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Abstract

We present a two-sided search model in which individuals from two groups
(males and females, employers and workers) would like to form a long term
relationship with a highly ranked individual of the other group, but are limited
to individuals who they randomly encounter and to those who also accept them.
This article completes the research program, begun in Alpern and Reyniers

(1999), of providing a game theoretic analysis for the Kalick-Hamilton (1986)
mating model in which a cohort of males and females of various ‘fitness’ or ‘at-
tractiveness’ levels are randomly paired in successive periods and mate if they
accept each other. Their model compared two acceptance rules chosen to rep-
resent homotypic (similarity) preferences and common (or ‘type’) preferences.
Our earlier paper modeled the first kind by assuming that if a level xmale mates
with a level y female, both get utility − |x− y| , whereas this paper models the
second kind by giving the male utility y and the female utility x.
Our model can also be seen as a continuous generalization of the discrete

fitness-level game of Johnstone (1997). We establish the existence of equilibium
strategy pairs, give examples of multiple equilibria, and conditions guaranteeing
uniqueness. In all equilibria individuals become less choosy over time, with high
fitness individuals pairing off with each other first, leaving the rest to pair off
later. This route to assortative mating was suggested by Parker (1983). If the
initial fitness distributions have atoms, then mixed strategy equilibria may also
occur. If these distributions are unknown, there are equilibria in which only
individuals in the same fitness band are mated, as in the steady state model of
MacNamara and Collins (1990) for the job search problem.



1 Introduction

In this paper we present a model of two-sided search in which individuals from
two distinct groups seek to form a long term relationship with a member of
the other group. Individuals in each group have a common preference with
respect to those in the other group and seek to obtain a partner of high rank by
optimal sequential rejection and acceptance of those indivuals who are randomly
encountered. The two main areas of application of this model are job search
(between workers and employers) and (animal or human) mate selection. We
present the model and our findings in terms of the latter, and relate our work to
the sociological and biological literature on mate selection with mutual choice.
Readers interested in the recent economics literature in this area should look at
the work of Bloch and Ryder (2000), Burdett and Coles (1997, 1999), Eeckhout
(2000), McNamara and Collins (1990), and Shimer and Smith (2000).
The empirical background which provides the starting point of this article is

the widespread observation, in a variety of human, animal, and economic con-
texts, of (positive) assortative mating. This term describes a positive correlation
of a measurable trait (or traits) within various types of mated couples. The so-
cial psychologists Kalick and Hamilton (1986) developed a simulation model
which produced assortative mating of a finite cohort of males and females with
discrete computer generated attractiveness levels. In each of a succession of
periods, unmated males and females were randomly paired, and pairs formed
a mated couple if each accepted the other. They posited two types of accep-
tance rules: (i) accept someone with a level close to your own, and (ii) accept
someone with a high level. Both types of rules produced positive correlations in
inter-couple attractiveness levels roughly approximating empirical observations.
This article is the second part of the authors’ program of analyzing the Kalick-
Hamilton model without exogenous acceptance rules, but rather assuming only
individual preferences (utilities) and obtaining corresponding acceptance rules
endogenously as equilibria of the resulting dynamic game. In other words, we
replace the mate selection model by a mate preference model, as distinguished
in the article of Zohar and Guttman (1989). In particular, for male (x) and
female (y) levels continuously distributed over the interval [0, 1] the acceptance
rule (i) was replaced in our original article (Alpern & Reyniers, 1999) by the
assumption that both members of a mated pair (x, y) obtained the common
utility − |x− y| (cost of a mating is difference in attractiveness levels). The
present article completes this program by replacing acceptance rule (ii) by the
assumption that each member of a mated pair receives the other’s level as util-
ity (male gets y, female gets x). The utilities in (i) represent what is called
homotypic (or similarity) preferences, and correspond to what is known in the
social psychological literature as the ‘matching hypothesis’, while the utilities
(ii) used here are known as maximizing (or type) preferences.
Subsequent to the bulk of our work presented here, the article of Johnstone

(1997) has come to our attention. His pioneering work can be seen as an earlier
game theoretic discrete version of the maximizing-preference case of the Kalick-
Hamilton model, and in this context the present article is a continuous version
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of the Johnstone model. However there is no overlap in results, as our article
is mainly analytical whereas Johnstone’s work is mainly computational. In this
perspective our formal results give a theoretical underpinning for the conclusions
given by Johnstone for a wide variety of biologically significant questions.
The aim of this article is to complete the program of game theoretic analysis

of the Kalick-Hamilton model by analyzing the maximizing preference case of
their model in terms of a dynamic game Γn (F1, G1) . In this game initial pop-
ulations of males and females (the cohort) have their fitness levels distributed
of the interval [0, 1] according to respective cumulative probability distributions
F1 and G1. We give special attention to the symmetric case of identical initial
distributions, which we denote by Γn (F1) = Γn (F1,F1) and to the special sym-
metric case denoted simply Γn where the common distribution is uniform. In
each of n rounds, unmated males and females are randomly paired, and become
mated if there is mutual acceptance. A strategy for say a male of level x says
which females to accept (if paired with) in each period k = 1, . . . , n. A strategy
profile, giving such rules for all males and females, is said to be an equilibrium if
say a male x accepts in period k only those females whose level exceeds the ex-
pected level of a female he will be mated with if he plays optimally in subsequent
rounds. We establish the existence of such equilibria for all continuous initial
distributions F1 and G1, and give examples to demonstrate that there may be
more than one equilibrium. We show that in any equilibrium, each period k
is associated with a pair of acceptance points ak and bk (both decreasing in k)
with the property that the only couples formed in period k consist of females
above ak and males above bk. This mating pattern differs from that found in the
similar steady state model (not a fixed cohort but with equal numbers entering
and coupling in each period) of MacNamara and Collins (1990), who found that
couples formed if and only if the paired male and female belongs to the same
band (interval) of levels, where these interval bands partitioned the full spec-
trum of possible levels. Within these bands, mating was random. Our previous
paper on homotypic preferences found that at equilibrium individual threshold
acceptance levels (in that case, how far from one’s one value to accept) var-
ied continuously with ‘attractiveness’, as opposed to the banding we find here.
Johnstone (1997) asserts that his model also predicts continuous changes in
threshold levels. Since his model is very similar to the one presented here we
assume that this difference arises from his use of probabilistic acceptance rules.
The equilibrium mating pattern found here corresponds to that posited by

Parker (1983), in that individuals with high (fitness) levels pair off with each
other first, leaving the lower fitness individuals to pair off with each other later.
(A similar observation was made by Johnstone (1997) regarding his model.) This
results in a gradual lowering over time of the fitness levels in the unmated pool.
We prove that the acceptance levels of both males and females are decreasing
over time, so that they get ‘less choosy’. This is of course equivalent to a point of
view in which acceptance levels remain constant, but that perceptually observed
fitness levels are increasing over time. This has been empirically observed in
the country and western song “Don’t the girls get prettier at closing time” as
studied by Pennebaker et. al. (1979), and in terms of animal breeding seasons
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by Real (1990).
An important theoretical and practical question relates to symmetry, or the

lack of it, between males and females. Our model allows for different initial
distributions of fitness among males and females (F1 6= G1), and we establish
our general results in this context. However to reduce the complexity of the
analytical solutions, our worked out examples mainly consider the symmetric
case. Even here it is not clear a priori that this ensures that equilibria must be
symmetric - it is theoretically possible that asymmetric equilibria exist in such
cases, though we have not found any. In the other direction, we have established
limited results that symmetric problems have only symmetric equilibria, for
example when n = 2 or when n = 3 and the common initial distribution is
uniform. Johnstone (1996) explores this problem in great detail, especially in
the biologically significant area of sex differences in parental care.
We find that if the initial distributions F1, G1 of fitness are not known but

