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Abstract

Two players are placed on the integer lattice Zn (consisting of points in n -
dimensional space with all coordinates integers) so that their vector difference
is of length 2 and parallel to one of the axes. Their aim is to move to an adjacent
node in each period, so that they meet (occupy same node) in least expected time
R (n) , called the Rendezvous Value. We assume they have no common notion
of directions or orientations (i.e., no common notion of ‘clockwise’). We extend
the known result R (1) = 3.25 of Alpern and Gal to obtain R (2) = 197/32 =
6. 16, and the bounds 2n ≤ R (n) ≤

¡
32n3 + 12n2 − 2n− 3

¢
/12n2. For n = 2

we characterize the set of all optimal strategies and show that none of them
simultaneously maximize the probability of meeting by time t for all t. This
behaviour differs from that found by Anderson and Fekete, and the authors, for
the related problem where the players are initially placed at diagonals of one of
the squares of the lattice Z2.



1 Introduction

This paper generalizes the fixed-distance version of the linear rendezvous prob-
lem introduced in [7] to higher dimensions. That problem asks how two unit-
speed players placed an initial fixed distance D apart on the line, and faced
in random directions (which they each call ‘forward’), can meet in minimum
expected time. Neither knows the direction to the other, nor do they have a
common notion of a ‘positive’ or ‘forward’ direction. By taking D = 2 we may
model the line as the lattice Z = Z1 of integers, with the players moving to
adjacent nodes (integers) in each integer period, until the first (meeting) time
that they occupy the same node. (Taking D even ensures they will not pass
each other on the line without meeting.) A strategy for each player can be taken
as a sequence of F ’s (for Forward) and B’s (for Backward), which determines a
players motion relative to his starting node and his initial direction. Adopting
Player I’s coordinate system, with his initial node as 0 and his forward direction
to the right, we equiprobably place Player II at the nodes -2 and +2. We may
consider that there are four agents of Player II, two starting at -2 (facing in
either direction) and two at +2. It was shown in [7] that the strategy pair

(F,F,B,B,B,B) (forPlayer I) and (F,B,B,B, F, F ) (for II) (1)

is optimal, having minimum expected meeting time 13/4 (called the rendezvous
value and, since the line has dimension n = 1, denoted here R (1) = 13/4 =
3.25). It is easy to verify the expected meeting time 13/4 for this strategy pair
(though establishing optimality is obviously harder). If the two players start
facing each other (that is, Player II starts at +2 facing left), then since they
both start with a forward move and meet at time t = 1 at node +1. This
corresponds to the upper right entry in the meeting time matrix for the four
agents of Player II, and the reader should verify the other three. The expected
meeting time is therefore (2 + 1 + 6 + 4) /4 = 13/4.

location\direction → ←
+2 2 1
−2 6 4

(2)

The optimal strategy (1) for Γ (1) is almost a Wait For Mommy (WFM) strategy
in which Player I optimally searches out the possible initial starting points of II,
while II stays still. In fact (F,F,B,B,B,B) is such a Mommy strategy, though
II does not Wait. However, note that II is indeed back at his starting node at the
two times t = 2, 6 that I might search it. At the intermediate time t = 4, Player
II searches out a possible starting point of I. So we may call this strategy an
Alternating Wait For Mommy (AWFM) Strategy, in which the players alternate
taking the role of Mommy and searching out starting points of the other. Such
strategies will play a role in the higher dimensional games Γ (n) . (The analysis
of more general linear rendezvous problems can be found in [13] and [6].)
To generalize this problem to n dimensions, we consider the game Γ (n) in

which the two players are initially placed in the lattice Zn (n-vectors of integers,
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with nodes adjacent if they differ by 1 in one coordinate and are identical in
the others) so that their vector difference is of length 2 and parallel to one of
the coordinate axes. We assume that they don’t know the initial location of the
other, and that they have no common ordering of the axes (in particular, no
common notion of clockwise for the planar problem, n = 2). The organization
and main results of the paper are as follows.
In Section 2, we give a rigorous definition of the rendezvous problem on

the planar lattice Z2, for a general distribution of the initial vector between
the players. The presentation is similar but simpler than that given in [4] and
contains some general optimality conditions.
In Section 3 we solve the game Γ (2) , establishing (Theorem 14) that the

rendezvous value is R (2) = 197/32 (here there are 32 agents of Player II, rather
than the 4 in the case n = 1, see the table 18). Although the AWFM strategy
is not optimal, a variation of it called the Nearly Alternating Wait For Mommy
(NAWFM)Strategy (drawn in Figure 4) is optimal. We also determine the full
set of optimal strategies (Theorem 15). We show that no strategy is uniformly
optimal, in the sense that it simultaneously maximizes the probability of meeting
by time t, for all t.We also show that the players can do better (lower expected
meeting time) if they are have a common notion of clockwise, though the best
they can do in that case is a further problem which we solve in a subsequent
paper [5]. These results may be contrasted with those for the planar rendezvous
model introduced by Anderson and Fekete [10] and extended by the authors [4],
for the diagonal start problem (players start at opposite diagonals of a square in
the Z2 lattice). In that model all optimal strategies are also uniformly optimal
and having a common notion of clockwise does not help the players.
In Section 4, we obtain (Theorem 16) bounds on the rendezvous value R (n) ,

showing that is asymptotically bounded above by 8n/3. These results are the
first obtained for rendezvous in more than two dimensions. The results obtained
here are reported in the book [8], which attributes them to an earlier version of
this paper.
The version of rendezvous search adopted in this paper is the so called player-

asymmetric (or just asymmetric) version, in which the players can have distinct
strategies. For example, they may have mobile phones and agree which role
each will take, e.g. one Mommy and one Child in the WFM strategy pair. The
other, player-symmetric version (where they both must adopt the same mixed
strategy) will not be discussed here, but can be found in [1], [9], and [11].
A general survey of the rendezvous search problem can be found in [2] and

a unified presentation results up to 2003 can be found in Book II of [8]. The
main works on planar rendezvous are [10] and [15].

2 Rendezvous in the Plane: strategies and agents

In this section we give a formal presentation of rendezvous on the planar lat-
tice Z2 without a common notion of clockwise. A similar but more general
presentation is given in [4]. The (lattice) distance d between two nodes is de-
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fined as the sum of the edges in a shortest connecting path, or equivalently
d ((z1, z2) , (w1, w2)) = |z1 − w1| + |z2 − w2|. At time t = 0 Nature places the
two players on even nodes with the vector v from I to II drawn from a given
distribution. (A node z ∈ Z2 is called even if the sum of its coordinates is
even; otherwise it is called odd.) In every time period each player must move
to an adjacent node. This restriction, combined with the ‘even distance’ initial
placement (originating in the interval network of Howard [14]) ensures that the
two players will always have the same parity, and cannot pass each other on an
edge without meeting at a node.
We analyze the progress of the game in terms of Player I’s coordinate system

(and sense of clockwise). In this perspective, the initial random placement is
achieved by Nature placing I at the origin facing North (N )and placing II at
the even node vi, with probability pi, i = 1, . . . ,K, facing equiprobably in either
of the four possible directions, and with either the same or opposite notion of
clockwise as Player I. Aside from this section, dealing with arbitrary initial
locations vi, we will be mainly concerned with the following initial placement.

