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Abstract

We consider the rendezvous problem faced by two mobile agents, initially placed
according to a known distribution on intersections in Manhatten (nodes of the
integer lattice Z2): We assume they can distinguish streets from avenues (the
two axes) but have no common notion of North or East (positive directions along
axes). How should they move, from node to adjacent node, so as to minimize the
expected time required to �see�each other, to be on a common street or avenue.
This problem can be viewed either as a bilateral form (with two players) of the
street searching problems of computer science, or a �line-of-sight�version of the
rendezvous problem studied in operations research.
We show how this problem can be reduced to a Double Alternating Search

(DAS) problem in which a single searcher minimizes the time required to �nd
one of two objects hidden according to known distributions in distinct regions
(e.g. a datum held on multiple disks), and we develop a theory for solving the
latter problem. The DAS problem generalizes a related one introduced earlier
by the author and J. V. Howard.
We solve the original rendezvous problem in the case that the searchers are

initially no more than four streets or avenues apart.
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1 Introduction

The rendezvous search problem [1] asks how two unit-speed searchers (mobile
agents) can minimize the expected time to ��nd each other�, after they are
randomly placed in a known search region Q: Traditionally, they are said to
have found each other at the �rst time when their distance is within a given
�detection radius�, which we call proximity detection. The detection radius is
usually taken to be zero when Q is the line or a network. However, critics of
rendezvous theory have sometimes argued that in reality mutual detection is
often achieved without close proximity. Consider, for example, the query of D.
Kafkewitz sent to the New Scientist [26, p. 36] (italics are mine):

Two people lose each other while wandering through the aisles of
a large supermarket. The height of the shelves precludes aisle-to-
aisle visibility. One person wishes to �nd the other. Should that
person stop moving and remain in a single visible site while the
other person continues to move through the aisles? Or would an
encounter or sighting occur sooner if both were moving through the
aisles?

The answer given by the author [26, p. 37-38] interpreted the problem as
rendezvous search on a network ([3][6]), and assumed proximity detection, which
would be realistic in a crowded supermarket with very limited visibility. However
in an empty supermarket a line-of-sight detection would be more appropriate.
This is what we attempt to model in this paper. The notion of line-of-sight
detection is well known in computer science in the context of �street searching�
(e.g. [25]), usually with the search region (�street�) Q a polygon. So in those
terms this paper could be called bilateral street searching.
Stepping back for a moment to a more abstract perspective, we could posit

a general �detection relation�z � w on the search region Q; so that the meeting
time T would be given by

T = min ft : f (t) � h (t)g ; (1)

where f (t) and h (t) are the locations of players I and II at time t: The proximity
model is then be de�ned by the metric � on Q as z � w , � (z; w) � detection
radius, and the line-of-sight model would be de�ned by z � w , pq � Q; where
pq is the straight line connecting p and q:
This paper is the �rst to adopt line-of-sight detection in a rendezvous prob-

lem. We take the search region Q to be the planar lattice (graph paper) consist-
ing of all points in the plane with at least one integer coordinate. Moreover, we
use a discrete model of Anderson and Fekete [12] in which at times t = 0; 1; 2; : : :
both players are at the nodes of the lattice Z2 consisting of 2-tuples with both
coordinates integers, and adjacent nodes having one coordinate identical and
the other di¤ering by one. In this setting, we will say that two nodes z and w
are mutually detectable if they satisfy the lattice line-of-sight relation,

z � w , z1 = w1 or z2 = w2: (2)
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This particular notion of detection is identical to that of the so-called �CNN
Problem�studied in [22] where a mobile camera crew can �lm an event taking
place on the same street or avenue as their van.
The problem we analyze here is called the Line-of-Sight Planar Rendezvous

(LSPR) problem, denoted � (D1; D2). Two agents are initially placed at nodes
z and w whose vector di¤erence z � w = (2d1; 2d2) where the di are positive
integers drawn independently from given distributions Di; i = 1; 2: Equivalently,
we place Player I at the origin and Player II equiprobably at one of the four
nodes (�2d1;�2d2) : The reason for requiring the initial coordinate di¤erences
to be even will be explained, together with some related assumptions, in Section
3. We assume that the players do not know the initial location of the other,
and have no common notion of locations (e.g. no street or avenue names)
or even of directions (e.g. North) in the plane. (The general signi�cance of
sense of direction for distributed computing problems was �rst analyzed in [19].)
However we will assume that they can distinguish the two axes (e.g. streets are
narrow and avenues are wide). Thus the symmetry notions we adopt here are
the same as those of the proximity rendezvous problem �01 of [5].
The paper is organized as follows. In Section 2, we introduce the Double

Alternating Search (DAS) Problem, whose solution will be a stepping stone to
the solution of � (D1; D2) : The DAS problem asks how to minimize the time
required to �nd one of two objects (say two identical car keys), each hidden in
a distinct region (two rooms of a house). The probability that the object in
region i will be found after searching there for time t is a given function Fi (t) ;
i = 1; 2: However only one region can be searched at a time. The problem is
to �nd the optimal method of alternating the search between the two regions,
that is, the method which �nds one of the objects (either one) in least expected
time. The DAS problem is of independent interest, and generalizes a similar
search problem for a single object hidden at one of two regions (ASP) studied
by the author and John Howard [10].
In Section 3 we give a rigorous de�nition of the LSPR problem � (D1; D2)

and establish its formal equivalence to a particular version of the DAS problem
in which each �region�consists of two lines, and is called the Search On Two
Linepair (SOTL) problem. In Section 4 we give a complete solution to the
LSPR on Z2 for the case where the initial nodes z and w of the two players
satisfy jzi � wij � 4; i = 1; 2: Section 5 summarizes our results and suggests
some extensions.
Other work on the rendezvous problem for the line or plane in the operations

research literature can be found in [4], [5], [7], [8], [11], [12], [15], [20], and [24],
with overviews in [2] and [9]. Related work on search and rendezvous in the
computer science literature can be found in [13], [14], [18], [23], and [27].
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2 Double Alternating Search (DAS) Problem

In order to solve the line of sight rendezvous problem on the planar lattice, it
is necessary to introduce a new single-sided search problem. In this problem
there are two objects hidden in distinct nearby regions, and the Searcher can
alternate searching in the two regions, until he �nds one of them. There is no
switching cost.
It is observed in [22] that the CNN Problem discussed in the Introduction is

related to that of retrieving information which resides on multiple disks, com-
pared with the 2�server problem (e.g. [17]) which related to multiple heads
on a disk. Not surprisingly, it is the former problem which in its search theory
form is a DAS problem.
We assume at �rst that there is a �xed method of searching each region,

and that if he searches at region i for time t according to this method, he will
�nd the object hidden there with known probability Fi (t) ; i = 1; 2: If by time
t he has searched in region 1 for time � (t) and region 2 for the remaining time
t� � (t) ; the probability that he has found at least one object (his aim) will be
given by

