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Abstract

A cyclic colouring of a plane graph is a vertex colouring such that vertices incident
with the same face have distinct colours. The minimum number of colours in a cyclic
colouring of a graph is its cyclic chromatic number χc. Let ∆∗ be the maximum face
degree of a graph. There exist plane graphs with χc = b 3

2 ∆∗c. Ore and Plummer
(1969) proved that χc ≤ 2∆∗, which bound was improved to b 9

5 ∆∗c by Borodin,
Sanders and Zhao (1999), and to d 5

3 ∆∗e by Sanders and Zhao (2001).
We introduce a new parameter k∗, which is the maximum number of vertices that

two faces of a graph can have in common, and prove that χc ≤ max{∆∗ + 3 k∗ + 2,

∆∗ + 14, 3 k∗ + 6, 18 }, and if ∆∗ ≥ 4 and k∗ ≥ 4, then χc ≤ ∆∗ + 3 k∗ + 2.

1 Introduction

Throughout this paper, G is a connected plane graph with vertex set VG, edge set EG, and
face set FG. In what follows, G can have multiple edges but no loops, while a simple graph
has no multiple edges. The degree of a vertex v, denoted by dG(v), is the number of edges
incident with v. The degree of a face f , denoted by dG(f), is the number of vertices incident
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with f . We use ∆G and ∆∗
G to denote the maximum vertex degree and maximum face degree

of G, respectively.
For a cycle C we denote the sets of vertices of G lying strictly inside C and strictly out-

side C by IntG(C) and ExtG(C), respectively. We say C is a separating cycle if both IntG(C)
and ExtG(C) are not empty.

A cyclic colouring of a plane graph is a vertex colouring such that two different vertices
incident with the same face receive distinct colours. The minimum number of colours needed for
a cyclic colouring, the cyclic chromatic number, is denoted by χc

G. This concept was introduced
by Ore and Plummer [3].

In the remainder the subscript G will often be omitted when it is clear what graph we are
dealing with. And instead of, say, “an edge incident with a face” or “a face incident with a
vertex”, we will sometimes write “an edge of a face” or “a face of a vertex”.

It is obvious that a cyclic colouring of a 2-connected plane graph requires at least ∆∗ colours.
Note that the following plane graphs has χc = b3

2 ∆∗c : Take disjoint triangles x1x2x3, y1y2y3

and join each xi with yi by a path whose all internal vertices have degree 2, where one path has
length d1

2 ∆∗e−1, while the other two have length b1
2 ∆∗c−1. It is conjectured ( see Jensen and

Toft [2], page 37 ) that any plane graph G has χc ≤ b3
2 ∆∗c. Clearly, this bound, if true, would

be best possible. Ore and Plummer [3] proved that χc ≤ 2∆∗, which bound was improved to
b9

5 ∆∗c by Borodin, Sanders and Zhao [1], and to d5
3 ∆∗e by Sanders and Zhao [4].

In this paper we prove a bound for the cyclic chromatic number that depends on ∆∗ and the
following easily computable parameter of the graph. For a face f in a plane graph G, let VG(f)
be the set of vertices of f . Let k∗G ( or just k∗ ) be the maximum number of vertices that two
faces of G can have in common :

k∗G = max{ |VG(f1) ∩ VG(f2)| | f1, f2 ∈ FG, f1 6= f2 }.

Our main result is the following.

Theorem 1.1. Every connected plane graph G has

χc
G ≤ max{∆∗

G + 3 k∗G + 2, ∆∗
G + 14, 3 k∗G + 6, 18 }.

Observe that for graphs with small enough k∗ the bound of Theorem 1.1 is better than any
general bound depending on ∆∗ only. No serious attempt has been made by the authors to
make the additive constants in Theorem 1.1 as small as possible. It seems very likely that our
proof method plus some extra detail analysis of special cases can provide smaller values for these
constants. However, we do not see how to improve the constant 3 in front of k∗. We suggest the
following conjecture, which if true is best possible.

Conjecture 1.2. Every plane graph G with ∆∗
G and k∗G large enough has a cyclic colouring

with ∆∗
G + k∗G colours.
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In particular this conjecture implies χc
G ≤ b3

2 ∆∗
Gc if ∆∗

G is large enough.

In the next section we give some further definitions and prove an auxiliary structural result.
The proof of Theorem 1.1 itself can be found in Section 3.

2 Definitions and structural result

Throughout this section let β ≥ 4 be an integer and G a simple 2-connected plane graph.
By a triangle we mean a face of degree three; an S-face (“small face”) is a face of degree

between 4 and β − 1, while a B-face (“big face”) is a face of degree at least β. A BB-edge is an
edge incident with two B-faces; BS-edges (“S” for small ) and BT-edges (“T” for triangle ) are
defined analogously.