can be gradually learned, considering the pairings as a sampling process, then we
do obtain a coupling pattern similar to that found by MacNamara and Collins
(1990) in their steady state infinite horizon model. In that pattern males and
females are segmented into quality bands and mate only if they are in corre-
sponding (say both top) bands. We consider also the possibility that individuals
do not know their own fitness levels, but learn this over time through observa-
tions about which individuals accept them. However the type of equilibrium
which we find always prevails can be implemented even by individuals who do
not know their own type, so our model does not seem to allow this type of
self-learning to be studied.
We also show how mixed strategy equilibria, where an individual’s strategy

may require accepting a potential mate of some level with a non-trivial proba-
bility, may exist. In our model these mixed equilibria occur endogenously in the
model, as opposed to the versions of Kalick & Hamilton (1986) and Johnstone
(1997) where probabilistic acceptance strategies are exogenously incorporated
into the model. However mixed strategies can only exist when one of the initial
distributions F1 or G1 has an atom (a positive probability of some fitness level).
Our analysis also deals with asymmetric problems. For example, we show

that when the females only are given a charge c (negative utility) to go into
period 2 in Γ2, not only the females become less choosy in the first period
(obvious), but also the males. Much more analysis of asymmetric problems can
be found, in an alternative model, in Johnstone et al (1996).
Johnstone (1997) observes that when both sexes exercise choice, a game the-

oretic model must be adopted (also citing Parker, 1983, and Crowley et al, 1991,
to this effect), because “the best strategy for males depends on the behavior of
females, and vice versa”. In fact when heterogenous fitness levels are assumed
for both sexes, the game is not simply one between males and females, and an
individual’s best behavior also depends on the behavior of other individuals of
his/her own sex but with different fitness levels. Thus the game presented here
should be see as one having a continuum of players, distributed between two
sexes. Conflicts of interest between the sexes have also been observed in the
context of alternative stable matchings by Bergstrom and Real (2000), where
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an extensive theory of mutual mate choice is presented.

2 The Game Γn (F1, G1)

In this section we formally define the general cohort mating game Γn (F1,G1)
and its two special cases; the symmetric game Γn (F1) = Γn (F1, F1) and the
symmetric uniform distribution game Γn = Γn (uniform) . The game Γn (F1,G1)
is essentially a continuous generalization of the Kalick-Hamilton-Johnstone dis-
crete mating models. There are n periods. We assume that initially (at the
beginning of period 1) males have their fitness (replacing Kalick’s term ‘attrac-
tiveness’) x distributed on [0, 1] according to a continuous cumulative probability
distribution F1, and similarly female fitness y is initially distributed according
to a similar distribution G1. Examples with atoms (positive probability of a
particular fitness level) will sometimes be considered, because they are easier
to analyze. We assume that these distributions are known, though Section 7
explores the role of learning in the alternative case. For simplicity, we assume
that the total populations of males and females are equal in each round (though
unequal populations can also be analyzed in this model by making the reserva-
tion values described below positive). In each of n rounds, unmated males and
females are randomly paired - this is called a matching. Saying that the match-
ing is random simply means that the probability of any male x being matched
with a female in fitness interval Y in round m is simply the fraction of females
with fitness levels in Y at the beginning of that round. If matched individuals
accept each other, then they leave the pool and each receive the other’s fitness
as their own payoff. This is called a mating. We could incorporate exogenous
costs of waiting (going into the next period), in order to encourage acceptance.
For example, we could make the utility of a mating (x, y) in period m depend
explicitly on m. For example the male’s utility could be y − c (m− 1) if there
is a fixed cost c of entering each period, or dm−1y if there is a discounting of
the female’s value over time (c = 0 and d = 1 reduce to the original case).
We examine the effect of such costs on the inter-couple correlation coefficient
(which can go either way). We note that if the fixed cost c is sufficiently large,
then the ‘universal acceptance’ strategy will dominate. A male who leaves the
final round unmated receives utility zn+1 (similarly a female receives wn+1) We
will usually take these reservation values to be zero, for simplicity. In this case
there will obviously be mutual acceptance in the final (n’th) round, so that the
game will end with all individuals mated.
Note that there is some flexibility in using initial distributions (F1,G1) or

final utilities ( the reservation values wn+1 and zn+1) to describe the same
situation. For example, suppose that the initial distributions of males and
females are both uniform on [0, 1] and that the utility for any individual of
leaving the final round unmated is given by wn+1 = zn+1 = 1/4. Then no
individual with fitness below 1/4 will ever be accepted, so their fitness could
just as well be given as 0 (or negative). In this altered model, we would have
the initial distributions with an atom of probability 1/4 at zero, and the rest

4



uniformly distributed on [1/4, 1] , with the value of leaving the final period
unmated as 0. So it would be sufficient to analyze a model in which we are
given that wn+1 = zn+1 = 0, but for ease of applicability we considered the
more general case here. The same type of analysis allows us to deal with unequal
initial (and hence subsequent) populations of males and females. If there are
more males than females, we could add ‘phantom’ females of zero (or negative)
fitness. Being matched with one of these phantoms would be equivalent to being
unmatched in that period. Our model can have everyone matched in each round
for this reason.
We now consider what a strategy might look like for an individual playing

this game. A strategy pair (f, g) = ((f1...,,fn−1) , (g1, . . . , gn−1)) is defined as
follows. If a male of level x (simply called a male x or even just x) meets
a female y in period m, x will accept y iff y ≥ fm (x) and y will accept x iff
x ≥ gm (y) . Hence x and y will be mated (and leave the pool) iff both conditions
are satisfied. More general strategies could have been considered, such as letting
fm (x) be an arbitrary subset of [0, 1] , but the definition we choose is simple
and sufficiently general that it will not exclude any equilibrium pairs of more
general strategies.
Given a strategy pair (f, g) one can easily calculate the normalized popu-

lation distributions Fm and Gm of males and females at the beginning of each
period m. This enables us to calculate the expected value v1m (x) for a male
of fitness x who is unmated at the start of period m - this gives the expected
fitness of the female he is eventually mated with. Similarly there is a female
value function v2m (y) . Clearly both v1 and v2 depend on the strategy pair f, g.
A pair (f, g) is called an equilibrium if for all m = 1, 2 . . . , n − 1 and all x

and y, we have

fm (x) = v1m+1 (x) , and (1)

gm (y) = v2m+1 (y) .

The first equation simply means that at equilibrium a male of type x will accept
a female of type y in period m if and only if y exceeds the expected fitness of the
mate he will obtain if he goes into the next (m+1’th) period unmated. This def-
inition of equilibrium is somewhat analogous to a subgame perfect equilibrium
of a finite extensive form game. We observe that in the final period n any match
will be accepted if the reservation values are zeros, or more generally, any match
above the reservation value will be accepted. That is, the equilibrium condition
for the final period n is defined by setting v1n+1 = zn+1 and v2n+1 = wn+1.
There are some caveats to this definition that will apply to pathological (from

our perspective) initial distributions. As long as the probability of meeting any
given type is zero (F1 and G1 are non-atomic distributions) we do not need to
worry about the indifference case where x meets a y satisfying y = v1m+1 (x) .
However if there is an atom at y, we will need to consider mixed strategies where
x accepts such a y with a non-trivial probability. We postpone the discussion
of such strategies until Section 6. Another observation about the equilibrium
condition (1) is that if say there are no females with fitness in the interval (.3,.6),
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(that is, if G1 (.3) = G1 (.6)) then the strategy with fm (x) = .4 and the one
with fm (x) = .5 (for some x) are equivalent in the sense that they accept the
same set of females. We will not consider equilibrium strategy pairs which differ
only in this trivial sense to be examples of non-unique equilibria. (We will find
true examples of non-uniqueness in Section 6).
We will sometimes consider a version of the model which is symmetric with

respect to males and females in that the two initial distributions F1 and G1 are
identical. We shall denote this symmetric game Γn (F1, F1) simply by Γn (F1) ,
so if there is only one argument this will denote symmetry. It is theoretically
possible that in this case there still might exist asymmetric equilibria (i.e., with
f 6= g), although we have a limited result in the other direction in Theorem 4.
The symmetric game is simpler to analyze analytically, as there are only half
as many variables to solve for. The symmetric game also may be applied to
the situation where there is a single population which needs to be paired (e.g.,
people looking for good tennis partners, among randomly encountered players).
For the symmetric game we will consider mainly symmetric equilibria, those

with f = g, and in this case we use the simpler notation v = v1 = v2. So the
equilibrium condition (1) becomes simply

fm (x) = vm+1 (x) , m = 1, . . . , n. (2)