F � (t) = F1 (� (t)) + F2 (t� � (t))� F1 (� (t))F2 (t� � (t)) : (3)

For simplicity of exposition (and since this case is su¢ cient for the application
to rendezvous), we will �rst assume that there are �nite maximum search times
m and n in each region, that is, F1 (m) = 1 and F2 (n) = 1:We �rst assume that
the alternation rule � (t) is (what we will call simple) a continuous nondecreasing
function with � 0 = 1 on certain time intervals (during which region 1 is being
searched) and � 0 = 0 on others (during which region 2 is being searched). We
naturally assume � (0) = 0: A more geometric way of viewing the situation is
that one object is hidden on a ray I1 = [0;m] according to distribution F1 and
the other on on a distinct ray I2 = [0; n] according to F2: We use the term ray
rather than interval to cover the cases where m or n might be in�nite. If the
searcher is following the alternation rule � ; then he has searched the interval
[0; � (t)] on I1 and the interval [0; t� � (t)] on I2 by time t:When position m on
I1 or position n on I2 has been reached, the alternation rule will certainly have
found an object. We call this time

�max = min ft : � (t) = m or t� � (t) = ng : (4)

We can classify an alternation strategy � by where it ends, that is, which region
it searches exhaustively. We say that it ends in region e (�) : More precisely we
de�ne

e (�) =

�
1; if � (�max) = m;
2; if �max � � (�max) = n:

(5)

So for any alternation strategy, e (�) is either 1 or 2. In some cases an alternation
strategy � will search a single region i exclusively, which we emphasize by writing
e (�) = i�; that is,

e (�) =

�
1�; if � (m) = m;
2�; if � (n) = 0:

(6)
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The problem for the searcher is to �nd the alternation rule � which �nds an
object in least least expected time, such a rule will be called optimal and the
least expected time will be denoted V;

V = V (F1; F2) = min
�

Z �max

0

t dF � (t) : (7)

In the case that only one region, say region 1, is searched, we will write the
expected search time as

V = V (F1;0) =

Z 1

0

t dF1 (t) =

Z 1

0

(1� F (t)) d (t) ; (8)

where 0 represents the identically zero distribution 0 (t) � 0: To insure the
existence of the minimum we will in general have to consider all � in the class
� de�ned by the Lipshitz condition

0 � � (t)� � (t�) � t� t�; for all pairs t� < t: (9)

Under the topology of uniform convergence on compact intervals, the set � is
compact. And since the integral

R �max
0

t dF � (t) is lower semicontinuous in � ; the
minimum is guaranteed. For general alternation rules � 2 �; the derivative � 0 (t)
exists almost everywhere and is interpreted as the speed with which interval I1
is being searched, with I2 being searched at the speed 1� � 0 (t) :We can always
approximate a general alternation rule � 2 �
A more general problem of this type occurs when there are many ways to

search region 1 and many ways to search region 2. That is, many distribution
pairs F1; F2: In this case the searcher has �rst to decide which ways to search
each region (to choose particular Fi) and then to decide how to alternate search-
ing the two regions. If the sets of distributions of ��nding times�in each region
corresponding to allowable search methods are denoted F1 and F2; then optimal
time for this problem is also denoted V; with

V (F1;F2) = inf
Fi2Fi

V (F1; F2) : (10)

We now give a story which illustrates the DAS problem in both its basic and
general forms. Suppose you have just inherited some land under which there is
de�nitely a large oil pool. There are already two drilling rigs, rig 1 and rig 2,
with an electric generator able to drive one of them (or both at half speed). You
are also given a geological survey which says that the probability of rig i reaching
the oil if used for time t at full speed is Fi (t) : Furthermore, assume that the
oil that can be withdrawn from a single rig is more than you can transport, so
striking oil with both rigs is no better than with just one. This problem can be
modeled by the formula (7) for the DAS problem Now suppose furthermore that
each rig can be set to drill at certain angles, each giving a di¤erent distribution
of time required to reach the oil. The distributions obtainable for rig i can
be labelled Fi and the resulting problem can be modeled as the generalized
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DAS problem (10). The generalized DAS problem is two-fold; �rst one must �x
the drilling angles, and then one must decide how to alternate between drilling
between the two rigs.
Another example of the DAS problem is the problem of �nding a datum

which is known to occur on two lists which can each only be read in a speci�ed
order. Suppose I am looking for a picture of a red cow, which I know is in my
album of cows and also my album of red objects. I could start going through
the list of cows, then switch for a while to the reds, then go back to the cows,
etc. As soon as I �nd the picture in one list, I no longer need to �nd it in the
other. If the lists don�t have to be read in a speci�ed order, then the problem
is a generalized DAS problem. The author admits to �nding himself in this
problem often when looking for a phone number, as he has several phone lists,
none of which is properly alphabetized.
One �nal example which may appeal to academic researchers is the question

of how to attack a problem for which there are two (or more) methods which
may be applied. Of course one may simply decide on a method and persevere
until it reaches a solution. However if it is going slowly one may be tempted
to switch to the other method. Here again, once the problem is solved by one
method, there may be no need (at least in the short term) to pursue the other
one.
We now specialize to the important special case where the distributions F1

and F2 are concentrated on a �nite number of integers. We assume that one
���object has been hidden in one of a family of m ��-boxs��1; : : : ; �m and
that another ���object has been hidden in one of the boxes �1; : : : ; �n: The
probabilities that the � object is in box �i is given by pi (and similarly qj of
being in �j): Each family of boxes must be searched in order ( e.g. �5 before
�6). It takes one unit of time to search a box, and if the object is there it is said
to be found at the end of that time unit. To illustrate these ideas, suppose that
m = 3, n = 4; and the associated probability density vectors are p = (:8; :1; :1)
and q = (:7; 0; 0; :3) : Then it can be shown (as outlined below) that the least
expected time to �nd one of the two objects is given by

V = 1:29; (11)

and the uniquely optimal alternation rule searches the boxes in the order

�1; �1; �2; �3: (12)

We will denote this discrete alternation rule as [1; 2; 1; 1] where a 1 indicates
the next � box is searched, a 2 indicates a � box (� is considered region 1, �
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region 2).

