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Abstract

Two players are lost in a grid of city streets and wish to meet as soon as
possible. Knowing only the distribution of the other’s initial location (two
nodes away in one of the four compass directions), how do they move from
intersection to intersection (between nodes of the lattice Z2) to achieve
this? We assume that they do not have common compass directions to
coordinate on, but that they can use their common notion of clockwise.
We show that the latter, realistic assumption, can aid them in expediting
their meeting (relative to a previous rendezvous problem which did not
allow this). We also solve the easier ‘streets and avenues’ version of the
problem, in which the players can distinguish between the axes (between
streets and avenues). We discover several new phenomenae which have
not been seen before in planar rendezvous.

Authors supported by NATO grant PST.CLG.976391

1 Introduction

The rendezvous search problem [1] asks how two (or more) players, lost in a
known region Q, can move so as to meet in least expected time. The work
in this field up to about a year ago is outlined in the survey article [2] and
presented in greater detail in the second part of the monograph [7]. Planar
rendezvous was first studied by Thomas and Hulme [15], and the discretization
to the planar integer lattice Q = Z2 was initiated by Anderson and Fekete
[9] (in a different, ‘diagonal start’, version than studied here). Their work on
diagonal start rendezvous has been extended by the authors [4]. Related work
on rendezvous theory can be found in [8], [6], [14], [10],[11], [13], [12], [3]. Other
work on rendezvous, of less relevance to the present paper, is cited in [2]. This
paper is primarily concerned with rendezvous on the rectangular lattice Z2 when
the players have initial locations on a common line and have a common notion
of clockwise.
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In this paper we consider the rendezvous problem faced by two players who
are lost in a city with a Manhattan—like grid structure which we model as the
integer lattice Z2 (graph paper). It is common knowledge that they are initially
placed at nodes (‘intersections’ in the city) so that their vector difference is
of length 2 (measured by edges) and parallel to one of the coordinate axes.
(The even initial distance, combined with the requirement that they move in
each period to an adjacent node, ensures that the distance between them is
always even, and that they cannot pass each other without meeting at a node.)
Their common aim is to minimize the expected number of periods required to
occupy a common node. They can communicate before or during the game
(say with mobile phones) to agree on a strategy pair, for example that Player
I would exhaustively search the possible starting points of Player II, while the
latter would remain stationary (the so called Wait For Mommy Strategy). This
is called the player-asymmetric version of the rendezvous problem. Our main
results concern the game we call Γ2 in which the players have no common sense
of compass directions, but they can use their common notion of clockwise. We
show that this ability does reduce their expected meeting time (the so called
rendezvous value of the game), compared with the no-common-clockwise version
Γ02 which we analyzed in a previous article [5]. The rendezvous value with
common clockwise is R (Γ2) = 194/32 = 6.0625, compared with the larger
time of R (Γ2) = 197/32 = 6.15625 required without common clockwise. This
improvement is in sharp contrast to the Anderson-Fekete [9] version of planar
grid rendezvous, where the players start at opposite corners of one of the city
blocks (diagonally opposite nodes of Z2) and the rendezvous value is the same,
namely 138/32 = 4.312 5, with or without the assumption of a common notion
of clockwise.
As observers, we adopt Player I’s coordinate system, and take his initial

node as the origin (0, 0) , and his North direction in the usual way. From this
perspective, Player II starts equiprobably at one of the four starting nodes V =©
v1 = (0, 2) , v2 = (2, 0) , v3 = (0,−2) , v4 = (−2, 0)ª and facing (in the direction
he calls North) equiprobably in one of the four directions (relative to Player I’s
system) j = 0 (N), j = 1 (E) , j = 2 (S), j = 3 (W ). (The direction j stands
for the rotation Rj of N, where R is the clockwise rotation by 90◦.) The 16
initial configurations, with II starting at node vi and facing in direction Rj are
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depicted in Figure 1, with Player I starting at the origin O.

O

Figure 1: 16 initial configurations in Γ2.

A strategy for a player is a sequence of compass directions that describe his
consecutive moves, from node to node, over time. They are carried out with
respect to his own coordinate system. Our main result, Theorem 19, says that

the strategy pair drawn in Figure 2, which we denote
³
f̂ , ĝ

´
, is optimal for the

game Γ2.

2

0,46 5,7

8 11

12 0,2,6,12

7,9,118 10

1,3,5

4

(N,N,S,S,W,W,E,S,E,E,E,N)    (N,S,N,N,S,S,S,W,E,E,W,N)
Figure 2: The optimal strategy

³
f̂ , ĝ

´
for Γ2.

Player I’s strategy, drawn on the left, takes him from his start (0, 0) at the
center of the drawing, to three out of the four possible starting nodes of II (all
but v3 = (0,−2) , at times 2, 6, and 12. Note that Player II is back at his start
(the center of the drawing on the right, drawn in II’s system) at these times,
hoping to be found. At time 4, II searches out one of Player I’s possible starting
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nodes, and I is back at the origin. The meeting time when II starts at node vi in
directionRj is denoted ωi,j and these sixteen times are listed in the table below.
Since both strategies start with N , if II starts at v1 = (0, 2) (i = 1) facing South
(j = 2), then his first instruction N in fact takes him South to (0, 1) where he
meets Player I going N . Hence ω1,2 = 1, and the other entries are similarly
determined, with the average of the sixteen times giving the expected meeting
time T = 97/16.

ωi,j

³
f̂ , ĝ

´
N E S W

j 0 1 2 3

i = 1, (0, 2) 2 2 1 2
i = 2, (2, 0) 11 10 12 4
i = 3, (0,−2) 4 8 9 10
i = 4, (−2, 0) 6 4 6 6

(1)

Although the strategy
³
f̂ , ĝ

´
is optimal, it does not have the stronger prop-

erty found in [4] for optimal strategies of the diagonal start game, namely that
they maximize the probability of meeting by time t, for all t. From the above
table we see that five of the entries exceed 8, so the probability that players

using
³
f̂ , ĝ

´
will have met by time 8 is 11/16. However if they use the strat-

egy
³
f̃ , g̃

´
(drawn in Figure 8) which is optimal for the no-common-clockwise

problem Γ02, then it can be seen from the left part of the table in (31) that they
meet by time 8 with higher probability 12/16.
As formalized in a more general setting in [1], the lack of a common initial

orientation in these problems can be described in terms of a given subgroup G
of the full symmetry group G∗of the search space Q = Z2 fixing the origin. For
the lattice Z2, G∗ is the 8-element group generated by the reflection φ about
the vertical axis and the 90◦ clockwise rotation R. Problems without (with)
common clockwise have (don’t have) φ in their group. Thus the main problem
Γ2 we consider here is Γ (G2) , where G2 is the four element group generated
by R (hence the four possible orientations at each starting point, as drawn in
Figure 1). The no-common-clockwise problem Γ02 studied in [5] is Γ (G

