility term on each side of
the switching point η̄. Writing this in the form ζ = ζ(η) and expanding (16)
via Itô’s Formula then gives the Dynkin-Kolmogorov differential equation (see
Oksendal (1998) satisfied by V to be

1
2
ζ(η)2

d2V

dη2
+ (i− α)η

dV

dη
− iV + αη = 0,

compare Radner and Shepp (1996).
ACTW side-step this kind of thought experiment and simply posit that the

condition (16) holds alongside of (12) and (13); the upshot of these is that ζ(η)
is taken to be a constant multiple of η (i.e. either as though changes in ζ for
larger η are largegly irrelevant as regards the qualitative behaviour, or as though
ζ(C) = ζ(C̄) which might at best be regarded as a limiting scenario). ACTW
thus arrive at the Merton valuation equation in the form (14). We will see from
later sections that little is lost as a result of the simplifying assumption insofar
as the qualitative features of the associated put option are concerned.

3.2 The Burgstahler-Dichev paradigm: smooth pasting

Though the ACTW approach is motivated by the Burgstahler-Dichev approach
(1997) to firm value, it should be regarded as a generalization not of the
Burgstahler-Dichev call option paradigm, but of the Merton perpetual put-
option paradigm as we show below. This involves smooth pasting a time-
independent solution of the Black-Scholes equation onto the exercise value of
a put. By passing to a square-root process ACTW alter the geometry signifi-
cantly enough to agree with empirical findings. However they side-step the need
for a smooth-pasting between the exercise value and waiting value by assuming
that both regimes are described by one equation. We will show that this rolling
together leads to no loss in qualitative behaviour.

Burgstahler-Dichev posited a convex, increasing functional relation between
earnings and market value, modelled after Black-Scholes as a call option on the
next period earnings. Grounds for this latter view on value is that the firm
exercises a call-like real-option in the form of a simple switching opportunity.
The interpretation is that either the firm may stick with their recurring activity
(which is assumed to offer a future value proportionate to earnings), or abandon
this in the very next period. It would opt for abandonment, if the future value
of recurring activity is too low, as compared to ‘adapting’ their behaviour to a
superior value. This latter action, however, offers only a flat (constant) value
over the whole range of earnings, and so is only superior at low earnings. We
note that this corresponds to taking η = K = const as the governing equation
for low η in lieu of (12).

Empirical tests found justification in the data for convexity, but surprisingly
detected an initial portion of the functional relation to be downward sloping
rather than flat (a portion corresponding to an up-turn in value as earnings fall).
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Of course our summary of the Burgstahler-Dichev approach shows it to be in
reality a two-period model since it is inconceivable that the recurrent activity
should give a linear future value curve. ACTW side-step a proper inductive
(=recursive) treatment of the Burghstaler-Dichev paradigm in discrete time, by
passing to continuous time where the Bellman equation, in this case an ordinary
differential equation, replaces the induction step.

A review of the well-known perpetual put argument is profitable here. This
argument is in continuous time, so different in flavour from that of Burgstahler-
Dichev as summarized above. Suppose given a fixed dividend payout rate αη,
then the following stochastic differential equation is consistent with Proposition
1 above, namely

dηt = (i− α)ηdt + σηdzt. (17)

A volatility term of ση is ruled out for ACTW if the equation is to hold for all
time (all η), since they seek a put-like solution, and in the case ζ(η) = ση the
put-like solution has, as is well-known, a sigularity (blow up) at the origin. For
the present pasting purposes, however, it is a perfectly admissible alternative
to ζ1/2η1/2, as long as this volatility form is applicable away from zero by the
exercise of an alternative choice of technology near the origin. The equation
(17) treats η just like a standard dividend-paying traded asset. At any future
moment in time, management have an American perpetual option: either to
receive a value K (by switching to the adaptation technology), or to continue
with the recurring activity (and so holding onto an asset worth η). If η > K
there is no value to be had from exercise, and so the current value of the firm is
η; but for η < K, one should consider exercise of the switching option in order
to receive a value V = K = η + (K − η)+. The optimal trigger for switching,
η̄, is well-known to be characterized here by the Black-Scholes equation for the
perpetual put P = (K − η)+, namely

1
2
σ2η2 d2P

dη2
+ (i− α)η

dP

dη
− iP = 0, (18)

insofar as it stays valid for η > η̄ (whilst the put remains unexercised), alongside
the smooth-pasting condition: P ′(η̄) = −1. The latter condition may be viewed
as a pasting together of two solutions: one from the Black-Scholes equation (18)
and the other from the more trivial differential equation P ′(η) = −1 (obeyed
by P = K − η); in addition the pasting requires continuity of both the value
function P and its derivative3 P ′. The solution function for η > η̄ is a declining

3The usual considerations apply to the two differential equations. Suppose P0(η) is the
appropriate value function for η in (0, c) obtained from one d.e. Then the solution P (η, c)
obtained by solving the other d.e. to the right of η = c is subject to inter alia the boundary
condition P (c, c) = P0(c). That yields on differentiation

P ′0(c) = Pη(c, c) + Pc(c, c) = Pη(c, c).

Indeed the optimal choice of c is to maximise option-value and this requires at η = c the
maximisation of P (η, c), i.e. that P (c, c + h) is to be maximised at h = 0.
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inverse power function (with the power typically below unity4) albeit with an
initial linear portion of slope -1. It is the linear portion which produces a flat
initial portion for V (η) = η+P (η), at odds with empirical findings which exhibit
an up-turn on approach to the origin.

ACTW move away from the geometric Brownian model to a square root-
process and ditch the patching of two solutions from two differential equations;
they thus obtain a put P (η) that is ‘in the large’ a product of a not too dissimilar
inverse power5 and a decaying exponential solution. Close to the origin the
option value is finite (although its slope is large, in the limit it is -∞) and so the
put is now consistent with the empirical finding . It is possible (see section 5) to
bring down the infinite slope to a more meaningful finite value by introducing
financial frictions.

A more general application of the ACTW approach would patch two qual-
itatively similar put-like functions obtained from two different but similarly
structured differential equations; but, despite the additional intellectual cost,
this would achieve qualitatively the same result as from the simplifying ACTW
assumption.