Figure 1: Alternation rule [1; 2; 1; 1] :

Figure 1 illustrates the alternation rule [1; 2; 1; 1]. Observe that it is a directed
path, which moves either up or right, from (0; 0) to the termination set LT =
L1[L2; where L1 = f(i; j) : i = m = 3; j < n = 4g and L2 = f(i; j) : i < m = 3; j = n = 4g :
A vertical edge from (i; j) to (i; j + 1) represents a search of box �j+1 after boxes
�1 to �i (and of course �1 to �j) have been searched. Such a search will always
end at time i + j + 1 . If an alternation rule � ends in Li; then e (�) = i: If in
addition it ends on the i�axis (that is, at (3; 0) or (0; 4)) then e (�) = i�:
The optimal path will be the shortest path from (0; 0) to LT if we assign

a length to each edge corresponding to its contribution to the expected �nding
time integral (sum) (7): To derive this, let Pi and Qj denote the respective
probabilities that the � object lies in the �rst i of the ��boxes or the �rst j of
the ��boxes (so Pi = F1 (i) ; Qj = F2 (j));

Pi = p1 + � � �+ pi;
Qj = q1 + � � �+ qj:

We now consider how to assign a �length� to the edge from (2; 1) to (3; 1) in
Figure 1 (the answer, .12, is the underlined number above the edge in Figure 2
For example, the probability that the �rst object to be found will be found at
time t = 4 when box �3 is searched is the probability that it has not been found
in boxes �1 or �2 (this is (1� P2)) times the probability that it has not been
found in box �1 (this is (1�Q1)) times the conditional probability that it will
be found in box �3 (this is p3= (1� P2)): This product simpli�es to (1�Q1) p3:
Since in this case the time the object in �3 would be found is 4; we give the
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edge from (2,1) to (3,1) the �length�4 (1�Q1) p3 = 4 (1� :7) (:1) = : 12; which
is the length (non-underlined number) assigned to the edge from (2; 1) to (3; 1)
in Figure 2. In general, the probability that is assigned to the horizontal edge
from (i; j) to (i+ 1; j) is (1�Qj) pi+1; so its contribution to the expected time
(and its �length�) is

(i+ j + 1) (1�Qj) (pi+1)
and similarly the �length�assigned to the vertical edge form (i; j) to (i; j + 1) is

(i+ j + 1) (1� Pj) (qi+1) :

Once this is done it is an easy recursive process to calculate the shortest directed
path from (0; 0) to the termination set LT : We have to calculate the (shortest)
directed distance from each of the mn lattice points to this set, starting with
the point (m� 1; n� 1) and then going to the left and down; then calculating
this for (m� 2; n� 2) ; etc.. We need only compare the total distance if we go
up or right to the set already calculated. The distance from (0; 0) is the least
expected time V (P;Q) = V (F1; F2) of (7) and the shortest path corresponds
to the optimal alternation rule. The full calculation, with the optimal search
(right for �; up for �) in bold arrow, is shown below. The edge lengths are
indicated below or to the right of the edge, and the distance of a node (i; j) to
LT is given in the underlined number just above and to the right of the node.
Note that if we start at the origin and follow the bold arrows, we obtain the
optimal alternation rule of Figure 1.

Figure 2: �Shortest line�algorithm.
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We now investigate the circumstances under which an optimal alternation
rule can search an interval A on ray 1 immediately before an interval B on ray
2, both at maximum speed. In the corresponding Alternating Search Problem
introduced in [10], where there is only one hidden object (equally likely on either
ray) a necessary condition was that the average density (probability divided
by length) of A was at least as large as the average density of B: We now
derive a similar but weaker condition for the DAS problem, which involves the
conditional density of A; the probability that object 1 is in A given that it has
not been found before A is reached, divided by the length of A: It also involves
the o¤set of A; which measures the expected distance of the object from the
right endpoint of A; assuming it lies in A. Of course for discrete distributions
and intervals where the object can only be at the right endpoint, the o¤set will
be zero.
Suppose that the interval A = (a; a0) on ray 1 has the following characteris-

tics (with similar notation for the interval B on ray 2):

�A = F1 (a
0)� F1 (a) > 0 (the mass of A; probability object 1 is in A)

cA = (1=�A)

Z
A

t dF1 (t)� a (distance of center of gravity of A from left endpoint)

LA = a0 � a = length of A > 0

�A =
�A= (1� F1 (a))

LA
conditional density of A

OA = LA � cA = o¤set of A (distance of center of gravity from right endpoint).

Proposition 1 A necessary condition that an optimal alternation rule � can
search the interval A on ray 1 immediately before the interval B on ray 2 is that
either:

(i) �A � �B or

(ii) OA � OB :

Proof. Consider the alternation rule �̂ which is the same as � except that
when � searches A and then B; it searches B �rst and then A:We will establish
the claim by showing that if both conditions fail, thenZ �max

0

t dF �̂ (t) <

Z �max

0

t dF � (t) :

Since the two strategies di¤er only on some interval (x; y), with y�x = LA+LB ;
during which A and B are searched, it is enough to show that

Î �
Z y

x

t dF �̂ (t) <

Z y

x

t dF � (t) � I:

To calculate I observe that the probability of alternation rule � �nding an object
for the �rst time when searching A is

[(1� F1 (a)) (1� F2 (b))]
�

�A
1� F1 (a)

�
= (1� F2 (b))�A;

8



and when searching B is

[(1� F1 (a)� �A) (1� F2 (b))]
�

�B
1� F2 (b)

�
= (1� F1 (a)� �A)�B:

On each interval we can assume that the object will be found at its center of
gravity, so that

I = (1� F2 (b))�A (x+ cA) + (1� F1 (a)� �A)�B (x+ LA + cB) :

Similarly we have

Î = (1� F1 (a))�B (x+ cB) + (1� F2 (b)� �B)�A (x+ LB + cA) :

We now evaluate I � Î : Observe that the coe¢ cient of x in the expansion of
I � Î is zero, so ignoring the x terms we get

I � Î = [(1� F2 (b))�AcA]� [(1� F2 (b)� �B)�A (LB + cA)]
+ [(1� F1 (a)� �A)�B (LA + cB)]� [(1� F1 (a))�BcB ]

= �A�B (LB + cA)� �ALB (1� F2 (b))
��A�B (LA + cB) + �BLA (1� F1 (a))

= �A�B [[(LB � cB)� (LA � cA)] + [(LA=�A) (1� F1 (a))� (LB=�B) (1� F2 (b))]]
= �A�B ([OB �OA] + [1=�A � 1=�B ])

Hence I > Î if both conditions (i) and (ii) fail, in which case the alternation
rule � of searching A just before B cannot be optimal.
When dealing with the generalized DAS problem (10) it is useful to know

which distributions F1 in F1 are candidates for optimality. We �rst observe
that the distribution in F1 with the smallest mean (which �nds object 1 in least
expected time when there is only one ray and one object) need not be part of
the optimal pair in (10). For example, suppose we have distribution sets given
by discrete probability vectors

F1 = f(:7; 0; 0; :3) ; (:6; 0; :4)g ; F2 = f(:8; :1; :1)g:

Note that an object in four boxes with probabilities (:7; 0; 0; :3) will be found in
expected time :7+4 (:3) = 1:9; but in the case of (:6; 0; :4) will be found in shorter
expected time :6 + 3 (:4) = 1:8: However when these vectors are combined in a
DAS problem with (:8; :1; :1) ; we �nd (using the algorithm outlined in Figure
2) that the �rst vector (:7; 0; 0; :3) gives the shorter expected time to �nd one
of the objects, of

V ((:7; 0; 0; :3) ; (:8; :1; :1)) = 1:29; ( [2; 1; 2; 2] is optimal) compared with

V ((:6; 0; :4) ; (:8; :1; :1)) = 1:3; (where [2,2,2] is optimal).

