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Abstract

We analyze the optimal behavior of two players who are lost on a planar surface
and who want to meet each other in least expected time. They each know
the initial distribution of the other�s location, but have no common labeling of
points, and so cannot simply go to a location agreed to in advance. They have
no compasses, so do not even have a common notion of North. For simplicity, we
restrict their motions to the integer lattice Z2 (graph paper) and their motions
to horizontal and vertical directions, as in the original work of Anderson and
Fekete.
Keywords: rendezvous, search, plane



1 Introduction

This paper considers rendezvous search problems in the plane. Two players, I
and II, are initially placed so that the vector from I to II has a known distri-
bution. The players move at unit speed, until the �rst time � that they meet.
Both of them wish to minimize the expected value of the meeting time � : We
consider the so called player � asymmetric version of the problem, in which
the players may adopt distinct strategies; for example one might stay still while
the other one followed an optimal exhaustive search (this is called the Wait For
Mommy strategy). We follow the approach introduced by Anderson and Fekete
(2001) in which the search space Q is taken to be the planar lattice Z2 consisting
of points in the plane with integer coordinates, and in each time period they
move to (horizontally or vertically) adjacent nodes. The players do not know
the initial location of the other, nor do they have a common labeling of the
nodes (so for example cannot agree to meet at a speci�ed node). They do not
even have a common labeling of the compass directions, so cannot for example
agree that in moves 1 to 3 Player I will go North and II will go South. One
further question is whether the players have a common notion of clockwise. We
consider both answers to this question, calling the version of the rendezvous
problem with a common notion of clockwise �C and the version without it sim-
ply �: In each version the rendezvous value R is the minimum expected meeting
time, and strategy pairs which achieve this value are called optimal. Clearly
R
�
�C
�
� R (�) ; since the players have more information in the former case,

and we show that both cases (strict inequality or not) can occur. For some
distributions of the initial placements, there exist strategy pairs which are uni-
formly optimal, in the sense that they simultaneously, for all t, maximize the
probability of meeting by time t. Such strategies are very robust. The section
organization and main results are as follows.
Section 2 gives a formal de�nition of the planar rendezvous problems �C and

� (with and without a common notion of clockwise). A number of necessary
conditions for strategies to be optimal or uniformly optimal are proved.
Section 3 analyzes the diagonal initial placement D, where the two players

are placed at opposite corners of a unit square. In this setting, Anderson and
Fekete proved that a modi�cation of the Wait For Mommy strategy is optimal
in �CD (where the D denotes diagonal start). Our main result (Theorem 22
and Corollary 23) is a determination of the full set of optimal strategies for
�CD and �D; and a demonstration that they are all uniformly optimal. In this
setting, having a common notion of clockwise does not help the players, as
R
�
�CD
�
= R (�D) (rendezvous value is the same in either case).

Section 4 analyzes results obtained in Alpern and Baston (2004a) for parallel
initial placement P; where the initial vector between the players is of length two
and parallel to one of the axes. In this case having a common notion of clockwise
does indeed help the players, as R

�
�CP
�
< R (�P ) : There are no uniformly

optimal strategies in either version of the problem. So in both respects, the
parallel start version di¤ers from the diagonal start version.
Background on the rendezvous search problem can be found in the survey
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article Alpern (2002a) and in the monograph Alpern and Gal (2003). Of par-
ticular relevance to planar rendezvous is the simulation work of Thomas and
Hulme (1997). We wish to thank two anonymous referees for useful suggestions
which have been incorporated into the current version.

2 Rendezvous in the Plane: strategies and agents

We follow the route of Anderson and Fekete by taking the search space Q to be
the integer lattice (network) with nodes z = (z1; z2) 2 Z2 and nodes are adjacent
if they have one coordinate identical and the remaining coordinate di¤ers by 1:
This is just the familiar lattice of graph paper. The distance d between two nodes
is de�ned as the sum of the edges in a shortest connecting path, or equivalently
d ((z1; z2) ; (w1; w2)) = jz1 � w1j + jz2 � w2j. At time t = 0 Nature places the
two players on even nodes with the vector v from I to II drawn from a given
distribution. (A node z 2 Z2 is called even if the sum of its coordinates is
even; otherwise it is called odd.) In every time period each player must move to
an adjacent node or stay still, although we show in Theorem 10 staying still is
never optimal. This �even distance�initial placement (originating in the interval
network of Howard (1999)) ensures that the two optimizing players will always
have the same parity, and cannot pass each other on an edge without meeting
at a node. The players both wish to minimize the expected number of periods
required for them to be at the same node.
We analyze the progress of the game in terms of Player I�s coordinate system

(and sense of clockwise). In this perspective, the initial random placement is
achieved by Nature placing I at the origin facing North (N )and placing II at the
even node vi; i = 1; : : : ;K; with probability pi; facing equiprobably in either of
the four possible directions. (Player II calls this direction N in any case.) We
will consider mainly two particular initial distributions which are both invariant
with respect to the group of rotations by j�=2; j = 0; 1; 2; 3:

De�nition 1 The �parallel�game �P begins with the initial distribution in which
the initial displacement vector between the players has length 2 and is parallel
to one of the coordinate axes. Equivalently, I is initially placed at the origin
(0; 0) and II is initially placed equiprobably at one of the four nodes v1 = (0; 2) ;
v2 = (2; 0) ; v3 = (0;�2) ; v4 = (�2; 0) :

De�nition 2 The �diagonal�game �D introduced by Anderson and Fekete (2001)
begins with the initial distribution in which the players are placed at diagonal
corners of a square. Equivalently, I is initially placed at the origin (0; 0) and
II is placed equiprobably at one of the four nodes v1 = (1; 1) ; v2 = (1;�1) ; v3 =
(�1;�1) ; v4 = (�1; 1) :