4 Valuation equation: a qualitative analysis

ACTW obtain an integral representation of the solution of the Merton valuation
equation (14) and use numerical integration in order (i) to plot the adaptation
value against η and (ii) to perform comparative statics in relation to varying
the dividend policy. For this approach asymptotic considerations are a technical
necessity. However an alternative route is proposed here based on qualitative
considerations of the ode and on series expansions of the solution; these seem
more appropriate, since much interest centers on values of η near the origin.
Some simple manipulations routine to the theory of differential equations offer
key insights (and a route to a valid proof). Consideration of the comparative
statics is delayed to section 7.

One’s first focus of attention is to check whether there are two independent
solutions (as (15) is of second order) capable of being fundamental from a fi-
nancial viewpoint. One expects following the classic example of Merton-style
perpetual options, see Merton (1970), to have a put-like solution as well as a
call-like solution.

4Letting

ρ =
2i

σ2
, δ =

2α

σ2

and for simplicity setting ρ = 1, an acceptable bench-mark value, we get the negative power
to be −β where

β =
q

1 + (δ/2)2 − δ

2
= 1− 1

2
δ +

δ2

8
+ ...

which for small δ is below unity.
5The power will be numerically somewhat greater if we again take the dimensionless ‘re-

quired rate’ at its benchmark value of unity and assume a small dimensionless dividend rate.
Here the power will be -κ = i/(i− α), or around −(1 + δ), as opposed to −1 + δ/2.
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4.1 Tidying up to get Kummer’s equation

Introduce the notation

λ =
i− α

ζ
> 0, µ =

i

ζ
> 0, κ =

µ

λ
=

i

i− α
≥ 1, (19)

so that in particular the dividend rate relative to the required rate, namely α/i,
is (κ− 1)/κ. Now (15) becomes

W ′′(η) + 2λW ′(η)− 2µ

η
W (η) = 0, (20)

and if λ > 0 the scale change y = 2λη is appropriate so that putting W (η) =
Q(y) = Q(2λη), yields

yQ′′ + yQ′ − κQ = 0. (21)

The integer values κ = 1, 2 are considered in ACTW. The case λ = 0 is con-
sidered in Appendix 3. A further variable change, unexpected for the present
financial context6, namely x = −y and Q(y) = U(x) = U(−y), leads to

xU ′′ − xU ′ + κU = 0,

a case of the well-studied confluent hypergeometric equation (or, Kummer’s
equation):

xy′′ + (B − x)y′ −Ay = 0,

quoting temporarily the notation after Slater (1960) to which we refer for a full
treatment of this equation. The theoretical considerations shown there work
at their smoothest when A and B avoid certain integer values, so that integer
values for A and B require special fixes. From the finance perspective these
are however values of interest (indeed in ACTW we have B = 0 as well as
A = −1,−2). Salient features are collected below in Appendix 2.

The conclusion is that special function theory (and the confluent hyperge-
ometric functions are part of the menagerie) is here to stay and help. So one
naturally asks for the significance of a non-zero B parameter. This corresponds
to a constant inflow or outflow of value on top of the dividend, possibly from
frictions like costs or debt service (see section 8).

4.2 Qualitative behaviour: puts, calls and the smirk

The differential equation (20) may also be usefully transformed by setting

W = e−ληQ

to the normalized form (i.e. from which the first derivative is absent, see e.g.
Ince (1956: 394), or Slater (1960))

Q′′ =
(

λ2 +
2µ

η

)
Q,

6It is motivated by complex variable considerations.
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a form much like that studied by Whittaker. (See Whittaker and Watson
(1946).) Hence positive solutions Q (if any) are convex for η > 0 and there
are two asymptotic exponential forms e±λη for large η. The insight that posi-
tive solutions of (20) are also convex is immediate but the argument is not fully
accurate and requires an overlay based on the observation that Q may only have
local minima for Q > 0 and only local maxima if Q < 0. (This argument coun-
ters potential undesirable effects that the transforming exponential factor from
Q to W might have.) This overlay also shows that positive solutions do exist
with Q(0) > 0, since unbounded positive solutions exist for large η, and such
solutions cannot have a negative local minimum. For fixed κ, λ the solutions
form a one-parameter family (up to a scalar multiplier) and so the family of
positive solutions with Q(0) > 0 will contain one member with its minimum at
infinity.

In summary we have the following characterization theorem.
Proposition Any solution of the linear differential equation (20) with λ, µ >

0 satisfying W (0) > 0 and W (+∞) = 0 is a strictly convex decreasing function
asymptotically of the form

Aη−κe−2λη{1 + O(η−1)}

for some positive constant A.
Positive solutions of the equation, i.e. with W (0) > 0, have W ′(0+) = −∞

(a ‘cusp-like’ feature) and have in general one local minimum possibly at infinity
after which they are monotonic, increasing, unbounded and of the form

Aηκ{1 + O(η−1)};

the exception is the one decreasing function asymptotic to zero as η →∞ (whose
local mimum is at infinity).

Non-negative solutions of the equation with W (0) = 0 are monotonic, in-
creasing, unbounded and of the form

Aηκ{1 + O(η−1)}.

Proof. The asymptotic results follow from corresponding assertions regard-
ing the Whittaker functions. See Whittaker and Watson (1946).

Note that in this last result for large η it is plausible that the volatility
should play an insignificant role in determining equity value. The effect on (15)
of setting ζ = 0 is the corresponding first-order equation

η
dW

dη
=

i

i− α
W = κW,

whose solutions are multiples of

W = ηκ,

confirming the Proposition.
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The proposition confirms that there are two independent monotonic solu-
tions, one which is put-like, being decreasing and zero at infinity, which we might
denote W (η) = Pκ(2λη), identified by requiring additionally that W (0) = 1,
and the other, which is call-like, since it is zero at the origin, increasing and
unbounded, which we might denote W (η) = Cκ(2λη) identified by requiring
additionally that W ′(0) = 1.

A stronger conclusion follows in regard to the J-shaped equity value: the
equity ‘smirk’ subsists in all of these non-negative solutions, not merely in the
put-like case.

Remark. The proposition extends to the solution functions of the general
valuation equation (9) provided the coupon is not too large; for this extension
it is sufficent that

c < 2κ. (22)

Indeed the normalized form for

y
d2W

dy2
+ (y − c)

dW

dy
− κW = 0.

is
Q′′(x) = J(x)Q(x),

where
J(x) =

1
4

+ (κ− 1
2
c)

1
x

+
1
4

(
(c + 1)2 − 1

) 1
x2

.

For details see Bender and Orszag (1999) page 88 (Schrődinger equation), or
Miller (1950).