So we cannot simply ignore the probability vector (:6; 0; :4) : However if it had
been instead the vector (:6; 0; 0; :4) then we could could have ignored it, because
(:7; 0; 0; :3) dominates it in the following sense.
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De�nition 2 For distributions G and Ĝ; we say that Ĝ dominates G if Ĝ (t) �
G (t) for all t:

Proposition 3 If F̂1 dominates F1; then for any F2 we have

V
�
F̂1; F2

�
� V (F1; F2) : (13)

Proof. Let � be an optimal alternation rule for the pair F1; F2 in the DAS
problem, so that

V (F1; F2) =

Z �max

0

t dF � (t)

by (7), where F � is de�ned by (3). The alternation rule � need not be optimal
for the pair F̂1; F2 but in any case we have

V
�
F̂1; F2

�
�
Z �max

0

t dF̂ � (t)

where

F̂ � (t) = F̂1 (� (t)) + F2 (t� � (t))� F̂1 (� (t))F2 (t� � (t)) :

Consequently

V (F1; F2)� V
�
F̂1; F2

�
�

Z �max

0

t dF � (t)�
Z �max

0

t dF̂ � (t)

=

Z �max

0

(1� F � (t)) dt�
Z �max

0

�
1� F̂ � (t)

�
d (t)

=

Z �max

0

�
F̂ � (t)� F � (t)

�
d (t) � 0;because for all t

�
F � � F̂ �

�
(t) =

h�
F̂1 � F1

�
(� (t))

i
[(1� F2 (t� � (t)))] � 0: (14)

It is important to note that even if F̂1 dominates F1 and F̂1 (t) > F1 (t) for
some t; we still may not have strict inequality in (13). For example (reversing
the coordinates in (11)) the density (:7; 0; 0; :3) dominates (:7; 0; 0; :2; :1) and
has a higher cumulative probability (1 compared with .9) at �t = 4; however
V ((:7; 0; 0; :3) ; (:8; :1; :1)) = V ((:7; 0; 0; :2; :1) ; (:8; :1; :1)) = 1:29: The reason
for the equality is simply that the optimal alternation rule � in the above proof
is [2; 1; 2; 2] ; which never reaches the �t�th (fourth) ��box. However if this box
is reached, that is, if � (�max) > �t , then the inequality (14) will be strict for
t = ��1 (�t) < �max; and consequently so will the value inequality (13). Hence
we have.

Corollary 4 Let � be an optimal alternation rule for the distribution pair F1; F2:
If F̂1 dominates F1; and F̂1 (�t) > F1 (�t) for some �t < � (�max) ; then for any F2
we have

V
�
F̂1; F2

�
< V (F1; F2) : (15)
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(Similarly if F̂2 dominates F2 and F̂2 (�t) > F2 (�t) for some �t < �max � � (�max)
then V

�
F1; F̂2

�
< V (F1; F2) :)

3 Formal De�nition of LSPR problem on Z2

We now return to the Line of Sight Planar Rendezvous (LSPR) Problem � (D1; D2)
described in the Introduction. We think of Z2 as the grid of a city, with streets
and avenues distinguished. That is, we assume that the two players have a
common numbering of the coordinate axes (1 and 2). However they do not have
a common notion of a positive direction along either axis (e.g. N or E), or a
common ordering of the axes. For those familiar with the general formulation of
rendezvous search given in [1], this informational system corresponds to the four
element symmetry group generated by the re�ection  (z1; z2) = (�z1; z2) and
the inversion � (z) = �z: (The same symmetry group is analyzed for proximity
rendezvous on Z2 in [5]) We allow the two players to agree on their two strate-
gies (the so called player-asymmetric version of rendezvous search), for example
using mobile phones. Corresponding to any strategy pair there are rendezvous
times (depending on whether player II has the same N or E as player I), and
the average of these is called the rendezvous time for the strategy. The aim
of the players (and of this article) is to �nd a method of deriving the (opti-
mal) strategy pair which has minimal rendezvous time. This minimum is called
the rendezvous value R = R (D1; D2) of the Line-of-Sight Planar Rendezvous
(LSPR) problem.
It is customary in (spatial proximity) network rendezvous to avoid the prob-

lem that occurs when the two players transpose their locations at adjacent nodes
at consecutive times t and t+1: Has rendezvous occurred at time t; at time t+1;
at t + 1=2; or not at all. In the area called rendezvous on graphs [6], one says
there is no rendezvous at all. In network rendezvous, following Howard [21],
we make certain simplifying assumptions that avoid the problem. We start the
players an even distance apart, and require that they move to adjacent nodes
(and cannot remain stationary) in every period. This insures, in the lattice
Zn or in any bipartite graph, that their distance is always even, and so they
can never simultaneously occupy adjacent nodes. In the present line-of-sight
setting, we require that their di¤erence is always even in both coordinates. So
we assume that their initial locations z and w have z1 � w1 and z2 � w2 both
even, that they can distinguish between the two axes (the so called �streets and
avenues�assumption of [5]), and that they both move in the same coordinate in
each period. We do not, however, assume that they have a common notion of
a positive direction along either axis. That is, they agree which is the N-S axis
but not which direction is N and which is S.
From the point of view of an observer, the initial con�guration can be ob-

tained by placing agent I at the origin with his E direction to the right and his
N direction up. Then agent II is placed at the node (2d1; 2d2) (with di drawn
randomly from Di) and given a random direction to call positive in each axis.
(Alternatively, we could say each player randomly picks a direction along each
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axis to call positive.) The full set of all 16 initial con�gurations, for say initial
di¤erences d1 = 2; d2 = 1; is illustrated in Figure 3. Player I starts and the
origin, while Player II is initially placed equiprobably at one of the four nodes
(�4;�2) ; and randomly given a positive direction on each axis. If his positive
direction on the vertical axis is South and on the horizontal axis is East, we
indicate this by drawing an arrow in the Southeast direction. We can assume
that I has the usual orientation, as indicated by a Northeast arrow at the origin.

Figure 3: Initial con�gurations for d1 = 2; d2 = 1:

A strategy for a player is a function f (t) that speci�es, for each non-negative
integer t; his net displacement f (t) from his initial location, in terms of the two
directions that he calls �forward�in each coordinate. Clearly f (0) = (0; 0) for
any strategy. For example, if Player I�s strategy begins (0; 0) ; (0; 1) ; (1; 1) ; (1; 0) ; (0; 0) ;
and his positive directions are North and West (from the observer�s perspective)
then he starts by going in an anticlockwise direction around the square that is
Northwest of his starting location.
Suppose each agent faces along the horizontal axis in the direction he calls

positive. There are four cases (all have subscript 1 to indicate the horizontal
axis). They may be facing in opposite directions (call this case O1) or in the
same direction (S1). If O1 obtains, they are either facing each other (call this
subcase O+1 ) or away from each other (O

�
1 ). If S1 holds, then either agent I is in

front
�
S+1
�
or agent II is in front (S�1 ). Similar cases apply in the vertical axis,

indicated by the same notation but a subscript of 2: The cases for the horizontal
axis are illustrated in Figure 4, for various initial di¤erences d1 and d2. In each
case, the base of the thick arrow designates the Player�s starting node and the
direction of the arrow indicates his positive orientation (East) of the horizontal
axis. Note the the two starting points for the second case, O�1 ; lie on the same
vertical line, so the meeting time in this case is trivially T = T2 = 0: (It was
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drawn in this way simply to �t in the box.)