Definition 1 The ‘parallel’ game ΓP begins with the initial distribution in which
the initial displacement vector between the players has length 2 and is parallel
to one of the coordinate axes. Equivalently, I is initially placed at the origin
(0, 0) and II is initially placed equiprobably at one of the four nodes v1 = (0, 2) ,
v2 = (2, 0) , v3 = (0,−2) , v4 = (−2, 0) .

When the game begins, the players have no common notion of locations
or directions in the plane, and no common notion of clockwise. As observers,
we adopt I’s coordinate system. The orientations of Player II can be seen as
transformations (or rigid motions, or symmetries) of the ‘standard orientation’
of Player I. Figure 1 shows the eight equiprobable orientations.

k=0

k=1

j=0 j=1 j=2 j=3
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W N
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Figure 1: Eight orientations in the plane.

The orientations in the top row (k = 0) all have the same notion of clockwise
as Player I (the usual one), with the upper left orientation the standard one,
and the one in column j obtained from it by applying the 90◦ clockwise rotation
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R to it j times. The orientations in the bottom row (k = 2) have the other
(reversed) notion of clockwise, and can be obtained from the one above by a
single application of the reflection φ about the vertical axis. Formally,

Rj = clockwise rotation by angle j π/2, j = 0, 1, 2, 3, (3)

φ (w1, w2) = (−w1, w2) , and the eight orientations of II are (4)

φkRj , j = 0, 1, 2, 3; k = 0, 1 (5)

The orientations determine how Player II will move when given an instruction
(strategy). For example, if the instruction is for II to go E (East) then (in
Player I’s coordinate system, which we also adopt as observers) he will go S
(South) if he has orientation j = 1, k = 0; and he will go N if he has orientation
j = 3, k = 1.
We can now define a strategy and show how a pair of strategies determines

a set of meeting times for the two players, one for each initial configuration
(initial location vi and initial orientation j, k).. We begin by allowing the null
move (0, 0) , but we will remove this possibility later.

Definition 2 A strategy for a player (in either game ΓC or Γ) is a sequence of
directions Dt ∈ {N = (1, 0) , E = (1, 0) , S = (0,−1) ,W = (−1, 0)} , t = 1, 2, . . .
. A player pursuing this strategy moves successively one unit in his direc-
tion D0,D1, . . . , according to his initial orientation. Equivalently, it can be
seen as his net displacement f (t) at time t from his initial location, given by
f (0) = (0, 0) and for t ≥ 1,

f (t) =
tX

m=1

Dm. (6)

So for example the strategy beginning N,E,E, (I’s strategy, thick grey line
in Figure 2) corresponds to a net displacement function f with

[f (0) , f (1) , f (2) , f (3)] = [(0, 0) , (0, 1) , (1, 1) , (2, 1)] . (7)

We shall deal with strategy pairs (f, g) where Player I adopts f and II adopts
g. Sometimes we will use the symmetric notation (f1, f2). In this setting, the
location of Player I at time t is simply f (t) , while the location of II (in I’s
coordinate system) depends on his initial configuration, as described below. If
the initial configuration (i, j, k) gives Player II initial location vi and orientation
φkRj , then the location of Player II at time t under strategy g is given by

gi,j,k (t) = vi + φkRj (g (t)) . (8)

Definition 3 The 8K (in our example, 32) paths gi,j,k are called the agents
of Player II. We call gi,j,k the agent starting at vi in direction j, with
the same (if k = 0) or different (if k = 1) notion of clockwise as I.
Each agent from vi is the actual path of player II with probability pi/4. We
will sometimes use the simpler two subscript agent notation gi,j = gi,j,0 and
g0i,j = g1,j,1.
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The time taken for agent gi,j,k to be met by Player I is called its meeting
time, and denoted

ωi,j,k (f, g) = min {t : f (t) = gi,j,k (t)} , (9)

and the time required to meet all the agents is called maximum time M (f, g) ,
where

M (f, g) = max
i,j,k

ωi,j,k (f, g) . (10)

For each time t we calculate the number of agents xt that Player I meets
(for the first time) at time t as

xt = xt (f, g) = # {(i, j, k) : ωi,j,k (f, g) = t} , (11)

and we call the sequence [x1, x2, . . . , xM ] the agent number profile, or sometimes
just agent profile, or just profile.

v1
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'

'

g

g

g

g

g

g

g

g

(0,0)

10 10

11

11

1212

13

13I: (N,E,E,...)

II: (N,N,E,...)

Figure 2: Meetings at t ≤ 3, for (N,E,E), (N,N,E)

Figure 2 illustrates several important concepts for the case where the strat-
egy pair begins with (N,E,E,...) for I and (N,N,E,...) for II.. Player I’s path
(0, 0) , (0, 1), (1, 1), (1, 2) for t ≤ 3 is shown in a thick grey line. The possible
paths taken by II if he starts at v1 = (0, 2) , that is, the 8 paths g1,j,k (t) ,
j = 0, . . . 3, k = 0, 1, are drawn in medium black lines starting at v1 = (0, 2) .
Note that all the paths g1,j,0 (t) = gi,j (t) in our notation make right turns at
time 3, while the g01,j = g1,j,1 make left turns. Note that Player I meets agents
g01,2 and g1,2 at node (0, 1) at time 1, and meets agent g1,1 at node (2, 1) at time
3. Thus in our notation we have ω1,2,0 = ω1,2,1 = 1 and ω1,1,0 = 3. Note that
when there are no turns since the last return to a starting point, agents gi,j and
g0i,j will be at the same location, so if one is met, the other will be also. Since it
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can be seen that Player I will not meet agents from any other starting nodes vi
by time 3, this means that Player I meets two agents at time t = 1, no agents at
time t = 2, and one agent at time t = 3, so that x1 = 2, x2 = 0, x3 = 1, and the
agent number profile begins [2, 0, 1, . . . ] . For comparison with a later table (18)
we write this as a table of ωi,j,k, with blank entries depending on the strategy
for t > 3.

ωi,j,k k = 0 k = 1
j 0 1 2 3 0 1 2 3

i = 1 3 1 1
(12)

Given a strategy pair (f, g) , the expected value of the meeting times ωi,j,k
is called the expected meeting time and denoted T (f, g) . Thus

T (f, g) =
1

8K

X
i,j,k

piωi,j,k (f, g) , or simply (13)

=
1

32

X
i,j

ωi,j (f, g) for parallel start (K = 4). (14)

If M =M (f, g) is finite, we may also calculate T (f, g) by the meeting number
sequence x = [x1, x2, . . . , xM ], as

T (f, g) =
1

8K

MX
t=1

t xt, or simply (15)

=
1

32

MX
t=1

t xt, for parallel start (K = 4). (16)

The rendezvous value R for the game Γ is the least expected time,

R (Γ) = min
f,g

T (f, g) ,

and any pair f, g achieving the minimum is called optimal.