When the game begins, the players have no common notion of locations or
directions in the plane. As observers, we adopt I�s coordinate system. Now we
must distinguish two cases. In the Common Clockwise (CC) case, we assume
that the players have a common notion of clockwise (or equivalently, of �up�). In
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this case a player�s orientation is completely determined by his choice of North,
and hence there are 4 orientations. In the No Common Clockwise (NCC) case,
we don�t make this assumption, and must say whether the players have the same
notion of clockwise (4 cases) or they don�t (another 4 cases). Thus the NCC
case has 8 orientations. We denote the CC game as �C ; the NCC case as simply
�: Observe that the CC rendezvous game �C has 4K initial con�gurations (16
for the Diagonal and Parallel games), while the NCC game � has 8K initial
con�gurations (32 in our examples).
The orientations of player II can be seen as transformations (or rigid mo-

tions, or symmetries) of the �standard orientation�of Player I. In the CC game
the four orientations correspond to the four orientation preserving symmetries
(preserving the origin) of the planar lattice Z2 :

Rj = clockwise rotation by angle j �=2; j = 0; 1; 2; 3: (1)

The four Rj correspond to the four possible choices of a North direction by
Player II, and the set of these four rotations describes the information sym-
metry group in the sense of Alpern (1995). Let vi; i = 1; : : : ;K be the initial
displacements (K = 4 for the parallel or diagonal games �P ;�D): Then the 4K
initial con�gurations for �C are determined by the 4K values of i; j:
We can now de�ne a strategy and show how a pair of strategies determines

the meeting times of the two players, one for each initial con�guration. (We
begin by allowing the null move (0; 0) ; but we will remove this possibility later.)

De�nition 3 A strategy for a player (in either game �C or �) is a sequence of
directions Di 2 f(0; 0) ; N = (1; 0) ; E = (1; 0) ; S = (0;�1) ;W = (�1; 0)g ; i =
1; 2; : : : . A player pursuing this strategy moves successively one unit in his
direction D0; D1; : : : ; according to his initial orientation. Equivalently, it can
be seen as his net displacement f (t) at time t from his initial location, given by
f (0) = (0; 0) and for t � 1;

f (t) =

tX
k=1

Dk:

So for example the strategy beginning N;E;E; corresponds to a net dis-
placement function f with

[f (0) ; f (1) ; f (2) ; f (3)] = [(0; 0) ; (0; 1) ; (1; 1) ; (2; 1)] :

We shall deal with strategy pairs (f; g) where Player I adopts f and II adopts
g. Sometimes we will use the symmetric notation (f1; f2). In this setting, the
location of Player I at time t is simply f (t) ; while the location of II (in I�s
coordinate system) depends on the initial con�guration, as described below.
We begin by considering the common clockwise (CC) game �C : If the initial

con�guration gives Player II initial location vi and orientation Rj then the
location of Player II at time t under strategy g is given by

gi;j (t) = vi +Rj (g (t)) : (2)
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De�nition 4 The 4K (in our examples, 16) paths gi;j are called the agents
of Player II. We call gij the agent starting at vi in direction j, where
directions j = 0; 1; 2; 3; are N ; E ;S;W (that is, Rj (N = (0; 1)) : Each agent
from vi is the actual path of player II with probability pi=4: (Note that we use
the typeface E to indicate an agent initially facing East, and the typeface E to
indicate a move East.)

The time taken for agent gi;j to be met by Player I is called its meeting time,
and denoted

!i;j (f; g) = min ft : f (t) = gi;j (t)g ; (3)

and the time required to meet all the agents is called M (f; g) ; where

M (f; g) = max
i;j

!i;j (f; g) : (4)

Figure 1 shows the 16 initial con�gurations in �CP ; and Figure 2 shows the
strategy pair starting with WS for I and NE for II, with the paths of I (thick
line) and of all 16 agents of II for t = 0; 1; 2: Observe that at time t = 1 Player
I meets the agent g4;1 of II starting at v4 = (�2; 0) and facing E (whose North
is the direction that I calls East (R1)); hence !4;1 = 1: Similarly at time t = 2
he meets the agent g3;3 who started at v3 = (0;�2) and whose North is what I
calls West (R3); so that !3;3 = 2: All other meeting times are greater than 2.

Figure 1: 16 agents in �CP

Figure 2: Strategy (W;S) ; (N;E)
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Note that in Figure 2 the agents of II starting at the same node are at four
distinct locations at each time t = 1; 2: This will be true as long as they are not
at their starting point (that is, g 6= 0); since the group of four rotations gives
four distinct locations when applied to points other than the origin. Thus we
have the following useful fact.

Remark 5 In �C ; Player I can never simultaneously meet more than one agent
of Player II from the same starting point unless he is at that starting point. That
is, !ij = !ij� = t; j 6= j� implies f (t) = gij (t) = gij� (t) = vi:
This motivates the following de�nition.

De�nition 6 A meeting between Player I and an agent gi;j of Player II which
takes place at node z is called a Starting Point Meeting (SPM) if z is the
starting point of I (the origin) or the starting point vi of that agent of II. In the
former case it is called type I, in the latter, type II.

Given a strategy pair (f; g) ; the average value of the meeting times ! is
called TC (f; g) : Thus

TC (f; g) =
1

4

X
i;j

pi!i;j (f; g) ; for �C ; or simply

=
1

16

X
i;j

!i;j (f; g) for diagonal or parallel start.