Figure 4: Four horizontal (1) start types.

As an example, we consider the rendezvous strategy pair given in the follow-
ing form, where each player chooses among the four possible moves 1+; 1�; 2+; 2�
in each time period. A move i+ goes in the player�s positive direction along
the i axis, i� in the negative direction (more formally, i+ could be written as
+ei;where ei is the i�th unit vector).

t 1 2 3 4 5 6 7 8
�f 2+ 2- 1+ 2- 2- 1- 2+ 2+
�g 2+ 2+ 1+ 2- 2- 1+ 2- 2-

(16)

We draw below in Figure 5 the paths followed by players using these strategies
when Player I starts at (0; 0), Player II starts at (2; 2) ; Player I has North and
East as his positive directions, and the two cases where player II has North and
East or North and West, as his positive directions. The arrows mark the moves
of the players. The �rst (thin) path for II corresponds to the cases (S�1 ; S

�
2 )

and the second (thick line) to the cases (O+1 ; S
�
2 ): In the �rst case we have

T = T2 = 8, as they then have the same vertical coordinate 0; and in the
second we have T = T1 = 3; as they then have the same horizontal coordinate
1.(Note that the second move for player I retraces his �rst move in the opposite
direction.) There are 16 (pairs of) cases in all, but they correspond to only four
possibilities for T1 and four for T2: For given initial di¤erences d1; d2; the time
T1 depends only the four horizontal cases

�
S�1 ; O

�
1

	
; while T2 depends only on
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the four cases S�2 ; O
�
2

Figure 5: Plot of strategy pair.

If the initial displacement in the horizontal axis is given by 2d1; and the
players adopt strategies f = (f1; f2) and g = (g1; g2) ; at what time t = T1 will
they �rst have the same horizontal component (be able to see each other along
the common vertical axis)? If they are facing each other, case O+1 , they will
have the same horizontal component when the sum of their net forward motions
in this axis equals their initial displacement in this axis. That is, at time

T1 = T 11 (d1; f; g) = min ft : f1 (t) + g1 (t) = 2d1g (in case O+1 ), (17)

If we adopt a change of coordinate from fi; gi to new coordinates zi; wi, this
and the following de�nitions will be simpler to express.

zi =
fi + gi
2

; w1 =
= �fi + gi

2
; i = 1; 2: (18)

Thus in case O+1 ; we can write T
1
1 more simply as

T 11 (d1; f; g) = min ft : z1 = d1g (in case O+1 ). (19)
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Similarly, they will �rst have the same horizontal (1) coordinate at the following
times T k1 for the remaining cases.

T 21 (d1; f; g) = min ft : z1 = �d1g (in case O�1 ). (20)

T 31 (d1; f; g) = min ft : w1 = d1g (in case S+1 ).
T 41 (d1; f; g) = min ft : w1 = �d1g (in case S�1 ).

Similarly, there are four times T2 = T l2 (d2; f; g) when the players have the same
vertical component, using the same de�nitions with the subscript 1 replaced by
2. Since the initial con�gurations are equiprobable, for �xed values d1 and d2
the expected time T̂ required for the players to see each other is given by the
average of the sixteen values of min (T1; T2) ; that is

T̂ = T̂ (f; g; d1; d2) =
1

16

4X
k;l=1

min
�
T k1 ; T

l
2

�
: (21)

For the strategy (16) illustrated in Figure 4, we observed (translating to the
notation of (20)) that for �xed initial di¤erences d1 = d2 = 2; we have �rst
sighting times T 11 = 3 and T 42 = 8: The remaining times T ki are given around
the table below (an easy way to derive these is given in the next section), which
has the k; l entry of �rst sighting time min

�
T k1 ; T

l
2

�
:

TK1 nT l2 T 12 = 1 T 22 = 5 T 32 = 2 T 42 = 8

T 11 = 3 1 3 2 3
T 21 > 8 1 5 2 8
T 31 = 6 1 5 2 6
T 41 > 8 1 5 2 8

(22)

so T̂ =
55

16
:

Note that in this case (d1 = d2 = 1 with probability 1), it has been shown [8] that
if the players restrict their entire motion to a �xed (and common) direction, the
least expected meeting time is 52=16. (The optimal strategy pair given there is
the A-G strategy [1+; 1+; 1�; 1�; 1�; 1�] ; [1+; 1�; 1+; 1+; 1�; 1�] :) We show
in Section 5 that if 24=25 < Pr[d1 = 1] < Pr[d2 = 1], then the optimal strategy
(called h12) has its �rst six moves all in coordinate 2 and agreeing with the
A-G strategy. So we know that if the distributions D1 and D2 are concentrated
on �xed values d1 � d2; then the Players should adopt the A-G strategy in
coordinate 2.
For general distributions D1 and D2; where the probability that d1 = i is

denoted pi and the probability that d2 = j is denoted qj ; we have

T̂ = T̂ (f; g) =
1X

i;j=1

T̂ (f; g; i; j) piqj : (23)

The rendezvous value R = R (D1; D2) is given by

R = min
f;g

T̂ (f; g) ; (24)
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and any pair achieving the minimum is called optimal. We will be mainly
concerned with bounded distributions D1 and D2, so there are only �nitely
many strategies and the minimum will exist. For unbounded distributions, a
su¢ cient condition for R to be �nite is that D1 or D2 have �nite mean, because
in that case (say D1 has �nite mean) the players could restrict themselves to
motion in the horizontal directions and achieve a �nite expected value of T1 (see
Theorem 16.3 of [9]).

