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Abstract
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the mixed extension of a finite game, where the leader commits to a mixed strategy.
The set of leader payoffs is an interval (for generic games a singleton), which is at
least as good as the set of that player’s Nash and correlated equilibrium payoffs in the
simultaneous game. This no longer holds for leadership games with three or more
players.
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1 Introduction

The possible advantage ofcommitment poweris a game-theoretic result known to the gen-
eral public, ever since its popularization by Schelling (1960). Cournot’s (1838) duopoly
model of quantity competition was modified by von Stackelberg (1934), who demon-
strated that a firm with the power to commit to a quantity of production profits from this
leadershipposition. In modern parlance, Cournot found a Nash equilibrium in a game
where firms choose their quantitiessimultaneously. Theleadership gameof von Stackel-
berg uses the same payoff functions, but where one firm, theleader, moves first, assuming
a best reply of the second-moving firm, thefollower. The “Stackelberg solution” is then a
subgame perfectequilibrium of this sequential game. The leader-follower issue has been
studied in depth in oligopoly theory; see Friedman (1977), Hamilton and Slutsky (1990),
Shapiro (1989), or Amir and Grilo (1999) for discussions and references.

This paper studies the leadership game for themixed extensionof a finite strategic-
form game, one of the most basic models of noncooperative game theory. We provide
a complete analysis of two-player games, including nongeneric cases, showing that the
possibility to commit never hurts a player. Further results, explained later in this intro-
duction, compare leadership and correlated equilibria, concern games with more than two
players, and study the possible follower payoffs.

Our basic setting is to compare the simultaneous version of a two-player game with
the corresponding leadership game. In the simultaneous game, both players choose their
actions independently and simultaneously, possibly by randomizing with a mixed strategy,
which is in general necessary for the existence of a Nash equilibrium. In the leadership
game, the leader, player I, say, commits to a mixed strategyx. The follower, player II, is
fully informed aboutx, and chooses her own action, possibly by randomization, with a
pure or mixed strategyy(x). The pair of pure actions, and corresponding payoffs, is then
chosen independently according tox andy(x) as in the original game. We only consider
subgame perfect equilibria of the leadership game where the follower chooses only best
repliesy(x) against anyx, even off the equilibrium path. The set of equilibria that are
not subgame perfect seems too large to allow any interesting conclusions. The payoff to
the leader in a subgame perfect equilibrium of the leadership game will be calledleader
payoff, his payoff in the simultaneous gameNash payoff.

The main result comparing leadership and simultaneous game states that the leader
payoff is not worse than the Nash payoff, so commitment power is beneficial. When
best replies areunique, this is a near-trivial result (and has been observed earlier, e.g.,
by Simaan and Cruz (1973) or Başar and Olsder (1982, p. 126)): The leader can always
commit to his Nash strategy and thus receive at least the payoff in the Nash equilibrium.
If there are several Nash equilibria, the leader can choose the equilibrium with the largest
payoff to him. The leader may even do better with a different commitment.

Best replies are typically not unique, however, in Nash equilibria with mixed strate-
gies. If the follower’s best reply is a properly mixed strategy, she may choose any of her
pure best replies, which may be to the disadvantage of the leader. In a zero-sum game,
von Neumann’s minimax theorem asserts that the leader is not harmed by committing to
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his mixed strategy. This is a possible motivation for using mixed strategies in a zero-sum
game, apart from existence of an equilibrium. Von Neumann and Morgenstern (1947)
explicitly define the leadership game of a zero-sum game, first with commitment to pure
(p. 100) and then to mixed strategies (p. 149), as a way of introducing the maxmin and
minmax value of the game; they consider the leader to be a priori at an obvious disad-
vantage. A commitment to pure strategies only may of course harm the leader, as in
“matching pennies”, or any other, even non-zero-sum game with payoffs nearby.

Commitment to mixed strategies are also considered by Rosenthal (1991), who de-
fines “commitment robust” Nash equilibria that remain equilibria in the leadership game.
Landsberger and Monderer (1994) also treat commitment to mixed strategies, as discussed
in the context of Figure 3 below. Compared to pure strategies, a commitment to mixed
strategies is obviously harder to verify. Bagwell (1995) considers games with commit-
ment to pure strategies only, but where the pure strategy is imperfectly observed by the
follower. He notes that then the commitment effect vanishes since the leader would al-
ways renege on the commitment, given that the follower attributes the differently observed
strategy to an erroneous observation. Van Damme and Hurkens (1997) note that the lead-
ership advantage can be re-instated by consideringmixedequilibria, still in the game
where the leader can only commit to a pure strategy. Reny and Robson (2002) consider
commitment to mixed strategies as a possible “classical” view of mixed strategies, as done
by von Neumann and Morgenstern.

Even when best replies are not unique, theexistenceof a leader payoff that is at least
as good as any Nash payoff is again obvious. Namely, the follower may simply respond
as in a Nash equilibrium, or, even better, to the leader’s advantage when she is indifferent.
In the context of inspection games, Maschler (1966)postulatesthe latter behavior of
the follower, calling it “pareto-optimal”. This postulate is unnecessary, as observed by
Avenhaus, Okada and Zamir (1991), since on the equilibrium path the follower must
choose her best reply that is most favorable to leader, in order to obtain a subgame perfect
equilibrium of the leadership game. This is argued in detail for Figure 2 below. Section 2
gives a number examples that illustrate this and other aspects of leadership games.

In generic two-player games, the leader payoff is unique and at least as large as any
Nash payoff, as stated in Theorem 3 below. This is due to the fact that the follower’s
best replies areunique almost everywhere, relative to the set of all mixed strategies of the
leader. A favorable reply of the follower can thus beinducedif necessary.

For nongeneric games, it cannot be true that all leader payoffs are at least as good as
all Nash payoffs. The simplest example has one pure strategy for the leader and two best
replies by the follower, with different payoffs to the leader. Either best reply defines a
Nash equilibrium, commitment does not change the game, and one leader payoff is worse
than the other Nash payoff. The obvious fair comparison should involve thesetof payoffs
to the leader. Indeed, we will prove that every leader payoff is at least as large assome
Nash payoff.