4.3 The fundamental solutions

Both these positive solutions are in the classical menagerie of special functions
and may be computed using infinite series and the logarithm function (see Ap-
pendix 2). Alternatively they may be accessed by Laplace Transforms (see
Appendix 5). The put-like option is decreasing and is attractive when small
earnings are indicated by η, so corresponds to a firm’s option for entering con-
traction in their activity; the other is increasing and is increasingly attractive
when large earnings are indicated by η so corresponds to expansion. A sec-
ond order equation in one variable permits therefore two kinds of adaptation.
ACTW focus on the decreasing put-like option Pκ(η) which is quite right if
one wishes to recreate an analogue to Bugstahler and Dichev’s constant value
option. In consequence ACTW ignore the more general circumstances where
a company may also have multiple options. In general the model predicts a
valuation of the form

V (η) = η + A · Pκ(2λη) + B · Cκ(2λη).

This should be compared and contrasted with the microeconomic model of Gi-
etzmann and Ostaszewski (2004) where there are three options, in general: to
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contract, to expand and to partition inputs across time, and unsurprisingly there
are two state variables (if time is disregarded).

As for the functions Cκ(x) these take a gratifyingly simple form being poly-
nomials of degree κ for integer values of κ, where the values 1, 2, 3 etc correspond
respectively to α = 0, i/2, ... i.e. zero, half the required rate of return dividends,
two-thirds etc (since α/i = (κ− 1)/κ). They are proportional to (are multiples
of) the generalized Laguerre polynomials, (Abramowitz and Stegun (1972: 778),
κ!L(−1)

κ (−x) of degree κ), namely:

C1(x) = x, C2(x) = x2 + 2x, ...

These functions have value zero at the origin, as are all the increasing solutions
for κ non-integral. They are accessible through Mathematica as a multiple
by (−1)κ(κ!) of HypergeometricU[−κ, 0,−z], or as a multiple by (κ − 1)! of
Hypergeometric1F1Regularized[−κ, 0,−z].

The corresponding second solutions for κ = 1 and κ = 2 are available in the
logarithmic format

U1(x, β) = 1 + βx− 1
2
x2{1− 1

6
x +

1
6
x2 − ...}+ x ln x,

U2(x, β) = 1 + βx +
1
2
(β − 3)x2 − 1

6
x3{1− 1

6
x +

1
6
x2 − ...}+ (x2 + 2x) ln x

= 1 +
β

2
(x2 + 2x)− 3

2
x2 − 1

6
x3{1− 1

6
x +

1
60

x2 − ...}+ (x2 + 2x) ln x,

where for κ = 1 the choice β = −.4227846 yields P1(x) and in the case κ = 2
the choice β = 1.1544314 yields P2(x).

In general for κ an integer we have for some constant β and a standard
polynomial Bκ(x) of degree κ (details in Appendix 2) that

vκ(x) = Cκ(x) ln x + β ·Bκ(x)− a1

κ(κ + 1)
xκ+1{1− 1

(κ + 1)(κ + 2)
x2 + ...}.

The case κ = ∞ corresponding to α = i (where λ = 0) is relevant when the
dividend rate is to be bounded above on the grounds of solvency. The solution
function is given by modified Bessel functions of order one and is considered in
Appendix 5.3.

Remark on stability. A small perturbation in the value of β will alter
the behaviour of the second solution, so that it either becomes unbounded, and
either positive and increasing, or ultimately negative. Restricting the embedded
options to the contraction activity only lays the ACTW model open to parame-
ter estimation instability. Allowing alternative options would rescue the model
from criticism.

5 Cusp-like feature: removal by the coupon

For a general positive coupon (non-integer) the first and second solutions have
finite slope at the origin. Indeed in the case of the put-like solution this follows
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from the differential equation (8) directly since

P ′(0) = −iP (0)/C = −i/C.

Evidently as C → 0 the slope becomes infinite.
Integral coupons may be of interest, so consider by way of example what

happens when b = −1, i.e. c = 1 (meaning C = ζ/2). Here for λ > 0 in the
original domain, the solution is y(2λη) which for κ > 1 comes in the form

y(x) =
κ(κ− 1)

2

(
x2 +

κ− 2
3

x3 + ...

)
log x

+1− κx + b2(x2 +
κ− 2

3
x3 + ...) +

κ(κ− 1)
2

(
11 + 2κ

9
x3 + ...)

and there is still no cusp-like feature at the origin. Moreover the function is not
zero at the origin.

6 A snake-shaped fund and the dissipation con-
jecture

In seeking to explain how both book value and capitalized earnings should enter
into the valuation of the firm Burgstahler (1998) formulated two conjectures
to be settled by empirical investigation. One is the convex shaped graph for
equity value arising from the adaptation conjecture (which exercised us in the
earlier sections above). The alternative is the dissipation conjecture, which
assumes that differences between capitalized earnings and book value tend to
be dissipated by economic forces; this is turned into a geometric statement to
the effect that the value function may be represented by an increasing snake-
like graph7; Burgstahler argues that under the dissipation argument “the market
value falls below book value when capitalized earnings is below book value, and
the market value falls above book value when capitalized earnings is above book
value.”

In this section we show that the generalized model of section 2 can also
produce the snake-like shape for the value of a firm, but for rather different
reasons which remain consistent with, rather than opposed to, the option-like
foundation of the adaptation conjecture. Indeed a non-smooth linearized version
of the dissipation shape may be synthesised by holding long a bond plus a call,
and shorting a put with a strike set quite artificially below that of the call.
Our contribution is to observe that a smooth analogue of this phenomenon may
be naturally (rather than artificially) recreated using the generalized model
of section 2 by using the naturally occurring put-like and call-like valuations
associated with the embedded options of a firm.

7I am grateful to Jim Ohlson for alerting me to the possible occurrence of such shapes and
to Mark Tippett for this reference.
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We note in passing that one intuition for creating a ‘holding company’, or
fund with such a portfolio, is an attempt to make gains from valuation mis-
matches arising from the application of what Abel, Dixit, Eberley and Pindyck
(1996) term the ‘naive investment rule’ (whereby the current unit cost of capital
is regarded as identifying the marginal value of capital installed in an enterprise).
They identify the true relation between the marginal value of capital already
in place in an enterprise computed without future investment/divestment ad-
justments (say MV −) to the current unit cost of capital p less the discounted
maginal option values to expand or contract, by referring to these embedded
options. In symbols the relation is that

MV − = p− P

1 + i
+

C

1 + i
.