4 Search On Two Linepairs (SOTL)

In this section we show that if we view the four zi; wi variables as the strategic
ones, we arrive at a problem of search for stationary objects which is equivalent
to the LSPRP de�ned in the previous section. We view the four variables zi; wi ,
i = 1; 2; as the locations of four searchers on four distinct lines called Z1 andW1

(together called linepair 1) and Z2 and W2 (together called linepair 2). At time
0 all the searchers are at the origins of their lines (all the variables are 0): The
following list shows how any moves �f;�g of the rendezvousers in the LSPRP
produce a unit move by exactly one of the searchers (here 10 = 2; 20 = 1):

if = ei then �zi = 1;�wi = 0;�zi0 = �wi0 = 0; (25)

if �f = �g = �ei then �zi = �1;�wi = 0;�zi0 = �wi0 = 0;
if �f = ei , �g = �eithen �zi = 0;�wi = �1;�zi0 = �wi0 = 0;
if �f = �ei , �g = eithen �zi = 0;�wi = +1;�zi0 = �wi0 = 0:

Using this table we can convert the rendezvous strategy pair (16) drawn in
Figure 1 to a sequence of moves on the four lines Z1;W1 (linepair 1 ) and Z2;W2

(linepair 2).

t 1 2 3 4 5 6 7 8
�f 2+ 2� 1+ 2� 2� 1� 2+ 2+
�g 2+ 2+ 1+ 2� 2� 1+ 2� 2�
�z1 +
�w1 +
�z2 + � �
�w2 + � �

(26)

So the corresponding sequence in the zi; wi coordinates is given in the following
table, with occasions when one of the four variables reaches either +1 or -1
(taking d1 = d2 = 1;as in Figure 4) for the �rst time highlighted with a �:

t 1 2 3 4 5 6 7 8

move z2+ w2+ z1+ z2� z2� w1+ w2� w2�
z1 0 0 1� 1 1 1 1 1
w1 0 0 0 0 0 1� 1 1

z2 1� 1 1 0 �1� �1 �1 �1
w2 0 1� 1 1 1 1 0 �1�

(27)
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Figure 6: Strategy induced on linepair 1

Figure 7: Strategy induced on linepair 2

Note that the six starred entries in the table (27) correspond to the six
values of T ki not greater than 8 which are used in the table(22). It is easy to

see that every change in the zi; wi variables in which exactly one of the four
variable changes, and changes by �1; produces a pair of moves �f;�g; for the
rendezvousers in the LSPRP with both moving one unit in the same coordinate.
Hence the LSPR problem is equivalent (via the invertible formula (18) to

the following problem, which we call the (SOTL) Problem.
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De�nition 5 Given two independent distributions D1 and D2 for positive inte-
ger variables d1 and d2; the Search On Two Linepair problem SOTL[D1; D2]
is de�ned as follows: Searchers Z1 and W1 are placed at the origin of two dis-
tinct lines (called linepair 1), and two other searchers Z2 and W2 are placed at
the origin of a similar linepair 2. At each integer time t = 1; 2; : : : exactly one
of the four searchers may move one unit in either direction on his line. For
i = 1; 2; Nature picks an integer di according to the distribution Di and places
a (type i) object equiprobably at one of the four locations at distance di from
one of the origins of linepair i: A strategy for this problem is a rule for moving
one of the four Searchers one unit at each time t and the aim is to minimize
the expected time for one of the Searchers to reach EITHER of the two hidden
objects. That is, the objective function is the same as (23), except that the pri-
mary variable are taken as zi; wi; and f and g are obtained from the formula
(18).

With this de�nition, we have shown.

Theorem 6 Let D1 and D2 be two independent distributions over the positive
integers. Then the Line-of-Sight Planar Rendezvous Problem LSPR [D1; D2]
is equivalent to the Search on Two Linepairs problem SOTL[D1; D2] in the
following sense: If the rendezvous strategy pair (f; g) is related to the linepair
strategy (z; w) by the equations (18), then the expected rendezvous time T (f; g)
is the same as the expected time to �nd one of the hidden objects using (z; w)
in the SOTL problem .

The equivalence of a rendezvous problem on a line to a search problem
on a single linepair was established in [7], so the equivalence established here
between a form of planar rendezvous and search on two linepairs can be seen
as a natural extension. The idea that only one of two objects needs to be
found is however new, and relates the problem to the Double Alternating Search
Problem proposed in the previous section. Of course the reason for this is that
the rendezvousers need only agree in a single coordinate (either one) in order
to have locations that �see�each other.

5 Solution of LSPR problem for d1; d2 � 2:
In this section we will use the results of Section 2 on the Double Alternating
Search (DAS) Problem to give a complete solution to the Line-Of-Sight Planar
Rendezvous (LSPR) problem when the initial di¤erences between the players do
not exceed 4 in either coordinate, that is, for independent distributions D1; D2

satisfying Pr [d1 = 1] = p; Pr [d1 = 2] = 1�p; Pr [d2 = 1] = q; Pr [d2 = 2] = 1�q:
In fact, we will solve the equivalent problem SOTL [D1; D2] : We will view the
latter problem as one of generalized alternating search, where the two regions
are linepair 1 and linepair 2. Following the theory of the DAS problem derived
in Section 2, it will be �rst necessary to restrict the search methods in each
linepair to the set of undominated strategies. Then we can use the �shortest
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line� algorithm of Figure 5 to derive the optimal method of alternating the
search between the two linepairs.
We denote this problem as � (p; q) and its optimal (or rendezvous) value as

R (p; q) : Fix any method of searching a single linepair (call this region 1) and
any positive integer t: Suppose that of the four rays going out of the two origins,
x of them have been searched a maximum distance 1 and y (� x) of them have
been searched to the end (distance 2). Suppose that on this linepair we have
Pr [d1 = 1] = r; Pr [d1 = 2] = 1 � r. Then the probability that the object has
been found is given by

F1 (t) = F r1 (t) = x
�r
4

�
+ y

�
1� r
4

�
=
x� y
4

r +
y

4
:

Since a search cannot reach the end of a ray without having previously passed
its middle, it follows that for all t we have x � y and for some t (in particular,
for �t = 1 when x = 1 > 0 = y) we have x > y: Hence F r1 is nondecreasing in r
for all t and increasing for some t: In particular, we have.

Lemma 7 Let F ri be as above, and let r
0 > r: Then F r

0

i dominates F ri and
F r

0

i (1) > F ri (1) :

Proposition 8 For 0 � p � q � 1; R (p; q) is nonincreasing in p and decreasing
in q: If p < q; every optimal strategy must search at least part of linepair 2 (in
rendezvous terms, must have some vertical moves).

Proof. We prove the second sentence �rst. Suppose an optimal strategy s1
for the two linepairs searches only linepair 1, and has cumulative distribution of
�nding the object there of F1 = F p1 : An identical search strategy s2 of linepair
2 will have distribution F2 = F q1 : But since p < q and by symmetry of V
(equivalence of the two linepairs), we have

V (s2) = V (O; F2) = V (F2;O) = V (F q1 ;O) < V (F p1 ;O) = V (s1) ; (28)

by the previous lemma and contradicting the assumed optimality of strategy s1:
To obtain the �rst part, suppose that for some p � q we have

R (p; q) = V (F1; F2) = V (F p1 ; F
q
2 ) : (29)

Since for p0 > p Lemma 7 implies that F p
0

1 dominates F p1 ; we have

R (p0; q) � V
�
F p

0

1 ; F
q
2

�
� V (F p1 ; F

q
2 ) = R (p; q) : (30)

We show in the last part of this section that for certain regions of p; q space
the rendezvous value R (p; q) is constant in p because it is optimal to search
only linepair 2, so p is irrelevant.
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5.1 Undominated strategies for a linepair