A special case of the symmetric game is the version where the initial distri-
bution for males and females is uniform on [0, 1] , that is, F1 (t) = G1 (t) = t.We
shall denote this game by Γn. This special game is useful for two reasons. First
of all, the calculations are short. But more important is the fact that this is the
distribution used in Kalick’s dating simulation model and also in the authors’
earlier paper. Our comparisons between similarity (homotypic) and maximizing
preferences are made easier if we use the same distribution.

3 Analysis of Γ2,Γ3

In this section we derive the equilibrium strategies for the symmetric mating
games with initial uniform distributions of fitness and n = 2 or 3 periods, Γ2
and Γ3. We also consider the effect of an entry cost c on equilibrium acceptance
levels and on inter-couple correlation. We will also consider the possibility of
asymmetric equilibria.
For n = 2 only f1 is in doubt, and this will be given by as a constant equal to

the final period mean fitness level. If individuals above the value u are accepted
in the first round ( f1 = u) an individual x with x < u will definitely stay in
the unmated pool for period 2, and an individual x with x > u will stay in it
with probability u. That is, he will stay unmated if and only if he is matched
with someone below u. So the total population (of both males and females) at
the beginning of period 2 will be

1 (u) + u (1− u) = 2u− u2.
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Hence the mean fitness in the final (second) round will beµZ u

0

xdx+ u

Z 1

u

xdx

¶
/
¡
2u− u2

¢
=

1
2u

2 + u
¡
1
2 − 1

2u
2
¢

2u− u2

=
1

2

µ−u− 1 + u2

−2 + u

¶
At a symmetric equilibrium (2) this will equal the cutoff acceptance value u, so
we set

u =
1

2

µ−u− 1 + u2

−2 + u

¶
, or (3)

u =
3

2
− 1
2

√
5 = . 381 97.

The mean fitness in period 2 as a function of the acceptance value f1 = u in
period 1 is shown in Figure 1 below, where the (unique) intersection with the
45 degree line denotes the equilibrium strategy u.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1u

Figure 1: Mean fitness in period 2 as function of choosiness.

If the acceptance level in the first period is u (for both sexes), 0 < u ≤ 1,then
the resulting inter-couple correlation coefficient when everyone is mated after
period 2 is given by

ρ (u) =
u (1− u)2 (4u+ 1)

2− u
,

which peaks at 1/4 when u = 1/2, as shown below in Figure 2. Note in particular
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that ρ is increasing up to 1/2. (This fact will be used later.)

0

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1u

Figure 2: Inter-couple correlation in terms of choosiness

If there is a fixed cost c of entering each period, or a constant factor d which
discounts the value of a given level mate in each period, then the equilibrium
equation (3) becomes respectively

u =
1

2

µ−u− 1 + u2

−2 + u

¶
− c and u = d

1

2

µ−u− 1 + u2

−2 + u

¶
,

and the resulting equilibrium acceptance level u for the first period is as plotted
in Figures 3 and 4. Note that when c = 0 or d = 1 the original value of .381
obtains.

0

0.1

0.2

0.3

u

0.05 0.1 0.15 0.2 0.25 0.3c

Figure 3: Equilibrium with fixed entry cost c.
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0
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0.25

0.3

0.35

u

0.2 0.4 0.6 0.8 1d

Figure 4: Equilibrium with discount factor d.

Note that as all the equilibrium acceptance levels are below 1/2, it follows
from the increasing nature of ρ (see Figure 2) that the inter-couple correlation
is decreasing in c and increasing in d.

3.1 asymmetric strategies, n=2

We now analyze the n = 2 game allowing for the possibility of asymmetric
equilibrium strategies. Our analysis will demonstrate that there aren’t any.
Consider a generic period 1 asymmetric strategy pair (a, b) in which a male x
accepts any female of fitness level y ≥ a and a female y accepts x ≥ b. The pairs
(x, y) in the shaded rectangle of area (1− a) (1− b) of Figure 5 mate in period
1.

x

y

b

a

0

1

1

Figure 5: Asymmetric mating pattern
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Hence the total population (of each sex) at the beginning of period 2 is 1 −
(1− a) (1− b) = b + a − ab. The mean of the male period 2 population is
calculated as follows. The ‘low’ males (below b) have average fitness b/2, and
they form an interval of length b of full density 1, the ‘high’ males have average
fitness (1 + b) /2, form an interval of length 1 − b, and have density a (since
a fraction 1 − a of them have been mated in period 1). Hence the mean male
fitness level in period 2 is given by

(b/2) (b) 1 + ((1 + b) /2) (1− b) a

b+ a− ab
=
1

2

−b2 − a+ ab2

−b− a+ ab

Setting this mean period 2 male fitness level equal to the female period 1 ac-
ceptance level b gives the female equilibrium equation (lower equation of (1))

b =
1

2

−b2 − a+ ab2

−b− a+ ab
. (4)

By symmetry, the male period 1 acceptance level is given by the female period
2 mean,

a =
1

2

−a2 − b+ ba2

−a− b+ ba
. (5)

These two curves are shown together with the line of symmetry b = a in Figure
6, the top equation (for b) drawn with a thicker line. (For the moment, ignore
the dotted line as it is only relevant in the next paragraph.) The only inter-
section corresponds to the symmetric equilibrium a = b = 3

2 − 1
2

√
5 = . 381 97

found earlier. The fact that the two equilibrium curves have a single point of
intersection is a special case of Theorem 4 for the uniform distribution.

0

0.2

0.4

0.6

0.8

1

b

0.2 0.4 0.6 0.8 1a

Figure 6: Male and female equilibrium equations
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If we make the problem asymmetric by imposing a per-period cost c on
the females, 0 < c < 1/2, but no cost on the males, then the equilibrium is
obtained by simultaneously solving the original male equilibrium equation (5)
and the female equation (4) with c subtracted from the right hand side. The
unique solution is given by period one male and female acceptance levels a and
b, where

a =
b

1− 2c , and

b =
1

2

³
3− 4c−

p
(−8c+ 5)

´
.

In period 1 we see that females, as expected, become less choosy (b is decreasing
in c). In fact for c = 1/2 females accept all males. It is less obvious that males,
while in all cases choosier than females (a > b), also become less choosy (a is
also decreasing in c). The explanation can be seen in Figure 6, now paying
attention to the dotted line representing the female equilibrium equation when
c = .3. The new intersection with the unchanged male (thin) equilibrium curve
has a smaller a value and a smaller b value. To understand the limiting case
c = 1/2, where females are universal acceptors, suppose males accept females
above a in period 1. Then in period 2 females are uniformly distributed on [0, a] ,
with mean a/2. Hence the equilibrium equation for the males is a = a/2, with
solution a = 0. Hence males are also universal acceptors. This is in accordance
with the above equilibrium formula, as it has a limiting value for a of 0 as c
approaches 1/2.

3.2 Analysis of Γ (3)

If we denote by w and u the acceptance levels in periods 1 and 2, the equilibrium
equations for these periods become

w =
u2 + w + w2 − w3

4w − 2w2 , and

u =
u2 + u (−2 + w)w + w

¡−1− w + w2
¢

2 (u+ 2 (w − 2)w) .