Thus a rationally held belief (e.g. by reason of some inertia) that MV − = p
ignores (strategic) option values available to the enterprise through its ability
to contract or expand in a future period.

As for the technicalities of our construction, begin by noticing that if c = κ
in the complementary equation (9), then one solution is W (y) = e−y and is
put-like. If c = κ = m another solution is identified8 in Appendix 2 as the
polynomial

um(y) = 1− y +
y2

2!
+ ... +

(−y)m

m!
, (23)

the partial sum to order m of the series for e−y. Note that for m odd this function
changes sign, so is not put-like or call-like. However, Cm(y) = W (y) − um(y)
is positive for m odd and negative for m even9. It is thus call-like for m odd10

and by Taylor’s Theorem behaves rather like the power function ym+1. (The
behaviour for m even of the negative −Cm(y) is analogous, and is in particular
call-like.)

Combining with the particular solution η = y/2λ we thus have the general
form of the solution to the equity value equation (7) in the scaled variable y as

V (y) =
y

2λ
+ Ke−y + L

(
1− y +

y2

2!
+ ... +

(−y)m

m!

)
,

for arbitrary K and L. In the case κ = 3 we can arrange for the function V (y)
to exhibit a monotonically decreasing snake-like shape involving a stationary
inflection got by putting K = L = 1 with an appropriate positive choice of λ.
See Figure 1. Of course in view of the identity W +u = 2W −(W −u), the value

8This solution may be found by the method of reduction of order. The substitution u(y) =
v(y)ey leads to a first order differential equation in v′ which yields u as a multiple of the
integral

Im = e−y

Z
ymeydy.

Indeed um(y) = (−1)mIm/m!.
9The partial sums of the alternating series for e−y overestimate for m odd and underesti-

mate for m even.
10The function Cm(y) has derivative −Cm−1(y) so for m odd is increasing.
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may be construed as a financial instrument (with underlying asset – equity in
the firm) whose structure involves the firm as it is (valued at η), plus a long put
(on its adaptation value), plus a short call on the firm. This shape may then be
transformed to a positive, monotonically increasing, snake-like shape by a shift
and a sign reversal, as the value of a portfolio/fund long on a bond, short on the
firm with adaptation value and long on a call on the firm (to take advantage of
expansion potential in the firm).

Note that to find a stationary inflexion point from V (y) we need the first-
order condition

1
2λ

−Ke−y − L

(
1− y + ...− (−y)m−1

(m− 1)!

)
= 0, (24)

and the inflexion condition

Ke−y + L

(
1 + ... +

(−y)m−2

(m− 2)!

)
= 0,

to hold simultaneously. In the case when m = 3 we have

K

L
e−1 = (y − 1) e(y−1) = W−1(y − 1),

using the product-log function W (.). Thus the location of the stationary inflex-
ion point is

y = 1 + W (
K

L
e−1).

Choosing K = L = 1 yields a value y =1.278465 from which we may choose a
value of λ via (24) to obtain the graph shown.
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7 Comparative statics: a simplified perspective

In this section a simplified function substitutes for the equity value; it is shown
that the qualitative features considered by ACTW can be deduced from this
simpler function.

7.1 Monotonicity in µ

Recalling that λ = µ/κ and fixing κ write the adaptation option in the form

Pκ(η;µ) = exp(−2µη/κ).

Thus for fixed η the adaptation value decreases as µ increases

7.2 Bottoming out the Smirk (Location of the minimum)

Using an asymptotic formula as a simplification now gives

P (η) = η + P1(0)e−2λη

which has a minimum (bottom of the ‘smirk’) when

1 = 2λP1(0)e−2λη,

so

η =
log 2λ + log P1(0)

2λ
,

or

η = (i− α)
log 2 + log(i− α)− log ζ + log P1(0)

2ζ
.

In the examples of ACTW 2λ = µ and P1(0) = 1, so the smile location is not
available as a positive number; however with a larger dormant value, say with
P1(0) > 1/µ the smirk location reappears as a positive number.

7.3 Comparison to a non-dividend paying firm.

Using the simplification as earlier, in the case of the dividend-paying firm the
put-like value is taken to be

Pκ(η) = P (0) exp(−2λη),

whereas for the non-dividend firm one has

Pκ(η) = P (0) exp(−2µη).

To graph the specific example when µ = 2λ (i.e. κ = 2), it is enough to look
under a rescaling at e−x − e−2x. The latter is non-negative function which is
zero at the origin and at infinity, so will possess a maximum. See Figure 2.
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Evidently, since equity value is given by adding in η to both firm types, the
difference in their equity values is thus proportional to

D(η) = e−2λη − e−2µη > 0.

This has a maximum when

µe−2µη = λe−2λη

or
1

1− α/i
= κ =

µ

λ
= e2(µ−λ)η = e2αη/ζ ,

i.e.
η =

ζ

2α
ln κ = − ζ

2α
ln

(
1− α

i

)
.

For one example considered by ACTW, in which ζ/α = 8 and α/i = 1/2, this
formula gives

η = 4 log 2 = 2.77,

which over-estimates the peak position of 1.23. In the other example considered
by ACTW, namely ζ/α = 4 and α/i = 1/2, the formula gives

η = 2 log 2 = 1.38,

which over-estimates the peak position of 1.28. Thus, for smaller values of ζ/α,
the approximation improves.

Remark. In the presence of frictions, such as costs borne as a result of
dividend payouts, it might no longer be true that the dividend-paying firm does
better than its non-dividend paying counterpart. We note that the effect on
equity value of the dividend payment is low when η is low and when η is large.
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8 Varying dividend regimes

This section is concerned with a variation of the ACTW model in which the
choice of α in the dividend rate α · η is endogenized; the analysis here has lim-
ited scope and in principle one should study other classes of dividend policies not
just the proportionate ones (compare Jeanblanc-Picque-Shiryaev (1995) where
bounded dividend policies are discussed, and creaming-off policies in which ac-
cumulation of reserves up to a threshold can be optimal; these approaches would
be appropriate in the presence of call-like options but these are ignored here).
For simplicity, it is assumed below that there is a cost incurred from paying
the dividend rate α(η)η and that the cost, which is charged against the firm
simultaneously with the payout, is at a rate C(α(η)η)i. Two justifications for
this friction come to mind. The first is a precautionary need by the firm to buy
insurance against a fall in the value of η. However, in this case firms may wish
to not insure at larger values of η (in this case the costs are linear - caused by
taxation losses), compare Rochet and Villeneuve (2004), and this issue is not
studied here. An alternative reason is informed by the Bhattacharya (1979)
model of a rationally reinvesting firm that is concerned with “making up short-
falls of cash flows relative to promised dividends”, for which “the signalling
benefit of dividends derives from the rise in liquidation value V (D) caused by a
committed, and actually paid, dividend level D”. In the subsequent one-period
Bhattacharya deduces a quadratic signalling cost when the end-of-period earn-
ings X have a general cumulative distribution F (X) over a finite interval, and
there is an additional constant cost rate γ ≥ 0 of replacing required capital
when the earnings fall below the dividend already paid out. His formula C(D)
for the cost of issuing D is