A d-vertex is a vertex of degree d. A BBB-vertex is a 3-vertex incident with three B-faces.
A vertex is called good if it is either a 3-vertex incident with a triangle and two B-faces, or
a 4-vertex incident with two nonadjacent triangles and two B-faces. A triangle is good if it is
incident with three good vertices.

We next classify the vertices and edges of G incident with B-faces. An edge is called regular
if it is a BB-edge, and separating if it is a BS- or BT-edge. A vertex is regular if it is a good
4-vertex, or a 2-vertex incident with two B-faces; otherwise a vertex is separating. Observe that
if G 6= Cn, then every B-face of G has at least one separating element ( vertex or edge ).

To describe the boundary of a B-face f , we define a maximal regular path of f to be a single
good 4-vertex of f , or a maximal path P = v1e1v2e2 · · · v`−1e`−1v`, ` ≥ 2, on the boundary of f

such that every edge ei and every internal vertex v2, . . . , v`−1 is regular. By this definition each
maximal regular path joins two B-faces in G.

A path S = v1e1v2e2 · · · v`−1e`−1v`, ` ≥ 1, on the boundary of a B-face f is called a maximal
separating path of f ( or just a separator ) if S is maximal with the property that every edge ei

and every internal vertex v2, . . . , v`−1 is separating. If ` = 1, then S is just one separating
vertex incident with two regular edges of f . It is easy to see that each edge of f belongs to
a unique separator or maximal regular path of f , and each end vertex of a separator S is a
separating vertex or a good 4-vertex. Note that if a B-face f has at least one regular element
on its boundary, then each separator of f separates two maximal regular paths of f .

A separator S is called good if S is a single BBB-vertex, or S contains an edge of a good
triangle adjacent to f . From the definitions above it follows that each good separator has at most
one edge. A maximal regular path of f is called good if it is bounded by two good separators
( by edges of two good triangles if P is formed by one good 4-vertex ).

We say that a B-face f with at least one regular vertex or edge on its boundary has dimen-
sion dim(f) = m ≥ 1 if f is incident with exactly m maximal regular paths ( and m separators ).
We set dim(f) = 0 if f has no separating vertex or edge ( and hence G = Cn ). A B-face f

is admissible if it is incident with at least one good vertex or regular 2-vertex. An admissible
B-face f of dimension 5 is called critical if it has at least 4 good separators and each separator
of f has at most one edge.
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We are now ready to give the main structural result.

Theorem 2.1. Let β ≥ 8 be an integer and G a 2-connected plane graph. Then G has at least

one of the following configurations :

(a) two adjacent triangles;

(b) a vertex of degree at most 4 incident with at most one B-face;

(c) an admissible B-face of dimension at most 4 incident with at most 5 separating edges;

(d) two B-faces f1, f2 joined by a good maximal regular path P12 = v1e1 · · · e`−1v`, where f1

is critical, dim(f2) ≤ 6, and f2 has at most 4 separating edges that are not incident with

v1, v`.

Proof. We first show that it suffices to prove Theorem 2.1 for plane graphs without good
4-vertices. Let G be an arbitrary 2-connected plane graph. We form a new graph G1 by
replacing each good 4-vertex v in G incident with triangles vxy and vzt by a pair of good
3-vertices v1, v2, where v1 is adjacent to v2, x, y, while v2 is adjacent to v1, z, t. By this definition,
G1 is 2-connected and has the same set of triangles, B-faces, S-faces and separating edges as G.
Moreover, for every B-face f we have dimG(f) = dimG1(f). Observe that every good element
( vertex, triangle, separator or regular path ) of G corresponds to a good element ( or a pair of
good elements ) of the same type in G1. It follows that if some claim of Theorem 2.1 holds for G1

then it is also valid for G.
So assume that β ≥ 8 is an integer and G is a counterexample to Theorem 2.1 without good

4-vertices. Clearly, G is a 2-connected plane graph. We next establish the following properties
of G :
(1) G has no adjacent triangles;
(2) δG ≥ 2;
(3) every vertex of degree at most 4 is incident with at least two B-faces;
(4) every 2-vertex is regular;
(5) every 3-vertex is either a good vertex, a BBB-vertex, or is incident with two B-faces and

one S-face;
(6) G has no good 4-vertex;
(6′) every 4-vertex is incident with at most one triangle;
(7) every d-vertex, d ≥ 5, is incident with at most bd/2c triangles;
(8) an admissible B-face of dimension at most 4 has at least 6 separating edges;
(9) every two separators of a B-face are vertex-disjoint;
(10) if a critical B-face f1 is joined through a good regular path P12 = v1e1 · · · e`−1v` with

another B-face f2, then dim(f2) ≥ 7 or f2 has at least 5 separating edges that are not
incident with v1, v`.