0
2) where

G02 is the full symmetry group G∗. As a sidelight to our main results on Γ2 =
Γ (G2) , we also study the easier problems we call Γ1 = Γ (G1) and Γ

0
1 = Γ (G

0
1) ,

in which the players have a common notion of the horizontal (E-W) and vertical
(N-S) axes (though not of a positive direction along them), and also a common
notion of clockwise in Γ1 but not Γ

0
1. The common notion of axes corresponds to

search in a city with streets and avenues distinguished in some way, e.g. avenues
are wider. The associated groups are generated by the inversion R2 (for the 2-
element group G1) and R2 and φ (for the 4-element group G01). We derive the
optimal strategy for the ‘streets and avenues’ problems in Section 4, to give
the reader an easy introduction to the more difficult problem Γ2 in Section 5.
We find that in this version of planar rendezvous, having a common notion
of clockwise does not help the players (rendezvous value does not decrease).
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Furthermore there is a uniformly optimal strategy in this version.
It is easy to show (as done in [6] for the line, using a technique which applies

equally well to the plane) that if the players have common notions of directions
(e.g., both have compasses), then the players should always move in opposite
directions. The problem reduces to a one player search problem in which Player
I starts at the origin and tries to minimize the expected time to find a stationary
Player II whose initial locations are in 1

2V, that is, the four nodes at distance
1 from the origin. Such a path trivially reaches these nodes at the times 1, 3,
5, 7, with expected meeting time 4. In the original formulation Player I follows
that path while II moves towards the origin at odd times and back to his start
at even times (always taking the opposite direction to that of I). Thus 4 is a
useful lower bound on all the other rendezvous times.
The paper is organized as follows. Section 2 gives a formal definition of the

problems we study, with rigorous definitions of strategies, agents, optimality
and uniform optimality. Section 3 analyses how distinct ‘agents’ of Player II
can coincide at a common node, so that Player I can meet several of them at the
same time (explaining the multiple occurrences of certain numbers, e.g. 2, in
the meeting time table (1)). Section 3 presents the fairly easy optimality proofs
for Γ1 and Γ

0
1, which provides a gentle introduction to the more sophisticated

techniques used to solve Γ2 in Section 4.

2 Formal Definitions of Γ1, Γ2, and Γ01.

In this section we first give a simultaneous formal definition of the common-
clockwise planar rendezvous games Γ = Γ1 or Γ2, where they can and can’t,
respectively, distinguish between the axes. Then at the end of the section we
show how Γ1 can be modified to a no—common—clockwise version Γ

0
1.

In all versions the players move on the search space Q = Z2, the inte-
ger lattice (network) whose nodes z = (z1, z2) ∈ Z2 are adjacent if they have
one coordinate identical and the remaining coordinate differs by 1. This is just
the familiar lattice of graph paper. The distance d between two nodes is de-
fined as the sum of the edges in a shortest connecting path, or equivalently
d ((z1, z2) , (w1, w2)) = |z1 − w1| + |z2 − w2|. At time t = 0 Nature places the
two players on even nodes with the vector from I to II drawn from a given dis-
tribution. (A node z ∈ Z2 is called even if the sum of its coordinates is even;
otherwise it is called odd.) In every time period each player must move to an
adjacent node. This ‘even distance’ initial placement (originating in the interval
network of Howard [13]) ensures that the two players will always have the same
parity, and cannot pass each other on an edge without meeting at a node. The
players both wish to minimize the expected number of periods required for them
to be at the same node.
We analyze the progress of the game in terms of Player I’s coordinate system

(and sense of clockwise). In this perspective, the initial random placement is
achieved by Nature placing I at the origin facing North and placing Player II
equiprobably at one of the four nodes v1 = (0, 2) , v2 = (2, 0) , v3 = (0,−2) ,
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v4 = (−2, 0) . The set of possible starting nodes for Player II (in I’s coordinate
system) is denoted by

V =
©
vi, i = 1, . . . , 4

ª
. (2)

Player II will have an initial orientation in the plane that is determined by the
direction he calls North, which determines all the rest by the usual method
of labeling them East, South, and West, going clockwise. (If the players did
not have a common notion of clockwise, then there would be two orientations
consistent with the given North direction.) In the game Γ2, the direction that
II calls North will be equiprobably any of the four compass directions. However
in the game Γ1, where the players have a common notion of the N-S and E-W
axes, the direction that II calls North will be equiprobably the direction that I
calls North or the direction that I calls South. At the end of the section we will
define another game Γ02, which is the same as Γ2 except that the players do not
have a common notion of clockwise.
The orientations of player II can be seen as transformations (or rigid mo-

tions, or symmetries) of the ‘standard orientation’ of Player I. In the game Γ2,
the four orientations correspond to the four orientation preserving symmetries
(preserving the origin) of the planar lattice Z2 given by

Rj, j ∈ J2 = {0, 1, 2, 3} , where (3)

R (z1, z2) = (z2,−z1) is the clockwise rotation by 90◦. (4)

The four rotations Rj correspond to the four possible choices of a North direc-
tion by Player II, and the set of these four rotations describes the information
symmetry group G2 =

©Rj , j ∈ J2
ª
in the sense of Alpern [1]. In the game Γ1,

where the players have a common notion of the two axes, say because they can
distinguish between streets and avenues, Player II either has the same orienta-
tion as I (Rj , j = 0) or the opposite one (Rj , j = 2). Thus the relevant group
in this case is G1 =

©Rj , j ∈ J1 = {0, 2}
ª
. We call the general indexing set J

to cover both cases.
We can now define a strategy and show how a pair of strategies determines

the meeting times of the two players, one for each initial configuration.

Definition 1 A strategy for a player is a sequence of directions Di ∈ {N =
(1, 0) , E = (1, 0) , S = (0,−1) ,W = (−1, 0)} , i = 1, 2, . . . . A player pursuing
this strategy moves successively one unit in his direction D1,D2, . . . , according
to his initial orientation. Equivalently, it can be seen as his net displacement
f (t) at time t from his initial location, given by f (0) = (0, 0) and for t ≥ 1,

f (t) =
tX

k=1

Dk. (5)

So for example the strategy beginning N,E,E, corresponds to a net dis-
placement function f with

[f (0) , f (1) , f (2) , f (3)] = [(0, 0) , (0, 1) , (1, 1) , (2, 1)] . (6)
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We shall deal with strategy pairs (f, g) where Player I adopts f and II adopts
g. In this setting, the location of Player I at time t is simply f (t) , which we
will denote by zt when f is a fixed strategy under discussion. The location of
II (in I’s coordinate system) depends on his initial configuration (starting node
vi and orientation Rj), as described below.
If the initial configuration gives Player II initial location vi and orientation

Rj then the location of Player II at time t under strategy g is given by

gi,j (t) = vi +Rj (g (t)) . (7)

Note that the number of initial configurations is 4 (#J) , which is 8 for Γ1
and 16 for Γ2.