A stronger notion of optimality is the following.

Definition 4 A strategy pair is called uniformly optimal if for all t it max-
imizes the probability that the players have met by time t. (Note that if there
is a uniformly optimal strategy, then all optimal strategies must be uniformly
optimal.)

A uniformly optimal strategy maximizes the expected utility U (ω) of the
meeting time ω as long as the utility function U is non-increasing in ω (earlier
meetings are preferred to later ones); an optimal strategy is only required to
accomplish this for the particular utility function U (ω) = −ω.
The authors have shown that, given the order in which the agents are met,

any optimal strategy pair is greedy in the sense that next the agent is met
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as quickly as possible, with both players taking geodesics to the next meeting
point. The following result was proved without the assumption that the players
must move in each period (that is, staying still was allowed), and hence shows
that our assumption here that they must move does not take away any optimal
strategies.

Theorem 5 ([4]) Let (f1, f2) be an optimal strategy pair. Define ω
0 = 0 and

let ω1 < ω2 < · · · < ωK denote the associated set of meeting times with the 8K
agents, listed in increasing order. Let d denote the graph distance on the lattice
Z2. Then

d
¡
fi
¡
ωm−1

¢
, fi (ω

m)
¢
= ωm − ωm−1, for i = 1, 2 and m = 1, . . . ,K. (17)

In other words, both players move in time-minimizing paths between consecutive
meeting points. In particular, neither player ever stays still, and consequently
both players are at even (odd) nodes at all even (odd) times. Furthermore, if
the agent gi,j,k is met at time ω

m, then that meeting point f1 (ω
m) = gi,j,k (ω

m)
is a lattice midpoint of the locations of I and agent gi,j,k of II at time ωm−1,
hence occurs at the earliest possible time (given their locations at time ωm−1).

3 Parallel Start in the Plane

In this section we study the parallel start game in the plane (Definition 1). From
the perspective of the previous section (general starting nodes) this would be
denoted ΓP ; from the perspective of the next section (general dimension n) this
would be denoted Γ (2) , that is, n = 2. We adopt the latter here. It will be
convenient to introduce the notation S = {(0, 2) , (2, 0) , (0,−2) , (−2, 0)} for the
set of Player II starting nodes, and S0 for the set S augmented by Player I’s
starting point (0, 0) . Note that all nodes in S0 have even parity.
The main results of this section are Theorems 13, 14, and 15, which together

determine the rendezvous value R (Γ (2)) = 197/32 and the complete set of
optimal strategies for Γ (2) . Since we know players following optimal strategies
will move in every period (never stay still), we will henceforth only consider
strategies with this property. Since the players both start (in S0) at nodes of
even parity, it follows that both are at even nodes at even times; at odd nodes
at odd times.

3.1 Special Strategies

We now define some particular strategies, AWFM (valid for all Γ (n)) and
NAWFM (for Γ (2)). In [8], a family of strategies called Alternating Wait For
Mommy (AWFM) was proposed for the general parallel start game Γ (n) . The
players alternate taking the role of Mommy (searching out the starting points
of the other) and Baby (coming back to one’s starting point to be found there
when the other comes looking). We will use these strategies to analyze the
n−dimensional case in the final section.
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Definition 6 A strategy in Γ = ΓP is called AWFM if Player I successively
visits the 2n possible starting locations of II (in any order) at times T1 = {2, 6,
. . . , 2+ 4 (2n− 1)}, while returning to his start (0, 0) at the intermediate times
T2 = {4, 8, . . . , 4 (2n− 1)}; and Player II makes his first move a single unit
in any direction, is back at his start at times T1, and visits all but one of the
possible initial locations of I at times T2. The maximum time for this strategy
is clearly M = 2 + 4 (2n− 1) , or M = 14 for n = 2.

It was shown in [8] that, for n = 2, any AWFM strategy (as illustrated below
in Figure 3) gives the maximal probability of meeting by time t for any t ≤ 7,
and suggested that this strategy might in fact be optimal (like the n = 1 version,
where optimality was established in [7]), or even uniformly optimal.

2

6

10

14
4,8,12

1

4

8

12
2,6,  10,14

(N,N,S,S,W,W,E,E,S,S,N,N,E,E)     (N,S,W,W,E,E,S,S,N,N,E,E,W,W)

Figure 3: An AWFM strategy
³
f̆ , ğ

´
for n = 2.

The meeting time sequence x for
³
f̆ , ğ

´
(and indeed for any AWFM strategy)

is given by

x = [2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0, 2, 0, 2] , with T
³
f̆ , ğ

´
=
99

16
.

The strategy
³
f̃ , g̃

´
drawn in Figure 4 has a lower expected meeting time T

than AWFM. Note that I’s strategy f̃ is the same as that for AWFM (f̆) up to
time 10, but then I goes from (0,−2) to (2, 0) without going back through his
starting point (0, 0) . For this reason we call

³
f̃ , g̃

´
the Nearly Alternating Wait
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For Mommy (NAWFM) strategy.

2

6

10

12

13
14

0,4 8

9,11

4

8

1,11,13
12

0,2,6,10,14

(N,N,S,S,W,W,E,E,S,S,N,E,N,E) (N,S,W,W,E,E,S,S,N,N,N,E,W,S)

Figure 4: The NAWFM strategy
³
f̃ , g̃

´
The expected meeting time for the NAWFM strategy pair

³
f̃ , g̃

´
can be

evaluated by consider the following table of ωi,j,k

³
f̃ , g̃

´
and setting xt to be

the number of t’s found in the table. The entries ωi,j,k in the following table are
calculated as in the earlier simpler table (12) which was based on the strategy
of Figure 1.

ωi,j,k

³
f̃ , g̃

´
k = 0 k = 1

j 0 1 2 3 0 1 2 3

i = 1, (0, 2) 2 1 1 2 2 2 1 2
i = 2, (2, 0) 4 8 12 13 14 8 4 12
i = 3, (0,−2) 10 4 8 10 10 10 8 4
i = 4, (−2, 0) 6 6 4 6 4 6 6 6

(18)

This gives the agent number profile of

x = x
³
f̃ , g̃

´
= [2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0, 2, 1, 1] (19)

(e.g., the are six 2’s, so x2 = 6) and hence by (14) or (16),

T
³
f̃ , g̃

´
=
197

32
. (20)

3.2 Nodes with multiple agents

It will turn out from our subsequent analysis that optimal strategies necessarily
involve some simultaneous meetings of Player I with two or more agents of Player
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II. Since this necessitates several agents being simultaneously at a common node,
we now analyze how this can occur (both for agents from the same starting node
and from different starting nodes).

Lemma 7 (same starting point) Suppose that there arem > 1 distinct agents
from a common starting node v who are all at the same node z 6= v at the same
time t. Then

(i) m = 2 and the agents have distinct notions of clockwise.

(ii) The line between v and z makes an angle rπ/4 with the vertical, r ∈
{0, 1, 2, 3} .