There is a unique solution (equilibrium), given by

u =
1

27

³
23−

√
205
´

.
= .3216

w =
1

18

³
23−

√
205
´

.
= .4823

4 Properties of Equilibria

In this section we demonstrate that while in general strategies for the cohort
mating game may have many forms, equilibrium strategies are always of a par-
ticular ‘stepwise’ type. The following result gives our characterization of equi-
librium strategies.
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Theorem 1 Every equilibrium (f, g) in the game Γn (F1, G1) (with given reser-
vation values wn+1 and zn+1) is characterized by two sequences

0 = wn+2 ≤ wn+1 < wn < · · · < w2 < w1 = 1 and

0 = zn+2 ≤ zn+1 < zn < · · · < z2 < z1 = 1, such that

x and y are mutually acceptable in period i iff x > wi+1 and y > zi+1.(6)

Furthermore the strategy pair (f, g) is determined by these sequences according
to the following rules. In period i = 1, . . . , n, a male x will accept a female y iff
y ≥ fi (x) , where.

fi (x) =

½
zk, if x ∈ (wk+1, wk) , k ≥ i+ 2
zi+1, if x > wi+2,

(7)

and a female y will accept a male x iff x ≥ gi (y) , where

gi (y) =

½
wk, if y ∈ (zk+1, zk) , k ≥ i+ 2
wi+1, if y > zi+2.

(8)

Proof. First note that the claimed conditions (7,8) imply the claimed mat-
ing condition (6). For example, the pattern of acceptances at equilibrium is
shown in Figure 7 for period i = 3 for the case n = 7 and wn+1 = zn+1 = 0.
The claimed acceptance pattern f3 (x) is shown within the figure enclosed by
the thick lines, and the resulting mating set is indicated by the lightly shaded
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area.
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y accepts x

x accepts y

both accept

period 3

Figure 7: Equilibrium mating pattern in period 3 of 7.

So it is sufficient to establish the conditions (7,8), which we do by backward
induction on the period i = n− 1, n− 2, . . . , 1.
The strategy pair (f, g) and the initial distributions F1 and G1 together

determine all the subsequent distributions Fi and Gi, i = 2, . . . , n. Given these
distributions and the given values wn+1 = zn+1 (usually taken to be 0), we
determine the remaining values wn, wn−1, . . . , w2 and zn, zn−1, . . . , z2 backwards
by the recursive equations

wi = wi+1 Fi (wi+1) +

Z 1

wi+1

x dFi (x) , and (9)

zi = zi+1 Gi (zi+1) +

Z 1

zi+1

y dGi (y) . (10)

First note that in the usual case that wn+1 = zn+1 = 0 we have that

wn =

Z 1

0

x dFn (x) and zn =

Z 1

0

y dGn (y)

are the mean fitness levels for the final period (i = n) males and females. Since
all matches in the final period are mutually acceptable, the expected value for
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any male entering this period unmated will be zn, and similarly wn for any
such female. More generally, with given non-negative reservation values zn+1
and wn+1, a female y ≥ zn+1 entering the final period unmated will obtain the
reserve value wn+1 if she is matched with a male x < wn+1 and will obtain
utility x if she meets a male x ≥ wn+1. So her expected value is given by

v2n (y) = wn+1Fn (wn+1) +

Z 1

wn+1

x dFn (x) = wn,

with a corresponding result for a male x ≥ wn+1. Note that since

wn+1 = wn+1Fn (wn+1) +

Z 1

wn+1

wn+1 dFn (x) , we have from above that

wn − wn+1 =

Z 1

wn+1

(x− wn+1) dFn (x) ≥ 0 and positive if Fn (wn+1) < 1.

A female y < zn+1 will leave the period n unmated and receive the exogenously
given reserve value wn+1. Hence for any x and y we have

v1n (x) =

½
zn+1, if x < wn+1,
zn, if x ≥ wn+1, and similarly

v2n (y) =

½
wn+1, if y < zn+1,
wn, if y ≥ zn+1.

Consequently the equilibrium conditions (1) give

fn−1 (x) =

½
zn+1, if x < wn+1,
zn, if x ≥ wn+1,

(11)

gn−1 (y) =

½
wn+1, if y < zn+1,
wn, if y ≥ zn+1.

In period n − 1 a pairing (x, y) will mate if and only if x ≥ wn and y ≥ zn.
These conditions coincide with the claimed results for i = n− 1.
Now suppose that the results (7,8) and wi+1 > wi+2 have been established for

i ≥ m+1. Under this assumption we will establish these results for i = m, which
will prove the theorem by induction. We have to evaluate the value v1m+1 (x)
of a male of type x entering the m + 1’st period unmated. (A corresponding
evaluation for v2m+1 (y) can be similarly obtained.). According to the induction
hypotheses for i = m + 1, a male of type x > wm+2 will be mated in period
m + 1 if any only if he is matched with a female of type y > zm+2. Otherwise
he will go into the next period m+2 and obtain an expected value of v1m+2 (x) .
Consequently if x > wm+2 we have

v1m+1 (x) = v1m+2 (x)Gm+1 (zm+2) +

Z 1

zm+2

y dGm+1 (y) .
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However if x > wm+2 we also have x > wm+3 by the induction hypothesis, so
that by the hypotheses (7,8) we have v1m+2 (x) = fm+1 (x) = zm+2. So the above
equation can be written simply as

v1m+1 (x) = zm+2Gm+1 (zm+2) +

Z 1

zm+2

y dGm+1 (y) = zm+1.

Consequently the equilibrium equation (1) gives

fm (x) = zm+1 for x > wm+2. (12)

If x < wm+2, then for some k ≥ m+2, we have that x ∈ (wk+1, wk) . According
to our inductive hypothesis (6) for period i = m+ 1, such a male x will not be
mated in period m+ 1. Hence we have that

v1m+1 (x) = v1m+2 (x) = fm+1 (x) .

But we know fm+1 (x) from the top line of the induction hypotheses as

fm+1 (x) = zk, if x ∈ (wk+1, wk) , k ≥ m+ 3 . (13)

If x ∈ (wk+1, wk) for k = m+2, that is, if x ∈ (wk+3, wk+2) , then by the bottom
line of the inductive hypothesis we have that

fm+1 (x) = zm+2 if x > wm+3, or (14)

fm+1 (x) = zk if if x ∈ (wk+1, wk) , k = m+ 2.

Hence we have from (12,13,14) that

v1m+1 (x) =

½
zk, if x ∈ (wk+1, wk) , k ≥ m+ 2,
zm+1, if x > wm+2.

Setting

fm (x) = v1m+1 (x) =

½
zk, if x ∈ (wk+1, wk) , k ≥ m+ 2,
zm+1, if x > wm+2.

gives the required formula for fm (x) . The required formula for gm (x) can be
obtained in a similar manner. It remains only to establish that wm+1 > wm+2

under the inductive hypothesis that wm+2 > wm+3. First recall the two specific
definitions from (9):

wm+1 = wm+2 Fm+1 (wm+2) +

Z 1

wm+2

x dFm+1 (x) , and

wm+2 = wm+3 Fm+2 (wm+3) +

Z 1

wm+3

x dFm+2 (x) .

The two equations involve the three intervals L = (0, wm+3) , M = (wm+3, wm+2) ,
and R = (wm+2, 1) (left, middle, right), and the two distributions Fm+1 and
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Fm+2. Since Fm+2 is obtained from Fm+1 by removing some males above level
wm+2 and renormalizing, the associated measures satisfy µm+2 (R) < µm+1 (R) ,
µm+2 (M) > µm+1 (M) , and µm+2 (L) > µm+1 (L) . Let M

∗ and R∗ denote the
center of mass of intervals M and R (the same with respect to either measure).
With this easier notation we may rewrite wm+1 and wm+2 as

wm+1 = wm+2 µm+1 (L ∪M) +R∗ µm+1 (R) , and
wm+2 = wm+3µm+2 (L) +M∗ µm+2 (M) +R∗ µm+2 (R) .