The rendezvous value R for the CC game �C is the least expected time,

R
�
�C
�
= min

f;g
TC (f; g) ;

and any pair f; g achieving the minimum is called optimal for �C :

We now consider the NCC game �: This game now has 8K agents for II,
rather than 4K. To each agent gi;j who has the same clockwise orientation as I
(since rotations preserve orientation in this sense) there is an associated agent
g0i;j with the same starting point and the same notion of N; but who has the
opposite notion of clockwise orientation (or equivalently, E and W reversed).
To every strategy g de�ned by a move sequence we de�ne an associated strategy
g0 which is the same as g but has E and W moves interchanged. For example,
if

g = [N;E;E;N; S;W; : : : ] ; then g0 = [N;W;W;N; S;E; : : : ] :

If II is following strategy g; he has 4K agents gi;j and 4K agents g0i;j ; so 8K
agents in all. (So if there are K = 4 starting points, as in the two examples we
consider, there are 32 agents in �:) We call the associated meeting times !i;j
and !0i;j : The expected meeting time in � for a strategy pair (f; g) is given by

T (f; g) =
1

8K

0@X
i;j

!i;j (f; g) +
X
i;j

!0i;j (f; g)

1A (5)

=
1

2

�
TC (f; g) + TC (f; g0)

�
: (6)
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In a similar fashion to the CC game, we de�ne the NCC rendezvous value

R (�) = min
f;g

T (f; g) ; and any pair (7)

f; g achieving the minimum is called optimal for �: (8)

It follows from (6) and the fact that the minimum of TC (f; g) and TC (f; g0) is
less than or equal to their average that

Proposition 7 R
�
�C
�
� R (�) ; with equality if and only if �C has an optimal

strategy (f; g) for which (f; g0) is also optimal. In the case of equality R
�
�C
�
=

R (�) ; a strategy (f; g) is optimal in � if and only if both (f; g) and (f; g0) are
optimal in �C :

Equality holds for the diagonal start game �D (Section 3) while strict in-
equality holds for the parallel start game �P (Section 4).
The �Wait for Mommy�(WFM) strategy pair, where II stays still while I takes

a minimal path reaching all the starting points vi of II; has all �nite meeting
times ! (in CC or NCC) and consequently a �nite expected meeting time T:
Hence the rendezvous times R and RC are both �nite. So we restrict our search
for optimal strategies to exhaustive strategy pairs, those with �nite maximal
search times. Exhaustive strategy pairs can be given by a �nite sequence of
directional moves. A stronger notion of optimality is the following.

De�nition 8 A strategy pair
�
for either � or �C

�
is called uniformly optimal

if for all t it maximizes the probability that the players have met by time t: (Note
that if there is a uniformly optimal strategy, then all optimal strategies must be
uniformly optimal.)

A uniformly optimal strategy maximizes the expected utility of the meeting
time ! as long as the utility function is non-increasing in ! (earlier meetings
are preferred to later ones); an optimal strategy is only required to accomplish
this for the particular utility function �!:

Lemma 9 If (f; g) and (f; g0) are uniformly optimal for �C ; then they are uni-
formly optimal for �:

Proof. Suppose on the contrary that for some strategy
�
�f; �g
�
in �; and

some time t; the probability that the players have met, (�p+ �p0) =2; exceeds the
corresponding probability p for (f; g). Then either �p or �p0 exceeds p; and so

either
�
�f; �g
�
or
�
�f; �g0

�
contradicts the uniform optimality of (f; g) in �C :

We have been assuming for the sake of generality that players may stay still
(the null choice of move (0; 0) in certain periods). However, restricting moves to
the four compass directions reduces the size of the strategy set, so we henceforth
will not allow players to stay still. This does not remove any otherwise optimal
strategies, as shown in the following.

6



Theorem 10 Let (f1; f2) be an optimal strategy pair for the rendezvous problem
(�Cor �): De�ne !0 = 0 and let !1 < !2 < � � � < !K denote the associated set
of meeting times with the (4K or 8K) agents; listed in increasing order. Let d
denote the graph distance on the lattice Z2: Then

d
�
fi
�
!m�1

�
; fi (!

m)
�
= !m � !m�1; for i = 1; 2 and m = 1; : : : ;K: (9)

In other words, both players move in time-minimizing paths between consecutive
meeting points. In particular, neither player ever stays still, and consequently
both players are at even (odd) nodes at all even (odd) times.

Proof. Suppose the condition (9) fails for some minimum number m; and
let g� be an agent that I meets at time M = !m: By the minimality of m; the
players are at nodes of the same parity (and an even distance apart) at time
!m�1: Let z denote the meeting node (I�s location) at timeM:We are assuming
that at least one of the players can get to z prior to time M (given his location
at the earlier time !m�1): If both players can get to z before M; let them do so
and stay there through time M; when they resume there original paths. This
strategy modi�cation brings forward the meeting time with agent g� without
postponing any other meeting times, contradicting the assumed optimality of
the strategy pair. Otherwise only one player (which we may assume is Player
I, by renaming) can get to z prior to M: So modify I�s strategy so that he gets
to z at the earliest possible time M � n: At time M � n; agent g� will be at
some node b; at distance n from node z; and since both players have still been
moving on every step up to time M � n; their distance n at time M � n must
still be even, n = 2j: Next let Player I move to meet g� at time M � j; and
then follow g� back to z at the original time M: Again, this moves the meeting
with g� forward by j > 0 steps, without postponing any other meeting, again
contradicting the assumed optimality of the strategy.

Remark 11 This result is similar to Theorem 1 of Alpern (2002b) for labeled
graphs (or Theorem 13.2 of Alpern and Gal (2003)). It can also be considered
a generalization of the similar result for the line, Theorem 16.10 of Alpern and
Gal (2003). See also Gall (1999) for non-optimality of staying still.
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Figure 3: Midpoint, equidistant sets for a; b:

Figure 3 illustrates the previous theorem. At time !m�1, I is at node a and
agent � of II is at node b; where d(a; b) = 2l (in both �gures, l = 4): In the time
interval

�
!m�1; !m

�
of length k = !m�!m�1 � l (in the �gures, k = 6; 8), both

I and agent � follow geodesics to a common node z with d (a; z) = d (b; z) = k;
where they meet at time !m�1 + k: The node z belongs to the equidistant set

E (a; b) = fz : d (a; z) = d (b; z)g = L1 [ L2 [ L3:

We now further claim that if the strategy pair is optimal, z must in fact belong
to the midpoint set

Mid (a; b) = L2 =

�
z 2 Z2 : d (a; z) = d (b; z) = d (a; b)

2
= l

�
;

so that k is equal to l: If not, then z belongs to L1 or L3: Assume without loss
of generality that z belongs to L3: Suppose we modify the paths taken by I and
agent � of II so that they each follow a geodesic to z that goes through the node
y: Then they both get to z at the original time (!m�1+k) but they meet at the
earlier time (!m�1 + l): The resulting modi�ed strategy pair has the meeting
with agent � brought forward by k � l periods, without postponing any other
meeting. So the original strategy cannot have been optimal.