Definition 2 The 4 (#J) paths gi,j are called the agents of Player II. We call
gij the agent starting at vi in direction j∈ J.

The time taken for agent gi,j to be met by Player I is called its meeting time,
and denoted by

ωi,j (f, g) = min {t : f (t) = gi,j (t)} , (8)

and the time required to meet all the agents is called M (f, g) , where

M =M (f, g) = max
i,j

ωi,j (f, g) . (9)

Figure 2 shows the strategy pair starting with WS for I and NE for II, with
the paths of I (thick line) and of all 16 agents of II for t = 0, 1, 2. Observe that at
time t = 1 Player I meets the agent g4,1 of II starting at v4 = (−2, 0) and facing
E (whose North is the direction that I calls East (Rj , j = 1)), hence ω4,1 = 1.
Similarly at time t = 2 he meets the agent g3,3 who started at v3 = (0,−2)
and whose North is what I calls West (R3), so that ω3,3 = 2. All other meeting
times are greater than 2.

(0,2)

(0,0) (2,0)

(0,-2)

(-2,0)

Figure 3: Strategy (W,S) , (N,E)
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Given a strategy pair (f, g) , the expected meeting time is called T (f, g) .
Thus

T (f, g) =
1

4 (#J)

X
i,j

ωi,j (f, g) . (10)

In fact it will be easier in practice to calculate the expected meeting time by
considering the number of agents xt met (for the first time) at time t,

xt = xt (f, g) = # {(i, j) : ωi,j (f, g) = t} . (11)

With this notation we have an alternative definition of T as

T (f, g) =
1

4 (#J)

MX
t=1

t · xt. (12)

The full vector x = [x1, x2, . . . , xM ] is called the agent number profile, or
sometimes just the profile. Inequalities regarding elements of the profile will be
the main tool in finding solving the games Γ1 and Γ2.
The rendezvous value R for Γ is the least expected time,

R (Γ) = min
f,g

T (f, g) , (13)

and any pair f, g achieving the minimum is called optimal for ΓC .

In some cases (in fact for Γ1 but not for Γ2) a strategy pair may have a
stronger type of optimality.

Definition 3 A strategy pair is called uniformly optimal if for all t it max-
imizes the probability that the players have met by time t. (Note that if there
is a uniformly optimal strategy, then all optimal strategies must be uniformly
optimal.)

A uniformly optimal strategy maximizes the expected utility of the meeting
time ω as long as the utility function is non-increasing in ω (earlier meetings
are preferred to later ones); an optimal strategy is only required to accomplish
this for the particular utility function −ω. For example if one player has all the
water, it may be essential that they meet within say two days. Meeting in three
days is no better than meeting in four. If the players are adopting a uniformly
optimal strategy, it is certainly the best they can do; this is not necessarily true
for a strategy which is merely optimal.
Most of this paper is concerned with rendezvous where the players have a

common notion of clockwise, which would be the case if they are on a surface
such as city streets where they know what ‘up’ is. However the game could
also be presented (e.g. [5]) in a version where the grid Z2 is a vertical ‘fence’
which the players might (or might not) approach from opposite sides. Or the
grid might be a two dimensional array without any geometrical structure at all.
In these cases the common clockwise assumption might not be justifiable. In
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particular, if the players have a common notion of axes (as in the game Γ1),
but not common clockwise, then this defines a game Γ01. The associated group
is denoted G01 =

©R0 = identity,R2, φ
ª
, where φ is the reflection about the

vertical axis defined by φ (w1, w2) = (−w1, w2) . To every agent gi,j of Player II
in Γ1, there is an additional agent in Γ

0
1 denoted g0i,j whose motion when II is

using strategy g is given by

g0i,j (t) = vi + φRj (g (t)) . (14)

Thus in the game Γ01 there are 16 agents. If T denotes the expected meeting
time in Γ1, then the expected meeting time in Γ

0
1 is given by

T 0 (f, g) =
1

2
(T (f, g) + T (f, φg)) , with (15)

R (Γ01) = min
f,g

T 0 (f, g) . (16)

where φ reverses the E and W moves of a strategy, e.g. φ (N,S,E,W,N, . . . ) =
(N,S,W,E,N, . . . ) . In particular, a strategy is invariant under the reflection φ
if and only if is has no E or W (moves only in the vertical direction). Since the
players have less common information in Γ01 than in Γ1, the rendezvous value
cannot be smaller in Γ01. In the following case, they can be equal. (We will show
in Corollary 11 that in fact they are equal.)

Lemma 4 If there is a strategy (f, g) which is (uniformly) optimal for Γ1 and
has a component which is invariant under φ, e.g. φg = g, then it is also (uni-
formly) optimal for Γ01, and hence R (Γ

0
1) = R (Γ1) .

Proof. If φg = g then T 0 (f, g) = T (f, g) and the probability that the
players have met by time t in the game Γ1 is the same as in Γ

0
1. The first gives

optimality, the second uniform optimality. If φf = f we use the symmetry
property T (f, g) = T (g, f) to reduce the problem to the solved case.

3 Nodes with multiple agents

If for a certain time t, Player I meets xt > 1 agent of Player II, then in particular
those agents will have to be at the same node zt. This section analyses how that
situation can arise. The results in this section apply equally to both games Γ1
and Γ2.

Lemma 5 For any two agents, there is at most one node where they can meet.
(In particular, agents with the same starting node will either both be at that node
or they will be at different nodes.)

Proof. Suppose there two distinct agents at a common node c at time t.
They must have different initial directions k: if they have the same starting
node this is what makes them distinct; if they have different starting nodes and
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the same direction, their vector difference always equal to the difference of their
starting nodes, so they could never meet. Suppose one of the agents is not at
node c at time t0, so that w = g (t0)− g (t) 6= (0, 0) . The locations at time t0 of
agents at node c at time t are by (7) the vectors c+Rk (w) , which are distinct
for distinct k for w 6= (0, 0) .
If the two agents have the same starting node, the only place they can

coincide is at that node. Otherwise, as in Figure 2, the agents from a common
node are at distinct locations.
We now determine the nodes z where agents from distinct starting nodes a

and b can meet, at some time t. By (7) we have

a+Rj (g (t)) = z = b+Rj0 (g (t)) , so

Rj (g (t)) = z − a and

Rj0 (g (t)) = z − b so that g (t) = R−j0 (z − b) .