Hence both wm+3 and M∗ are less than wm+2, we have

wm+2 < wm+2 µm+2 (L ∪M) +R∗ µm+2 (R)
< wm+2µm+1 (L ∪M) +R∗ µm+1 (R) = wm+1,

since R∗ > wm+2 and the weighting of the convex combinations of these two
numbers shifts in the second equation towards the larger one.
It is worth noting that the simpler strategy pair, where in period i males

accept any female y > wi+1 and females accept any male x > zi+1, has the
same mating pattern and is a weak equilibrium in the sense that if everyone is
following this strategy no one can improve his/her utility by a unilateral change.
However it fails to take advantage of errors by a high fitness matched partner
who accepts, and does not meet the ‘only if’ part of our explicit equilibrium
condition (1). In a sense it is not subgame perfect. On the other hand, this
simple strategy pair has the property that individuals do not need to know
their own fitness levels, and for this reason may have applications where the
assumption of self-knowledge is not warranted. The problem of learning one’s
own fitness level through observing the pattern of your acceptance/rejection by
others is thus not accessible in our model.

5 Existence of equilibria

In this section we show how Theorem 1 can be used to reduce the strategy set to
a subset of a finite dimensional space, where Brouwer’s Fixed Point Theorem can
then be applied to establish that some strategy is an equilibrium. For simplicity
of presentation we assume in this section that the reserve values wn+1 and zn+1
are both zero.
According to Theorem 1, any equilibrium strategy pair must be of the fol-

lowing type (setting ai = wi+1, bi = zi+1).

Definition: A strategy pair (f, g) is called a stepwise strategy pair for the
game Γn (F1, G1) if it is given in the following form, for some A = (a1, a2, . . . , an−1)
and B = (b1, . . . , bn−1) with ai and bi both strictly decreasing, and an = bn = 0,
where for each period m = 1, . . . , n− 1 we have:

fm (x) =

½
bk−1, if x ∈ (ak, ak−1) , k ≥ m+ 2,
bm, if x > am+1.

gm (x) =

½
ak−1, if x ∈ (bk, bk−1) , k ≥ m+ 2,
am, if x > bm+1.
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In this case we will denote the stepwise strategy pair simply by (A,B) . A single
strategy which is given in this form will be called a stepwise strategy.

The set of all stepwise strategies A will be denoted by ∆n−1. This set is
a closed convex subset of Rn−1. The set of all stepwise strategy pairs will be
denoted by S = ∆n−1×∆n−1, and is also closed and convex. For fixed n, F1, F2,
we define a mapping

V : S → S (15)

as follows. Given a stepwise strategy pair (A,B) ∈ S, we use (6) to determine
the resulting distributions Fi, Gi, i = 2, . . . , n, and then use (9) to calculate the
corresponding values wi and zi, i = 2, . . . , n as

wi = ai Fi (ai) +

Z 1

ai

x dFi (x) , (16)

zi = bi Gi (bi) +

Z 1

bi

y dGi (y) . (17)

The mapping V is then defined by

V ((a1, . . . , an−1) , (b1, . . . , bn−1)) = ((z2, . . . , zn) , (w2, . . . , wn)) .

Any fixed point of V will be an equilibrium strategy pair for Γn (F1, F2) as
illustrated in the proof of Theorem 1.
To show that V is continuous we will only show the first step, that w2 (which

depends only on a1, a2, b1, F1and G1) is a continuous function of a1 a2 and b1.
Note that a male x will remain in the population to period 2 definitely if x ≤ a
and with probability G (b) (that is, if he meets a y < b) if x > a. Consequently
the total population of males (also of females) at the beginning of period 2 is
given by

T2 = F1 (a1) + (1− F1 (a1))G1 (b1) = F1 (a1) +G1 (b1)− F1 (a1)G1 (b1) ,

which is continuous in a and b. Furthermore, the normalized male population
distribution F2 at the beginning of period 2 is given by

F2 (x) =


F1 (x)

T2 (a1, b1)
, if x ≤ a1,

F1 (a1) (1−G1 (b1)) +G1 (b1)F1 (x)

T2 (a1, b1)
, if x > a1.

Consequently w2 is given by

w2 = a2 F2 (a2) +

Z 1

a2

x dF2 (x)

= a2F2 (a2) +

Z a1

a2

x dF2 (x) +

Z 1

a1

x dF2 (x)

=
1

T2

µ
a2F1 (a2) +

Z a1

a2

x dF1 (x) +G1 (b1)

Z 1

a1

x dF1 (x)

¶
,
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which is continuous in a1, a2, and b1, if F1 and G1 are continuous. Similar
calculations show that all the wi and zi, i = 2, . . . , n, are continuous functions
of ((a1, . . . , an−1) , (b1, . . . , bn−1)) .
Since V is continuous and maps the closed convex subset S of Rn−1 into

itself, it has a fixed point by Brouwer’s Theorem. This fixed point must be an
equilibrium stepwise strategy pair. Thus we have established the following.

Theorem 2 Suppose the initial population distributions F1 and F2, of males
and females, are continuous. Then the cohort mating game Γn (F1, F2) has an
equilibrium strategy pair.

In a similar manner, we can define the symmetric version of the map V, as

V sym : ∆n−1 → ∆n−1, (18)

which gives the common sequence of wi’s when both players adopt the same
stepwise strategy, obtaining the symmetric form of the previous result

Theorem 3 Every symmetric game Γ (F ) , with F continuous, has a symmetric
equilibrium.

6 Multiple, Mixed, and Asymmetric Equilibria

In this section we analyze Γ (F ) for a symmetric discrete distribution F̂ having
three fitness levels for which there are multiple pure equilibria and also a mixed
strategy equilibrium for the two period game. However if the two equilibria
are adopted (one each) by the two players, the resulting strategy pair is not an
equilibrium. Furthermore we show that no two period symmetric mating game
can have an asymmetric equilibrium.
Consider a population with initial distribution F̂ equally divided (1/3 each)

between fitness levels 0, .1, and .3. Clearly at equilibrium a 0 will never be
accepted in period 1, while a .3 will always be accepted. Consequently the
two possible equilibrium strategies in period 1 are ‘high’ (accepting only .3),
or ‘middle’ (accepting only .1 or .3). We show that both of these strategies are
symmetric equilibria for the n = 2 period game.
First consider the ‘high’ strategy. In this case the only matings that occur

in period 1 are between two .3 individuals. The population in period 2 has 1/3
of 0, 1/3 of .1, and 2/9 of .3, with a total population of 8/9. The mean fitness
of the period 2 population is¡

1
3

¢
0 +

¡
1
3

¢
.1 +

¡
2
9

¢
.3

8
9

= . 112 5. (19)

Since

.1 < . 112 5 < .3, (20)
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it is consistent (equilibrium behavior) for all individuals to reject a .1 in period
1 (receiving on average . 112 5 in the next period), but to accept a .3. Thus the
strategy of accepting only .3’s in period 1 is an equilibrium. (It will remain so
even if there is a cost c < .0125 of entering the next period.) The inter-couple
correlation coefficient at this ‘high’ equilibrium is ρ = 33

112

.
= . 294 6.