In this subsection, we consider the problem of searching a single linepair (say
linepair 1) to �nd the single object hidden with probabilities r and 1 � r at
distance 1 or 2, respectively, from the origin of one of the lines. Note that all
the constituent lines are of the form [�2;+2] ; with all searchers starting at 0:
Any undominated method of searching two will induce undominated methods of
searching each lines. So we may �rst consider undominated methods of searching
a single line and then look at ways to combine these to search two lines.
Ignoring symmetries, there are only two undominated ways of searching a

single line with these probabilities, namely

J = ++����; and K = +����++++: (31)

Figure 8: Undominated searches of a line

These are shown in Figure 8 (which is NOT a way of searching a linepair, but
two di¤erent ways of searching a single line). Note that J has length 6 and K
has length 8. Since the object is at �1 with probability r=2 for each and at
�2 with equal probabilities (1� r) =2; the cumulative distributions for the two
methods (times 2 to eliminate fractions ) are

1 2 3 4 5 6 7 8
J r 1 1 1 1 + r 2 2 2
K r r 2r 1 + r 1 + r 1 + r 1 + r 2

(32)

Note that neither distribution dominates the other, as J is larger at time 6;
while K is larger at time 4: Any undominated way of searching the two lines
must search each of the lines with one of these methods.
We now consider how to search a linepair Z;W by an undominated method

which induces J or K on each line. There are four undominated ways of search-
ing a linepair using J on both lines, which we call JJ1 to JJ4; three using K
on both lines (KK1 to KK3); and three using J on one (say line Z) and K
on the other (say line W ) (JK1 to JK3). These strategies can be designated
unambiguously by indicating the alternation strategy.
For example, the strategy JJ1 begins by going right on the top line Z, then

right on the bottom line W; then right again on Z; then right on W; then left
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four times (to �2) on Z; then left four times on W; ending at time 12:

Figure 9: The strategy JJ1 on a linepair

In a similar manner, the strategy JK2 searches the top line Z according to the
route J and the bottom line W according to the rule K; combined as indicated
below.

Figure 10: The strategy JK2 for searching a linepair.

The ten undominated strategies for searching a single linepair are

JJ1 = [121211112222] (33)

JJ2 = [112211112222]

JJ3 = [121211122212]

JJ4 = [112211122212]

KK1 = [1211122211112222]

KK2 = [1211221211112222]

KK3 = [1111222211112222]

JK1 = [12122211112222]

JK2 = [12221211112222]

JK3 = [11222211112222]
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The following table lists (4 times) the cumulative distribution functions for the
ten strategies for search both lines, that is the probability that the object has
been found by time t: We may view the lines as containing four close objects
at distance 1, each with mass r, and four far objects at distance 2, each with
mass 1-p. An entry of x + yr = (x+ y) r + x (1� r) at time t indicates that
the strategy has reached x+ y of the close objects and x of the distant objects.
The search �nds the object, at latest, when the element 4 appears in the table.

JJ1 JJ2 JJ3 JJ4 KK1 KK2 KK3 JK1 JK2 JK3

1 r r r r r r r r r r
2 2r 1 2r 1 2r 2r r 2r 2r 1
3 1 + r 1 + r 1 + r 1 + r 2r 2r 2r 1 + r 2r 1 + r
4 2 2 2 2 3r 3r 1 + r 1 + r 3r 1 + r
5 2 2 2 2 1 + 2r 3r 1 + 2r 1 + 2r 1 + 2r 1 + 2r
6 2 2 2 2 1 + 2r 4r 1 + 2r 2 + r 2 + r 2 + r
7 2 + r 2 + r 2 + r 2 + r 1 + 3r 1 + 3r 1 + 3r 2 + r 2 + r 2 + r
8 3 3 2 + r 2 + r 2 + 2r 2 + 2r 2 + 2r 2 + r 2 + r 2 + r
9 3 3 2 + r 2 + r 2 + 2r 2 + 2r 2 + 2r 2 + 2r 2 + 2r 2 + 2r
10 3 3 2 + 2r 2 + 2r 2 + 2r 2 + 2r 2 + 2r 3 + r 3 + r 3 + r
11 3 + r 3 + r 3 + r 3 + r 2 + 2r 2 + 2r 2 + 2r 3 + r 3 + r 3 + r
12 4 4 4 4 3 + r 3 + r 3 + r 3 + r 3 + r 3 + r
13 4 4 4 4 3 + r 3 + r 3 + r 3 + r 3 + r 3 + r
14 4 4 4 4 3 + r 3 + r 3 + r 4 4 4
15 4 4 4 4 3 + r 3 + r 3 + r 4 4 4
16 4 4 4 4 4 4 4 4 4 4

(34)
We now make a few observations regarding strategies that are dominated by
others in the two cases r < 1=2 and r > 1=2: For r < 1=2; JJ1; JJ3; JJ4; KK1

and KK2 are all dominated by JJ2; JK1 and JK2 are dominated by JK3:
Hence for r < 1=2 every distribution corresponding to an allowable strategy for
searching the two lines is dominated by one in the family

F<1=2 (r) = fJJ2; JK3g :

Similarly, for r > 1=2 every allowable distribution is dominated by one in the
family

F>1=2 (r) = fJJ1; JJ3;KK1;KK2; JK1; JK2g :

5.2 Optimal search of two linepairs

We now determine the optimal method of searching two linepairs. The idea is
that we consider each linepair simply as a region in the DAS problem analyzed
in Section 2, forgetting its structure. Using our program to calculate the joint
optimum and the optimal joint strategy we �nd that in the region 1=2 < p <
q < 1 there are 12 optimal strategies. (These are also optimal on the boundary
of this region, but other strategies may also be optimal on the boundary.) A
strategy is determined by stating which of the local strategies in F>1=2 (p) is
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used on linepair 1 (with r = p) and on line 2 (with r = q). Then, for given p and
q; the optimal alternation strategy can be calculated by the algorithm illustrated
in Figure 4. For example, the strategy h1 is determined by JJ1 on linepair 1 and
JK2 on linepair 2, with the alternation rule [2; 2; 1; 1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2] :
This alternation rule has 14 symbol 2�s, which is the length of the strategy JK2:
To avoid long strings like this, we code this (and other alternation rules, all
starting with 2; by indicating the lengths of the successive strings. Thus, the
alternation rule for h1 can be given by either of the forms,

[2; 2; 1; 1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2; 2] = h2; 2; 12i ;

which means a string of 2 symbol 2�s, followed by 2 symbol 1�s, followed by 12
symbol 2�s: Note that the sum of the entries in the h2; 2; 12i form is 16, and
equals the maximum rendezvous (or search) time required by the strategy. The
strategy h1 searches the two linepairs as shown in Figures 12 and 12 below,
followed by a formulation of h1 as a sequence of moves on the two linepairs..