(iii) If r is odd, then the two agents have distinct notions of North (distinct j)
and will move to distinct locations at the next move.

Proof. (i) The four rotations Rj take any non-zero vector into four distinct
vectors, so agents at the same location must have different notions of clockwise,
and hence there can be at most two of them.
(ii) By part (i), the m = 2 agents at z have distinct notions of clockwise (k

equal to 0 and 1) and so by (8) have respective locations

v +Rj (g (t)) and v + φRj0 (g (t)) , both equal to z.

(Recall that φ is the reflection (w1, w2) → (−w1, w2) about the vertical axis,
and Rj is the clockwise rotation by jπ/4, j = 0, 1, 2, 3). Consequently both
Rjand φRj0 take g (t) into w = z − v, and hence w is a non-zero fixed point of³
φRj0

´ ¡
Rj
¢−1

= φRj0−j = φRn, n = j0 − j. If n = 0, w lies on the vertical

axis (invariant set for φ), so r = 0; if n = 1, φRn (w1, w2) = (−w2,−w1) , so the
fixed points form the line w2 = −w1, an angle 3π/4 with the vertical; if n = 2,
then φRn (w) = (w1,−w2) with the fixed point line w2 = −w2 (the horizontal
axis), so r = 2; if n = 3, then the fixed set w of φRn is the line w1 = w2, so
r = 1. Note that in all cases, n and r have the same parity.
(iii) By the previous remark, if r is odd, then n = j0−j is odd, so the rotations

Rj and Rj0 are not the same or opposite (j 6= −j0), and hence the moves of
the two agents (namely Rj (g (t+ 1)− g (t)) and φRj0 (g (t+ 1)− g (t))) will be
distinct, in fact at right angles to each other. (This can also be seen from Figure
1, which shows that two such agents will have no direction notion in common.)

Lemma 8 (different starting points) Suppose that agents from m > 1 dis-
tinct starting points are simultaneously at a common node z. Then

(i) If m = 2, z lies on the (Euclidean) perpendicular bisector B (a, b) of the
two points a, b.

(ii) If m > 2, z is the origin (0, 0) .
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Proof. The vectors z − v, for the distinct starting points v, are equivalent
under rotations, and in particular all have the same Euclidean length (moreover,
the set of the absolute values of their two coordinate are the same). Since the
Euclidean equidistant set of two points a, b at even lattice distance is their
perpendicular bisector B (a, b), this gives (i). The only point equidistant from
three starting points is the origin (in either metric) , giving (ii).

Lemma 9 There can be at most two agents at a common location z at any odd
time t. Hence xt ≤ 2 for odd t.

Proof. Assume xt ≥ 3. Since t is odd, z has odd parity, and hence z 6= (0, 0) .
Hence by Lemma 8 (ii) , the agents come from at most two distinct starting
nodes a, b ∈ S. Since by Lemma 7 (i) at most two agents can come from a single
starting point, we conclude that a 6= b and xt ≤ 4. By Lemma 8 (i), z belongs to
the perpendicular bisector B (a, b) of a and b, which can only contain odd parity
nodes z if a = −b, and either z1 or z2 is 0. Without loss of generality we may
assume a = (2, 0), b = (−2, 0) , and z1 = 0. Since by Lemma 7 (ii) the vectors
z−a and z− b make angles rπ/4 with the vertical, the coordinate z2 must be 2,
0, or −2, but all these possibilities result in an even parity z, whereas z is odd,
contradicting the assumption.

3.3 Starting point meetings (SPM’s)

Lemma 7 (i) says that the only place to simultaneously meet more than two
agents from a common starting node v is at v itself. Consequently meetings of
this type are important and will be given a special name.

Definition 10 We say there is a Starting Point Meeting (SPM) at time
t and node z, if either I meets an agent of II at z = (0, 0) (called Type I) or
Player I meets an agent starting at z ∈ S at that node z (called Type II). We
denote this (either case) as SPM(t).

Note that the Type of the SPM is the name of the Player who is back at his
starting point at the time of the meeting. Some elementary properties of SPM’s
are given below.

Lemma 11 (Starting Point Meetings)

(i) SPM(t) implies t is even, xt+1 = 0, and xt ≤ 6.

(ii) xt > 4 implies SPM(t), and hence for even t, xt + xt+1 ≤ 6 (so xi ≤ 6 for
all i).

(iii) xt + xt+1 ≤ 4 if no SPM at even time t.

(iv) If SPM(t) and SPM(t+2), then the corresponding Types are distinct.
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Proof. (i) Since an SPM must occur at a node z in S0, which contains only
even nodes, the time tmust be even. Note that at an SPM, the distance between
the Players (between I and unmet agents of II) is at least 4, so the earliest time
for the next meeting is t+ 2, and hence xt+1 = 0. Suppose the SPM is of type
II. At time t− 1, Player I will be at some node z0 adjacent to z, and there will
also be exactly two agents (counting both met and unmet agents) at z0 from
the starting point z. Since there are only 8 agents who start at z, I can meet at
most 8− 2 = 6 new agents at time t at z. If the SPM is of type I, there will be
8 agents at the origin at time t (including ones already met) since g (t) will be
a rotation of (2, 0) . As in the previous argument, I will have met two of them
on the previous move. So in either case we have xt ≤ 6.
(ii) Note that if xt ≤ 4, t even, we have xt+ xt+1 ≤ 4+xt+1 ≤ 6 by Lemma

9. So we may suppose that at some time t, Player I meets xt > 4 agents of II
(so t is even by Lemma 9) at node z. If the first part of (ii) is true, the second
part (the ‘hence’) follows from xt+xt+1 ≤ 6+0 = 6, by part (i) and Lemma 9.
So we need only prove the first part.
So suppose I meets xt > 4 agents at some location z at some (even) time t,

and there is no SPM. So z 6= (0, 0) (otherwise we have a Type I SPM). Suppose
z /∈ S. Since at most two agents can come from any starting point (Lemma 7i),
the agents met at time t must come from at least three distinct starting nodes,
and hence (Lemma 8 (ii)) z = (0, 0), again contradicting our assumption. So
we may assume that z ∈ S, and II is not back at his starting point (otherwise
we have a Type II SPM). Since we know z 6= (0, 0) , Lemma 8 (ii) says I can
meet agents from at most two starting points. Since II is not back at his start
at time t, Lemma 7 (i) says there are at most two from each, so in total at most
4, contradicting the assumption xt > 4, and we are done.
(iii) Assuming there is no SPM at time t, part (ii) implies that xt ≤ 4. If

xt ≤ 2, the result follows from Lemma 9 (without any other assumptions), so
we can assume that xt ≥ 3. Hence by Lemma 7 (i), agents from at least two
starting points a and b must be met at time t at a node z, and by Lemma 8 (i),
z ∈ B (a, b) .
Suppose z ∈ S, in which case we can assume without loss of generality that

z = (0, 2) , with a = (2, 0) and b = (−2, 0) . In this case g (t) is a rotation of
(2, 2) , which means the unmet agents at time t are at lattice distance 4 from z
and cannot be met before time t+ 2. So xt + xt+1 ≤ xt + 0 ≤ 4, as required.
Suppose z /∈ S. Since z 6= (0, 0) (this would be an SPM), we can assume

that I meets two agents from a and at least one from b. By Lemma 7 (ii), we
know that z − a makes an angle rπ/4 with the vertical. If a = −b (‘opposite’
starting points) then the only nodes z with this property on B (a, b) are in S0,
which we have ruled out. So assume without loss of generality that a = (2, 0)
and b = (0, 2) , in which case the only z’s in B (a, b) with the required angle
property are (1, 1) and (2, 2) . If z = (2, 2) then g (t) is a rotation of (2, 0) , and
the same observation as in the previous paragraph gives xt+1 = 0, and we are
done. If z = (1, 1) , then g (t) = (1, 1) and there will be four met and unmet
agents at z at time t. However by Lemma 7 (iii) these agents will occupy all
four nodes adjacent to z at time t − 1, and again at time t + 1. By the t − 1