More precisely, our first main result (Theorem 11 below) states: All subgame perfect
equilibrium payoffs to the leader (player I) in the leadership game belong to an interval
[L,H]. The highest possible leader payoffH is at least as high as any Nash equilibrium
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payoff to player I in the simultaneous game. The lowest possible leader payoffL is at
least as high as the lowest Nash equilibrium payoff. In other words, the set of equilibrium
payoffs “moves upwards” for the leader (or stays unchanged, as in a zero-sum game). If
no pure strategy of the follower is weakly dominated by or payoff equivalent to a different
(possibly mixed) strategy, then the leader’s payoff is unique (L = H). In particular, this is
the case in a generic game. The mathematics for Theorem 11 are developed in Section 3.
The three Theorems 3, 10, and 11 are of increasing generality, but are stated separately
since they build on each other.

Section 4 shows that the highest (for a generic game, unique) leader payoffH is at least
as high as anycorrelated equilibrium payoffof the simultaneous game. This is interesting
because commitment can serve as a coordination device, which is a possible motive for
considering correlated equilibria. (As shown before, the lowest leader payoffL is at
least as large as some Nash equilibrium payoff, and hence as some correlated equilibrium
payoff.) We also show that the largest payoff to player I in the “simple extension” of a
correlated equilibrium due to Moulin and Vial (1978) may possiblynot be obtained as
a leader payoff. The Moulin–Vial coordination device requires a commitment byboth
players.

In Section 5, we show that commitment to mixed strategies may no longer be advan-
tageous in games with more than two players. The games considered have one leader and
k followers, who play an equilibrium among themselves in the subgame induced by the
commitment of the leader. In games of ateamof several players, with identical payoffs,
who play a zero-sum game against an adversary (as studied by von Stengel and Koller
(1997)), the adversary will never profit when made a leader. On the contrary, the set
of subgame perfect equilibrium payoffs in the leadership game will “move downwards”
compared to the simultaneous game. The reason is that the commitment helps the team
of followers to coordinate their actions, to their advantage. This result holds also for a set
of positive measure of generic games nearby.

Section 6 compares our approach to leadership equilibria with the related “Stackel-
berg” concept in dynamic games (see Başer and Olsder (1982), Mallozzi and Morgan
(2002), Morgan and Patrone (2004), and references therein). In that literature, leadership
is seen as an optimization problem. A typical “pessimistic” assumption is that if there is
more than one best reply of a follower, or more than one induced equilibrium amongk fol-
lowers, the chosen reply is theworstone for the leader. The resulting payoff to the leader
as a function of his commitment is typically discontinuous. We show in Theorem 13 that
the resulting limit payoff is obtained in a subgame perfect equilibrium of the leadership
game. The only difference to the view of optimization theory is that the followers do not
(and cannot) act according to the described “pessimistic” view in the equilibrium itself.
If the pessimistic view is adopted, the leader should choose a nearby, slightly suboptimal,
commitment.

Leadership is advantageous when compared to the simultaneous game, but not neces-
sarily compared to the follower’s situation. Section 7 addresses the payoff to the follower
in leadership equilibria. We give an example of a symmetric3×3 game where the leader
payoff is better than the Nash payoff, but where the follower payoff may take any value,
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depending on a parameter of the game which leaves the best replies of the follower, and
the optimal commitment, unchanged. In a separate paper (von Stengel (2003)), it is shown
that in a symmetric duopoly game, as considered, for example, by Hamilton and Slutsky
(1990), the follower is either worse off than in the simultaneous game, or even better off
than the leader.

Section 8 concludes with possible topics for further research.

2 Examples

The well-knownultimatum gameis a sequential game where player I first offers a split
of a unit “pie” into the nonnegative amountsx and1−x for player I and II, respectively,
which player II then can accept, whereupon the players receive the payoffsx and1−x, or
reject, in which case both players receive zero.
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Figure 1. Ultimatum game with the leader’s demand as probability ofB.

The ultimatum game can be cast as the leadership game of the game in Figure 1, with
player I as the leader (as throughout the paper), whose own demandx is the probability of
playing the bottom strategyB. The left columnl means “accept” andr means “reject”.

If x can be chosen continuously from the interval[0,1], the unique subgame perfect
equilibrium is a textbook example in bargaining (e.g., Binmore (1992, p. 199)): Player II
acceptsany split, even when she receives nothing,1− x = 0, where she is indifferent
between accepting and rejecting, and player I demands the whole unit for himself,x = 1,
on the equilibrium path. The reason is that by subgame perfection, the best reply of
player II is to accept (l ) wheneverx < 1. Then offering an amountx less than one, which
is is player I’s payoff, can never be an equilibrium choice since it could be improved to
x+ ε with 0 < ε < 1− x. Hence in a subgame perfect equilibrium, player I demands
everything (x = 1), and player II is indifferent. If, in reply tox = 1, player II rejects with
positive probabilityy > 0, then player I would receive1−y and could improve his payoff
by changing his demand to1− y/2, say, which is not an equilibrium choice as argued
before. So a subgame perfect equilibrium is given only if player II accepts with certainty,
despite being indifferent on the equilibrium path. The same reasoning applies also to the
subgame perfect equilibrium of the multiple-round bargaining game due to Rubinstein
(1982).
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In the simultaneous game shown in Figure 1, player I choosesB in any Nash equilib-
rium (a positive probability forT would entail the unique best replyl and, in turn,B), and
player II can mixl andr with arbitrary probabilityy, say, forr. The resulting payoffs are
1− y for player I, which is any number in[0,1], and 0 for player II. The leader payoff 1
(that is, the payoff to player I in the subgame perfect equilibrium of the leadership game)
is at least as good as any Nash payoff to player I (in the simultaneous game).

The effect of leadership is also familiar in the context ofinspection games(see Masch-
ler (1966), Avenhaus and Canty (1996), Avenhaus, Okada, and Zamir (1991), Wölling
(2002), and the survey by Avenhaus, von Stengel, and Zamir (2002)).
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Figure 2. Inspection game.