Claims (1), (3), (6), (8), (10) are directly implied by the assumptions made and the fact that G

fails to satisfy any of (a) – (d) in Theorem 2.1; (2) follows from the 2-connectedness of G;
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(4) and (5) are consequences of (3); while (6′) follows from (1), (3) and (6). Claims (7) and (9)
follow from (1) and (6), respectively.

Euler’s Formula |VG| − |EG|+ |FG| = 2 for G can be rewritten as
∑

x∈VG∪FG

(d(x)− 4) =
∑

x∈VG∪FG

µ1(x) = −8,

where µ1(x) = d(x) − 4 is called the initial charge of an element ( vertex or face ) x. By (2),
only triangles and vertices of degree 2 and 3 have negative initial charge.

We next redistribute initial charges according to the following rules :

(R1) A 2-vertex receives 1 from each incident B-face.

(R2) Let v be a 3-vertex incident only with B- and S-faces. Then v receives 1/3 from each
incident B-face if v is a BBB-vertex, and 1/2 from each incident B-face if v is incident
with exactly two B-faces.

(R3) Let v be a good 3-vertex incident with a triangle vx1x2 and B-faces f1 = vx1 . . . and
f2 = vx2 . . . . If d(x1) = 3 and d(x2) > 3, then v receives 1/2 from f1 and 5/6 from f2. If
d(x1) = d(x2) = 3 or d(xi) > 3, i = 1, 2, then v receives 2/3 from both f1 and f2.

(R4) Let v be a 4-vertex incident with a triangle T and ( nontriangular ) faces f1, f2 and f3

in a cyclic order. Then v receives 1/6 from both f1 and f3 if f1 and f3 are B-faces, or v

receives 1/6 from f1 and f2 if f3 is an S-face and ( hence ) f1 and f2 are B-faces.

(R5) A triangle receives 1/3 from each incident vertex.

(R6) Let v be a vertex of degree at least 5 incident with a triangle T1, a B-face f and a
triangle T2 in a cyclic order. Then v gives 1/3 to f .

Denote the resulting charge of an element x ∈ VG∪FG after applying rules (R1) – (R6) by µ2(x).
Because we always move charge from one element to another,

∑

x∈VG∪FG

µ2(x) =
∑

x∈VG∪FG

µ1(x) = −8.

We next check that all vertices and most faces of G have a non-negative charge µ2. First
consider vertices.

Lemma 2.2. Every v ∈ VG has µ2(v) ≥ 0.

Proof. If d(v) ≤ 4, then by (2) – (6′) and (R1) – (R5), we have µ2(v) = 0. If v is a 5-vertex, then
by (7) and (R5) – (R6), v gives 1/3 to at most two triangles and at most one B-face. Therefore,
in this case we have µ2(v) ≥ 1−2×1/3−1/3 = 0. Finally, if d(v) ≥ 6, then v sends at most 1/3
to each incident face by (R5) – (R6). Hence, µ2(v) ≥ d(v)− 4− d(v)× 1/3 = 2 (d(v)− 6)/3 ≥ 0.

2
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We now start looking at the faces. If T is a triangle, then by (R5), µ2(T ) = −1 + 3× 1/3 = 0.
Note that an S-face never sends or receives charge by any rule (R1) – (R6). Therefore, for any
such face f we have µ2(f) = µ1(f) ≥ 0. This implies the following property.

Lemma 2.3. If f ∈ FG is a triangle or an S-face, then µ2(f) ≥ 0.

So we are left with B-faces. By cf (v) denote the amount of charge that a B-face f gives to one
of its vertices v by rules (R1) – (R4) ( it may happen that cf (v) = 0 ), and set cf (v) = −1/3 if f

receives 1/3 from v by (R6). We say that a B-face f saves charge scf (v) = 1 − cf (v) on its
vertex v. It follows from (R1) – (R4) and (R6) that scf (v) = 0 if and only if d(v) = 2 ( i.e., v is a
regular vertex ), and scf (v) ≥ 1/6 otherwise ( and then v is a separating vertex ). Furthermore,
scf (v) ≥ 5/6 if d(v) ≥ 4, and scf (v) ≥ 1 if d(v) ≥ 5. If S = v1e1v2 · · · e`−1v` is a separator of f

then we say that f saves charge scf (S) =
∑̀
i=1

scf (vi) on S. Note that by (9), any two separators

of f are vertex disjoint, so if v is a separating vertex of f , then scf (v) is counted in exactly one
scf (S). Because of (6) this implies

µ2(f) =
m∑

i=1

scf (Si)− 4, (∗)

where m = dim(f) and S1, . . . , Sm are the separators of f . In particular, µ2(f) ≥ 0 iff f saves
the total of at least 4 on its separators.

The next claim determines the amount of charge that a B-face can save on its separator.

Proposition 2.4. Let S = v1e1v2 · · · e`−1v`, ` ≥ 1, be a separator of a B-face f .