Corollary 12 Let (f1; f2) be an optimal strategy pair for the rendezvous prob-
lem (�C or �): De�ne !0 = 0 and let !1 < !2 < � � � < !M denote the set
of meeting times for (f1; f2) ; listed in increasing order. Suppose that Player I
meets agent � of II at time !m: Then their meeting point z = f1 (!m) = g� (!m)
is a midpoint of their locations at time !m�1 and occurs at the earliest possible
time. That is,

d
�
z; f1

�
!m�1

��
= d

�
z; g�

�
!m�1

��
=
1

2
d
�
f1
�
!m�1

�
; g�

�
!m�1

��
= !m�!m�1:
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Note in particular that this result applies to every agent that I meets at time
!m; so if there are several, the meeting must take place at a common midpoint
of the locations of these agents and I at !m�1: This result says that the time
interval !m � !m�1 is minimized, given the situation at time !m�1 and the
choice of � as the next agent to be met. However the possibility exists that
!m � !m�1 could be made smaller if a di¤erent agent � (closer to I than �
is at time !m�1) would be the next to be met. However this is not possible if
(f1; f2) is uniformly optimal, since choosing to meet agent � next at time !�

with !m�1 < !� < !m would yield a strategy pair with a higher probability
than the original strategy of meeting by time !�; and so (f1; f2) could not
have been uniformly optimal. Thus we have established the following �greedy�
property of uniformly optimal strategies.

Theorem 13 Let (f1; f2) be a uniformly optimal strategy pair for the ren-
dezvous problem (�C or �): De�ne !0 = 0 and let !1 < !2 < � � � < !M

denote the set of meeting times for (f1; f2) ; listed in increasing order. Then at
time !m; I meets one of the agents of II who was at minimum distance to him
at time !m�1; and !m � !m�1 is half of that distance.

3 Planar Rendezvous with Diagonal Start

In this section we analyze the diagonal start (Figure 4) game �D introduced by
Anderson and Fekete, and extend some of their pioneering results.

Figure 4: Start in �CD

Anderson and Fekete (2001) analyzed a strategy pair which we call the A-
F strategy, given by �f = [N;E; S; S;W;W;N;N ], �g = [N;S;N; S;N; S;N; S] :
Note that since II�s strategy �g has no E or W moves, it satis�es the invariance
equation �g0 = �g; and by (6) has the same expected meeting time with or without
the assumption of common clockwise, T

�
�f; �g
�
= TC

�
�f; �g
�
. The following table

indicates the meeting times !i;j corresponding to
�
�f; �g
�
depending on the initial
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direction which II calls North and the initial location of Player II.

Player II initial direction
Starting Point N E S W

(1; 1) 2 2 2 1
(1;�1) 3 4 4 4
(�1;�1) 6 5 6 6
(�1; 1) 8 1 7 8

For each time t = 1; : : : ; 8; the number of entries of the 4� 4 matrix of meeting
times which are equal to t is denoted by �xt and the number which are less than
or equal to t is denoted by �yt: Thus in the A-F strategy Player I meets �xt of
the 16 Player II agents at time t and �yt of these agents by time t: For a general
strategy we will let xt and yt denote these numbers. For the A-F strategy we
have

t 1 2 3 4 5 6 7 8
�xt 2 3 1 3 1 3 1 2
�yt 2 5 6 9 10 13 14 16

(10)

The expected meeting time for the A-F strategy
�
�f; �g
�
is

TC
�
�f; �g
�
=
1 � 2 + 2 � 3 + 3 � 1 + 4 � 3 + 5 � 1 + 6 � 3 + 7 � 1 + 8 � 2

16
=
69

16
:

Anderson and Fekete established that their (A-F) strategy is optimal in �C - no
strategy gives a lower expected meeting time. We will prove a stronger result,
namely that it is uniformly optimal in �C and in �: To do this we will need to
use part of their original proof, which we give below, with an additional useful
inequality in the statement which is due to an anonymous referee.

Lemma 14 For any optimal strategy pair (f; g) in �CD, the number of meetings
xi at time i satis�es x1 = 2; and xi � 3; for any i: Furthermore, if xi = 3; then
i is even, Player I is at his own or one of II�s starting locations at time i (a
Starting Point Meeting of type I or II, respectively) and xi+1 � 1: Consequently
for all even i we have xi + xi+1 � 4:

Proof. Since we may assume without loss of generality that both strategies
begin with N; we simply observe that at time 1; Player I will meet the E agent
starting at (�1; 1) and the W agent starting at (1; 1) and no other agents, so
x1 = 2: Suppose that xi � 3; which means that at time i Player I meets at
least three agents of II at some location A: We �rst show that at time i one of
the players must be back at his start. Suppose not. Then by Remark 5, all the
agents that I meets at time i must come from di¤erent starting points. Since
all Player II agents are equally distant from their respective starting positions,
the node A must be equally distant (in the Manhattan or graph distance) from
at least three of the starting points of II. The only such location is the origin,
that is, Player I�s initial location. So the meeting must be at a starting point,
and hence by Theorem 10, i must be even. By symmetry of the players, we will
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assume that A is one of the starting points of II. At time i�1 both Player I and
one of the agents of II who started at A must be at the same location. Hence
xi � 3 as claimed. Since all agents of II must be at their starting points at time
i; and I is at one of these, he can meet at most one agent of II at time i+ 1:

Theorem 15 The A � F strategy
�
�f; �g
�
is uniformly optimal in the �common

clockwise�diagonal start game �CD: Consequently any optimal strategy must have
x = �x = (2; 3; 1; 3; 1; 3; 1; 2) ; y = �y = (2; 5; 6; 9; 10; 13; 14; 16) ; and hence by the
previous Lemma there must be starting point meetings at time 2; 4; and 6:

Proof. We have to show that the cumulative meeting probability sequences
y = (y1; : : : ; y8) corresponding to any strategy pair is bounded above by the one
corresponding to the A-F strategy, namely yt � �yt: This is obvious for t = 1
(where equality holds by Lemma 14) and t = 8 (where �yt is maximal). For
t = 2j + 1; and t = 2j; j = 1; 2; 3; we have from Lemma 14 that

y2j+1 = x1 +

jX
i=1

(x2i + x2i+1) � 2 + 4j = �y2j+1; and

y2j = x1 +

j�1X
i=1

(x2i + x2i+1) + x2j � 2 + 4 (j � 1) + 3 = �y2j :

Corollary 16 The A � F strategy
�
�f; �g
�
is uniformly optimal in the diagonal

start �no common clockwise�game �D: Consequently R (�D) = R
�
�CD
�
= 69=16:

Proof. Since �g0 = �g for the A-F strategy, the previous result says that both�
�f; �g
�
and

�
�f; �g0

�
are uniformly optimal in �CD; so the result follows from Lemma

9.
We now determine the full set of optimal strategies (f; g) for �CD: Suppose

that (f; g) is such a strategy pair. According to Theorem 15, (f; g) must have
the meeting time sequence (2; 3; 1; 3; 1; 3; 1; 2) and there must be SPM�s at times
2; 4; and 6: There must also be an SPM at time 8 (Theorem 20). We can classify
optimal strategies according to where these meetings take place (at the starting
point of I or II) For example, the A-F strategy has �meeting type�[II,II,II,II]. We
will assume without loss of generality that II is at home at t = 2 so the meeting
type will always begin with a II. Optimal strategy pairs for �CD remain optimal
if either strategy element is rotated, so we may assume they both start with an
N: Since I visits a starting point of II at time 2, he must make a turn at time
1, so we may assume his strategy starts with (N;E; : : : ) : Similarly, since II is
back at his start at time 2, we may assume he starts with (N;S; : : : ) : Strategy
pairs starting in this way are called �standard�, or in �standard form�. Every
optimal strategy can be obtained from a standard one by rotating f and g: Our
classi�cation (Theorem 20) of meeting types requires three lemmas.

Lemma 17 If a standard optimal strategy for �CD has a Starting Point Meeting
(SPM) of type I at time 4, then it has an SPM of type II at time 6.
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Proof. At any (odd) time there can be at most two agents from the same
starting point adjacent to (0,0). Now all the agents of (1,1) have been met by
time 2. Thus if there is an SPM of type I at time 4, there can be at most
three unmet agents adjacent to (0,0) at time 5. Hence, if player I is also at
(0,0) at time 6 (type I SPM), he can meet a total of at most 3 agents on
moves 5 and 6 which contradicts (Theorem 15) the required meeting pattern of
(2; 3; 1; 3; 1; 3; 1; 2) ; which has x5 + x6 = 1+ 3 = 4: Since an SPM of some type
at time 6 is guaranteed by Lemma 14 (since x6 = 3), it must be of type II.

Lemma 18 If a standard optimal strategy for �CD has a Starting Point Meeting
(SPM) of type II at time 6, then it has an SPM at time 8.

Proof. Any optimal strategy must have x8 = 2; by Theorem 15. If the
two agents met at time 8 have the same starting point then, by Remark 5, they
can only be met at that starting point, and we are done. If they have di¤erent
starting points G and H; these must be distinct from a third starting point J
where the SPM occurs at time 6: Hence the meeting at time 8 must occur at
a node z whose distance from all three nodes G; H; and J is no more than 2:
Hence z is the origin, again with an SPM at time 8.

Lemma 19 If a standard optimal strategy for �CD has a Starting Point Meeting
(SPM) of type II at time 4, then it has SPM�s of type II at times 6 and 8 as
well. That is, if the meeting type begins [II, II, : : : ], then it is [II, II, II, II]. In
this case Player I�s strategy is (N;E; S; S;W;W;N;N) :

Proof. Since there are SPM�s of type II at times 2 (by de�nition of standard)
and 4 (by hypothesis), it follows that at any time t > 4 at most two agents (one
each from the two starting points not visited at times 2; 4) can be met at the
origin. Consequently, since x6 = 3; the SPM at time 6 (guaranteed by Lemma
15) must be of type II (not at origin). It now follows from Lemma 18 that there
is an SPM at time 8: However the type II SPM�s at times 2; 4; and 6; imply
that if this SPM is of type I, then at most one agent can be met at time 8 (from
the one starting point not visited). However x8 = 2 for any optimal strategy
(Theorem 15). Hence the SPM at time 8 must be of type II.

Theorem 20 Every standard optimal strategy for �CD has SPM�s at t = 2; 4; 6; 8;
and the meeting types [II, I, II, II], [II, I, II, I], or [II, II, II, II].

Proof. The meeting type must begin [II,: : : ] by de�nition of �standard�. If
the second SPM is of type I then Lemma 17 implies the next one must be of
type II, so Lemma 18 gives the two allowed cases [II, I, II, II] and [II, I, II, I].
If the second SPM is of type II, then by Lemma 19 the meeting type is [II, II,
II, II].
Figure 5 gives the full list of standard optimal strategies for �CD, grouped by