Figure 2 shows a simple example of an inspection game where the inspector, player I,
can choose not to inspect (T) or to inspect (B), and the inspectee, player II, can either
comply with a legal obligation (l ) or cheat (r). The reference strategy pair(T, l) defines
the pair of payoffs(0,0) for players I, II, which is the most desirable outcome for the
inspector. In all other cases, negative payoffs to the inspector reflect his preference for
compliance throughout, rather than catching an inspectee who cheats. An inspection is
costly for the inspector, with payoffs(−1,0) for (B, l). The inspectee gains from cheat-
ing without inspection, with payoffs(−10,1) for (T, r), but loses when inspected, with
payoffs(−6,−9).

The unique Nash equilibrium of the simultaneous game in Figure 2 is in mixed strate-
gies, where player I chooses to inspect (B) with probability 1/10 and player II cheats
(choosingr) with probability1/5. The resulting payoff pair is(−2,0).

The leadership game for Figure 2 has a unique best reply by player II when the proba-
bility x for inspection is not equal to1/10: cheat forx < 1/10, and comply forx > 1/10.
Since the inspector prefers the inspectee to comply (l ) in any case, he will commit to a
probabilityx with x≥ 1/10. Since the resulting payoff−x to player I is decreasing inx, a
subgame perfect equilibrium requires a commitment to the smallest probabilityx = 1/10
for B where player II still responds withl . Then the follower is indifferent, but chooses
the reply with the most favorable payoff to the leader, namely compliance. The reason is
the same as before: Any positive probability forr would reduce the payoff−1/10 to the
leader, which he could improve upon by committing tox = 1/10+ ε and thusinducethe
follower to comply. As mentioned in the introduction, Maschler (1966) assumes that the
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inspectee complies when indifferent. Avenhaus, Okada, and Zamir (1991) note that this
is the only subgame perfect equilibrium. For a more detailed discussion see Avenhaus,
von Stengel, and Zamir (2002, Section 5).

The resulting leader payoff−1/10 in the leadership game for Figure 2 is much better
for player I than his Nash payoff−2 in the simultaneous game. In the game of Figure 2,
the leader commits to the same mixed strategy as in the unique Nash equilibrium of the
simultaneous game (this holds for any2×2 game with a unique completely mixed equi-
librium, but is not true for larger games). The follower is indifferent, but chooses the
favorable action (herel ) for the leader in the leadership game.

Inspection games model a scenario where the inspector is a natural leader. An inspec-
tion policy can be made credible, whereas the inspectee cannot reasonably commit to a
strategy that involves cheating. We do not try to “endogenize” leadership (as, for exam-
ple, Hamilton and Slutsky (1990)), but assume that one of the players has commitment
power, and study its effect.
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Figure 3. Game with a weakly dominated strategy of player II.

For the game in Figure 3, Landsberger and Monderer (1994) have argued that player I,
when offered a choice to commit or not to commit (possibly to a mixed strategy), would
choose not to commit, assuming the iterated elimination of weakly dominated strategies
as a solution concept. In contrast, we shall argue that the followers’ preference for using
only the undominated strategy can be enhanced, rather than weakened, with commitment.

The Nash equilibria of the game in Figure 3 are given by player I choosingT with cer-
tainty, and player II mixing betweenl andr, choosingr with some probability in[0,4/9].
The resulting Nash payoffs are any number in[5,9] for player I, and9 for player II.

In the leadership game corresponding to Figure 3, player I commits toT, and, by the
usual reasoning, player II always responds byl , with resulting payoffs9 for both players.
This is arguably better for player I than the simultaneous game. The relationship of Nash
to leader payoffs in this game is similar to Figure 1. If the leader has any doubt about the
reply of l to his commitmentT since the follower is indifferent, the leader can commit to
playingB with a small probabilityε in order to inducel as a unique best reply.

The game in Figure 4 is an interesting variation of Figure 3. Again, player II has
a weakly dominating strategy, in this caser rather thanl . The Nash equilibria of the
simultaneous game are(B, r) with payoff pair(5,7), or T and a mixture ofl andr with
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Figure 4. Game with two possible commitments in the leadership game,T andB.

probability at most4/9 for r as in Figure 3, with payoffs in[5,9] for player I and9 for
player II.

In the leadership game for Figure 4, the subgame perfect equilibria depend on the
reply by the follower against a commitment by the leader to playT with certainty; to
any other commitment, the follower responds by playingr. If the follower responds toT,
where she is indifferent, with probability at most4/9 for r, then the leader gets a payoff in
[5,9] and the commitment toT is optimal. However, the leader cannotinducethe follower
to play l , which is preferred by the leader, as in the previous games, since any variation
from this commitment will induce the replyr. Instead, the follower may indeed respond
to T by choosingr with probability4/9 or higher. In that case, the leader maximizes his
payoff by committing toB, with resulting payoff pair(5,7). If the follower responds toT
by choosingr with probability exactly4/9, bothT andB are optimal commitments.

In the game of Figure 4, the sets of Nash and leadership payoffs coincide, for both
players. The set of leader payoffs is an interval[5,9], where any payoff greater than5 to
the leader depends on the “goodwill” of the follower since her reply to the commitment
to T cannot be induced by changing the commitment slightly. The smallest leader payoff5
cannot be induced by a commitment toT or a slight variation of this commitment, but
requires a different commitment to the “remote” strategyB. This smallest leader payoff
is found by ignoring pure replies of the follower that are weakly dominated. This is also
done in the general proof of Theorem 10 below.
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Figure 5. Commitment to a strictly dominated strategyT by the leader.
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Player II will never play a strictly dominated pure strategy, neither in the simultaneous
game, nor in a subgame perfect equilibrium when she is the follower in a leadership
game, so we can disregard such a strategy. In contrast, player I may commit to a strictly
dominated strategy in the leadership game if it induces a reply that is favorable for him, as
demonstrated by the game in Figure 5, sometimes called the “quality game” withT andB
representing a good or bad service, andl andr the choices of a customer of buying or not
buying the service. The simultaneous game has the unique Nash equilibrium(B, r) with
payoffs (1,1). In the leadership game, even committing only to a pure strategy would
give the subgame perfect equilibrium with commitment toT and replyl , and payoffs
(2,2). The optimal commitment to a mixed strategy is to the mixture ofT andB with
probability 1/2 each, where the follower is indifferent, but responds by choosingl for
the usual reason that otherwise this reply can be induced by committing to playT with
probability1/2+ ε. The resulting payoff pair is(5/2,1).
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Figure 6. Game with “equivalent” repliesl andr for the follower.