(a) If S is good, then scf (S) = 2/3.

(b) If S is not good, then scf (S) ≥ 1.

(c) If 2 ≤ i ≤ `− 1, then scf (vi) ≥ 5/6.

(d) If ` = 3, then scf (S) ≥ 3/2.

(e) If ` ≥ 4, then scf (S) ≥ (5 `− 8)/6.

Proof. (a) This part follows from (R2) and (R3).
(b) Suppose S is not good. Let vi be a vertex of S, and let u,w be the neighbours of vi on

the boundary of f . Rules (R2) – (R4) show that if cf (vi) > 0, then at least one edge viu or viw

is incident with a non-B-face in G. In this case S extends to either u or w, and hence ` ≥ 2.
Therefore, if ` = 1 and S = {v1}, then cf (v1) ≤ 0, while scf (S) = scf (v1) ≥ 1.

So assume that ` ≥ 2 and vivi+1 is an edge of S. If vivi+1 is a BS-edge, then by (R2)
and (R4) we have scf (vi) ≥ 1/2, scf (vi+1) ≥ 1/2, and hence scf (S) ≥ 1. So we are left with
the case when vivi+1 is a BT-edge and scf (vi) < 1/2. The last inequality, in particular, implies
d(vi) = 3. Since S is not a good separator, applying (R3) to vi shows that d(vi+1) > 3. Finally
we get scf (S) ≥ scf (vi) + scf (vi+1) ≥ 1/6 + 5/6 = 1.
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(c) Since vi−1vi, vivi+1 are non-BB-edges, it follows that vi is incident with at least two
non-B-faces in G. Taking into account (3), this implies that d(vi) ≥ 4 and scf (vi) ≥ 5/6.

(d) If both v1v2 and v2v3 are BS-edges, then by (R2) and (R4) we have scf (v1) ≥ 1/2,
scf (v2) = 1, and scf (v3) ≥ 1/2, which implies that scf (S) ≥ 1/2 + 1 + 1/2 > 3/2. If v1v2 is a
BS-edge while v2v3 is a BT-edge, then it follows from (R2), (R4) and (c) that scf (v1) ≥ 1/2,
scf (v2) ≥ 5/6, and scf (v3) ≥ 1/6. Thus scf (S) ≥ 3/2. Finally, assume that both vi−1vi

and vivi+1 are BT-edges. In this case (3) and (6) show that d(vi) ≥ 5, so by (R6) we have
scf (v2) = 4/3. This gives scf (S) ≥ 1/6 + 4/3 + 1/6 > 3/2.

(e) Applying (c) yields scf (S) ≥ (`− 2)× 5/6 + 2× 1/6 = (5 `− 8)/6. 2

We are now ready to describe the faces of G with a negative charge µ2.

Lemma 2.5. Let f ∈ FG be a face with µ2(f) < 0. Then f is a critical B-face and one of the

following statements holds :

(a) µ2(f) = −2/3, and f has five good separators;

(b) µ2(f) ≥ −1/3, and f has exactly four good separators.

Proof. By Lemma 2.3, f is a B-face. Assume that f is not admissible. Then according
to (R2), (R4), and (R6), f gives at most 1/2 to each incident vertex. This implies µ2(f) ≥
d(f)− 4− d(f)/2 = (d(f)− 8)/2 ≥ 0, a contradiction.

Denote the number of vertices in the longest separator of f by `. If dim(f) = 1 or f has no
regular edge, then ` ≥ 7 by (8). Using (∗) and Proposition 2.4 (c) gives µ2(f) = scf (S) − 4 ≥
(5 · 7− 8)/6− 4 = 1/2 > 0.

Let dim(f) = m ≥ 2, and let S1, . . . , Sm be the separators of f . W.l.o.g., we can assume
that S1 has ` vertices. First consider the case m = 2. Claim (8) shows that ` ≥ 4. If ` ≥ 6, then
by (∗) and Proposition 2.4 (a), (b), (e), we have µ2(f) = scf (S1) + scf (S2)− 4 ≥ (5 · 6− 8)/6 +
2/3 − 4 = 1/3 > 0. If ` = 5, then S2 has at least three vertices due to (8). Applying (∗) and
Proposition 2.4 (d), (e) yields µ2(f) ≥ (5 · 5− 8)/6 + 3/2− 4 = 1/3 > 0. Finally, if ` = 4, then
both S1 and S2 have four vertices by (8), and hence µ2(f) ≥ 2× (5 · 4− 8)/6− 4 = 0.