meeting type.
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Figure 5: Full set of standard optimal strategies fo �CD:
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There are six families of strategies, called cc1 to cc6: The middle group, with
meeting type [II,I,II,I], has exactly four strategy pairs. The solid lines indicate
the player�s path relative to his coordinate system (with his origin at the center
and his North drawn �up�). The numbers indicate the time when the player
reaches a given location. Strategy pair cc4 is the A-B strategy drawn in Figure
18.2 of Alpern and Gal (2003) (but written incorrectly there above the �gure
and with mistakes in the table on p.282.) The top group, [II,I,II,II], has three
strategy pairs, all with the same f: Player II has three possibilities at moves 7
and 8, indicated by dashed lines. His possible locations at time 7 are indicated by
a *. The bottom group, with meeting type [II,II,II,II] consist of Modi�ed Wait
For Mommy strategies, where player I searches all the possible initial locations
of II (at times 2i; i = 1; : : : ; 4), while II is back at his start at these times. The
only restriction on II�s motions (g) is that his move at time 7 cannot be E. The
reason for this is that I meets the agent starting at (�1; 1) facing E at time 1
at I�s location (0; 1) ; and must meet a di¤erent agent who started at (�1; 1) at
time 7 and I�s location (�1; 0) : This is best seen by referring to the bottom left
drawing of Figure 5. In order to insure that the agent who went East (in I�s
system) from (�1; 1) at time 1 (and is no longer alive) is not the same one who
goes South (in I�s system) at time 7, we must require that the direction for II at
time 7 is not a �right turn�from his direction at time 1. Since we are taking the
latter as N; we exclude E (a right turn from N) at time 7. It is easily veri�ed
that all the strategies cc1 to cc6 have the meeting time pro�le (2; 3; 1; 3; 1; 3; 1; 2)
and are therefore optimal. That there are no additional optimal strategies for
the common clockwise problem �CD is established by the following results, with
some cases illustrated below.

Figure 6: Situation after four moves of Player I

We begin by showing that the left (�f�) column of Figure 5 contains all the
optimal strategies for I, and then we will show that to each of these f�s the only
complementary (optimal) g�s are those drawn on its right.

Theorem 21 If (f; g) is a standard optimal strategy for the common clockwise,
diagonal start, rendezvous problem �CD; then its �rst component f is one of the
f strategies in cc1 to cc6 de�ned in Figure 5.
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Proof. By Theorem 20 we need only consider the three meeting types [II,
II, II, II], [II, I, II, II], and [II,I,II,I]. If the meeting type is [II, II, II, II], we have
already established in Lemma 19 that the Anderson-Fekete strategy (cc6) for I
of (N;E; S; S;W;W;N;N) is the only possibility.
Consider the meeting type [II, I, II, II]. In this scenario, I visits three of

II�s starting nodes. The only way he can meet all four agents of the starting
point v not visited, is to meet one at the origin at time 4, and to meet the three
others at distinct (by Remark 5) times at nodes adjacent to v: So in particular
I�s path must be adjacent to the unvisited starting point v at three times t: Now
I must begin with (N;E) (by de�nition of standard) and return to the origin
at time 4 by continuing either (N;E; S;W; : : : ) or (N;E;W; S) : If the former
(Figure 6b), his two remaining starting points to visit cannot be (�1; 1) and
(1;�1) because the distance between them is 4, the time remaining. Hence he
must visit one of those and (�1;�1) ; and be adjacent to the remaining one on
two more occasions. Since this is not possible, he must begin (N;E;W; S; : : : ) ;
as in Figure 6c. Player I has now been adjacent to starting point (�1; 1) twice
(t = 1; 3), so he needs to be adjacent one more time and also visit the starting
points (�1;�1) and (1;�1) (in some order). The only path with this property
is clearly that of cc1, namely (N;E;W; S;W; S;E;E) :
We now show that the meeting type [II,I,II,I] restricts f to the four possibil-

ities cc2 to cc5. By the same reasoning as in the previous paragraph, Player I
must visit two starting points (t = 2; 6) and be adjacent to each of the other two
on two occasions (and at the origin t = 4; 8). Starting with (N;E) (as required
by the de�nition of standard), I can return from (1; 1) to (0; 0) with either con-
tinuation (N;E;W; S) or (N;E; S;W ) : In the former case (Figure 6c), by time
4 he has already visited the node (0; 1) adjacent to starting point (�1; 1) twice.
If he visits starting point (�1; 1) (t = 6) and is back at the origin at time 8, his
path will obviously not have the required property. So he must be at (�1; 0) for
t = 5; 7; and at t = 6 either at (�1;�1) (cc2) or (1;�1) (cc3).
If Player I begins (N;E; S;W; : : : ) ; as in Figure 6b, he has already been

adjacent to both starting points (�1; 1) and (1;�1) : So the continuation must
pass through (�1; 0) ; (0;�1) (adjacent to the two unvisited starting points),
(�1;�1) (the remaining starting point), and return to the origin at time 8. To
do this, he must go around the square with diagonal (�1;�1) and the origin in
either in the clockwise (cc4) or counter-clockwise (cc5) direction.

Theorem 22 For each of the six Player I strategies f listed in Figure 5 as
cc1 to cc6, the standard strategies g listed to its right are the only ones for
which (f; g) is optimal. Consequently the strategy pairs in Figure 5 constitute
the complete set of (uniformly) optimal standard form strategies for the diagonal
start, common clockwise, rendezvous problem �CD:

Proof. We must show that for each of the f strategies (in the left column
of Figure 5) which were shown in Theorem 21 to be potentially optimal, the
g�s on the right constitute the full set which form an optimal pair. We have
already shown this for the Modi�ed Wait For Mommy Strategies (meeting type
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[II,II,II,II] in the paragraph following Figure 5: Player II must be back at his
start at all even times t; and he cannot move S (opposite to his �rst move) on
move 7: It remains to demonstrate the Theorem for meeting types [II,I,II,II] and
[II,I,II,I].
Meeting type [II,I,II,II]: For this part of the proof, we maintain our usual