Figure 11: Action of strategy h1 on linepair 1
(35)

Figure 12: Action of strategy h1 on linepair 2
(36)

[z2+; w2+; z1+; w1+; w2�; w2�; z2+; w2�; z2�; z2�; z2�; z2�; w2+; w2+; w2+; w2+]
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5.3 Solution for 1=2 < p < q:

The full set of strategies which are optimal for some 1=2 < p < q are listed as
h1 to h12 in the table below, with hi (p; q) denoted the expected meeting time.

strategy 1 2 h: : : i ; e (hi) expected search time
h1 JJ1 JK2 h2; 2; 12i ; 2 43

4 �
29p
8 � 23q

4 + 19pq
8

h2 KK2 KK2 h8; 8; 8i ; 2 105
8 � 15p

4 � 79q
8 + 15pq

4

h3 KK2 KK2 h2; 2; 6; 6; 8i ; 2 113
8 � 27p

4 � 79p
8 + 47pq

8
h4 JK1 exhaustive, 2� 33

4 � 4q
h5 JJ1 exhaustive, 2� 27

4 �
3q
2

h6 JK2 KK2 h8; 14i ; 1 97
8 �

19p
8 � 71q

8 + 19pq
8

h7 JJ1 KK2 h8; 12i ; 1 89
8 �

3p
4 �

63q
8 + 3pq

4

h8 JJ1 JK1 h2; 2; 12i ; 2 41
4 �

27p
8 � 5q + 2pq

h9 JK2 exhaustive, 2� 35
4 �

19q
4

h10 JK1 KK2 h8; 14i ; 1 95
8 � 2p�

69q
8 + 2pq

h11 JK2 KK2 h2; 2; 6; 12i ; 1 105
8 � 43p

8 � 71q
8 + 9pq

2

h12 KK2 KK2 h6; 8; 10i ; 2 129
8 � 55p

8 � 103q
8 + 55pq

8

Note that strategies h4; h5 and h7 never search linepair 1 at all, have e =
2�: (The equivalent LSPR strategies would have both rendezvousers moving
vertically at all times.) Areas in q � p space, 1=2 < p < q < 1; where the
12 strategies are optimal are indicated in the following table. The 1=2 by 1=2
square of q � p is divided into a 20� 20 grid, and the index (e.g. 9 for h9) of a
strategy which is optimal in each 1=80� 1=80 small square is indicated.

12
2 2

2 2 2
2 2 2 2

2 2 2 2 2
3 2 2 2 2 2

3 2 2 2 2 2 2
3 2 2 2 2 2 2 2

3 2 2 2 2 2 2 2 2
3 3 2 2 2 2 2 2 2 2

11 11 6 6 6 6 6 6 6 6 6
11 11 6 6 6 6 6 6 6 6 6 6

1 11 6 6 6 6 6 6 6 6 6 6 6
8 9 9 10 10 10 10 10 10 10 10 10 10 10

4 4 9 9 10 10 10 10 10 10 10 10 10 10 10
4 4 4 9 9 10 10 10 10 10 10 10 10 10 10 10

5 4 4 4 9 9 7 7 7 7 7 7 7 7 7 7 7
5 5 4 4 4 9 9 7 7 7 7 7 7 7 7 7 7 7

5 5 5 4 4 4 9 9 7 7 7 7 7 7 7 7 7 7 7
5 5 5 5 4 4 4 9 9 7 7 7 7 7 7 7 7 7 7 7
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The boundaries between the regions can be calculated by setting the ex-
pected sighting times equal. These regions are indicated in Figure 13.

Figure 13: Regions i where hi is optimal, :5 < p < q

5.4 Solution for p � min [1=2; q]
The evaluation of R (p; q) (and the determination of optimal strategies) for this
region is relatively easy, based on the assumption that on the upper bound-
ary p = min [1=2; q] there is always an optimal strategy h which searches only
linepair 2 (with e (h) = 2�): Then a variational argument establishes that this
strategy remains optimal for smaller p:

Lemma 9 If an optimal strategy h for the SOTL problem with probabilities p; q
searches only linepair 2 (e (h) = 2�) then h is also optimal for probabilities p0; q;
p0 < p:
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Proof. The optimality of h may be rephrased as R (p; q) = h (p; q) : If h is
not optimal for (p0; q) then we have

h (p0; q) > R (p0; q) � R (p; q) = h (p; q) :

However this is impossible, because h never searches linepair 1 and hence h (p; q)
does not depend on p:
Observe that h5;h4; and h9 satisfy the hypothesis. The strategy h7 does

not; however h7 (p; q) = h13 (p; q) for p = 1=2; where h13 is the exclusive search
of linepair 2 according to KK2; with h13 (p; q) = (86� 60q) =8: Hence for p �
1=2 � q there is an optimal strategy which searches linepair 2 exclusively. For
p = q < 1=2; an exclusive search of linepair 2 using JJ2 is optimal, and hence
by the above lemma this is also true for p < q < 1=4: Hence in the region
p < min [1=2; q] it is always optimal to search linepair 2 exclusively, and the
method of search depends only on q: (In the planar rendezvous version, it is
always optimal for the players to move exclusively in the vertical direction.)

5.5 Interpretation in planar rendezvous terms

It has been simpler to carry out the investigations of this Section in terms of
the SOTL problem. However it may be of interest to see what some of these
results look like in the equivalent terms of planar rendezvous strategies, using
the equivalence equations (18). For example, we may look at the formulation of
the linepair search strategy h1 and convert it to a rendezvous strategy pair f; g:
The conversion is drawn in Figure 14 with Player I starting at (0,0) with the
usual positive directions in each coordinate and with Player II starting at (2;�2)
and having the same directions as I. It is drawn with initial di¤erence 2di = 4
in both coordinates, so that the starting categories are S�1 and S+2 : Hence the
�sighting�times are T 41 when they have the same horizontal coordinate (never)
and T 32 when they have the same vertical coordinate (time 16).
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Figure 14: Planar rendezvous version of h1:

6 Conclusions

In this paper we have analyzed the Line-Of-Sight Planar Rendezvous (LSPR)
Problem under certain assumptions regarding initial locations, common-coordinate
moves, and common notions of �streets and avenues�. We showed how this prob-
lem is formally equivalent to a pure search problem called the Search On Two
Linepairs (SOTL) problem, where a team of searchers tries to �nd one of two
objects, each hidden according to a known distribution on a �linepair�. The
SOTL problem is of a type where two regions are to be searched to �nd one
of two objects, and thus can be analyzed according to an algorithm and some
optimality theorems for the Double Alternating Search (DAS) problem. This
method of �nding a search problem (for stationary hidden objects) equivalent
to a rendezvous problem, and analyzing the former by dynamic programming
(or other ) methods, is similar in spirit to the attack on the Linear Rendezvous
Problem in [10] and [7]. There are no general methods known for the LSPR
problem without the assumptions made in this paper, though individual results
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for special cases are not di¢ cult, and can be better for the players than the
results obtained with our assumptions. It would be useful for line-of-sight ren-
dezvous theory to develop general methods that work without our assumptions.
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