The example in Figure 6 illustrates a point that may arise with general nongeneric
games. Here, the pure strategiesl and c have identical payoffs for player II, so that
player I can never induce player II to play one strategy or the other. The simultaneous
game has the unique Nash equilibrium(B, r) with payoffs(1,1), obtained, for example,
by iterated elimination of strictly dominated strategies, firstT, thenl andr, thenM.

In the leadership game for Figure 6, player I as leader can induce player II to playl
or c by committing to playT with probability at least1/2. Against the commitment to the
mixed strategy(1/2,1/2,0) for (T,M,B), for example, the follower is indifferent among
all her strategies. In particular, she may respond by playingc, giving the leader the good
expected payoff4, so this is a possible payoff to the leader in the leadership game (in
fact, the maximum possible). However, she may also respond by playingl or r, with a
much smaller payoff which the leader cannot change to a payoff near4 by a commitment
nearby.

In this game, the set of leader payoffs is again an interval, namely[2,4]. The lowest
possible leader payoff2 is not even found at an extreme point of a “best reply region”
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for either pure replyl , c or r (these best reply regions are crucial for the analysis of
the leadership game, see Section 3). Rather, it results from a commitment to the mixed
strategy(1/2,1/4,1/4), where the follower is again indifferent between all replies. For
l andc, the resulting expected payoff to the leader is2, and this is in fact a subgame
perfect equilibrium payoff if player IIrandomizes, with probability 1/2 for both l and
c (which she can always do wheneverl andc are best replies, since these strategies are
equivalent in the sense of having identical payoffs for her). Player I could also respond to
(1/2,1/4,1/4) with r, with payoff1/4 to the leader, but this would not be part of a sub-
game perfect equilibrium since player I could inducel or c as a best reply by committing
to (1/2+2ε,1/4− ε,1/4− ε), say.

Equivalent pure strategies likel andc in Figure 6 require the consideration of azero-
sum game, in terms of the payoffs of player I, played on the region of mixed strategies
of player I where these equivalent strategies of player II are best replies; for details see
Theorem 11 and its proof.

3 Leadership games

We consider a bimatrix game withm×n matricesA andB of payoffs to player I and II,
respectively. The set of pure strategies of player I (matrix rows) is denoted byM and the
set of pure strategies of player II (columns) byN,

M = {1, . . . ,m}, N = {1, . . . ,n}.

The sets of mixed strategies of the two players are calledX andY. For mixed strategiesx
andy, we want to write expected payoffs as matrix productsxAyandxBy, so thatx should
be a row vector andy a column vector. That is,

X = {(x1, . . . ,xm) | ∀i ∈M xi ≥ 0, ∑
i∈M

xi = 1 }

and
Y = {(y1, . . . ,yn)> | ∀ j ∈ N yj ≥ 0, ∑

j∈N
y j = 1 }

As elements ofX, the pure strategies of player I are the unit vectors, which we denote by
ei for i ∈M, that is,ei ∈ X and

e1 = (1,0, . . . ,0), e2 = (0,1,0, . . . ,0), . . . , em = (0, . . . ,0,1). (1)

Thesimultaneous gameis played with player I choosingx in X, player II choosingy
in Y, and player I and II receiving payoffsxAyandxBy, respectively. ANash equilibrium
always means an equilibrium of the simultaneous game. ANash payoff(to any player) is
the payoff in any Nash equilibrium.

The leadership gameis played with strategy setX for player I, called theleader,
and any functionf : X → Y as a strategy of player II, called thefollower, whereupon
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the players receive payoffsxA f(x) andxB f(x), respectively. The interpretation of the
leadership game is that the leader commits to the strategyx, about which the follower is
fully informed, and can choosef (x) in Y separately for eachx. A leadership equilibrium
is anysubgame perfectequilibrium (x, f ) of the leadership game, that is,f (x′) is a best
reply to anyx′ in X, even ifx′ is not the strategyx that the leader commits to. Aleader
payoff is the payoff to the leader in any leadership equilibrium, afollower payoff the
payoff to the follower in any leadership equilibrium.

For any pure strategyj of player II, both payoffs to player I and to player II depending
on x∈ X will be of interest. We denote the columns of the matrixA by A j and those ofB
by B j ,

A = [A1 · · ·An], B = [B1 · · ·Bn].

An inequality between two vectors, like, for example,B j < By for some j ∈ N andy∈Y
(which states that the pure strategyj is strictly dominated by the mixed strategyy), is
understood to hold in each component.

For j in N, thebest reply regionX( j) is the set of thosex in X where j is a best reply
to x:

X( j) = {x∈ X | ∀k∈ N xBj ≥ xBk}.
Any best reply regionX( j) is a closed convex polytope, and

X =
[

j∈N

X( j) (2)

since anyx in X has at least one best replyj ∈ N.
The main power of commitment in a leadership game is that the leader caninducethe

follower to play certain pure strategies, by our assumption that the follower uses only best
replies.

Definition 1 A strategyj in N is called inducible if j is the unique best reply to somex
in X.

Let a j denote the maximal payoff that player I can get when choosingx from X( j):

a j = max{xAj | x∈ X( j)}. (3)

If j is inducible, then the leader can get at least payoffa j in any leadership equilibrium:

Lemma 2 If j is inducible, then any leader payoff is at leasta j as defined in(3).