12



observation, we have xt ≤ 3, and by the t + 1 observation and Lemma 9 we
know that of the maximum of two agents at I’s location z0 at t + 1, one has
already been met, so xt+1 ≤ 1. Hence xt + xt+1 ≤ 3 + 1 = 4, as required.
(iv) If SPM(t) is of Type II and occurs at some v ∈ S, then SPM(t+2)

cannot occur at another v0 ∈ S (also be of Type II), because d (v, v0) = 4. If
SPM(t) is of Type I, then at time t, all unmet agents are at distance 4 from
the origin, and hence cannot get there for another Type I meeting before time
t+ 4. So consecutive SPM’s cannot be of the same type.

Lemma 12 If SPM(t) but not SPM(t+ 2) , then xt+2 ≤ 2 and xt+2+xt+3 ≤ 3.

Proof. Since SPM(t) , one of the players is at his start at time t. By renaming
them, if necessary, we may assume that Player I is at the origin at time t (Type
I). The proof now divides into cases according to the location z of Player I at
time t+ 2.

z = (0, 0) At time t, unmet agents are at distance 4 from z, so at time t + 2
they are at distance at least 2 from z, and hence xt+2 = 0. Since t+ 3 is
odd, xt+3 ≤ 2 by Lemma 9 and the result follows.

z ∈ S By symmetry, we may assume z = (0, 2) . We may assume that at time
t+2 Player II is not at his starting point (g (t+ 2) 6= (0, 0)), since otherwise
we have SPM(t+ 2) . If xt+2 ≤ 1 the result follows from Lemma 9 so we
may assume xt+2 ≥ 2. The agents met at time t + 2 must have starting
points (−2, 0) or (2, 0) , since those from (0,−2) were at distance at least
4 from z at time t. The agents met at time t + 2 must be at locations
(−2, 2) and (2, 2) at time t. Although there may be two agents at each of
these nodes at time t, at most one of these (from each) can get to z by
time t+ 2, since they have different notions of clockwise. Thus xt+2 ≤ 2.
In this case we have g (t+ 2) = (2, 2) so all unmet agents at time t+2 are
at distance from z of at least 4, and cannot be met at time t + 3. Hence
xt+2 + xt+3 ≤ 2.

z = (±1,±1) By symmetry we take z = (1, 1) . It is easy to check that the
only new agents met at time t + 2 were at (2, 2) at time t. There are at
most four of these, two each starting from (0, 2) and (2, 0) . Those from
each starting point have the same or opposite notion of direction (same
North-South axis) but different notions of clockwise, and since g (t+ 2)
is a rotation of (1, 1) , they will be at different locations at time t + 2.
Hence at most one from each of (0, 2) and (2, 0) will meet I at (1, 1) at
time t + 2, and so xt+2 ≤ 2. If xt+2 < 2 then the result follows from
Lemma 9. Assuming xt+2 = 2, the situation is as stated above, and the
only nodes with unmet agents within distance 2 of (1, 1) at time t+2 are
(3, 1) , (−1, 1) , (1, 3) , and (1,−1), that is, the four starting points added to
(1, 1) . Player I can meet agents from only one of these nodes at time t+3,
at respective nodes z0 = (2, 1) , (0, 1) , (1, 2) , and (1, 0) . If z0 is (2, 1) (the
analysis for (1, 2) is similar) the only agents there come from w = (3, 1)
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at t + 2 and (by Lemma 7 (iii)) go to different locations (namely z0 and
(3, 0)) at time t + 3. So in this case xt+3 = 1 and we are done. If z0 is
(0, 1) (the case (1, 0) is similar) then the agents he meets there were at
w = (−1, 1) at time t+2, and they came from at most two starting points
((−2, 0) and (0, 2)). If one of these agents goes to z0, then the other goes
to (−1, 0).

4 Optimal strategies

In this section we first obtain a partial characterization of optimal strategies,

then show that the NAWFM strategy
³
f̃ , g̃

´
is optimal, and finally give a com-

plete characterization of optimality. We can always rename the players so that
the first SPM, if there are any, is of Type II. We do this now. The following
important result determines the existence and Type of the potential SPM’s at
all even times except for t = 14. We shall see later that optimal strategies may
or may not have an SPM at time 14 (if so, it will be of Type II).

Theorem 13 Any optimal strategy pair in Γ (2) has SPM’s of alternating Types
II, I, II, I, II, at times 2, 4, 6, 8, and 10, and no SPM at time 12.

Proof. To any meeting profile [x1, x2, . . . ] , where xt denotes the number of
new agents met at time t, we associate the integer T ∗ =

P
t txt, which is 32 times

the expected meeting time. To aid the reader, we will highlight the numbers xt in
the profile relevant to the argument by grouping them with a z}|{ . The NAWFM
strategy has the agent number profile [2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0, 2, 1, 1] , for which
T ∗ = 197 (expected meeting time 197/32) and hence any optimal strategy has
T ∗ ≤ 197.We will establish the SPM claims successively for t = 2, 4, 6, 8, 10, and
12, by rejecting as optimal any strategy which produces a partial agent number
sequence [x1, . . . , xk] for which the smallest possible value of T

∗ exceeds 197.
Note that for any strategy we have x1 = 2.

SPM(2) Suppose that x2+x3 ≤ 4. Then by Lemma 11 (ii) the meeting profile
minimizing T ∗ is

·
2,
z}|{
4, 0 , 6, 0, 6, 0, 6, 0, 6, 0, 2

¸
, with T ∗ = 202 > 197.

Hence any optimal strategy has x2 + x3 > 4, which by Lemma 11 (iii)
implies the required result SPM(2).

SPM(4) If there is no SPM at time 4, then by Lemma 12 and the established
result SPM(2), we have x4+x5 ≤ 3. So by Lemma 11 (ii), the minimizing
profile is

·
2, 6, 0,

z}|{
3, 0 , 6, 0, 6, 0, 6, 0, 3

¸
, with T ∗ = 206 > 197, contradict-

ing optimality.
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SPM(6) If there is no SPM at time 6, then by SPM(4) and Lemma 12, we
have x6 + x7 ≤ 3. Hence by Lemma 11 (ii), the minimizing profile is·
2, 6, 0, 6, 0,

z}|{
3, 0 , 6, 0, 6, 0, 3

¸
, with T ∗ = 200 > 197.