C(D) = τD + γ

∫ D

0

F (x)dx,

where τ is the income tax rate. Thus

C ′′(D) = γf(D) ≥ 0,

and in general C(D) is strictly convex; for earnings that are distributed uni-
formly on the unit interval this cost is11:

τD +
γ

2
D2.

Though the distribution for η is not uniform, for illustrative purposes the ex-
ample below uses the simplest convex cost function, namely Bhattacharya’s
quadratic.

11At it simplest, earnings x which at the end of one period are drawn uniformly from the
unit interval have expected value 1/2. If D has been paid at the beginning of the period then
assuming zero capital gains tax and an income tax rate of τ, the expected loss to the equity
holders arising from taxes on D and the cost of replacing funds dropping below D is

τD +

Z D

0
γ(D − x)dx = τD +

γ

2
D2.
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Treating η like a state variable governed by the state equation (15) and
interpreting dD now as the net outflow, so that

dD(t) = α · ηtdt− C(α · ηt)idt,

it follows that

dηt = iηtdt + ζ1/2η1/2dzt − dD

= ((i− α)ηt + C(α · ηt)i) dt + ζ1/2η1/2dzt.

So supposing that α = α(η) is a control variable selected to maximize

V (η) = E[
∫ ∞

0

e−itdD(t)|η0 = η],

the Bellman equation may be written in the form:

V (η) = max
α
{αηdt− C(αη)idt + (1− idt)×

Edt[V + V ′ ·
(
(i− α)ηtdt + C(α · ηt)idt + ζ1/2η1/2dzt

)
+

1
2
ζηV ′′dt]},

so that

0 = max
α
{αη − C(αη)i− iV + V ′((i− α)η + C(αη)i) +

1
2
ζηV ′′}.

This might be maximised at a corner value for α, like α = 0, and one might
further restrict α for small η on grounds of solvency (to 0 ≤ α ≤ i) so that a
second corner is introduced into consideration. If the optimal α arises as an
internal point in the permitted range, then

η − ηiC ′(αη)− ηV ′ + iηC ′V ′ = 0.

So provided V ′(η) 6= 1, the first order condition reads:

C ′ = 1/i.

Thus if C(·) is strictly convex, and the first order condition has a solution at all,
the implied optimal dividend rate αη is constant, say q̄. This is a remarkable
conclusion and so calls for a brief interpretative inspection.

Comparative statics for Bhattacharya’s quadratic costs.
If C(x) = γx2/2 + τx is Bhattacharya’s quadratic cost function, then the

optimal dividend rate αη is given by

αη = q̄ =
(

1
i
− τ

)
/γ. (25)

This formula implies that (i) a lower tax rate on the dividend leads to a larger
dividend, and this agrees with the usual tax-shelter intuition about retained
earnings; (ii) higher costs associated with the cost of replacement funding (i.e.
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higher γ) lead to lower dividend payout; (iii) the higher the required rate of
return on investment the lower is the dividend payout.

The corresponding equation for V is

1
2
ζηV ′′ + (iη − [q̄ − C(q̄)i])V ′ − iV = C(q̄)i− q̄.

As usual this has V = η as a particular solution and the complementary equation
is again a general confluent hypergeometric equation

1
2
ζηW ′′ + (iη − [q̄ − C(q̄)i])W ′ − iW = 0, (26)

which is of the form

1
2
ζηW ′′ + (iη − c̄)W ′ − iW = 0,

where c̄ = q̄ −C(q̄)i > 0, consistently with the sign in (9). This sign is positive
since C is convex, C(0) = 0, and the choice q = q̄ maximizes q − C(q)i.12

Provided the frictions are not too large (say (22) holds), there exist mono-
tonic solutions with qualitative behaviour the same as in the frictionless case.
Assume therefore that frictions are low.

To find an instance of the optimal value function one would need to make
some assumptions as to the nature of the options available to the firm. In gen-
eral there is an abundance of solutions available depending on what structural
assumptions one were to make about the firm.

For a qualitative illustration follow ACTW by assuming that only contrac-
tion in activity is available at any level of η. Thus only value functions that are
defined by restriction from a decreasing non-negative function asymptotic to
zero are considered. One must also assume that the value function has a known
value when η = 0. This known value is termed the dormant value by ACTW
(and without loss of generality may be taken at unity).

So aiming towards a contradiction assume first that zero dividends are op-
timal near η = 0, and let P0(η) be the standardized fundamental solution13 to
the non-dividend equation (corresponding to κ = 1) :

1
2
ζηP ′′ + iηP ′ − iP = 0,

i.e. the solution subject to P (0) = 1 and to P (η) being asymptotic to zero at
infinity.

One may then match any multiple A0 of P0(η) to the solution of (26) by
requiring continuity of value and of derivative at η = η̄. Thus if Pq̄(η) is the

12In the case of Bhattacharya’s quadratic

c̄ = q̄ − C(q̄)i = iγq̄ + i
γ

2
q̄2.

13In this section we drop earlier notation and let P0, Pq̄ , Pi describes various put-like func-
tions (without the subscript implying values for κ).
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standardized fundamental solution of (26) subject to Pq̄(0) = 1 one must solve
for Aq̄ and η̄ the equations

Aq̄Pq̄(η̄) = A0P0(η̄), Aq̄P
′
q̄(η̄) = A0P

′
0(η̄).

So if η̄ exists it is given by equating the corresponding elasticities14 εq̄ and ε0

of the relevant put values, namely

εq̄ = −P ′q̄(η̄)
Pq̄(η̄)

= −P ′0(η̄)
P0(η̄)

= ε0.