Proof. Consider a leadership equilibrium. Assume that the maximuma j in (3) is taken
at x in X( j), that is,a j = xAj . Furthermore, letx′ ∈ X( j) be a strategy wherej is the
unique best reply of player II, so thatx′B j > x′Bk for all k in N, k 6= j. Furthermore,
xBj ≥ xBk for all k in N. Then j is also the unique best reply to the convex combination
x(ε) = (1− ε)x+ εx′, for anyε ∈ (0,1], sinceX( j) is convex and payoffs are linear. By
subgame perfection, the follower’s reply tox(ε) is j. The payoff to player I when playing
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x(ε) is then(1− ε)xAj + εx′A j , which is arbitrarily close toa j by choosingε sufficiently
small. So if player II’s reply on the equilibrium path (that is, to the actual commitment of
player I in equilibrium) gave player I a payoff less thana j , then player I could switch to
x(ε) (with smallε) and thereby get a higher payoff, contradicting the equilibrium property.
So the payoff to player I in the leadership equilibrium is at leasta j as claimed.

If every strategyj of player II is inducible, then the preceding lemma gives an easy
way to find a leadership equilibrium: Choosej in N such thata j is maximal, and let the
leader commit tox in X( j) wherea j in (3) is attained, that is,xAj is maximal. Then
the follower responds so that player I receives indeed payoffxAj . This is stated in the
following theorem, which also asserts that the resulting leader payoff is at least as good
as any Nash payoff to player I. The preceding proof of Lemma 2 explains this advantage
of the leader, the player with “commitment power”. Namely, anyx such thatxAj = a j is
typically an extreme point ofX( j), asx maximizes a linear function on the polytopeX( j),
and sox typically belongs to several best reply regionsX(k). In that case, the follower is
indifferent between several best replies, but nevertheless chooses the replyj that is best
for the leader, since otherwise the leader would induce this desired reply of the follower
by changingx slightly to x(ε) where j is the unique reply, as argued repeatedly in the
examples in Section 2. The following theorem has already been observed by Wölling
(2002).

Theorem 3 Suppose that everyj in N is inducible. Then the leader payoff is uniquely
given byL = maxj∈N a j , that is,

L = max
j∈N

max
x∈X( j)

xAj . (4)

Furthermore, no Nash payoff to player I exceedsL.

Proof. Player I cannot obtain a higher payoff thanL in a leadership equilibrium since
player II always chooses best replies. On the other hand, player I will getL by choosing
x so that the maximum in (4) is attained, according to Lemma 2.

Let (x,y) in X×Y be a Nash equilibrium of the simultaneous game. Then any pure
strategy played with positive probability iny must be a best reply tox, that is,y j > 0
impliesx∈ X( j). Hence we have for the Nash payoff to player I

∑
j∈N

(xAj)y j = ∑
j∈N, y j>0

(xAj)y j ≤ ∑
j∈N

a jy j ≤max
j∈N

a j = L .

The remainder of this section concerns the case that player II has strategiesj that
are not inducible. A strategyj is not inducible if it is payoff equivalent to or weakly
dominated by a (different) pure or mixed strategyy in Y so thatB j ≤ By. Then whenever
j is a best reply to somex in X, so isy and hence all the pure strategies chosen byy
with positive probability. (We can assume thaty does not choosej, that is,y j = 0, since
otherwise we can omitj from the mixture and play the other pure strategies iny with
proportionally higher probabilities.) The following lemma shows that this is the only case
where j is not inducible.
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Lemma 4 A strategyj is not inducible if and only ifB j ≤ Byfor somey in Y with y j = 0.

Proof. If j is payoff equivalent to or weakly dominated by the strategyy as stated, then
y is a best reply wheneverj is, so j is certainly never a unique best reply. To prove
the converse, suppose that for noy ∈ Y with y j = 0 we haveB j ≤ By. We find anx in
X to which j is the unique best reply, using linear programming duality. Consider the
following linear program (LP): maximizeu with variablesu andyk ≥ 0 for k∈ N, k 6= j,
so that

− ∑
k∈N, k6= j

Bkyk +1u≤−B j

∑
k∈N, k6= j

yk = 1,
(5)

where1 is a column ofm ones. The LP (5) is feasible, with anyy ∈ Y with y j = 0
and sufficiently negativeu, and its optimal valueu is negative since otherwiseB j ≤ By.
The dual of the LP (5) is to find nonnegativex = (x1, . . . ,xm) and unconstrainedt so
that−xBj + t is minimal, subject to the equationx1 + · · ·+xm = 1 (corresponding to the
primal variableu), i.e.,x∈ X, and subject to the inequalities−xBk + t ≥ 0 for all k 6= j.
The optimal value of this dual LP is equal to that of (5) and negative. In the corresponding
optimal solution withx andt, this meansxBj > t ≥ xBk for all k 6= j, that is, j is the unique
best reply tox, as desired.

If j is strictly dominated, thenj is never a best reply, and both in the simultaneous
game and in the leadership game player II will never choosej, so such a strategy can
safely be omitted from the game. (Strictly dominated strategies of player I, on the other
hand, may be relevant for the leadership game, as Figure 5 shows.)

Secondly, a strategyj is not inducible ifB j = Bk for somek 6= j, since thenj andk
give the same payoff for anyx. If the leader tries to induce the follower to playj, the
follower may also playk, which may not be what the leader wants ifA j 6= Ak. We will
treat this case last.

The remaining possibilities thatj is not inducible are therefore thatj is is either payoff
equivalent to a mixturey of at least two other pure strategies, withB j = By, or that j is
weakly dominated by a pure or mixed strategyy, with B j ≤ By but B j 6= By. In the
following, we will show that such best reply regionsX( j) have lowerdimensionthanX
itself.

We recall some notions from affine geometry for that purpose. Anaffine combination
of pointsz1, . . . ,zk in some Euclidean space is of the form∑k

i=1λizi whereλ1, . . . ,λk are
reals with∑k

i=1λi = 1. Affine combinations are thus like convex combinations, except
that someλi may be negative. Theaffine hullof some points is the set of their affine
combinations. The pointsz1, . . . ,zk areaffinely independentif none of these points is an
affine combination of the others, or equivalently, if∑k

i=1λizi = 0 and∑k
i=1λi = 0 imply

λ1 = · · ·= λk = 0. A convex set hasdimensiond if and only if it hasd+1, but no more,
affinely independent points.