We now summarize our findings for t ≤ 7. Since the SPM’s at t = 2, 4, 6 are
of alternating type, it is easy to verify that the meeting profile for any optimal
strategy starts with

[2, 6, 0, 6, 0, 6, 0] ,with contribution T ∗∗ to T ∗ of (21)

T ∗∗ = (2× 1) + (6× 2) + (6× 4) + (6× 6) = 74. (22)

Furthermore, there are precisely two starting nodes a, b ∈ S, which have not
been Type II SPM’s (not been visited by I) by time 6. From each of these nodes,
two agents have been met at time 4 (the Type I SPM at the origin), and the
remaining six agents have not been met by time 6.
Suppose x8 + x9 ≤ 2. Then by (21) and Lemma 11 (ii), the best profile is

[2, 6, 0, 6, 0, 6, 0, 2, 0, 6, 0, 4] , with T ∗ = 198 > 197. Hence

x8 + x9 ≥ 3, and (since x9 ≤ 2 by Lemma 9) (23)

x8 > 0. (24)

We now continue to establish further SPM’s.

SPM(8) Suppose there is no SPM at time 8. Then by the established SPM at
time 6 and Lemma 12, we have x8 ≤ 2 and x8 + x9 ≤ 3. Hence by (23)

x8 + x9 = 3 and x9 ≥ 1. (25)

If we also have x10 + x11 ≤ 4, then
·
2, 6, 0, 6, 0, 6, 0,

z}|{
2, 1 ,

z}|{
4, 0 , 5

¸
is the

best profile, with T ∗ = 74+125 = 199 > 197. Hence we have x10+x11 ≥ 5.
So by Lemma 11 (iii) we have SPM(10), and (Lemma 11 (i)),that x11 = 0.
Hence x10 ≥ 5. The SPM at time 10 cannot be Type I, since in that case
Player I could meet at most two agents each from the unvisited nodes a
and b, contradicting the result x10 ≥ 5. Thus it is of Type II, with Player
I meeting at least 5 agents at the node (say) a. Since there were six agents
from a unmet at time 7, he can have met at most 6 − 5 = 1 of these
at times 8 and 9. Since (25) x9 ≥ 1 and the only agents that Player I
can meet at time 9 come from a (since they are back at a at the Type II
SPM at time 10), we must have x9 = 1 and hence by (25), x8 = 2. Thus
the other agent met by I at some node c at time 8 must come from b.
Since the SPM at time 6 was of Type II, this agent was back at b then,
so d (b, c) ≤ 8 − 6 = 2. Now Player I goes from some node e ∈ S at time
6 (since there was a Type II SPM then), to c at time 8, and to a ∈ S at
time 10. Since d(e, a) = 4, it follows that the distance from c to all three
nodes a, b, e ∈ S is no more than 2. Hence c must be the origin, and since
I met an agent at c at time 8, there was an SPM at time 8, contradicting
our initial assumption.
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By alternation of Types for consecutive SPM’s, The SPM at time 8 must
be of type I, so at most two agents from each of the unvisited starting points a
and b can be met at time 8, and (by Lemma 11(i)) none at time 9, x8 ≤ 4 and
x9 = 0.

SPM(10) Suppose there is no SPM at time 10. Then, since we have established
SPM(8), it follows from Lemma 12 that x10 ≤ 2 and x10 + x11 ≤ 3. If
x8 + x9 ≤ 3, it follows from the previous remark and (21), that the best

profile satisfying the known constraints is

·z }| {
2, 6, 0, 6, 0, 6, 0,

z}|{
3, 0 ,

z}|{
2, 1 , 6

¸
.

But this has T ∗ = 201 > 197, so x8 + x9 ≥ 4, and by the remarks above
this paragraph x8 = 4. Thus, after time 8, I can meet at most four agents
at any SPM of type II, and hence (by Lemma 7 (i)), at most four agents at

any time after 8. Hence the best profile is

·z }| {
2, 6, 0, 6, 0, 6, 0,

z}|{
4, 0 ,

z}|{
2, 1 , 4, 1

¸
,

with T ∗ = 198 > 197. Hence there is an SPM at time 10, which must be
of Type II, at node (say) a.

Not SPM(12) Suppose there is an SPM at time 12, which by alternation
would have to be of Type I. By Lemma 7 (i), I can meet at most two agents
from the sole unvisited node b at time 12, so x12 ≤ 2 and (by Lemma 11(i)
) x13 = 0. Hence the best profile would be [2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0, 2, 0, 2] ,
with T ∗ = 198 > 197. So there is no SPM at time 12.

We can now use the pattern of Starting Point Meetings established for op-
timal strategies in Theorem 13 to determine the unique optimal agent number
profile and thus the rendezvous value of Γ (2) .

Theorem 14 The rendezvous value for Γ (2) is 197/32 and the NAWFM strat-

egy
³
f̃ , g̃

´
is optimal. Furthermore, every optimal strategy has the agent number

profile [2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0, 2, 1, 1] .

Proof. Consider an agent number profile x corresponding to an optimal
strategy. According to (21) the profile must begin with [2, 6, 0, 6, 0, 6, 0] . Theo-
rem 13 says that at time t = 8, there is a Type I SPM (at the origin), so I will
meet there two agents from each of the two starting nodes he has not visited.
Hence x8 = 4 and x9 = 0 (by Lemma 11 (i)). At time t = 10, Theorem 13
says that I will visit his third Player II starting point. Of the eight agents who
started there, two were met at the origin at each of the Type I SPM’s at t = 4
and 8, so x10 = 8− 2− 2 = 4, and again x11 = 0. So the agent number profile
x must be of the form

[2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0, x12, x13, x14] .
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Since there is no SPM at time 12, it follows from Lemma 4.7 that x12 ≤ 2 and
x12 + x13 ≤ 3. So the best profile satisfying all known constraints is·

2, 6, 0, 6, 0, 6, 0, 4, 0, 4, 0,
z}|{
2, 1 , 1

¸
,

which is (19) the profile of the NAWFM strategy
³
f̃ , g̃

´
, and has T ∗ = 197.

Hence NAWFM is optimal, and the rendezvous value is 197/32.
We now use the last two theorems to derive the full set of optimal strategy

pairs for Γ. We describe the situation in I’s coordinate system, but we will
not use the agent analysis for II. We begin our analysis at the end of move 10
(t = 10). According to Theorem 13, I is at one of the previously unvisited nodes
of S, say a; and II (all four remaining agents of) is at the other one, b. Player I
can deduce that II is at b, while II knows only that the vector to I is one of the
four rotations of (2, 2) . We know from the optimal profile of Theorem 14 that
they must meet with conditional probability 1/2 at times 12 (two agents of the
remaining 4) and 13 (one agent of the remaining 2); and conditional probability
1 at time 14 (the remaining agent must be met). We will find it easier to use a
conditional probability analysis, rather than an agent analysis.
If a and b are opposite starting points (a = −b) in S, then the only possible

location for a meeting at time at time 12 is the unique midpoint of a and b,
namely the origin. But this would constitute an SPM at time 12, which we have
ruled out in Theorem 13. The situation from times 10 to 14 is illustrated in
Figure 5, with a = (0,−2) and b = (2, 0) .