Therefore

z − a = Rj (g (t)) = Rj
³
R−j0 (z − b)

´
= Rk (z − b) , some k = 0, . . . , 3. (17)

This motivates the definition of the following equivalence relation (actually two,
one for J1 and one for J2) and the set B

∗.

Definition 6 We say that two vectors v and w ∈ Z2 are rotationally equiva-
lent, denoted v ∼ w, if for some j ∈ J we have v = Rj (w) . (For Γ1 this is sim-
ply v = ±w and for Γ2 this is (v1, v2) ∈ {(w1, w2) , (w2,−w1) , (−w1,−w2) , (−w2, w1)} .
The restricted perpendicular bisector B∗ (a, b) of two vectors a, b ∈ Z2 is
defined by

B∗ (a, b) =
©
z ∈ Z2 : z − a ∼ z − b

ª
.

(For Γ1, this is simply B
∗ (a, b) = (a+ b) /2; for Γ2 it is more complicated -

see Figure 4.)

Since rotationally equivalent vectors have the same Euclidean length, it fol-
lows that B∗ (a, b) is a subset of the Euclidean perpendicular bisector B (a, b)
of a and b. For several vectors, we have the obvious extension,

B∗
¡
a1, . . . , aK

¢
=
n
z ∈ Z2 : z − ai ∼ z − ai

0
, i, i0 = 1, . . . ,K

o
.

The main application of these ideas will be to the case when the nodes ai are in
the starting point set V (see (2)) for II as drawn below in Figure 4 for Γ2. For
Γ1, B

∗ (a, b, c) = B∗ (a, b) ∩ B∗ (b, c) is empty, because one of these pairs has
opposite starting points and is the singleton (0, 0) ; while the other has adjacent
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starting points, and belongs to the ‘diagonal’ set D defined later in (21).

a

b
(0,0) b(0,0)

(i) B (a,b)                                                  (ii)  B (a,b)

**

**

(0,0)

a

bc

v

v

v

v

1

2

3

4

(iii) B (a,b,c) (iv) B  = U B (v , v )i k

c

* *

Figure 4: B∗
³
vi, vi

0
´
in Γ2.

Note that for two starting points a and b, B∗ (a, b) consists of exactly three
nodes if the starting points are (i) adjacent or (ii) opposite. In the case of any
three starting points a, b, c, B∗(a, b, c) contains only the origin. The full set of
nodes of the type B∗ (a, b) for starting distinct nodes a and b consists exactly
of the thirteen nodes drawn in (iv) lying on the bisector lines, which we denote

by B∗∗ = ∪i6=i0B∗
³
vi, vi

0
´
. Since two agents from the same starting node can

only be met in the Player II starting node set V, and V ⊂ B∗∗, it follows that
multiple meetings can only take place in B∗∗ ,that is

xt ≥ 2 implies zt ∈ B∗∗ and hence t even, so (18)

xt ≤ 1 for t odd (19)

Of nodes B∗∗ (with possible multiple meetings) drawn in Figure 4 (iv),
the four corner nodes (±2,±2) will not play an important role, but the nine
remaining ones, grouped as shown in Figure 5 into two sets S (for starting
nodes of I — (0, 0) , and of II — V ) and D (for diagonal) will be very important
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(see Definition 8):

D
S

Figure 5: Special sets S and D.

S = {(0, 0)} ∪ V = {(0, 2) , (2, 0) , (0,−2) , (−2, 0) , (0, 0)} . (20)

D = (±1,±1) = {(1, 1) , (1,−1) , (−1,−1) , (−1, 1)} . (21)

We can now summarize the discussion leading to the equation (17) and the
calculation of B∗ (Figure 4) in our new notation:

Lemma 7 Suppose that agents from m > 1 distinct starting points a, b, · · · ∈ V
are at a common node z = zt at time t.

(i) If m = 2, z ∈ B∗ (a, b) . If z ∈ D, then z − a, z − b, g (t) ∼ (1, 1) and
z = (a+ b) /2, as in Figure 4 (i).

(ii) If m > 2, z = (0, 0) (= B∗∗ (a, b, c)) in Γ2. In Γ1 at most two agents can
be at any node, so xt ≤ 2.

Note that actually this lemma applies as well (trivially) to the common
starting point case a = b, because in this case we have B∗ (a, b) = {a} , which
says that agents from a common starting point can only meet at that point.
Certain kinds of meeting of Player I with agents of Player II taking place in

the sets S or D will be very important in the subsequent analysis, so we make
the following definitions:

Definition 8 Suppose that Player I meets (for the first time) an agent gi,j of
Player II at time t at node z = zt (so xt ≥ 1).
S(t) If z = (0, 0) or z = vi (note that in either case z ∈ S) we say there is an

S-Meeting, for ‘Starting Point Meeting’, and denote this as S(t). (In
the latter case note that the agent gij met at v

i started there.) If z = (0, 0)
we say the S-Meeting is of Type I; if z = vi we say it is Type II, the Type
being the name of the player with z as a starting point.

D(t) If z ∈ D and g (t)∼ (1, 1) , we say there is a D-Meeting (for diagonal
point meeting), and denote this as D(t). Note the second part of Lemma
7 (i) implies that if z ∈ D and xt = m ≥ 2 then we have D(t) (see Figure
4 (i)).
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Note that since S and D contain only even nodes, S(t) or D(t) imply that t
is even, that is, S or D-Meetings can occur only at even times.

A note of warning: a meeting which takes place in S is not necessarily
an S-Meeting. For example if Player I meets the agent starting at (2, 0) at
zt = (0, 2) , then we do not have S(t). Similarly if he meets an agent from
(−2, 0) at zt = (1, 1) we do not have D(t).

4 Analysis with ‘Streets and Avenues’: Γ1, Γ
0
1

In this section we assume the ‘streets and avenues’ scenario, in which the players
can distinguish between the two axes. We show that the strategy pair¡

f̌ , ǧ
¢
= (N,N, S, S, S, S,N,N) , (N,S,W,W,E,E,E,E) (22)

is uniformly optimal for both rendezvous problems Γ1 and Γ
0
1 where the players

have a common notion both axes (but not of directions along those axes) and
either have (Γ1) or do not have (Γ

0
1) a common notion of clockwise. We analyze

Γ1 first and then use Lemma 4 to extend the optimality result of Γ
0
1 based

on the observation that the first component f̌ is reflection-invariant (has only
N ’s and S’s). We first calculate the meeting times ωi,j with the eight agents,
i = 1, 2, 3, 4, j = 0, 2, of Player II. The calculation ω4,2 = 4 is illustrated below
in Figure 6. Player I’s route from (0, 0) to (0, 2) and back is drawn in a thick line,
together with the route of agent g4,2 starting from v4 = (−2, 0) and following the
instructions (N,S,W,W ) by taking the opposite directions (S,N,E,E) because
j = 2 reverses all directions. They meet at the origin at time 4, as entered in
the table below in bottom right position.