SinceX is the convex hull of them affinely independent unit vectorse1, . . . ,em in (1),
it has dimensionm− 1. Any convex subsetZ of X is said to befull-dimensionalif it
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also has dimensionm−1. The following lemma implies thatZ is full-dimensional if it
is possible to move withinZ from somex a small distance in the direction of allm unit
vectorsei , the extreme points of the unit simplexX.

Lemma 5 Let x ∈ X and 0 < ε ≤ 1. Then the vectors(1− ε)x+ εei for 1≤ i ≤ m are
affinely independent, andx is a convex combination of these vectors.

Proof. Consider real numbersλ1, . . . ,λm with ∑m
i=1λi = 0. Then∑m

i=1λi((1−ε)x+εei) =
ε∑m

i=1λiei , so if this is the zero vector0, thenλ1 = . . . = λm = 0 since the unit vectors
e1, . . . ,em are linearly independent. This proves the claimed affine independence. Sec-
ondly, lettingλi = xi for 1≤ i ≤ m shows∑m

i=1λi((1− ε)x+ εei) = (∑m
i=1λi)(1− ε)x+

∑m
i=1λiεei = (1− ε)x+ εx = x, which is the representation ofx as a convex combination

of the described vectors.

The next lemma shows that full-dimensional sets are those that contain an open set, in
the topology relative toX. Recall that forε > 0, theε-neighborhoodof a pointx in X is
the set{y∈ X | ‖y−x‖< ε} where‖y−x‖ is the Euclidean distance ofx andy.

Lemma 6 LetZ be convex,Z⊆ X. Then the following are equivalent:
(a) Z is full-dimensional;
(b) for somex∈ Z andε > 0, the vectors(1− ε)x+ εei are inZ for 1≤ i ≤m;
(c) Z contains a neighborhood.

Proof. By Lemma 5, (b) implies (a). To show that (c) implies (b), letx be an interior
point of Z. Then for sufficiently small positiveε, each vector(1− ε)x+ εei has distance
ε‖x−ei‖ from x and hence belongs to a neighborhood ofx, and thus toZ.

It remains to show that (a) implies (c). Let, by (a),z1, . . . ,zm be affinely independent
vectors inZ, and consider the simplex that is the convex hull of these vectors. Then it
can be shown that the center of gravityx = 1/m· (z1 + · · ·+ zm) of that simplex is in the
interior of that simplex. Namely, every vectorzk has positive distance from the affine hull
of the otherm−1 vectors, so thatx has1/m that distance, call itδk. Any y in X that is
not in the simplex is an affine combinationy = ∑m

i=1λizi with, by affine independence,
uniqueλ1, . . . ,λm, where∑m

i=1λi = 1 andλk < 0 for at least onek. Then it easy to see that
this implies‖y−x‖> δk, which shows that theδ-neighborhood ofx, with δ = mink δk, is
included in the simplex and hence inZ.

The preceding topological condition in (c) shows easily thatX is covered by the full-
dimensional best reply regions, so these are of particular interest:

Lemma 7 X is the union of the best-reply setsX( j) that are full-dimensional.

Proof. Let F = { j ∈ N | X( j) is full-dimensional}. ConsiderZ = X−S
j∈F X( j). Sup-

pose that, contrary to the claim, the open setZ is not empty. Then for anyj in N−F ,
the setZ j = Z−X( j) is also open and not empty, since otherwiseZ, and hence a neigh-
borhood, would be a subset of the setX( j) which is not full-dimensional, contradicting
Lemma 6. Repeating this argument withZ j instead ofZ for the next strategy inN−F ,
and so on, shows thatZ−S

j∈N−F X( j), that is,X−S
j∈N X( j), is not empty, contradict-

ing (2).
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The next lemma shows that the intersection of two best reply regions cannot be full-
dimensional, except when the regions are identical.

Lemma 8 If X( j)∩X(k) is full-dimensional, thenB j = Bk.

Proof. Consider, by Lemma 6(b),x andε > 0 so that(1− ε)x+ εei are inX( j)∩X(k)
for all i ∈ M. Thenx, by Lemma 5 a convex combination of these vectors, also belongs
to X( j)∩X(k). Since j andk are best replies tox and to(1− ε)x+ εei for all i ∈M, we
havexBj = xBk and((1−ε)x+εei)B j = ((1−ε)x+εei)Bk, and thereforeeiB j = eiBk, for
i ∈M. This means that the column vectorsB j andBk agree in all components, as claimed.

The following lemma shows the close connection between inducible strategiesj and
full-dimensional best reply setsX( j). The only complication arises when there are other
strategiesk in N with B j = Bk.

Lemma 9 Let j ∈ N.
(a) If j is inducible, thenX( j) is full-dimensional.
(b) X( j) is full-dimensional if and only if the only mixed strategiesy in Y with B j ≤ By

are those whereyk > 0 impliesB j = Bk .
(c) If B j 6= Bk for all k∈ N, k 6= j , andX( j) is full-dimensional, thenj is inducible.

Proof. If j is inducible, then the set{x∈ X | xBj > xBk for all k 6= j } is not empty and
open and a subset ofX( j), which is then full-dimensional by Lemma 6. (An easy direct
argument with Lemma 5 is also possible.) This shows (a).

To show (b), suppose first thatX( j) is full-dimensional, and that there is somey in
Y whereB j ≤ By and, contrary to the claim,yk > 0 andB j 6= Bk for somek. Thenk
is a best reply wheneverj is, which showsX( j) ⊆ X(k) and thusX( j) = X( j)∩X(k).
This is a full-dimensional set, but thenB j = Bk by Lemma 8, a contradiction. Conversely,
suppose thatB j ≤ By holds only whenyk > 0 impliesB j = Bk. Consider the game where
all strategiesk in N, k 6= j with B j = Bk are omitted. In this game, there is no mixed
strategyy with B j ≤ By andy j = 0. Then j is inducible by Lemma 4, and henceX( j) is
full-dimensional by (a).

In the same manner, (b) and Lemma 4 imply (c).

Theorem 3 is strengthened as follows. We still exclude the case that there are different
pure strategiesj andk with B j = Bk.