Suppose m = 3. It follows from (8) that ` ≥ 3, and if ` = 3, then each separator of f has
three vertices. If this is the case, then (∗) and Proposition 2.4 (d) imply that µ2(f) = 3×3/2−4 =
1/2 > 0. If ` = 4, then claim (8) shows that either S2 or S3 has at least three vertices. Using (∗)
and Proposition 2.4, we obtain µ2(f) ≥ (5 · 4− 8)/6 + 3/2 + 2/3− 4 = 1/6 > 0. If ` ≥ 5, then
from (∗) and Proposition 2.4 (a), (b), (e) we get µ2(f) ≥ (5 · 5− 8)/6 + 2× 2/3− 4 = 1/6 > 0.

Let m = 4. Again from (8) we obtain ` ≥ 3. If ` ≥ 4, then µ2(x) ≥ (5·4−8)/6+3×2/3−4 = 0
due to (∗) and Proposition 2.4. If ` = 3, then, by (8), f has at least two separators with three
vertices. Thus µ2(f) ≥ 2× 3/2 + 2× 2/3− 4 = 1/3 > 0.

If m ≥ 6, then µ2(f) ≥ 6× 2/3− 4 = 0 by (∗) and Proposition 2.4 (a), (b).
Finally we come to the conclusion that m = 5. If ` ≥ 3, then from (∗) and Proposition 2.4

we get µ2(f) ≥ 3/2 + 4 × 2/3 − 4 = 1/6 > 0. Hence each separator of f has at most one
edge. If f has at most three good separators, then µ2(f) ≥ 3 × 2/3 + 2 · 1 − 4 = 0 by (∗) and
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Proposition 2.4 (a), (b). So either f has five good separators and then µ2(f) = 5×2/3−4 = −2/3
by Proposition 2.4 (a), or f has exactly four good separators and µ2(f) ≥ 4×2/3+1−4 = −1/3
due to Proposition 2.4 (a), (b). Clearly, in the first case we have the situation of claim (a), while
the second implies (b). 2

From now on, for a critical B-face we say that it is either of type (a) or of type (b), according to
Lemma 2.5. We see that a critical face of type (a) has five good regular paths, while a critical
face of type (b) has three good regular paths. From (10) we know that every good regular
path of a critical face f joins f with another B-face having specific properties. At this point we
introduce another rule of charge distribution :

(R7) Let f1 be a critical B-face joined through a good regular path with another B-face f2.
Then f2 gives 1/6 to f1.

Denote the resultant charge of an element ( vertex or face ) x after applying rules (R1) – (R7)
by µ3(x). Clearly,

∑
x∈VG∪FG

µ3(x) = −8. The final contradiction in proving Theorem 2.1 now

follows from the following lemma.

Lemma 2.6. Every x ∈ VG ∪ FG has µ3(x) ≥ 0.

Proof. Since (R7) deals only with specific B-faces described in (10), it follows from the Lem-
mas 2.2, 2.3 and 2.5 that if x ∈ VG ∪ FG is not such a face then µ3(x) = µ2(x) ≥ 0.

If f is a critical face of type (a), then Lemma 2.5 (a) implies µ2(f) = −2/3, and f is incident
with five good regular paths. Applying (R7) gives µ3(f) = −2/3 + 5× 1/6 = 1/6 > 0. If f is a
critical face of type (b), then Lemma 2.5 (b) shows that µ2(f) ≥ −1/3, and f is incident with
three good regular paths. In this case, µ3(f) ≥ −1/3 + 3× 1/6 = 1/6 > 0.

Suppose f is a B-face which gives charge to at least one critical face f1 by (R7). Let P1 =
v1e1 · · · e`−1v` be a good regular path between f and f1. It follows from (10) that if dim(f) ≤ 6,
then f has at least five separating edges that are not incident with v1, v`. Since P1 is bounded
by two good separators S1, S2 of f and each Si has at most one edge, dim(f) = m ≥ 3. If m ≥ 8,
then, using (∗), (R7) and Proposition 2.4 (a), (b), we obtain µ3(f) ≥ m× 2/3− 4−m× 1/6 =
(m− 8)/2 ≥ 0.

So assume that 3 ≤ m ≤ 7. First we provide a lower bound on µ2(f). If m = 7, then
µ2(f) ≥ 7× 2/3− 4 = 2/3, due to (∗) and Proposition 2.4 (a), (b). If m ≤ 6, then by (10) there
are at least five edges in the separators of f other than S1 and S2. Direct calculations similar to
those in proving Lemma 2.5 combined with (∗) and Proposition 2.4 show that µ2(f) ≥ 1 if m = 3,
µ2(f) ≥ 5/6 if m ∈ {4, 6}, and µ2(f) ≥ 2/3 if m = 5. This implies µ3(f) ≥ 5/6 − 4 × 1/6 =
1/6 > 0 if m ≤ 4. Furthermore, in the case 5 ≤ m ≤ 7 we still have µ3(f) ≥ 2/3− 4× 1/6 = 0
provided that f makes at most four donations of 1/6 by (R7). Since m ≤ 7, it suffices to prove
that it is impossible for f to give charge to three consecutive adjacent B-faces by (R7).