(0,0)

a

b

A

B

C

z

w

y

10
12

13

12

10

Figure 5: Analysis for t = 10 to 14.

Let w denote I’s location at time 12. For a meeting, w has to be at one of the
three midpoints of a and b : the origin, (1,−1) , (2,−2) . The first would imply
SPM(12), so can be excluded. The last would require each player to move 2
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units in the same direction on moves 11 and 12. This would leave the players 4
units apart if they fail to meet at time 12, in which case there could not be a
meeting at time 13. So w must be the unique Euclidean midpoint of a and b. In
our drawing, this gives w = (1,−1) . Since the optimal profile has no meeting
at time 11, I may get to w in either of the two possible ways (indicated by a
diagonal arrow). To achieve a possible meeting at w at time 12, II must move
to a diagonally opposite node from his location b at time 10 (must make a turn
at time 12). Since he does not know where w is, such a move sequence might
lead him to any of the four nodes w, z, y, and (3,−1)). How can II choose among
these four directions so as to reach w at time 12 with conditional probability
1/2?
To answer this question, recall (from Theorem 13) that there were Type I

SPM’s at times 4 and 8. This means Player II has visited two of the possible
Player I starting points, that is, two of the three nodes A, B, and C. (He has not
visited the actual starting point at the origin, or the game would be over.) Now
there are two cases. Either (1) he did not visit C (visited two opposite starting
nodes of I, A and B) or, (2) he visited C (two adjacent possible starting nodes
of I, C and either A or B). He will know which case he is in, according to
whether he searched adjacent or opposite nodes.
Suppose (1) that Player II did not visit C, and so visited A and B. In this

case he can distinguish the vertical coordinate (directions of his searches) from
the horizontal (unsearched directions), and for example could determine the
origin (I’s starting point) with probability 1/2 (he could equiprobably reach the
origin or C in two moves). However the node w (which he needs to reach at
time 12 with conditional probability 1/2) is indistinguishable from three other
nodes z, y, and (3,−1) , and so could not be reached with conditional probability
greater than 1/4. Hence he cannot ensure a meeting at time 12 with the required
conditional probability 1/2, and so a strategy that did not visit C cannot be
optimal.
So an optimal strategy for II must have visited C, that is, previously searched

two adjacent possible starting nodes of I. In this case II can determine w with
the required conditional probability 1/2 as the node e in the direction opposite
the midpoint of the two Player I starting nodes he has visited. (If he visited
A and C, then e = w; if B and C, then e = z.) Optimal play must bring him
to w with conditional probability 1/2, so he must move to e (in either of the
two possible ways, since the optimal profile has no meeting at t = 11) at time
12. This is indicated by the dotted line going out from b. (This is not a mixed
strategy, II goes for his uniquely defined node e.) Assuming II does not meet
I at time 12, his location at that time must be e = z, and I can deduce this.
So to achieve a possible meeting at time 13 (required by the optimal profile),
I must move to the unique lattice midpoint of w and z (the node (1,0) in our
figure). Player II can conclude at time 12 that Player I is either at w or y. So
he must move back toward b equiprobably in either way (toward w or toward
y). (Again, this is not a mixed strategy - in agent formulation, one of the two
remaining agents will go towards b clockwise, and the other counterclockwise.)
If the Players have not met by time 13, they both can deduce the location of the
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other; I is at (1, 0) and II is at (2, 1) . Now they can agree to meet for sure at
time 14 at either of their two midpoints (i) b, or (ii) z. This leads to two types
of strategy, according to whether they both choose (i) or they both choose (ii).
Hence we have established the following:

Theorem 15 A strategy pair is optimal in Γ (2) if and only if it is one of the
following two types (i) and (ii).
Player I orders the starting points of II as V1, V2, V3, V4 in any way so long

as the first two are adjacent (V1 6= −V2). On the first ten moves, he goes to V1
and back, V2 and back, and to V3. On moves 11 and 12 he goes (in either of the
two ways) to the unique Euclidean midpoint w of V3 and V4. At time 13 he goes
to the unique midpoint of the origin, w, and V4. At time 14, he either (i) goes
to V4, or (ii) goes in the same direction as on move 13.
Player II goes in any direction on move 1, returning to his start on move

2. On moves 3 to 6, and on moves 7 to 10, he goes respectively to two adjacent
possible starting nodes W1 and W2 and back to his start. On moves 11 and 12,
he goes (in either of the two possible ways) to the node e diagonally opposite his
start and in the direction opposite to the Euclidean midpoint of W1 and W2. On
move 13, he goes to either of the two midpoints of e and his start. On move 14,
he goes either to (i) his starting point, or (ii) back to e.

The strategy
³
f̃ , g̃

´
is of type (i). In Figure 6 we give an example of an

optimal strategy of type (ii).

2

6

10

12

13

14

0,4 8

9,11

4

8

1,11, 12,14

0,2,6,10

(N,N,S,S,W,W,E,E,S,S,N,E,N,N) (N,S,W,W,E,E,S,S,N,N,N,E,S,N)

13

Figure 6: Optimal strategy for Γ of type (ii)

Although the NAWFM strategy is optimal, it is not uniformly optimal - it
does not maximize the probability of meeting by time t for all t. In particular,
it does not maximize the probability of meeting by time 12. After move 12,
Player I has met 30 of the 32 agents, so the probability that the Players have
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met by time 12 is 30/32. Consider the 12 move strategy for Player I given by
(N,W,S,W,E,E, S, S,N,N,E,E, . . . ) , and drawn in Figure 7.

(N,W,S,W,E,E,S,S,N,N,E,E,...)

12

4

8

12
6,10

Figure 7: Strategy with meeting probability 31/32 by time 12.