perspective of I�s coordinate system. So I starts at (0; 0) and seeks to meet all
16 agents of II, four each from each starting node vi: If Player I is following f1
(the f of cc1), then he is at locations a = (0; 1) ; b = (0; 0) ; and c = (�1; 0)
at times t = 3; 4; 5; respectively, and must meet the three remaining agents of
II starting at v4 = (�1; 1) (aside from E , who was met at time t = 1) at these
times (the only times when I is adjacent to v4:) At time t = 2; these agents are
all at their start v4; so at time t = 3 one of them goes to a; another goes to c
(reaching b with a left turn at time t = 4); and a third goes to (�2;�1) with a
left turn to (�2; 0) ; and another left turn to reach c at time t = 5: To return
to his start v4 again at t = 6, he would make another left turn at time 6: These
three paths from v4 are drawn in Figure 7. The remaining agent from v4 must
have gone (dotted lines) to (�1; 2) at time t = 3; and this agent must be the
one already met, E . So we can label the paths clockwise to that of E as S; W,
and N ; as in �gure 7. Thus on moves 3 to 6, the N agent moves W;S;E;N;
and since the moves of the N agent (from any start, since the rotation applied
is the identity) are the same as the strategy g; we know that the move sequence
of g is (N;S;W; S;E;N;D;�D) for some direction D (since there is another
SPM of type II at t = 8). To determine the direction D; note that since the
N player from v2 moves W;S at times t = 3; 4; it was the E agent who moved
N and W (to (1; 0) and then to the meeting at (0; 0), as drawn in Figure 7).
Consequently it cannot be the E agent from v2 who moves at t = 7 to the
meeting node (�1; 0) ; which would be a move in direction D = S: This leaves
the three strategies for II given in cc1 in Figure 5.

Figure 7: Optimal g for f of cc1

Meeting type [II,I,II,I]: For this meeting type we reverse our usual per-
spective and adopt the coordinate system of Player II, who is now assumed to
start at (0; 0) ; while Player I has 16 agents starting four each at the nodes vi: A
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standard optimal strategy g for Player II must begin N;S, be at the origin (II�s
starting node) at times t = 0; 2; 6; and visit two starting nodes a and b of I at
respective times 4 and 6: As in the proof of Theorem 21, g must be adjacent to
the two remaining starting nodes of I at two distinct times. We will determine
all g�s with this property, noting that g and its re�ection g0 will be the same in
this respect, so we need only consider one of each such pair. We divide the proof
into two cases, according to whether (i) nodes a and b are opposite (distance
4) or (ii) on the same side (distance 2) of the square determined by I�s starting
points. We begin by reducing the possibilities to seven strategies g1 to g7 (which
include the four in Figure 5 as g2 to g5); and their re�ections.

(i) By re�ectional symmetry may assume that these nodes are a = (�1; 1) and
b = (1;�1) : If a is searched �rst, then the only path with the required
property is g1 = NSWNSEES; as drawn in Figure 7. If b is searched
�rst, then the only paths are those given in Figure 5 as cc2; cc3; and cc4;
which we call g2; g3; and g4; respectively.

(ii) If a and b are both at the top of the square, the two nodes (�1; 1) ; there is
no way to be adjacent to both (or even one of) the nodes (�1;�1) twice,
as required. If a and b are both on the same (left or right) side, the only
path with property (except for its re�ection) is the g given in Figure 5 as
cc5, which we call g5: If a and b are both on the bottom of the square,
nodes (�1;�1) ; then the only potentially optimal paths are g6 and g7 of
Figure 8.

Figure 8: Three g�s to be ruled out

We now exclude all but the four strategies g of cc2 to cc5 from potential
optimality by observing that the four agents of every starting node of I unvisited
by g must each have one of the meetings with I, and hence no agent can take
two of these meetings. Since standard strategies begin N;E for f and N;S, for
g, the same agent of I (namely E) from v4 is at both meeting nodes (0; 1) for
t = 1 and (0; 0) for t = 2; so no g that doesn�t visit v4 can meet all four agents
from v4 by time 8: This argument excludes g6, g7 and their re�ections, as well
as g01, g

0
2; g

0
3; g

0
4; g

0
5; from being optimal.

For the rest of the proof we return to our usual perspective where
Player I starts at the origin and the agents of Player II start at the
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nodes vi; and we denote the strategies f of cci as fi; i = 2; : : : ; 5: The
strategy g1 can be eliminated by observing that the the W agent of II from v4
following g1 will not meet Player I paths f2; f3; or f4; and the S agent of II
from v3 following g1 will not meet f5:
Thus the only potential optimal strategies for Player II in the meeting type

[II,I,II,I] are the ones listed in Figure 5 as cc2 to cc5 which we call g2 to g5:
We must show that gi forms an optimal pair only with the corresponding fi;
i = 2; : : : ; 5: Observe that the N agent from v4 following g5 never meets (up to
time 8) f2; f3;or f4; so such pairings cannot be optimal. Similarly, the W agent
of v2 following g4 is not met by time 8 by any of the f2; f3; f5; and the E agent
of v2 following g3 is not met by any of the f2; f4; f5: Finally the W agent of v4
following g2 is not met by either f4 or f5; and the N agent of v3 is not met by
f3: Hence for i = 2; 3; 4; 5, the strategy gi forms an optimal pair only with fi;
and we are done.
Since we have already established in Corollary 16 that R (�D) = R

�
�CD
�
;

it follows from Proposition 7 that an optimal strategy pair (f; g) for �CD is also
optimal in the no common clockwise problem �D if and only if the pair (f; g0)
is also optimal in �CD: Since we have a complete list of strategies optimal for �

C
D

in Figure 5 (according to the previous Theorem), we need only check for which
(f; g) in that list the strategy (f; g0) is also in the list. This is easily done. We
begin with the Modi�ed Wait For Mommy strategy cc6 with move 7 a W: Its
re�ection g0 has move 7 in direction E; which is not on the list. However all the
other strategies in cc6 have their re�ections g0 also in the cc6 group. So all the
Modi�ed Wait For Mommy strategies with move 7 being N or S are optimal
strategies for the no common clockwise problem. (We note that in Corollary
18.3 of Alpern and Gal (2003) the move 7 of S was missed.) We call these the
generalized Anderson-Fekete strategies. It is easily checked that none of the
other player II strategies in the list can be re�ected (transposing E and W ) and
still remain in the list. That is, if a standard optimal strategy (f; g) is not a
generalized A-F strategy, then (f; g0) is not optimal in �CD; and hence (f; g) is
not optimal in �D.Thus we have established the following characterization of
optimal strategies for �D; as a consequence of the previous Theorem.

Corollary 23 A standard form strategy pair is optimal for the �no common
clockwise� rendezvous problem �D if and only if it is a Modi�ed Wait For
Mommy strategy which moves N or S on move 7 (cc6), that is, a generalized
Anderson-Fekete strategy.