Suppose there are three consecutive good regular paths P1, P2, P3 on the boundary of f

joining f with critical faces f1, f2, f3, respectively. By the definition of a good regular path,
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the faces f, f1, f2 either have a BBB-vertex in common or are adjacent to a common good
triangle, and the same is true for f, f2, f3. This means that there exist maximal regular paths
P12, P23 joining f2 with f1, f3, respectively. Since f2 is critical, it has a sequence of at least three
consecutive good regular paths on its boundary. In particular, at least one of P12, P23 must be
good. However, since each of fi is critical and has dimension 5, this contradicts (10). 2

3 Proof of Theorem 1.1

Throughout this section we fix β = 8. For a plane graph G we set

M∗
G = max{∆∗

G + 3 k∗G + 2, ∆∗
G + 14, 3 k∗G + 6, 18 }.

Suppose G is a counterexample to Theorem 1.1 with the fewest edges. Note that if a plane
graph H satisfies ∆∗

H ≤ max{∆∗
G, 4} and k∗H ≤ max{k∗G, 4}, then M∗

H ≤ M∗
G.

We first prove some structural properties of G and then apply Theorem 2.1 to show that G

cannot exist.

Lemma 3.1. G has no multiple edges.

Proof. Suppose G has edges e1, e2, both joining vertices v1 and v2. If the cycle C = v1e1v2e2v1

is not separating, then removing e2 gives a graph H with fewer edges than G and with ∆∗
H = ∆∗

G,
k∗H = k∗G. By the minimality of G, this H has a cyclic colouring with at most M∗

H = M∗
G colours.

This colouring of H is also a cyclic colouring of G with M∗
G colours, a contradiction.

Now assume that C is separating. Denote the subgraphs of G induced by C ∪ Int(C) and
C ∪ Ext(C) by G1 and G2, respectively. It is straightforward that ∆∗

Gi
≤ ∆∗

G and k∗Gi
≤ k∗G,

i = 1, 2. Since both G1 and G2 have fewer edges than G, each of them can be coloured with at
most M∗

G colours. Taking into account that G1 and G2 have only two vertices in common and
each face of G is present either in G1 or in G2, we can combine the colourings of G1 and G2 to
produce a cyclic colouring of G using at most M∗

G colours. 2

Lemma 3.2. G is 2-connected.

Proof. Suppose G has a pendant block G1 with a cut vertex z. W.l.o.g., we can assume that
the outside face f1 of G1 forms a part of the boundary of the outside face f of G. Let f2 be
the outside face of the graph G2 = G− (G1 − z). Again we can colour both G1 and G2 with at
most M∗

G colours. Since M∗
G > ∆∗

G + 1 ≥ |VG(f)|+ |{z}| = |VG(f1)|+ |VG(f2)|, it is possible to
use different colours for all vertices of the outside faces of G1 and G2 and to use the same colour
for z. So again we can combine the colourings of G1 and G2 to produce a colouring of G. 2

By Lemmas 3.1 and 3.2, G is a simple 2-connected graph. Hence G must have one of the
configurations described in Theorem 2.1.
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Lemma 3.3. G has no adjacent triangles.

Proof. Suppose G has adjacent triangles T1 = uvx, T2 = uvy. Remove the edge uv from G.
The resultant graph H has fewer edges than G and has only one face f = uxvy which is not
in G. Since dH(f) = 4, f has at most four vertices in common with any other face and hence
∆∗

H ≤ max{∆∗
G, 4} and k∗H ≤ max{k∗G, 4}. Therefore, H has a cyclic colouring using at most

M∗
H ≤ M∗

G colours, which is also a cyclic colouring of G. 2

A cyclic neighbour of a vertex v is a vertex u 6= v such that there is a face incident with both u

and v. The cyclic degree dc
G(v) of a vertex v in G is the number of cyclic neighbours of v.

Proposition 3.4. G cannot have a vertex of degree at most 4 and cyclic degree at most M∗
G−1.

Proof. Suppose v is such a vertex with degree d ≤ 4. Denote the neighbours of v in a cyclic
order by u1, u2, . . . , ud. Form the plane graph H by removing the vertex v and adding edges
u1u2, u2u3, . . . , ud−1ud, udu1. By this definition, H has fewer vertices than G and the new
face formed by the edges uiui+1 has degree at most 4, so ∆∗

H ≤ max{∆∗
G, 4}, k∗H ≤ max{k∗G, 4}.

Hence, H has a cyclic colouring using at most M∗
G colours. This also gives a cyclic colouring

of G with at most M∗
G colours in which v is not coloured yet. Since dc

G(v) ≤ M∗
G − 1, there

is at least one colour not appearing on the cyclic neighbours of v. Hence the colouring can be
extended to a cyclic colouring of G with at most M∗

G colours, a contradiction. 2

Lemma 3.5. G cannot have a vertex as described in Theorem 2.1 (b).