These are non-zero. Substituting from the differential equations yields

η̄

(η̄ − c̄/i)

(
ζ

2i

P ′′q̄
Pq̄

− 1
η̄

)
=

ζ

2i

P ′′0
P0

− 1
η̄

Assuming the optimal value function is smooth Aq̄P
′′
q̄ (η̄) = A0P

′′
0 (η̄), and can-

celling by the common non-zero factor, gives the following contradiction15.

η̄

(η̄ − c̄/i)
= 1.

So turn now to a solution near the origin with an upper boundary on α of
α = i. Such a limitation on αη is the largest natural choice given (6), if one
seeks at the extreme to ensure that the expected loss in value of η is to be zero,
i.e. E[dη] = 0. If there are no frictions the solution is given by a decreasing
modified Bessel function (see Appendix 5.3). When Bhattacharya’s quadratic
cost is invoked, this case leads to the more awkward equation

1
2
ζηV ′′ + i(γi2η2/2 + τiη)V ′ − iV = i(γi2η2/2 + τiη)− iη

since C(iη)i = i(γi2η2/2 + τiη). As usual, a particular solution is η. Hence the
complementary equation for a put-like function Pi is

1
2
ζηP ′′i + i(γi2η2/2 + τiη)P ′i − iPi = 0, (27)

for which all (finite) points are regular singular. It is shown below that the qual-
itative properties of this equation are the same as the confluent hypergeometric
equation. In fact, for η small enough, the friction parameter γ has negligible
effect, as the equation may be approximated by

1
2
ζηV ′′ + τi2ηV ′ − iV = 0,

14For an insight into the equation, observe that in the geometric Brownian case with P (η) =
η−κ the elasticity −P ′ /P is κ/η.

15Assuming tha η > c̄/i (i.e. the liquidation of assets services the perpetual bond c̄) it is
the case that η/(η − c̄/i) > 1, so if at a point of intersection of the two put-like functions the
curvatures are nearly identical it follows that εq̄ > ε0.
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or, using t he notation in (19) of section 4.1

ηV ′′ + 2λτiηV ′ − 2µV = 0.

Here λ is being discounted down by the factor iτ. Judging by the intuition of
section 7.3 with λ replaced by λτi, it is optimal to choose α = i over α = 0, so
this explains the earlier failure of smooth pasting P0 and Pq̄.

Now one can fit a scaled fundamental declining solution Pi(η) of (27) using
value matching and smooth pasting at an unknown point η̂. Thus one is led to
solve

AiPi(η̂) = Aq̄Pq̄(η̂), AiP
′
i (η̂) = Aq̄P

′
q̄(η̂).

Here again the value of η̂ is given by equating elasticities :

εq̄ = −P ′q̄(η̂)
Pq̄(η̂)

= −P ′i (η̂)
Pi(η̂)

= εi.

Substituting from the differential equation this leads to

iη̂

(iη̂ − c̄)

(
ζ

2i

P ′′q̄
Pq̄

− 1
η̂

)
=

η̂

C(iη̂)

(
ζ

2i

P ′′i
Pi

− 1
η̂

)
.

The usual continuity assumptions justify cancellation of a non-zero common
factor to give

iη̂

(iη̂ − c̄)
=

η̂

C(iη̂)
,

i.e.
c̄ = iη̂ − C(iη̂)i.

But, by strict convexity, the maximum of q − C(q)i is unique, so that

iη̂ = q̄.

Thus the optimal policy switches continuously from α(η) = q̄/η to α = i.
Despite the switch in dividend policy the overall qualitative behaviour of the
value function at η = η̂ is unaltered. But it is the case that pasting of two
functions occurs16.

Turning now to a consideration of equation (27), observe that it is of the
format

yW ′′ + y(Ay + B)W ′ − µW = 0,

with y = iη and A,µ > 0. The transformation W = w exp
(−A

4 y2 − B
2 y

)
leads

to the normalized form
w′′ = J(y)w,

16For η > c̄/i (and note that iη = q̄ implies η > c̄/i, since q̄ > c̄) on heuristic grounds
supposing that the curvature is much the same for each of the two put-like curves, one expects
the relation εq ≥ εi to hold by virtue of

c̄ ≥ iη − iC(iη).
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where
J(y) =

µ

y
+

1
4
(Ay + B)2 +

A

2
> 0,

and so w(y) is convex for y > 0. The argument from section 4.2 applies here
also. Thus there are two non-negative, independent solutions with asymptotic
behaviour

w = y1/2 exp(±A

4
y2).

Here we are applying the asymptotic formula for y large

w = J1/4(y) exp
(
±

∫ y

J1/2(z)dz

)
,

see O’Neill (1991) or Bender and Orszag (1999). The Frobenius approach gives
an indicial equation c(c−1) = 0 and shows one solution to be a series w1 = y+...
and the other w2 = w1 log y +

∑∞
n=0 bnyn. See Appendix 4. In this respect the

solutions are thus qualitatively similar to those of the confluent hypergeometric
equation with zero-coupon.

9 Conclusion

By reference to various generalizations of the ACTW paradigm it is shown that
their simplified paradigm is justifiable, as a route to a valuable insight into the
equity value of a firm. The approach of the current article offers a perspective
on the behaviour of equity value at small and at large values of the aggregating
variable. It allows the removal of an unrealistic cusp-like feature (vertical tan-
gency of the curve at the origin) by introducing frictions. These frictions are
also capable of rescuing the ACTW model from the criticism that their partic-
ular brand of put-like option is a potential source of instability, were the model
to lead to parameter estimation studies. The current approach simplifies the
analysis of comparative statics obtained by ACTW from numerical evidence by
offering qualitative arguments. The discussion above argues the case for the
inclusion of alternative options, including contraction as well as expansion op-
tions, calling for a classification of optimally managed firm types according to
their embedded options, and by implication also calls for the construction of
switching models that would exhibit all the qualitative patterns predicted by
the smooth pasting of various confluent hypergeometric functions which solve
the general valuation equation (including the snake example of Section 6). A
preliminary analysis is offered of an endogenized selection of optimal dividend
policy. No attempt was made here to search for new insights on such traditional
questions as: solvency (bankruptcy constraints in the face of debt service), debt
versus equity issuance (along the lines of Leland (1994) where the firm’s embed-
ded options would be expected to play some part in altering the optimal debt
capacity), or of strategic aspects of dividend issue (compare the example of the
Sealed Air Corporation’s one-off exhaustive dividend issue as a committment
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tool – an interesting test case to try to accomodate in a theoretical development
of dividend policy, see Wruck (1994)).
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Appendix 1: Proof of Proposition 1
We use time labels 0 and 1 (the former for time t = 0, the latter for time

t = ∆t); recall from (5) that assuming limt→∞ e−itbt = 0 we have

η0 = b0 + E[
∫ ∞

0

e−it(a + ε)dt].