(0,0)
g

v
N S

W W

N

N S

S

I

1

2
3 4

2

4,24

1 3

Figure 6: ω4,2 = 4 for (N,N, S, S, ), (N,S,W,W )
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The Eight of Values of ωi,j for
¡
f̄ , ḡ

¢
, i = 1, 2, 3, 4, j = 0, 2. (23)

starting node\orientation ↑ N, j = 0 ↓ N, j = 2
v1, i = 1 1 2
v2, i = 2 4 8
v3, i = 3 6 6
v4, i = 4 8 4

To put this into words, Player I goes up to v1 at time 2, meeting one of the
two agents at time 1 and the other at time 2. He then returns to the origin at
time 4, meeting an agent each from the two horizontal starting nodes v2 and v4

(the latter illustrated in Figure 6). At time 6 he meets both agents who started
at v3 (since all agents are back at their starts, as N+S+W+W+E+E = (0, 0),
finally meeting the remaining agents from v2 and v4 at time 8.
If we count the number of t’s in the table (23) for

¡
f̄ , ḡ

¢
, we see there is a

single ‘1’, so x̄1 = 1, and so on. The full agent number profile x̄ is given by

x̄ = [1, 1, 0, 2, 0, 2, 0, 2] ,

with T = (1× 1 + 1× 2 + 2× (4 + 6 + 8)) /8 = 39/8 = 4. 875.

Furthermore, the cumulative vector ȳ defined for any profile by yk =
P

t≤k xt,
with yk/8 giving the probability that a meeting has occurred by time k is given
by

ȳ = [1, 2, 2, 4, 4, 6, 6, 8]

We will show that for any strategy and any t, we have yt ≤ ȳt, so that
¡
f̄ , ḡ

¢
maximizes the probability of a meeting by time t, for all t, and is therefore
uniformly optimal.
Recall that zt = f (t) is the location of Player I at time t, and hence the

location of any meeting at time t, if xt ≥ 1. Before reading the next lemma it
is advisable to review the definitions of the sets S and D, and the definitions of
S(t) and D(t). Also recall that for Γ1 we have xt ≤ 2 for all t by the last part
of Lemma 7 (ii)).

Lemma 9 For any profile [x1, x2, . . . ] in Γ1, we have

1. If xt = 2, then D(t) or S(t) and t is even .

2. If D(t) or S(t) then xt−1 + xt + xt+1 ≤ 2.
3. For t even, xt + xt+1 ≤ 2.
4. x1 ≤ 1 and x1 + x2 + x3 ≤ 2.

14



Proof.

1. If xt = 2 then two distinct agents coincide at node zt. If the two agents have
the same starting node, then by Lemma 5, they can coincide only at that
node zt ∈ V ⊂ S, and we have S(t). If the agents have distinct starting
nodes a and b then, by Lemma 7, zt ∈ B∗ (a, b) = (a+ b) /2. So if a and b
are opposite (a+ b = (0, 0)) then zt = (0, 0) and so we again have S(t). If
a and b are adjacent then z ∈ D (for example [(2, 0) + (0, 2)] /2 = (1, 1))
and since xt ≥ 2 we have D(t).

2. If S(t) or D(t) then at time t there are two agents (including those already
met) at zt and all others are at (lattice) distance d at least 4 from zt.
To see this consider the three cases: zt ∈ V, zt = (0, 0) (the two cases
corresponding to S(t)), and zt ∈ D. If zt ∈ V, then d is just the distance
between distinct starting nodes, 4. The remaining two cases are shown in
Figure 7. Hence at times t− 1 and t+ 1 the only agents that can be met
for the first time are the two at zt at time t. Hence xt−1 + xt + xt+1 ≤ 2,
xt+1 = 0 because any agent at zt+1 has already been met at time t at zt.

3. If xt = 2, the result follows from parts (1) and (2). Suppose xt = 1.
Since t+ 1 is odd it follows from part (1) that xt+1 ≤ 1, and so we have
xt + xt+1 ≤ 1 + 1 = 2.

4. Since 1 is odd, it follows from part (1) that x1 is 0 or 1. If x1 = 0, the
result follows from part (3). Suppose x1 = 1. If x2 = 0 then x1+x2+x3 ≤
1+0+1 = 2. If x2 ≥ 1 we can have: zt ∈ D, in which case D(t), zt = (0, 0) ,
in which case we have S(t), or zt = vi ∈ V, in which case the agents met
must come from vi (agents from other starting nodes cannot reach vi in
time 2), and hence S(t). Thus D(t) or S(t), and the result follows from
part (2).

(0,0)

(i) (ii)

Figure 7: Unmet agents for (i) zt = (1, 1), (ii) zt = (0, 0) .
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Theorem 10 The rendezvous value of the common-axes, common-clockwise
game Γ1 is 39/8 = 4. 875 and the strategy pair

¡
f̌ , ǧ

¢
is uniformly optimal.

Proof. It is sufficient to show that for any strategy pair, the associated cu-
mulative vectors y satisfies yt ≤ ȳt = where ȳ = [1, 2, 2, 4, 4, 6, 6, 8] corresponds
to the pair

¡
f̌ , ǧ

¢
. For t ≤ 3 this follows from Lemma 9 (4). By the result for

t = 3 and Lemma 9 (3), we have for j = 1, 2, 3,

x1 + x2 + x3 + · · ·+ x2+2j ≤ x1 + x2 + x3 + · · ·+ x2+2j+1

= (x1 + x2 + x3) +
X
i=1,j

(x2+2i + x2+2i+1)

≤ 2 + 2j, as required.

Since the strategy f̌ moves only in the vertical direction (has no E or W ),
it is invariant under the reflection φ (that is φf̌ = f̌) and hence does equally
well it the no common clockwise variant Γ01 (where it is also optimal). Hence
by Lemma 4 we have the following.

Corollary 11 The strategy pair
¡
f̌ , ǧ

¢
is uniformly optimal in the game Γ01,

where the players can distinguish between the axes but do not have a common
notion of clockwise. In particular

R (Γ01) = R (Γ) = 39/8.

Thus having a common notion of clockwise does not help players who can dis-
tinguish between the vertical and horizontal axes.