4 Planar Rendezvous with Parallel Start

In this section we consider the parallel start rendezvous problems in the plane,
�CP and �P ; where the initial di¤erence vector between the two players is of
length 2 and parallel to one of the axes (De�nition 1). The starting con�gura-
tions for the common clockwise formulation of this problem are illustrated in
Figures 1 and 2. In Alpern and Gal (2003), a family of strategies called Alter-
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nating Wait For Mommy (AWFM) for this starting con�guration and general
dimension n is given.

De�nition 24 A strategy in �P is called AWFM if Player I successively visits
the 2n possible starting locations of II (in any order) at times T1 = f2; 6;
: : : ; 2+ 4 (2n� 1)g; while returning to his start (0; 0) at the intermediate times
T2 = f4; 8; : : : ; 4 (2n� 1)g; and Player II makes his �rst move a single unit in
any direction, is back at his start times T1, and visits all but one of the possible
initial locations of I at times T2. The maximum time for this strategy is clearly
M = 2 + 4 (2n� 1) ; or M = 14 for n = 2:

The expected meeting times for this strategy family are analyzed in the next
section for general (mainly large) n: In Alpern and Gal (2003) it was shown that
for n = 2 any AWFM strategy (as shown below in Figure 9) gives the maximal
probability of meeting by time t for any t � 7; and it is suggested that this might
in fact be optimal (like the n = 1 version, where optimality was established by
Alpern and Gal (1995)) or even uniformly optimal.

Figure 9: An AWFM strategy
�
�f; �g
�
for n = 2:

The meeting time sequence x for any n = 2 version
�
�f; �g
�
of the AWFM in

�CP is given by

(1; 3; 0; 3; 0; 3; 0; 2; 0; 2; 0; 1; 0; 1) ; and since
�
�f; �g0

�
is also AWFM,

TC
�
�f; �g
�

= TC
�
�f; �g0

�
=
99

16
; and hence also

T
�
�f; �g
�

=
99

16
:
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However, we have found an alternative strategy with M = 12,
�
f̂ ; ĝ

�
given by

(N;N; S; S;W;W;E; S;E;E;E;N) ; (N;S;N;N; S; S; S;W;E;E;W;N) ;

shown in Figure 10, that has a better expected meeting time in �CP ; speci�cally,

TC
�
f̂ ; ĝ

�
=
97

16
:

Note that its re�ection
�
f̂ ; ĝ0

�
does not have all its agents met by time 12,

namely the E and W agents from (0;�2). If they were met at time 13, the ex-
pected meeting time of the augmented strategy (of length 13) would be 105=16;

so the strategy
�
f̂ ; ĝ

�
does not preclude the optimality of

�
�f; �g
�
in the no

common clockwise problem �P :

Figure 10: The strategy
�
f̂ ; ĝ

�

However the strategy
�
~f; ~g
�
drawn in Figure 11 is better than AWFM in �P :

Note that I�s strategy ~f is the same as that for AWFM ( �f) up to time 10; but
then I goes from (0;�2) to (2; 0) without going back through his starting point
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(0; 0) :

Figure 11: The strategy
�
~f; ~g
�

We have

TC
�
~f; ~g
�

=
98

16
; TC

�
~f; ~g0

�
=
99

16
; so

T
�
~f; ~g
�

=
197

32
:

Remark 25 We have shown in Alpern and Baston (2004a) that in fact
�
f̂ ; ĝ

�
is optimal in the common clockwise problem �CP ; which therefore has rendezvous

value R
�
�CP
�
= 97=16; and

�
~f; ~g
�
is optimal in the no common clockwise prob-

lem �P ; which therefor has rendezvous value R (�P ) = 197=32: Hence the par-
allel start problem is one in which (unlike the diagonal start problem) it does
help the players to have a common notion of clockwise. The optimality proofs
in both cases are very involved (much more so than for diagonal start).

It is easy to show that

Proposition 26 There are no uniformly optimal strategies in either of the par-
allel start rendezvous problems �CP or �P :

Proof. According to Remark 8, it is su¢ cient to demonstrate that
�
f̂ ; ĝ

�
is not uniformly optimal in �CP and that

�
~f; ~g
�
is not uniformly optimal in �P :

To do this we de�ne an additional strategy pair
�
_f; _g
�
given by

((N;W;S;W;E;E; S; S;N;N;E;E; : : : ) ; (N;E;W; S; S; S;N;N;W;W;E;E; : : : )) ;
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and calculate the number of agents y (t) met by time t in �CP for various strate-
gies.

y 1 2 3 4 5 6 7 8 9 10 11 12 13 14

y
�
f̂ ; ĝ

�
(t) 1 4 4 7 7 10 10 11� 12 14 15 16

y
�
~f; ~g
�
(t) 1 4 4 7 7 10 10 12� 12 14 14 15 16 16

y
�
~f; ~g0

�
(t) 1 4 4 7 7 10 10 12 12 14 14 15 15 16

sum above 2 8 8 14 14 20 20 24 24 28 28 30� 31 32
sum below 2 5 6 11 11 17 17 23 23 27 27 31�

y
�
_f; _g0

�
(t) 1 3 3 6 6 9 9 12 12 14 14 16

y
�
_f; _g
�
(t) 1 2 3 5 5 8 8 11 11 13 13 15

To see that the optimal strategy
�
f̂ ; ĝ

�
for �CP is not uniformly optimal, observe

that at time t = 8; 11 agents have been met; while under the strategy
�
~f; ~g
�
; 12

agents have been met. Similarly, under optimal strategy
�
~f; ~g
�
, 15 agents have

been met by time t = 12; and the same number under the re�ected strategy�
~f; ~g0

�
; or 30 of the 32 agents in the problem �P : However, under the strategy�

_f; _g
�
; 15 agents have been met; under the re�ection

�
_f; _g0

�
16 have been met,

for a total of 31 of the 32 agents in the no common clockwise problem �P :
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