Hence

η0 = b0 + A0 + E0 = b0 + E[
∫ ∞

0

e−itadt +
∫ ∞

0

e−itεdt],

η1 = b1 + A1 + E1 = b1 + E∆t[
∫ ∞

∆t

e−itda(t) +
∫ ∞

∆t

e−itdε(t)],

where A = A(a) and E = E(ε) denote the expected present values of future
abnormal earnings and future adjustments given the information a etc, so that
A0 = A(a0) and so on.

To first order we thus have

η0 − b0

= E[∆A + ∆E + (1− i∆t)
∫ ∞

0

e−isa′(s)ds + (1− i∆t)
∫ ∞

0

e−isε′(s)d(s)]

= E[∆A + ∆E + (1− i∆t)(A1 + E1)],
= a0∆t + ε0∆t + E[(1− i∆t)(A1 + E1)],

Here t = s−∆t and so e−it = e−is(1−∆t) to first order; a′(s) = a(s + ∆t)
etc describes the shifted abnormal earnings process starting at a1 = a(∆t), so
that A1 = A(a1) etc. Subtracting the first two equations gives (to first order)
and assuming a and ε are continuous processes

E[∆η] = E[η1]− η0

= E[∆b− a0∆t− ε0∆t + i∆t(A0 + E0 −∆A−∆E)]
= E[(ib0 + a0 + ε0)∆t−∆D − a0∆t− ε0∆t + i∆t(A0 + E0)]
= E[i(b0 + A0 + Eo)∆t−∆D]
= iη0∆t−∆D.

Appendix 2: Confluent Hypergeometric func-
tions

Recall the standard form of the confluent hypergeometric equation for u(z)
is

u′′ + (B − z)u + Au = 0.

The generalized Merton valuation equation is

yw′′ + (y − c)w − κw = 0,
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from which setting x = −y one obtains

u′′ + (B − x)u + Au = 0,

with A = −κ,B = −c. The difficulty with applying standard solutions is that
u(−x) is liable to be undefined for x > 0 on account of a branch cut (in the com-
plex domain) for the logarithm function. It is therefore necessary to recompute
the appropriate series solutions appropriate to the equation

y
d2w

dy2
+ (y + B)

dw

dy
+ Ay = 0,

for y > 0. A summary of results follows. The notation just adopted here is to
help the reader compare formulas here against those in Slater (1960).

A2.1 Summary of some useful results
The notes show in summary that we have the following solution formats (m

is a positive integer).
0. A = B = −m

K

(
1− y +

y2

2!
− ... +

(−1)m

m!
ym

)
+ Le−y.

Note that the first function is obtainable by the method of reduction of order;
see the footnote ahead of equation (23).

1. Provided B /∈ {0,−1,−2, ...}

M(A,B,−y) = 1− A

B
y +

1
2

A(A + 1)
B(B + 1)

y2 + ....

2. Provided B /∈ {1, 2, ...} a solution is given by

(−y)1−BM(A−B + 1, 2−B,−y).

For B = 0 this includes polynomial solutions with a root at the origin when
A is a negative integer.

3. For B = −m and A /∈ {0,−1, ...,−m} there is a regularized solution given
by

M̄(A,B,−y) = (m + 1)!am+1

(
ym+1

(m + 1)!
− (A + m + 1)

(m + 2)!(1)
ym+2 + ...

)
.

4. For B = −m < 0 and A = −k with k < m and A 6= B (thus A > B) we
have the polynomial solution

a0

(
1− A

B
y + ... +

(A)...(−2)(−1)
k!(B)...(B + k − 1)

yk

)
.
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5. For B = −m and A /∈ {0,−1, ..,−m}

M̄(A,B,−y) log |y|+ (1− A

B
y + ... +

A(A + 1)...(A + m− 1)
m!B(B + 1)...(B + m− 1)

ym)

+bm+1(ym+1 − (A + m + 1)
m + 2

ym+2...) +
a1−B

(2−B)
[um+2y

m+2 + ...],

where

a1−B =
(A)1−B

(B)−B(1−B)!

and (A)m = (A + 1)...(A + m− 1) is the Pochammer symbol. When m = 0 and
A = −κ this is interpreted as saying that

M̄(−κ, 0,−y) log |y| + 1 + b1(y +
(κ− 1)

2
y2 + ...) +

a1

2
[u2y

2 + ...].

See also Slater (1960: 8) formula (1.5.18).

Appendix 3: The case λ = 0

The case when α = i corresponds to the limiting case κ = ∞, or more
properly to the parameter value λ = 0. This case is also of significant interest
- see section 8 above. To characterize the non-negative equity value functions,
we look to the differential equation (20), which now reads

η
d2W

dη2
= 2µW.

This may be recast more simply: putting y = 2µη with say R(y) = R(2µη) =
W (η) one obtains

yR′′ = R,

a Schrődinger equation of order 2. It is well-known (see Bender and Orszag
(1999: 88) that the asymptotics for large y are given as one might expect by

R(y) ∼ Cy−1/4 exp(±y1/2).

The series solution for the increaing solution is

R(y) = y +
y2

2
+

y3

12
+ ... +

yn

n!(n− 1)!
+ ... .

It is of course given by the modified Bessel functions of order one:
√

x

2
I±1(

√
x

2
).

or √
x

2
K1(

√
x

2
).
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Appendix 4: Solution of a related differential
equation

We consider the following equation which arises in Section 8.

ηV ′′ +
i

ζ
iη(γiη + 2τ)V ′ − 2i

ζ
V = 0.

Putting y = iη

iη
V ′′

i2
+

i

ζ
iη(γiη + 2τ)

V ′

i
− 2

ζ
V = 0,

write this in the form

yW ′′ +
i

ζ
y(γy + 2τ)W ′ − 2

ζ
W = 0.

We therefore study the form

yW ′′ + y(Ay + B)W ′ − µW = 0.

We put

W =
∞∑

n=0

anxn+c,

yielding

0 =
∞∑

n=0

(n + c)(n + c− 1)anxn+c−1 + A

∞∑
n=0

(n + c)anxn+1+c

+B

∞∑
n=0

(n + c)anxn+c − µ

∞∑
n=0

anxn+c.