This last result is in stark contrast to our main finding, Theorem 19, which
shows that when players cannot distinguish between the axes, it certainly does
help to have a common notion of clockwise (the least expected meeting time
goes down from 197/32 = 6. 156 25 to 97/16 = 6. 062 5 , an improvement of
about 1.5%.

5 Analysis of Γ2

This is the most important section of the paper, where we solve the game Γ2.
The results in this section concern a meeting number profile x = [x1, x2, . . . , ]
for this game. Recall that zt = f (t) denotes I’s location at time t and that the
net displacement of each agent of II at time t is rotationally equivalent to g (t) .

5.1 Properties of S- and D-Meetings in Γ2.

We now obtain some consequences of Definition 8 for the game Γ2. First, we
group together some elementary properties of S-meetings in the following lemma.
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Lemma 12 (S-Meetings)

(i) S(t) implies xt ≤ 3 and xt+1 = 0.
(ii) xt ≥ 3 implies S(t).
(iii) Hence for even t, xt + xt+1 ≤ 3.
(iv) If S(t) and S(t+2) the Types are different.

Proof. (i) Assume S(t) and let z = zt. Note that for either Type S-Meeting,
there will be four agents of II (including perhaps some already met) at z, and
they will have distinct directions j. This implies that at time t − 1 they will
occupy all four nodes adjacent to z and, since Player I will be at one of these,
only at most 3 can be met for the first met at time t. Hence xt ≤ 3. At time t,
the unmet agents of II will be at distance 4 from z, so the next meeting cannot
occur before time t+ 2, and hence xt+1 = 0.
(ii) Suppose xt ≥ 3. If z = zt /∈ V, then by Lemma 5, only one agent from

any starting point can be met; hence there must be agents from m = xt ≥ 3
distinct starting points a, b, c.. So z = (0, 0) = B∗ (a, b, c) by Lemma 7 (ii), and
hence S(t) (Type I). If z ∈ V and g (t) 6= (0, 0) the same reasoning applies. If
z ∈ V and g (t) = (0, 0) we have S(t) (of type II). So in any case we have S(t).
(iii) Next, suppose xt + xt+1 > 3, t even. Since xt+1 ≤ 1 by (19) we

have xt ≥ 3, and hence by part (ii) we have S(t). So by part (i) we have
xt + xt+1 ≤ xt ≤ 3.
(iv) If S(t) is Type I, that is, zt = (0, 0) , then g (t) ∼ (2, 0) and all unmet

agents of II have distance 4 from (0, 0) at time t. So they cannot reach (0, 0) by
time t+ 2, and we cannot have another Type I S-meeting at time t+ 2. If S(t)
is of type II, then zt = vi ∈ S so we cannot have another Type II S-meeting at

zt+2 = vi
0
, i0 6= i, because d

³
vi, vi

0
´
= 4. (If zt+2 = zt = vi, then xt+2 = 0.)

Lemma 13 If S(t) but not S(t+2) then xt+2 ≤ 1.
Proof. Suppose S(t) is of Type I. So I is at zt = (0, 0) at time t and at

time t + 2 he is at some node z = zt+2 of one of the types (i) z = (0, 0), (ii)
z ∈ D, say (1, 1) by symmetry, or (iii) z ∈ V, say (0, 2) . We consider each case
separately:

(i) z = (0, 0) At time t, we have g (t)∼ (2, 0) , and hence all unmet agents are
at distance 4 from (0, 0). So in this case the next meeting cannot occur
before time t+ 3, so xt+2 = 0.

(ii) z = (1, 1) Only agents who are at (2, 2) at time t can reach (1, 1) by time
t+ 2. By Lemma 5, at most one of them can be there at time t+ 2.

(iii) z = (0, 2) Since there is no S-Meeting at time t + 2, two agents reaching
(0, 2) at that time must come, one each, from (−2, 0) via (−2, 2) and
from(2, 0) via (2, 2) (as agents going via the origin would have already
been met at time t). The first implies a right turn at time t+1, while the
second implies a left turn, so only one of these can get there on time.
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Next suppose S(t) is of Type II, with say zt = (0, 2) . So at time t all unmet
agents are at the remaining nodes of V, and of these the only nodes z = zt+2
where he can meet agents by time t + 2 are of the type (±1, 1) or (±2, 2) (we
can take the ‘+’ one by symmetry), as (0, 0) is excluded because it would imply
S(t+2). If z = (1, 1) , then the agent(s) must come from (2, 0) (since those from
(0, 2) have all been met at time t), and by Lemma 5 there can be only one, so
xt+2 ≤ 1. Similarly I can meet only one agent (starting at (2, 0)) at z = (2, 2) .

The following result will be used later to show that it is not possible to have
the profile

[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1] .

Lemma 14 If xt = 2 and xt+1 = 1 then D(t).

Proof. Since xt+1 6= 0, Lemma 12 says we cannot have S(t), so zt 6= (0, 0).
Furthermore if zt ∈ V without S(t), we must have g (t)∼ (2, 2) for agents from
two other starting points to reach zt. But if g (t)∼ (2, 2) and zt ∈ V then all
agents unmet by time t would be at distance at least 4 from zt, and hence could
not be met before two more periods, so xt+1 would be 0. Hence zt /∈ S, and the
only points not in S where more than one agent can be met (see Figure 4 (iv))
are in D or of type (±2,±2) . But if zt = (±2,±2) then g (t)∼ (2, 0) and by
the same reasoning all agents unmet by time t cannot be met before time t+2.
Hence zt ∈ D and since xt ≥ 2 this implies D (t) .

5.2 Optimal strategies

We now determine some properties of profiles x that correspond to optimal
strategies, and use these to establish that no such profile can have an expected

meeting time T which is less than that of the strategy
³
f̂ , ĝ

´
. To avoid the

division by 16 in the definition (10) of T we define T ∗ = 16 T, so that T ∗
³
f̂ , ĝ

´
=

97.

Lemma 15 For an optimal strategy pair, D(t) implies xt+2 ≤ 2.