Theorem 10 Suppose thatB j 6= Bk for all j,k ∈ N, j 6= k. Then the set of all leader
payoffs is an interval[L,H], where

L = max
j∈N, j inducible

max
x∈X( j)

xAj , H = max
j∈N

max
x∈X( j)

xAj . (6)

Some Nash payoff to player I is less than or equal toL, and all Nash payoffs to player I
are less than or equal toH.
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Proof. By Lemma 9 and Lemma 7,

X =
[

j∈N, j inducible

X( j). (7)

Player II therefore has an inducible best reply to anyx in X. Consider now the “inducible-
only” game, both in the simultaneous and in the leadership version, where all pure strate-
gies of player II that are not inducible are omitted. Givenx in X, any pure best reply
j to x in this “inducible-only” game is also a best reply tox in the original game, since
this meansxBk ≤ xBj for all induciblek, and for any non-inducible best replyl to x in
the original game there is also some inducible best replyk to x by (7), which implies
xBl = xBk ≤ xBj .

Hence, any Nash or leadership equilibrium of the “inducible-only” game remains such
an equilibrium in the original game. By Theorem 3, the leader payoff in the “inducible-
only” game isL as in (6). Therefore,L is also a possible leader payoff in the original
game, and greater than or equal to some Nash payoff of the original game. The original
game cannot have a lower leader payoff thanL, even though player II may have additional
best replies, by Lemma 2.

The highest possible leader payoff is clearlyH as in (6), by letting the follower always
choose a best reply inN that maximizes the payoff to the leader, and letting the leader
commit to x∗, say, where the maximumH in (6) is taken, withx∗A j∗ = H, for a best
reply j∗ to x∗ that is best for player I. As argued for Theorem 3,H is greater than or equal
to any Nash payoff.

Trivially, L≤H. If L < H, it remains to show that anyP with L < P< H is a possible
leader payoff. Then the above replyj∗ to x∗ is clearly not inducible, so that there is,
by (7), an inducible best replyk to x∗, wherex∗Ak ≤ L. We let the leader commit to
x∗, and let the follower respond tox∗ by randomizing betweenk and j∗ with probabilities
such the expected payoff to player I, a convex combination ofx∗Ak andx∗A j∗, isP. To any
commitment other thanx∗, the follower chooses only inducible replies, so thatx∗ is indeed
the optimal commitment. Then this is a leadership equilibrium with leader payoffP, as
claimed.

Call two pure strategiesj andk of player II equivalentif Bk = B j , which defines an
equivalence relation onN. If two strategies are equivalent, neither of them is inducible,
and the previous theorem does not apply, because then (7) is not true. However, Lemma 7
is still true. Indeed, the leader payoffs in the general case (where equivalent strategies are
allowed) can be described in terms of the strategiesj such thatX( j) is full-dimensional,
rather than the more special inducible strategies.

The strategiesj such thatX( j) is full-dimensional are characterized in Lemma 9(b):
B j ≤By is only possible for mixed strategiesy that assign positive probability to strategies
that are equivalent toj, so that then obviouslyB j = By. Indeed, omitting from the game all
strategies that are equivalent toj (except j) would makej inducible, as used in the proof
of Lemma 9(b). The possible leader payoffs, however, would not be captured correctly
by such an omission, since inducibility is crucial for Lemma 2, and Player II may respond
to j by some equivalent strategy instead, as argued for Figure 6.
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If there are several equivalent strategies and these define a full-dimensional best reply
region, then the leader payoff is determined by the “pessimistic” view that the follower’s
reply among these equivalent strategies is worst possible for the leader, since the follower
is indifferent among all of them. The next theorem, which generalizes the preceding
Theorems 3 and 10, states in (8) the lowest possible leader payoffL in terms of this
“max-max-min” computation. The first maximization is over allj such thatX( j) is full-
dimensional, where it in fact suffices to consider one such strategy among all its equivalent
strategies (which defines a maximization over the equivalence classes, not stated in (8) to
save notation). Thenx is maximized overX( j) (which is the same best reply region for all
strategies that are equivalent toj). Finally, the payoffxAk is minimized over all strategies
k that are equivalent toj. Notably, L is still at least as large assomeNash payoff to
player I.

The highest possible leader payoffH in (8) is determined as before in (6). Here,
all strategiesj in N are considered separately, under the “optimistic” view that player II
chooses the replyj that is best for the leader, regardless of whether the strategy has equiv-
alent strategies or whether it defines a best reply region of lower dimension.

Theorem 11 Let F = { j ∈ N | X( j) is full-dimensional}. The set of all leader payoffs is
an interval[L,H], where

L = max
j∈F

max
x∈X( j)

min
k∈N, Bk=B j

xAk , H = max
j∈N

max
x∈X( j)

xAj . (8)

Some Nash payoff to player I is less than or equal toL, and all Nash payoffs to player I
are less than or equal toH.

Proof. For j in N, we use the equivalence class notation[ j ] = {k∈ N | Bk = B j }. Obvi-
ously,[ j ] is a subset ofF wheneverj ∈ F .

First, we show thatL as defined in (8) is indeed a possible leader payoff. The corre-
sponding leadership equilibrium is constructed as follows. Letj ∈ F , x∈X( j) andk∈ [ j ]
be such that the max-max-min in (8) is achieved withxAk = L. The leader commits tox.
The follower responds tox by k, and to any other commitment by choosing a pure best
reply that minimizes the payoff to the leader. Thenx is the optimal commitment. Any best
replyk among the strategies inF is also a best reply when considering all strategies inN,
due to Lemma 7, as argued for Theorem 10. Hence, we obtain a leadership equilibrium
with leader payoffL.

Furthermore,L is the lowest leader payoff, by an argument similar to Lemma 2.
Namely,X( j) is full-dimensional and thus contains an interior pointx′ by Lemma 6(c).
Any convex combinationx(ε) = (1− ε)x+ εx′ for ε ∈ (0,1] is then also in the interior of
X( j), so that the follower’s best reply tox(ε) is anyk ∈ [ j ]. The minimum (over these
k∈ [ j ]) of the leader payoffsx(ε)Ak is a continuous function ofε, and is arbitrarily close
to L asε tends to zero. Hence, the follower must play such that the leader gets at leastL
on the equilibrium path.