Proof. The cyclic degree of a vertex v is at most the sum of the degrees of the faces incident
with v subtracted by 2 dG(v). Indeed, v itself is counted in each of these face degrees, and
each neighbour of v is counted in at least two of such degrees. Since a non-B-face has degree
at most 7, while a B-face has degree at most ∆∗

G, it follows that any vertex v as described in
Theorem 2.1 (b) has dG(v) ≤ 4, which gives dc

G(v) ≤ ∆∗
G + 3 · 7 − 2 · 4 = ∆∗

G + 13 ≤ M∗
G − 1,

contradicting Proposition 3.4. 2

At this point we know that G must have one of the structures (c), (d) in Theorem 2.1. In order to
show that these options also lead to a contradiction, we do some further analysis of the structure
of B-faces and maximal regular paths of G.

Property 3.6. A maximal regular path of a B-face has at most k∗G vertices.

Proof. Indeed, any such path lies on the boundary of two different B-faces. 2

Proposition 3.7. Let v be a 2-vertex or a good vertex incident with a B-face f1 of dimen-

sion m. If f1 has at most t separating edges on its boundary, then dc
G(v) ≤ ∆∗

G + (m− 1) k∗G +
t−m− 1.
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Proof. Suppose v is incident with a B-face f1 of dimension m and f1 has at most t separating
edges. By Lemma 3.5, v is also incident with another B-face f2. First observe that every cyclic
neighbour of v is incident with either f1 or f2. This is clear if v is a 2-vertex. If v is good, then v

is incident with one or two triangles. However, it follows from the definition of a good vertex
that the vertices of these triangles are also incident with either f1 or f2.

By the above, v is a regular vertex or a good 3-vertex and hence belongs to a maximal regular
path P1 joining f1 with f2. Let P2, . . . , Pm be the other maximal regular paths of f1. Denote
the number of separators of f1 consisting of a single vertex by m1. Since f1 has dimension m,
there are exactly m2 = m − m1 separators of f1 having at least one edge. Clearly, each end
vertex of a separator is also an end vertex of some regular path. So if a separator consists of a
single vertex x, then x is an end vertex of two regular paths of f1. Hence f1 has m1 vertices that
are covered twice by regular paths. On the other hand, every separator of f1 with r ≥ 1 edges
has r − 1 internal vertices that are not covered by regular paths. As f1 has m2 such separators
formed by at most t separating edges, the total number of vertices of f1 not covered by regular
paths can be at most t−m2.

These arguments, combined with Property 3.6 and the fact that every vertex of P1 is incident
with f2, yield

dc
G(v) ≤ dG(f2)− 1 + |VG(P2)|+ · · ·+ |VG(Pm)| −m1 + t−m2

≤ ∆∗
G − 1 + (m− 1) k∗G + t−m.

2

Lemma 3.8. G cannot have a B-face as described in Theorem 2.1 (c).

Proof. Suppose f is such a face. Since f is admissible, it has a vertex v which is either a
regular 2-vertex or a good vertex. Using t = 5, m ≤ 4 and k∗G ≥ 2 in Proposition 3.7, we deduce
that dc

G(v) ≤ ∆∗
G + 3k∗G < M∗

G − 1, a contradiction with Proposition 3.4. 2

Proposition 3.9. A critical B-face cannot have two adjacent BBB-vertices on its boundary.

Proof. Let f be such a face, and let v1, v2 be adjacent BBB-vertices on its boundary. Then
e = v1v2 is a BB-edge and P = v1 e v2 is a good regular path of f . An easy analysis as in the
proof of Proposition 3.7 and Lemma 3.8 shows that f is incident with a good or regular vertex v

such that dc
G(v) ≤ ∆∗

G− 1 + |VG(P )|+ 3k∗G + 5− 5 = ∆∗
G + 3k∗G + 1 ≤ M∗

G− 1. Again we obtain
a contradiction with Proposition 3.4. 2

Using Theorem 2.1 and the previous claims in this section, we conclude that G has B-faces f1

and f2 as described in Theorem 2.1 (d). In particular, f1 is a critical B-face joined with f2

through a good regular path P12 = v1e1 · · · e`−1v`. The definition of a good regular path shows
that there is a unique B-face f3 6∈ {f1, f2} incident with v1 if v1 is a BBB-vertex, or with the
good triangle incident with v1 if v1 is a good vertex. Similarly, at the other end of the path P12

we can find a unique B-face f4.
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By the definition of a good separator there exists a maximal regular path P13 which joins f1

with f3 and starts at the vertex a13 which can be v1 or a vertex of a good triangle incident
with v1. Let b13 be the other end vertex of P13 ( and hence we have a13 = b13 if the path is just
one good 4-vertex ). Similarly, we can find a maximal regular path P14 between f1 and f4 with
end vertices a14, b14, a maximal regular path P23 between f2 and f3 with end vertices a23, b23,
and a maximal regular path P24 between f2 and f4 with end vertices a24, b24.