Proof. Assume, on the contrary, that xt+2 = 3, so that S(t+2) (at some
node w = zt+2 ∈ S) by Lemma 12 (ii). By D(t), we may take z = zt = (1, 1)
(since the other cases are symmetric), so that w is one of the nodes (2, 0) , (0, 2) ,
and (0, 0) . Note that in all three cases for w, Player I’s location z = (1, 1) at
time t is adjacent to exactly two of the four nodes adjacent to w, call these nodes
w0 and w00 (For example, if w = (2, 0) , then w0and w00 are (1, 0) and (2, 1) .)
First assume that w ∈ V , so that one of the agents met at zt = (1, 1) started

at w. Now at time t+ 1, the three agents I will meet at w are at three distinct
nodes adjacent to w, and the fourth such node has only the agent from w met
at (1, 1) . Hence either w0 or w00 contains an unmet agent (say w0), and by our
assumption xt+2 = 3 the supposedly optimal strategy must go via w00 (with
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xt+1 = 0) If we maintain II’s strategy but modify I’s strategy so that he goes to
w via w0, then we will keep all the xi the same except for xt+1 = 1 and xt+2 = 2,
contradicting the assumed optimality.
Next assume w = (0, 0) . In this case the four agents located at (0, 0) at time

t + 2 will be at the four adjacent nodes at time t+ 1, and alone at that node,
since none of these are in B∗∗ ( Figure 4 (iv), the only nodes where more than
one agent can be located). One of these four agents (at w0) was met at (1, 1)
at time t, so the strategy with xt+2 = 3 must go to w via w0. If instead we go
via w00, the expected meeting time improves as in the previous paragraph, again
contradicting optimality.

Lemma 16 If for some strategy T ∗ < 97, then the corresponding profile satisfies

7X
t=1

xt = 10. (24)

Proof. For any strategy, we have
P7

t=1 xt ≤ 10 because x1 is always 1 and
for even t, we have xt + xt+1 ≤ 3 by Lemma 12 (iii). If

P7
t=1 xt < 10 then the

same inequality applied to t = 2, 4 implies that the best profile is (with brackets
for emphasis) ·z }| {

1, 3, 0, 3, 0, 2, 0,
z }| {
3, 0, 3, 0, 1

¸
,

with T ∗ = 97.
Since we always have x1 = 1, the next result shows that no strategy pair

achieves the agent number profile

[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1] .

Lemma 17 There is no strategy pair with xt = 2 and xt+1 = 1 for all even
t ≤ 10.
Proof. Assume there is such a strategy. Then Lemma 14 implies D(t),

which by definition means zt ∈ D and g (t)∼ (1, 1) . So Player II at distance 2
from his start at even times, and hence distance at most 3 at odd times.
Suppose that II is at distance 3 from his start at some odd time t+ 1 ≤ 9.

Then II must be (all agents must be) at the same node of D at even times t
and t + 2. Since I meets new agents at time t + 2, he cannot also be at the
same node, so zt+2 6= zt. Without loss of generality, we may assume I moves
(1, 1)→ (0, 1)→ (−1, 1) starting at time t. At time t+1, the only unmet agent
who can be at (0, 1) and at distance 3 from his start is one from (−2, 0) who is
at node (−1, 1) at even times t and t+ 2. (Note that any agent from (2, 0) who
is at (1, 1) at time t has been met by that time.) So the agent from (−2, 0) who
I meets at zt+2 = (−1, 1) has already been met, so xt+2 < 2, which contradicts
our hypothesis. So we have shown that

Player II is within distance 2 of his start at all times t ≤ 9. (25)
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Without loss of generality, we may suppose z1 = (1, 0) and z2 = (1, 1)
Because x1 = 1 and x2 = 2, in order for I to meet different agents from (2, 0) at
times 1 and 2, the agent met at time 2 must be at (2, 1) at time 1, making a left
turn at time 2. Hence the unmet agents from (2, 0) are at nodes (3,±1) at time
2, and cannot reach node (1, 0) at time 3, and agents from other nodes surely
can’t by (25). Hence z3 cannot be (1, 0) , so we must have z3 = (0, 1) where he
meets an agent from (0, 2) . The agent from (0, 2) met at time 2 is therefore at
(1, 2) at time 3 so I would meet at most 1 new agent if he returned to (1, 1) at
time 4. Hence he must go to node (−1, 1) at time 4 and meet agents from (0, 2)
and (−2, 0) there. We can now apply the same argument another three times
to show zt, t = 1, . . . , 10 is

(1, 0) , (1, 1) , (0, 1) , (−1, 1) , (−1, 0) , (−1,−1) , (0,−1) , (1,−1) , (1, 0) , (1, 1) .

However this would imply that five different agents from v2 = (2, 0) had
been met at the times 1, 2, 8, 9, and 10, which is impossible and so the lemma
follows.
The next lemma says that as long as consecutive even-odd elements [x2i, x2i+1]

of the agent profile are maximal (sum to 3), whichever of the two possible forms
[2, 1] and [3, 0] occurs, it will be repeated. Hence a profile beginning [1, 2, 1, ]
will continue for a while as [1, 2, 1, 2, 1, 2, 1, . . . ] and one beginning [1, 3, 0] will
continue for a while as [1, 3, 0, 3, 0, 3, 0 . . . ] . This observation will be useful in
limiting the possibilities for the beginning of an optimal profile.

Lemma 18 For any optimal agent profile x,

if x2i+2 + x2i+3 = x2i + x2i+1 = 3, (26)

then [x2i+2, x2i+3] = [x2i, x2i+1] . (27)

Proof. Since x2i+1, x2i+3 ≤ 1 by Lemma 9 (i), equations (26) imply that the
only two possibilities for the 2−tuples in (27) are [3, 0] and [2, 1] . If [x2i, x2i+1] =
[3, 0] then Lemma 12 (ii) implies S(2i). If not S(2i+2) then by Lemma 13 we have
x2i+2 ≤ 1. But then x2i+2 + x2i+3 ≤ 1 + 1 < 3, contrary to assumption. So we
have S(2i+2), and consequently x2i+3 = 0 by Lemma 12 (i), so [x2i+2, x2i+3] =
[3, 0] = [x2i, x2i+1] . If [x2i, x2i+1] = [2, 1] then by Lemma 14 we have D(2i)
and then by Lemma 15 we have x2i+2 ≤ 2. Hence [x2i+2, x2i+3] = [2, 1] =
[x2i, x2i+1] .

5.3 Rendezvous Value of Γ2

In [5] we showed that without a common notion of clockwise (that is, for the
game Γ02) the least expected meeting time (rendezvous value) that the players
can achieve is 197/32. We can now prove our main result, which establishes just
how much better the players can do if they have a common notion of clockwise
(that is, in Γ2).
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Theorem 19 The rendezvous value of common-clockwise parallel start problem

Γ is 97/16, and the strategy pair
³
f̂ , ĝ

´
is optimal.