Next consider the ‘middle’ strategy of accepting .1 or .3 in period 1. In this
case any match not involving a 0 in period 1 will result in a mating. The
population in period 2 will have a population with mass 1/3 of 0’s, 1/9 of.1’s
and 1/9 of .3’s, with a total population of 5/9. This is because a .1 or a .3 will
have a 2/3 probability of mating in period 1. The population mean in period 2
will be ¡

1
3

¢
0 +

¡
1
9

¢
.1 +

¡
1
9

¢
.3

5
9

= 0.0 8. (21)

Since

0 < .0 8 < .1, (22)

it is consistent to accept a .1 in period 1, rather than getting an average of .08
in period 2. Hence this is also an equilibrium. The correlation coefficient at this
equilibrium is 32

105

.
= . 304 7. (This will remain an equilibrium even if there is a

cost c < .08 of entering the next period, so if .0125 < c < .08 this would be the
only equilibrium.)
It is worth observing that if the cost is .0125 and the equilibrium is the

‘high’ one with correlation ρ = . 294 6 and the cost is increased slightly, then the
new ‘middle’ equilibrium will have a greater correlation of ρ = . 304 7, so that
increasing the entry cost c can theoretically increase the inter-couple correlation.
This behavior is the opposite of that found by Johnstone (1997) and in this
article in Section 3.
The above atomic distribution F̂ concentrated on the three levels 0, .1, and

.3 can be approximated by one with a continuous cumulative distribution (only
atom is at left end 0), and such a distribution will also have multiple equilib-
ria. To this end, consider the continuous distribution F (shown in Figure 8)
which gives probability .32 to fitness 0, and is uniform on the following intervals
with the total probabilities given: .02 on (0, .098) , .32 on (.098, .102) , .02 on
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(.102, .298) , and .32 on (.298, .302) .

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3x

Figure 8: An approximating continuous distribution

In Figure 9 we plot the mean fitness in period 2 as a function of the accep-
tance level x in period 1, so that intersections of this curve with the diagonal
constitute equilibrium acceptance strategies x.

0.08

0.09

0.1

0.11

0.12

0.08 0.09 0.1 0.11 0.12x

Figure 9: Second period mean fitness

We note that there is at equilibrium near .08 which accepts everyone in the
interval (.098, .102) and thus corresponds to the ‘low’ strategy equilibrium for
the atomic distribution, and a similar one near .115 which corresponds to the
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‘high’ strategy equilibrium. However there is an additional intersection near .1
which does not apparently correspond to either equilibrium of the atomic distri-
bution. Note that it accepts approximately half of the individuals in the interval
(.098, .102) . We now show that this equilibrium of the continuous distribution
corresponds to a mixed strategy for the atomic distribution which accepts a .1
individual with probability p = 1/2.
We return to the atomic distribution and consider now the symmetric mixed

strategy fp which in the first period always rejects a 0, always accepts a .3, and
accepts a .1 with probability p. If two .1 players meet in the first period, they
randomize independently. The normalized population at the beginning of the
second (and last) period has

3

8− 2p− p2
level 0’s,

3− p− p2

8− 2p− p2
level .1’s, and

2− p

8− 2p− p2
level .3’s,

with a final period mean fitness level of

λ (p) =
1

10

3− p− p2

8− 2p− p2
+
3

10

2− p

8− 2p− p2
=

µ
1

10

¶ −9 + 4p+ p2

−8 + 2p+ p2
. (23)

The mean fitness λ (p) is strictly decreasing, with λ (1/2) = .1. Consequently
when the strategy p = 1/2 is adopted, a player is indifferent between accepting
a player with fitness .1 in period 1 and going into the next period and getting
on average .1. Thus the mixed strategy with p = 1/2 is an equilibrium strategy.

6.1 Relative fitness

There is another method of modeling the distribution of fitness levels in the
population which is more complicated but incorporates atoms and illustrates
mixed strategies. For simplicity we will only consider the symmetric problem
with a common initial distribution F of fitness. We let r, 0 ≤ r ≤ 1 denote
the relative fitness of an individual. That is, an individual has relative fitness
r if the fraction of the population with lower fitness is r. The variable r is
always uniformly distributed on [0, 1] . An individual with absolute fitness x
has relative fitness r = F (x) . This is fine as long as F has no atoms. To see
how we deal with atoms, recall the atomic distribution F̂ with three equal mass
atoms at absolute fitness 0, .1, and .3. We will assume that say the individuals
with fitness .1 have their relative fitness levels r uniformly distributed over
the interval [1/3, 2/3] . We could interpret this as their each having a second
(possibly unobservable) fitness indicator which distinguishes among them. This
second indicator however contributes nothing to absolute fitness, or to the utility
their mate gets. We define x = φ (r) to be the absolute fitness level of an
individual of relative fitness level r. In order to have the graph of absolute
fitness be a closed set, we define the absolute fitness interval Ψ (r) to be the
closed interval from the left limit to the right limit of φ at r. Thus if φ is
continuous at r, then Ψ (r) is simply the single point φ (r) . The function Ψ (r)
corresponding to the distribution F̂ is drawn in Figure 10. (Basically, it is just
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the function φ (r) , with vertical lines connecting the discontinuities resulting
from the ‘empty’ fitness intervals (0, .1) and (.1, .3) which contain no individuals.
Note that Ψ (2/3) = [.1, .3] , which is the interval cited in (20) which contains
the mean fitness .1125. Similarly Ψ (1/3) = [0, .1] which contains the mean
fitness level .08.

0

0.05

0.1

0.15

0.2

0.25

0.3

tness

0.2 0.4 0.6 0.8 1relative fitness r

Figure 10: Absolute as function of relative fitness

We now calculate the mean second period absolute fitness as a function of the
first period relative acceptance level r. In the case that Ψ (r) is a single fitness
level x, the strategy with relative acceptance level r simply accepts all absolute
fitness levels above x, or equivalently, all relative fitness levels above r. However
in a case such as r ∈ (1/3, 2/3) , which corresponds to the atom at .1, we need an-
other more refined version. We interpret this as a mixed strategy which accepts
all fitness levels above .1 (in this case .3) and accepts those with .1 with prob-
ability proportional to the fraction of the interval [1/3, 2/3] lying above r. The
probability p corresponding to r is given by p (r) = (2/3− r) / (2/3− 1/3) =
2− 3r. Making this substitution in the formula given in (23) for λ (p) gives the
mean absolute fitness m (r) in period 2 as a function m (r) of relative fitness r,
for 1/3 ≤ r ≤ 2/3, which we plot along with Ψ (r) in Figure 11. The function
m (r) is a continuous function which intersects the graph of Ψ in the three points
where m (r) ∈.Ψ (r). The intersections where r is 1/3 and 2/3 correspond to
the ‘middle’ and ‘high’ equilibria already observed in inequalities (22) and (20),
which in our new notation would be written as

.1125 = m (2/3) ∈ Ψ (2/3) = [.1, .3] , and
.08 = m (1/3) ∈ Ψ (1/3) = [0, .1] .
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The remaining intersection at r = 1/2 corresponds to the mixed equilibrium for
F̂ which accepts p = 1/2 = 2 − 3 (1/2) of the individuals with absolute fitness
.1 and all of those with .3.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.3 0.4 0.5 0.6 0.7r

Figure 11: Three intersections m (r) ∈ Ψ (r) are equilibria

The advantage of this type of modelling (with relative fitness) is that mixed
and pure equilibria are found by a common method. The fact that there is at
least one intersection m (r) ∈ Ψ (r) is intuitive for the two period model (al-
lowing non-atomic distributions), and we believe that a more general existence
result can be obtained in this way for the n period model via Kakutani’s Fixed
Point Theorem.

6.2 Asymmetric equilibria

We have already seen in Section 3 an example of an asymmetric equilibrium
occurring when the problem is asymmetric (entry cost for females only). On
the other hand we know by Theorem 4 that for a symmetric game (F1 = G1)
there is always a symmetric equilibrium. Now that we also know that there
can be multiple equilibria, even for n = 2, it is worth asking whether there
can be another equilibrium for a symmetric game that is not symmetric (with
f 6= g). While we cannot answer this question fully, we can demonstrate by a
straightforward analysis that it is not possible for n = 2.