Note that if a13 6= v1, then a13 is a good vertex, and hence all its cyclic neighbours are in
VG(f1) ∪ VG(f3). The same holds for any internal vertex of P13, if such a vertex exists, and for
the other paths too.

Put X = VG(P12), Y3 = VG(P13) \ (X ∪ {b13}), W3 = VG(P23) \ (X ∪ {b23}), Y4 = VG(P14) \
(X∪{b14}), and W4 = VG(P24)\(X∪{b24}). From Proposition 3.9 it follows that there is a vertex
x ∈ X which is either regular or good. Therefore, the face f2 is admissible, and Lemma 3.8
shows that dim(f2) ≥ 3. Although X is not empty, any of Y3,W3, Y4,W4 may be empty. Also,
since both f1 and f2 have dimension at least three, all these sets are disjoint. Finally, from the
previous paragraph we obtain that all vertices in Y3 have cyclic neighbours in VG(f1) ∪ VG(f3),
and similarly for W3, Y4, W4.

Let the neighbours of the vertex x be u1, u2, . . . , ud in a cyclic order. We form the plane
graph H by removing the vertex x and adding edges u1u2, u2u3, . . . , ud−1ud, udu1. Then H

has fewer vertices than G. Also, the new face formed by the edges uiui+1 has degree at most
four and hence has at most four vertices in common with any other face. This means that
∆∗

H ≤ max{∆∗
G, 4} and k∗H ≤ max{k∗G, 4}. So H has a cyclic colouring using at most M∗

G

colours. This also gives a cyclic colouring of G with at most M∗
G colours where x is not coloured

yet.

Proposition 3.10. There exist vertices in Y3 and in Y4 whose colours do not appear on vertices

of f2. ( In particular, Y3 and Y4 are not empty. )

Proof. Suppose all the colours of vertices in Y3 also appear at f2. Then the number of colours
appearing on the cyclic neighbours of x is at most

|VG(f2)| − 1 + |VG(f1) \ (X ∪ Y3)| ≤ ∆∗
G − 1 + 3 k∗G + 1 < M∗

G − 1.

Here we use that dim(f1) = 5, each separator of f1 has at most one edge, and X ∪ Y3 =
VG(P12) ∪ VG(P13) \ {b13} contains all but one of the vertices of two maximal regular paths.
Thus x can be coloured with a colour different from the colours of its cyclic neighbours, a
contradiction.

The same argument works for Y4. 2

Proposition 3.11. The colour of every vertex in W3 ∪W4 also appears at f1.

Proof. Suppose there is a vertex w3 ∈ W3 whose colour cw does not appear at f1. Then after
removing the colour from w3, we can colour x with cw. Now we can not find a new colour for w3
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only if its cyclic neighbours use all M∗
G ≥ ∆∗

G + 3 k∗G + 2 colours. Since w3 has at most ∆∗
G − 1

cyclic neighbours from f3, there is a set C of at least 3 k∗G + 2 colours that appear on vertices in
VG(f2) \ {x,w3} but not appear at f3.

By Proposition 3.10 there is a vertex y3 ∈ Y3 whose colour cy does not appear at f2. So after
removing the colour from y3, we can colour x with cy. Exactly as in the previous paragraph
we conclude that there is the same set C of at least 3 k∗G + 2 colours appearing on vertices in
VG(f1) \ {x, y3}. Hence, the number of colours used for the cyclic neighbours of x is at most

|VG(f2)| − 1 + |VG(f1)| − |C| ≤ ∆∗
G − 1 + 5 k∗G − (3 k∗G + 2) < M∗

G − 1.

Thus x can be coloured with a colour different from any of its cyclic neighbours, a contradiction.
The same argument works for W4. 2

By Proposition 3.11, every colour of a vertex in W3∪W4 appears at f1. Recall that dim(f2) ≤ 6
and f2 has at most four separating edges that are not incident with the end vertices of P12.
Since the colours of the vertices in X ∪W3 ∪W4 occur on f1, and since X ∪W3 ∪W4 contains
all but two of the vertices of three regular paths of f2, it follows that the maximal number of
colours appearing on cyclic neighbours of x is

|VG(f1)| − 1 + |VG(f2) \ (X ∪W3 ∪W4)| ≤ ∆∗
G − 1 + 3 k∗G + 4− 4 + 2 ≤ M∗

G − 1.

So again we can find a suitable colour for x, the final contradiction in the proof of Theorem 1.1.
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