Proof. Since T ∗
³
f̂ , ĝ

´
= 97, and hence T

³
f̂ , ĝ

´
= 97/16, it is sufficient to

show that no strategy has a T ∗ less than 97. So assume that for some optimal
strategy the corresponding profile x has T ∗ < 97. Hence by Lemma 16 we have

7X
t=1

xt = 10. (28)

But since we always have x1 = 1 and Lemma 5.3 says x2i+x2i+1 ≤ 3, it follows
from (28) that we must have the equalities

x2i + x2i+1 = 3, i = 1, 2, 3. (29)

Hence by (19) [x2, x3] is either [2, 1] or [3, 0] . First assume [2, 1]. Since we
have (26) for i = 1, 2, and we may apply Lemma 18 for i = 1 and then 2, to
obtain [x6, x7] = [x4, x3] = [x2, x1] = [2, 1]. If x8 + x9 ≤ 2, then by Lemma 12
(ii) the best possible profile would be [1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 1] , with T ∗ = 98,
contrary to assumption. Hence x8+x9 = 3, so we may apply Lemma 18 again to
obtain [x8, x9] = [x6, x7] = [2, 1] . Then Lemma 17 implies D(8) and Lemma 15
implies x8+2 = x10 ≤ 2. But by Lemma 17 the best profile with these constraints
is [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 1] , with T ∗ = 97, contrary to assumption.
So we may assume [x2, x3] = [3, 0] , and since our hypothesis is (26) for

i = 1, 2, and we may apply Lemma 18 for i = 1 and then 2, to obtain

[x6, x7] = [x4, x3] = [x2, x1] = [3, 0] . (30)

Since x2 = x4 = x6 = 3, Lemma 12 (i) says there are S-Meetings at the
consecutive even times 2, 4, and 6. By renaming the players, if necessary, and
by the alternation of Types (Lemma 12 (iv)), we may assume the respective
Types are II, I, and II. Thus z4 = (0, 0) and z2 and z6 are distinct nodes of S.
Hence at time 6 all the unmet agents are at their starting nodes, the remaining
two nodes of S, say a and b. Hence x8 ≤ 2 and = 2 only if z8 = (0, 0) , in which
case S(8) and hence x9 = 0.
Suppose x10 = 3. Then there is necessarily an S(10) of Type II, say at a,

because an S(10) of Type I gives x10 < 3. Furthermore player I can meet only
agents from b at times 7,8,9. Since I moves from a member V at time 6 to node
a at time 10 and II is at his starting point at these times, I can meet an agent
from b only at time 8 and at most one at this time. The remaining agents of
b can be met at time 12 at the earliest so the profile can be no better than
[1,3,0,3,0,3,0,1,0,3,0,2] which gives T ∗ = 99. Thus we may assume x10 < 3.
Hence if x8 ≤ 1 then no profile is better than [1, 3, 0, 3, 0, 3, 0, 1, 1, 2, 1, 1] , with
T ∗ = 97.
So we may assume that x8 = 2 , x9 = 0, and S(8). Thus there are two

unmet agents from both a and b at time 8. If x10 ≤ 1,then the best profile is
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[1, 3, 0, 3, 0, 3, 0, 2, 0, 1, 1, 2] , with T ∗ = 98, so we may suppose that x10 = 2.
This can only be achieved at z10 = a, b, or (if a 6= −b) (a+ b) /2. If z10 is a or
b, then S(10) and so by Lemma 12 (i) we have x11 = 0. Hence the best profile
is [1, 3, 0, 3, 0, 3, 0, 2, 0, 2, 0, 2] , with T ∗ = 97. If z10 = (a+ b)/2 we may suppose
by symmetry that a = (0, 2) , b = (2, 0) , and z10 = (1, 1) . In this case the two
agents comprising x10 = 2 come from a and b, and are both at node (2, 2) at
time 8. But this is impossible, as Lemma 5 says they cannot coincide at any
node other than (2, 2) . Hence our assumption of the existence of a strategy (and
corresponding profile x) with T ∗ < 97 is false.
While the strategy

³
f̂ , ĝ

´
is optimal for the problem Γ = Γ2, it does have

two drawbacks. First it requires a common notion of clockwise, and second it is
not uniformly optimal. By the first remark we mean that if the players have a

different notion of clockwise, and end up using the strategy
³
f̂ , ĝ0

´
=
³
f̂ , φĝ

´
,

they do not do as well. In particular, the strategy pair
³
f̂ , ĝ0

´
does not have

all its agents met by time 12, namely the E ( j = 1) and W (j = 3) agents
from v3 = (0,−2). If they were both met at time 13 (so ω03,1 = ω03,3 = 13),
the expected meeting time of the augmented strategy (of length 13) would be
105/16, as shown below.

ωi,j

³
f̂ , ĝ0

´
= ω0i,j

j 0 1 2 3

i = 1, (0, 2) 2 2 1 2
i = 2, (2, 0) 10 12 12 4
i = 3, (0,−2) 4 13∗ 8 13∗

i = 4, (−2, 0) 6 4 6 6

So if
³
f̂ , ĝ

´
is used in the no common clockwise game Γ02, the expected meeting

time satisfies the inequality

T 0
³
f̂ , ĝ

´
=

1

2

³
T
³
f̂ , ĝ

´
+ T

³
f̂ , ĝ0

´´
≥ 1

2

µ
97

16
+
105

16

¶
=
202

32
.

However this is not the best possible expected meeting time for the game Γ02.
To see this, consider the strategy

³
f̃ , g̃

´
drawn in Figure 8. Note that, unlike³

f̂ , ĝ
´
, Player I carries out an exhaustive search which visits all the possible

starting points of II (at t = 2, 6, 10, and 14) in a time minimizing path, while II
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is back at his start (hoping to found) at these times.

2

6

10

12

13
14

0,4 8

9,11

4

8

1,11,13
12

0,2,6,10,14

(N,N,S,S,W,W,E,E,S,S,N,E,N,E) (N,S,W,W,E,E,S,S,N,N,N,E,W,S

Figure 8: The strategy
³
f̃ , g̃

´

ωi,j

³
f̃ , g̃

´
ωi,j ω0i,j

j 0 1 2 3 0 1 2 3

i = 1, (0, 2) 2 1 1 2 2 2 1 2
i = 2, (2, 0) 4 8 12 13 14 8 4 12
i = 3, (0,−2) 10 4 8 10 10 10 8 4
i = 4, (−2, 0) 6 6 4 6 4 6 6 6

(31)

We have

T
³
f̃ , g̃

´
=

98

16
, T
³
f̃ , g̃0

´
=
99

16
, so

T
³
f̃ , g̃

´
=

197

32
.

In fact, it is shown in [4] that
³
f̃ , g̃

´
is optimal in Γ02, and so R (Γ

0
2) =

197
32 .

The argument that
³
f̂ , ĝ

´
is not uniformly optimal was given in the Intro-

duction, and rests on the observation from its meeting time table (1) that it

ensures a meeting by time 8 of 11/16. However (31) shows that
³
f̃ , g̃

´
ensures

a meeting (in the game Γ2) with the higher probability of 12/16.
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