Assuming Player II is back at his start at times 4, 8, and 12, the only agents not
met by time 12 have starting point (0, 2) . Of the eight agents who started there,
two could be met at (0, 1) at time 1, one (only one since this involves a turn)
could be met at (−1, 1) at time 2, and two could be met at the origin at both
times 6 and 10. This would leave only one agent unmet by time 12, or a 31/32
probability of rendezvous by that time, better than NAWFM. In fact, the agents
can be met at the times mentioned above if Player II adopts the move sequence
(N,E,W, S, S, S,N,N,W,W,E,E, . . . ) . Hence the NAWFM strategy is optimal
but not uniformly optimal and, as mentioned in Definition 4, there cannot be
any uniformly optimal strategy for the game Γ = ΓP . As mentioned in [4],
this is qualitatively distinct from the situation for the diagonal start game ΓD,
where there is a uniformly optimal strategy (and hence all optimal strategies are
uniformly optimal). The (uniformly) optimal strategies for the diagonal start
game (without common clockwise) are as follows (Corollary 23, [4]): Player
I cyclically orders adjacent (distance 2) starting nodes as v1, v2, v3, v4 in any
manner. He moves to the midpoint of v1 and v4 at time 1, and then cyclically
searchers the vertices vi at time 2i. Player II moves in any direction Di (of the
four possible) at times i = 1, 3, 5, 7, going in the opposite direction −Di at times
i+1. The only restriction is that D7 = ±D1, that is, II must move in the same
or opposite direction on move 7 as he did on move 1 (not at right angles). The
particular strategy pair of (N,W,S, S,E,E,N,N ) , (N,S,N, S,N, S,N, S) was
earlier shown to be optimal for the common clockwise version of the diagonal
start problem by Anderson and Fekete [10], and an easy symmetric argument
shows that it does equally well (same expected meeting time) in the no common
clockwise version.

5 Rendezvous in Higher Dimensions

This section determines an upper bound for the rendezvous value R (n) of the
parallel start game Γ (n) = ΓP (n) which generalizes the game Γ (2) of the
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previous section (as well as the game Γ (1) solved in [7]) to n dimensions. The
strategy pair giving this bound is the AWFM (Definition 6), which assumes no
common ordering of the coordinate axes. Some ideas on lower bounds are also
given at the end of the section. For notational simplicity we will remove the
subscript P .

Theorem 16 Suppose that two players are initially placed on the n-dimensional
integer lattice so that their difference vector is two units long and parallel to one
of the coordinate axes. Assume that the players have no common notion of
location and no common labelling of the coordinates axes. The rendezvous value
R (n) for this game Γ(n) satisfies the inequality

2n ≤ R (n) ≤ 32n
3 + 12n2 − 2n− 3

12n2
. (26)

Consequently, we have the asymptotic result

2 ≤ lim
n→∞R (n) /n ≤ 8

3
.

We will need to consider two subsidiary problems Γ1 (m) and Γ2 (m) , for
m = 1, . . . , 2n. Both of these problems begin at time t = 0 with the placement
of Players I and II respectively at a pair of nodes A and B which are two units
apart along a line parallel to some coordinate axis. Then Player I is displaced to
a node A0 along a similar two unit line which is not the one leading to B. Player
I is told the node A. In the problem Γ1 (m) , Player I is told m − 1 directions
which are certain to include the direction to B, and Player II is told m such
directions. In problem Γ2 (m) , both players are told m such directions. Special
cases of these problems, for n = 2, are drawn in Figures 8 and 9.

A B

A'

Figure 8: Start in Γ1 (3) .

A B

A'

Figure 9: Start in Γ2 (3) .

In order to estimate the rendezvous value Ra (n) of the original problem
Γ (n) , we must obtain estimates on the respective asymmetric rendezvous values
w1 (m) and w2 (m) of Γ1 (m) and Γ2 (m) for various m (corresponding to the
dimension n, which is implicit in our notation).
Suppose that in the problem Γ1 (m), the first two moves of the players are

as follows: Player I goes to the node A (which he knows) while Player II goes 2
steps randomly in one of the m indicated directions. With probability 1/m, II
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will pick the direction to A, and the meeting time will be t = 2. Otherwise the
two players will be in the initial position of the other problem Γ2 (m− 1) , with
the roles (of I and II) reversed. Hence we have

w1 (m) ≤
1

m
(2) +

m− 1
m

(2 + w2 (m− 1)) . (27)

Similarly, in the initial position of Γ2 (m) , the same type of strategy for the first
two moves gives

w2 (m) ≤
1

m
(2) +

m− 1
m

(2 + w1 (m)) . (28)

From these two inequalities we obtain upper bounds wi (m) ≤ w̄i (m) by solving
the associated equalities. This gives us the solutions

w̄1 (m) =
4m+ 1

3
, (29)

w̄2 (m) =
−1 + 3m+ 4m2

3m
. (30)

This is consistent with the trivial base case Γ2 (1) , where I and II start 4 units
apart with knowledge of the other’s direction, with rendezvous value w2 (1) = 2
corresponding to a meeting at A. This case is illustrated in Figure 10.

A ' A B

Figure 10: Start position in Γ2 (1) .

We now consider the original game Γ (n) . Suppose that in their first two
moves one player (I) goes two units in his forward direction, while the other (II)

goes in some direction and then back to his start. With probability 1/ (2n)2

the two players will go towards each other and meet at time t = 1. If Player I
goes in the direction of II (probability 1/2n) and II does not go in the direction
of I (probability (2n− 1) / (2n)) then the two will meet at time t = 2 at II’s
initial location. In the remaining case, I will find himself displaced two units
from his start and know of one direction from his start which does not lead to
II’s starting location. Meanwhile, II will be at his start and not know of any
of the 2n directions which are not correct. Consequently the situation at time
t = 2 will be identical to that of the problem Γ1 (2n) . Therefore we have the
estimate

R (n) ≤
Ã

1

(2n)2

!
1 +

µ
1

2n

¶µ
2n− 1
2n

¶
2 +

µ
2n− 1
2n

¶
(2 + w1 (2n)) .
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Estimating w1 by the formula (29) for w̄1, and simplifying, we get

R (n) ≤ 32n3 + 12n2 − 2n− 3
12n2

, and hence

lim
n→∞R (n) /n ≤ 8

3
, the right inequality in Theorem 27.

We note again that the value of the right hand side of the top inequality
is 13/4 for n = 1, which is the exact asymmetric rendezvous value for the line
as derived in [7] for known initial distance D = 2. The strategy pair which
gives this expected meeting time is the one which converts Γ (n) into Γ1 (2n)
and thereafter converts each problem Γ1 (m) into Γ2 (m− 1) and each problem
Γ2 (m) into Γ1 (m) , m = 2n, 2n − 1, . . . , 1 (assuming the players don’t meet
earlier). It is an AWFM strategy.
We can obtain a lower bound on R (n) by giving the players some additional

information and determining their optimal strategy pair in that situation. The
simplest way to do this is to give the players common notions of directions. In
this case it is well known (see [7] or [10] for one or two dimensional arguments)
that the players should always move in opposite directions, and that the ren-
dezvous problem is consequently equivalent to one where Player II is stationary
and Player I moves with their combined speeds, here equal to 2. The least
expected time for Player I to reach the 2n possible locations of the stationary
player II, moving with speed 2, is obtained by a path which reaches these lo-
cations at the 2n times 1, 3, 5, . . . , 2i − 1, . . . , 2 (2n) − 1, while returning to his
start in between. The expected time is consequently given by

1

2n

2nX
i=1

(2i− 1) = 2n.

Thus the asymptotic value of Ra (n) /n lies between 2 and 8/3, completing
the proof of Theorem 27. A player-symmetric version of this n−dimensional
problem, where both players must follow the same mixed strategy, is analyzed
in [8] (Section 18.2.2). An alternate treatment of the player-asymmetric problem
is outlined in Section 18.2.1.
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