Theorem 4 If (f, g) is an equilibrium for the two period symmetric game Γ2 (F ) =
Γ2 (F,F ) , then f = g.
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Proof. Suppose that f 6= g. Then without loss of generality we may assume
that f and g have minimum first period acceptance levels of a and b, respectively,
with

a > b and 1 > F (a) > F (b) .

(Note that the second condition is implied by the equivalence of f and g, since
otherwise the two strategies differ only on accepting fitness levels which do not
exist in the population.)
The two numbers a and b determine three intervals [0, b] , (b, a], and (a, 1],

for which the mean fitness increases from left to right. In particular, we have
that (M for middle, R for right)

M ≡
R a
b
xdF (x)

(F (a)− F (b))
< a < R ≡

R 1
a
xdF (x)

1− F (a)
.

Since matings will occur in period 1 if and only if x > b and y > a, the total
population at the beginning of period 2 for both males and females is given by

F (a) + F (b)− F (a)F (b) , (24)

which we will denote simply by T. The normalized population of males at the
beginning of period 2 is given by

G2 (x) =
1

T

½
F (x) , if x ≤ b,
F (a)F (x) , if x > b.

Consequently the mean fitness of period 2 males is given by

w2 =
1

T

"Z b

0

x dF (x) + F (a)

Z 1

b

xdF (x)

#
. (25)

Similarly, the mean fitness of period 2 females is given by

z2 =
1

T

·Z a

0

y dF (y) + F (b)

Z 1

a

y dF (y)

¸
.

We calculate

T (z2 − w2) = (1− F (a))

Z a

b

x dF (x)− (F (a)− F (b))

Z 1

a

x dF (x) ,

T (z2 − w2)

(1− F (a)) (F (a)− F (b))
=

R a
b
x dF (x)

(F (a)− F (b))
−
R 1
a
x dF (x)

1− F (a)

= M −R < 0.

Consequently we have

z2 < w2.
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However if the pair (a, b) is an equilibrium we have

a = z2, b = w2, and hence b > a,

which is contrary to our assumption.
It is possible that this type of monotonicity argument can be extended to

any number of periods.

6.3 No universal acceptance

The formulae developed in the previous section for second period mean fitness
can now be used, in the symmetric form, to show that the equilibrium strategy
never features universal acceptance (a = 0). We need to show that the limit of
second period mean fitness, as a goes to 0, always is positive. Hence individuals
of sufficiently low but positive fitness will be rejected at equilibrium. In fact we
will show that when F has no atoms and is continuously differentiable this limit
is exactly half the initial mean fitness. (We have already seen this in Figure
1, where the uniform distribution has mean 1/2 and the mean second period
fitness level goes to 1/4 at 0.) Note that the symmetric (a = b) form of (25)
gives second period mean fitness w (a) as a function of first period acceptance
level a,

w (a) =

R a
0
x dF (x) + F (a)

R 1
a
xdF (x)

2F (a)− F (a)2

As both numerator and denominator go to zero as a goes to zero, we use
l’Hôpital’s rule to calculate

lim
a→0

w (a) = lim
a→0

aF 0 (a) + F 0 (a)
R 1
a
x dF (x)

2F 0 (a)− 2F (a)F 0 (a)

= lim
a→0

a+
R 1
a
x dF (x)

2 (1− F (a))
=

R 1
a
xdF (x)

2 (1− F (a))
, or

=
1

2

Z 1

0

x dF (x) (half mean initial fitness),

when there is no atom at 0. Since in any case this is positive, we have shown
that.

Theorem 5 If the initial fitness distribution F is continuously differentiable,
then the strategy of universal acceptance in period 1 is not an equilibrium for
the game Γ2 (F ) .

7 Learning Behavior

Up to now we have been assuming that the initial fitness distributions F1 and
F2 are common knowledge. This means that they are known to the players,
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all the players know that they are known to the other players, that they are
known to be known, and so on. In this section we assume, on the contrary, that
Nature chooses the initial distribution from a family of distributions, according
to known probabilities. Each player may update this prior distribution over
initial distributions according to the fitness levels of the players he is matched
with and also according to his own fitness level. We will not develop a general
theory for this type of mating problem, but instead we consider in depth a simple
example which exhibits some interesting phenomena. An equilibrium strategy
in this context is one in which a player accepts only those matches with fitness
level above his expected utility if he enters the next period unmated, where the
expectation is taken with respect to his posterior probability over the possible
initial distributions, based on the players he has encountered as matches.
Consider a symmetric problem with n = 2 periods, and a reserve value of

zero. The only strategic variable in this context is whom to accept as a mate
in period 1. Suppose that there are only three fitness levels: 0, a medium level
denoted M, and a high level denoted H, with 0 < M < H. Nature chooses the
initial distribution over these three levels equiprobably according to distribution
I:(1/4, 1/2, 1/4) (that is, 0 with probability 1/4, M with probability 1/2, and H
with probability 1/4) or distribution II: (1/4, 1/4, 1/2) . Distribution I has more
M ’s while II has more H’s.
The prior probabilities of I and II are 1/2 and 1/2, but the posterior probabil-

ities for each of a matcher pair (x, y) (order is irrelevant) with x, y ∈ {0,M,H}
can be calculated as follows. Only the first three will matter, since a 0 will never
be accepted.

p (I \ (H,H)) = 1/5, P (II \ (H,H)) = 4/5, (26)

p (I \ (M,M)) = 4/5, P (II \ (M,M)) = 1/5,

p (I \ (M,H)) = 1/2, P (II \ (M,H)) = 1/2,

p (I \ (0,M)) = 2/3, P (II \ (0,M)) = 1/3,

p (I \ (0,H)) = 1/3, P (II \ (0,H)) = 2/3.

A strategy must indicate what minimum level a player will accept in period
1, given the levels of the player and his match, since these two numbers will
determine the expected value of the mean fitness in period 2. The only three un-
ordered pairs of fitness levels that are relevant are (H,H) , (M,M), and (M,H).
A strategy [x, y, z] denotes the minimum acceptable mate in each of these cases,
respectively. For example, the strategy [H,M,H] says to accept only H if you
and your partner are both H (so accept this partner), acceptM or H if you and
your match are both M (which results in a mating), accept only H if you are
H and your partner is M or the other way around (leads to no mating). Thus
with this strategy (which we shall show is an equilibrium for certain values of
M and H) the only pairs which mate in period 1 are both M or both H.
We now analyze three strategies, [H,H,H] , [M,M,M ], and [H,M,H] , and

show that each is an equilibrium for some values of H/M, as shown in Figure
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12.

15
7

38
17

9
4

29
9

[H,M,H]

[M,M,M]

[H,H,H]

H/M

Figure 12: Learning Equilibria for different H/M

We show that [H,H,H] is an equilibrium for H/M ≥ 38/17, [M,M,M ] is an
equilibrium for H/M ≤ 29/9, and [H,M,H] is an equilibrium for H/M between
15/7 and 38/17. Clearly multiple equilibria occur in some cases.
First consider the strategy [H,H,H] . If the actual initial distribution is I

then we calculate the distribution at the beginning of period 2 as follows. With
[H,H,H] , the only pairs that will mate are (H,H) . Thus the populations of 0
andM will remain 1/4 and 1/2, respectively. AnH will be mated if and only if it
is matched with another H, which will occur according to the initial probability
of being an H, that is, 1/4. So an H will remain unmated with probability 3/4,
and hence the population of H in period 2 will be (1/4) (3/4) = 3/16. Hence the
total population in period 2 is 15/16, and the normalized distribution has 4/15
zero, 8/15 for M, and 3/15 for H. Consequently the population mean, given
initial distribution I and strategy [H,H,H] , is given by

µI [H,H,H] =
8M + 3H

15
. (27)

In a similar manner we calculate the population mean given initial distribution
II as

µII [H,H,H] =
5M + 5H

15
.