The indicial equation (at xc−1) is

c(c− 1) = 0.

The next power is xc and yields the equation

c(c + 1)a1 = (µ−Bc)a0.

Opting for the larger root c = 1 gives

∞∑
n=0

(n+1)nanxn+A

∞∑
n=0

(n+1)anxn+2+B

∞∑
n=0

(n+1)anxn+1−µ

∞∑
n=0

anxn+1 = 0.

Consideration of the coefficient at xn+1 yields

an+1(n + 2)(n + 1)−Anan−1 + B(n + 1)an − µan = 0,
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so
an+1(n + 2)(n + 1) = (µ−B(n + 1))an + Anan−1,

with
a1 =

µ−B

2
a0.

Hence the series has infinite radius of convergence. Note that

6a2 = Aa0 − (2B − µ)a1 = Aa0 + (µ−B)(µ− 2B)a0.

The Frobenius theory implies that in this case the second solution is loga-
rithmic and of form

k(x + ...) log x +
∞∑

n=0

bnxn,

exhibiting a cusp-like feature at the origin. See O’Neil (1991: 326).

Appendix 5: The Incomplete Laplace Transform
approach

Since V ′(0+) is liable to be infinite for some solutions of Kummer’s equation,
one should employ the incomplete transform:

Lδ{f} =
∫ ∞

δ

f(t)e−stdt,

with the associated three rules

Lδ{tf(t)} = − d

ds
Lδ{f}, Lδ{f ′} = sLδ{f} − f(δ)e−sδ,

Lδ{f ′′} = s2Lδ{f} − f(δ)se−sδ − f ′(δ)e−sδ.

Writing f̃ = Lδ{f} these rules lead on application to the standardized ACTW
equation (21) to

f̃ ′ +
2s + κ + 1
s(s + 1)

f̃ =
1

s(s + 1)
[
f(δ)e−sδ + δf(δ)(1− s)e−sδ − δf ′(δ)e−sδ

]
.

The integrating factor is sκ+1(1 + s)1−κ and integration from unity to s yields

sκ+1(1 + s)1−κ
(
f̃(s)− f̃(1)

)
= [f(δ)− δf ′(δ)]I1(δ) + δf(δ)I2(δ),

where

I1(δ) =
∫ s

1

uκ(1 + u)−κe−uδdu, I2(δ) =
∫ s

1

uκ(1 + u)−κ(1− u)e−uδdu.

Series solution considerations yield limδ→0 δf(δ) = limδ→0 δf ′(δ) = 0. As e−uδ

is decreasing in δ it is the case that Ij(δ) ≤ Ij(0), and so passing to the limit as
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δ → 0, the solution to the differential equation is given by the function whose
transform is

f̃(s)
f(0)

=
(1 + s)κ−1

sκ+1

∫ s

1

uκ(1 + u)−κdu + C
(1 + s)κ−1

sκ+1
,

where C is a constant. A computation for the two cases κ = 1, 2 follows.

A 5.1 Laplace transform approach when κ = 1

Here the solution satisfies

f̃(s) = s−2

∫ s

1

u du

u + 1
+

C

s2
= − 1

s2
log(1 + s) +

1
s

+
C ′

s2
.

Now refer to Euler’s exponential integral and its asymptotic expansion

E1(x) =
∫ x

1

e−uxdu

u
=

e−x

x
{1− 1

x
+

2
x2

+ ...}.

This has transform
1
s

log(1 + s),

so that

L{tE1(t)} = − d

ds
{1
s

log(1 + s)} = − 1
s2

log(1 + s)− 1
s(s + 1)

.

Using partial fractions, the conclusion is that

f̃(s)
f(0)

= [− 1
s2

log(1 + s)− 1
s(s + 1)

] +
2
s
− 1

s + 1
+

C ′

s2
.

The solution to the ode thus takes the form

tE1(t) + 2− e−t + Kt.

Note that

E1(t) = −γ − log t +
∑ (−1)n−1tn

n!n
,

so this result is in agreement with the series expansion.

A 5.2 Laplace transform approach when κ = 2

Here the solution obeys

f̃(s)
f(0)

=
1 + s

s3

∫ s

1

(
u

1 + u

)2

du + C
(1 + s)

s3

=
1 + s

s2
− 1

s3
− 2(1 + s) log(1 + s)

s3
+ C

(
1
s3

+
1
s2

)
,
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or, since u/(1 + u) = 1− 1/v with v = 1 + u, and ignoring constants absorbed
by C,

∫ (
u

1 + u

)2

du =
∫ (

1− 2
1 + u

+
1

(1 + u)2

)
du

= s− 2 log(1 + s)− 1
1 + s

.

But

L{(t2 + 2t
)
E1(t)} = −2(1 + s) log(1 + s)

s3
−

(
3
s
− 3

s + 1

)
+

1
(1 + s)2

.

Thus the solution is a multiple of

f(t) = C

(
t2

2
+ t

)
+

(
t2 + 2t

)
E1(t) + 1 + t− t2

2
+ 3

(
1− e−t

)− te−t.

A 5.1 Laplace transform approach when κ = ∞
Here the equation to solve is

f̃ ′ +
2s + 1

s2
f̃ =

f(0)
s2

.

The integrating factor is s2e−1/s so

f̃(s)
f(0)

=
e1/s

s2

∫ s

e−1/udu + C
e1/s

s2
.

Since
e1/s

s2
=

1
s2

+
1
s3

+
1

2s4
+ ... +

1
n!sn+2

+ ...

and on the one hand is a tabulated transform of
√

tI1(
√

t)

involving the modified Bessel function Iν(x), but is on the other hand the trans-
form of the series

t +
t2

2
+

t3

12
+ ... .

Note that the modified Bessel equation of order ν takes the form (Abramowitz
and Stegun (1970): 374)

x2w′′ + xw′ − (x2 + ν2)w = 0,

with solutions I±ν(x) and Kν(x). When ν = 1 the substitutiony =
√

xw(
√

x)
yields

xy′′ =
1
4
y.
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The further substitution x = 4t and z(t) = y(4t) leads to tz′′(t) = z, so the
solution of the latter is seen to be

z(t) = y(x/4) =
√

x

2
w(
√

x

2
),

a well-known result. (See Abramowitz and Stegun (1970) page 374 for graphs,
and page 506 for the limiting case of the confluent functions.)
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