Now we use the posterior probabilities determined above in (26) to calculate
the expected population means in period 2, given the fitness levels of a player
and his match in period 1, as

V(H,H) [H,H,H] =
1

5

µ
8M + 3H

15

¶
+
4

5

µ
5M + 5H

15

¶
=
28M + 23H

75
,

V(M,M) [H,H,H] =
4

5

µ
8M + 3H

15

¶
+
1

5

µ
5M + 5H

15

¶
=
37M + 17H

75
,

V(M,H) [H,H,H] =
1

2

µ
8M + 3H

15

¶
+
1

2

µ
5M + 5H

15

¶
=
13M + 8H

30
.
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Since the strategy [H,H,H] always accepts only H, all of these values must
exceed M (otherwise it would be optimal to accept M). The condition that all
three of these expressions exceed M is equivalent to the single inequality

H ≥ 38
17

M.

In a similar manner, we find that the strategy [M,M,M ] is a Bayesian equi-
librium if the three values V(H,H) [M,M,M ] , V(M,M) [M,M,M ] , and V(M,H) [M,M,M ]
are all below M (otherwise M should not be accepted), which is equivalent to
the single numerical condition on M and H given by

H ≤ 29
9
M.

Finally, we consider the strategy [H,M,H] . This will be an equilibrium for
values of M and H satisfying the three inequalities

M ≤ V(H,H) [H,M,H] , M ≥ V(M,M) [H,M,H] ,M ≤ V(M,H) [H,M,H] . (28)

The first inequality says that individuals in a matched pair (H,H) will not
accept less thanH (the first entry in the strategy triple) because their posteriors
on initial distributions I and II lead them to believe the mean of the period 2
population is more thanM. (So they will accept each other.) The next inequality
says that two M ’s who meet in period 1 should accept M (the middle entry in
the strategy) or above (in particular, each other), because their posteriors imply
that they will get less than M if they go unmated into the next period. The
final inequality says that if an M and an H meet in period 1 they should each
accept only H (final entry in the strategy) because they will get on average
more than M in the next round. The M will accept the H but the H will not
accept the M, so they will not be mated.
Using the top three posterior probabilities calculated in (26), we determine

the values V(x,y) giving the expected value of the mean of the period 2 popula-
tion, calculated according to the posteriors of two individuals x and y who meet
in period 1.

V(H,H) =
1

5

µ
4M + 3H

11

¶
+
4

5

µ
3M + 4H

11

¶
=
16M + 19H

55
,

V(M,M) =
4

5

µ
4M + 3H

11

¶
+
1

5

µ
3M + 4H

11

¶
=
19M + 16H

55
,

V(H,H) =
1

2

µ
4M + 3H

11

¶
+
1

2

µ
3M + 4H

11

¶
=
7M + 7H

22
.

The equilibrium inequalities (28) for strategy [H,M,H] now translate into the
consistent inequalities

15M

7
≤ H ≤ 9M

4
. (29)
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For values of M and H satisfying (29), the strategy [H,M,H] is an equilib-
rium. In this equilibrium the only matings in the first period are between two
M ’s or between two H’s. This pattern of ‘like mating only with like’ is reminis-
cent of that in the steady state model of MacNamara and Collins (1990).

8 Computed Equilibria for Γ (n)

In this section we give the results of computations of the equilibria for the
symmetric mating game with the uniform distribution of fitness, Γ (n) . We
have already determined the unique equilibria for n = 2 and 3 analytically.
The remaining results given here were obtained by iterating the mapping V sym

defined in (18), whose fixed points constitute the equilibria of Γ (n) . A clear
pattern emerges, as shown in Figure 13. Above each integer point n, there are
plotted the n − 1 acceptance points a1 > a2 > · · · > an−1 in the symmetric
equilibrium for that value of n. This technique does not establish uniqueness.

2 4 6 8 10

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Figure 13: Equilibrium strategies, Γ (n) , n ≤ 10
It is interesting to note the pattern of matings obtained by the end of the last
period. In particular, these mating patterns may be compared to those obtained
in Alpern and Reyniers (1999) and Kalick and Hamilton (1986) for similarity
(homotypic) preferences, when dealing with empirical results. A comparison
between the mating patterns for the two preference types is planned for a future
article. In the Figures 14 and 15 we see the final mating pattern achieved at the
end of period n = 3, 4. Lighter areas indicate higher density of matings, but even
the darkest areas in all these figures have some matings. As in the MacNamara-
Collins steady state model, matings are more likely in squares located on the
diagonal (like with like), but unlike their model we also obtain off diagonal
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matings.
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Figure 14: Final mating patterns in Γ (3)
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0.8

1

Figure 15: Final mating patterns in Γ (4) .

We can also look at the mating pattern over time. In the next three figures, we
show the patterns of matings in each period 1, 2, 3, for the game Γ (3) . Again,
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lighter areas have a higher density of matings, and in periods 1 and 2 the darkest
area has no matings (consistent with Theorem 1). In the final period, matings
are possible for every pair type, so the density has a positive minimum.
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1

Figure 16: First period matings.
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Figure 17: Second period matings.
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Figure 18: Third period matings.

9 Conclusions

The cohort mating game Γn (F1, G1) , which we analyze in this paper, provides
a setting for questions about equilibrium mating behavior in a context where
meeting is by chance and subsequent mating is by mutual choice. Our basic
results (Theorems 1 and 2) on stepwise equilibria, where male and female ac-
ceptance levels go down in discrete steps in each period, confirm for arbitrary
fitness distributions the results obtained computationally by Johnstone (1997)
in a similar model for specific distributions. Our model extends his by allowing
consideration of sex differences in fitness distribution or delay costs, although
we do not go nearly so far in this direction as in the infinite horizon model of
Johnstone et al (1996).
From another point of view, our results complement those in our previous

paper (Alpern and Reyniers, 1999), which viewed the same game theoretic ex-
tension of the Kalick and Hamilton (1986) dating simulation model for the alter-
native assumption of homotypic preferences. With the equilibria corresponding
to both assumptions now understood and computable, it may be possible to
see which better fits empirical mating patterns in various contexts. In this
sense, our two papers, taken together, make a contribution to the discussion of
the “matching hypothesis” regarding attractiveness levels that has been taking
place in the social psychology literature.
With reference to the biological literature, the present paper shows that it

may be necessary to consider certain questions on mating equilibria that have
not previously been considered. In particular, multiple equilibria and mixed
strategy equilibria. In the case where multiple equilibria exist, it would be
interesting to see if different populations of the same species exhibit differing
equilibria, and which are the determining external factors. We have also begun,
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in a limited way, to examine the role of learning behavior in mating games.
Finally, we mention a number of variations and complications of our model

that will have to be considered to make our results applicable to a wider variety
of behavior. First, our assumption that matching is random must be relaxed.
It is known, for example (Cronin (1991), that for some species the arrival time
at the breeding location is size-related. This alone would account for some of
the assortative mating. While this can to some extent be modeled by relaxing
our assumption that all individuals arrive simultaneously at the beginning of
period one, we may also have to assume that the probability of say a male x
of meeting a female y in period m is given by some given measure preserving
bijection between remaining males and remaining females. We are aware that
our model may well assume the possibility of strategies that are more complex
than animals can carry out. We may have to restrict the strategy space to much
simpler heuristic behavior, such as that of the Mottled Sculpin (Cottus bairdi),
where the female will mate with a male only if it is larger than the last male
encountered (Cronin, 1991). Such bounded rationality models are common in
economic models. It may also prove necessary to model situations in which
an individual can return to mate with a previously rejected individual. Two
other extensions of the model were suggested by a referee: One is imperfect
assessment of partner fitness and the other is varying the sex ratio (the later
is of course a special case of using different initial fitness distributions for the
sexes).
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