Similarly to Theorem 10, it easily seen thatH is the highest leader payoff, and that the
interval [L,H] is the set of possible leader payoffs. Moreover, no Nash payoff to player I
exceedsH.
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In order to prove that the simultaneous game has a Nash equilibrium with payoff at
mostL for player I, we modify the given game in two steps. First, the “full-dimensional-
only” game is constructed similar to the “inducible-only” game in the proof of Theo-
rem 10, whereN is replaced byF , so that player II can only use strategiesj whereX( j)
is full-dimensional. As argued above, any Nash or leadership equilibrium of this game
remains an equilibrium in the original game.

In a second step, we consider the “factored” game where the pure strategies of player
correspond to the equivalence classes[ j ] for j ∈ F . For each such[ j ], player II has a
single payoff columnB j , which is by definition the same for any strategy in[ j ], so we
may call itB[ j ].

The payoff columns to player I in the “factored” game are obtained as certain convex
combinations of the original columnsAk for k ∈ [ j ]. Namely, we consider the “con-
strained matrix game” where player I choosesx in X( j) and player II mixes among the
pure strategiesk in [ j ], with the zero-sum payoff columnsAk to player I. This game has a
value (see Charnes (1953)), given by

L j = max
x∈X( j)

min
k∈[ j ]

xAk .

For completeness, and to clarify the players’ strategy sets in this constrained game, we
prove this by linear programming duality. Clearly,L j is the maximal real numberu such
that xAk ≥ u for all k ∈ [ j ] andx ∈ X( j), where the latter can be written asx ∈ X and
x(B j −Bl ) ≥ 0 for all l ∈ N− [ j ]. As a minimization problem, this says: minimize−u
subject to

xAk−u ≥ 0, k∈ [ j ]

x(B j −Bl )≥ 0, l ∈ N− [ j ]
x1 = 1,

x ≥ 0

(9)

where1 is a column ofm ones. The dual of this LP uses nonnegative variableszk for
k∈ [ j ] andwl for l ∈ N− [ j ] and an unconstrainedt and says: maximizet subject to

∑
k∈[ j ]

Akzk + ∑
l∈N−[ j ]

(B j −Bl )wl +1t ≤ 0,

and, corresponding to the unconstrained variableu in (9),

− ∑
k∈[ j ]

zk =−1.

Consider an optimal solution to this LP. Thent is equal to the optimum of (9), that
is, t = −u = −L j . Furthermore, whenever player II uses the mixed strategy inY with
probabilitieszk for k∈ [ j ], and zero elsewhere, then for anyx∈ X( j) the expected payoff
to player I fulfills (notewl ≥ 0)

∑
k∈[ j ]

xAkzk ≤ ∑
k∈[ j ]

xAkzk + ∑
l∈N−[ j ]

x(B j −Bl )wl ≤−x1t =−t = L j .
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That is, player I indeed cannot get more thanL j for any x ∈ X( j) when player II plays

according the probabilitieszk for k ∈ [ j ]; call themz[ j ]
k since they depend on[ j ]. In the

“factored” game, the payoff columnA[ j ] to player I for strategy[ j ] of player II is given
by

A[ j ] = ∑
k∈[ j ]

Akz
[ j ]
k ,

so that
L j = max

x∈X( j)
min
k∈[ j ]

xAk = max
x∈X( j)

xA[ j ] . (10)

By construction, all payoff columnsB[ j ] for player II in the “factored” game are dif-
ferent. Moreover, all best-reply regions are full-dimensional since we only considered[ j ]
for j ∈ F , and hence all replies are inducible by Lemma 9(c). So Theorem 3 applies, and
in some (indeed, any) Nash equilibrium of the “factored” game, the payoff to player I is
at most equal to the leader payoff, which by (4), (10) and (8) is equal to

max
j∈F

max
x∈X( j)

xA[ j ] = max
j∈F

L j = L .

Finally, any Nash equilibrium(x,y′), say, of the “factored” game translates to a Nash
equilibrium(x,y) of the “full-dimensional-only” game, and hence of the original game, as
follows: Player I playsx as before, and player II choosesk∈ [ j ] for j ∈ F with probability

yk = y′[ j ]z
[ j ]
k . Then player I receives the same expected payoffs as before, so thatx is a best

reply toy, and sinceBk = B[ j ] for k∈ [ j ], anyk∈ F so thatyk > 0 (and hencey′[ j ] > 0)
is a best reply tox, as required. The resulting Nash payoff to player I is at mostL, as
claimed.

Generic gamesdo not need the development following Theorem 3. Games with iden-
tical payoff columns for player II as in Theorem 11 are obviously not generic. Even games
that require the assumptions of Theorem 10 (with non-empty best reply regions that are
not full-dimensional, see Lemmas 4 and 9) are not generic. Namely, a strategy that is
only weakly but not strictly dominated entails a linear equation among the payoffs, which
only holds for a set of measure zero in the space of all games (with independently chosen
payoffs). The same holds for games where a strategy is payoff equivalent to a different
mixed strategy.

4 Correlated equilibria

Games like the familiar “battle of sexes” illustrate the use of commitment as a coordi-
nation device. Coordination can also be achieved by thecorrelatedequilibrium due to
Aumann (1974) which generalizes the Nash equilibrium. In this section, we first show
that the highest leader payoffH as defined in (8) is greater than or equal to the highest
correlated equilibrium payoff to player I. Trivially, the lowest leader payoffL in (8) is at
least as large as some correlated payoff, since it is at least as large as some Nash payoff.
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We consider thecanoncial formof a correlated equilibrium, which is a distribution on
strategy pairs. With the notation of the previous section, this is anm×n matrix z with
nonnegative entrieszi j for i ∈M, j ∈ N that sum to one. They have to fulfill theincentive
constraintsthat for all i,k∈M and all j, l ∈ N,

∑
j∈N

zi j ai j ≥ ∑
j∈N

zi j ak j , ∑
i∈M

zi j bi j ≥ ∑
i∈M

zi j bil . (11)

When a strategy pair(i, j) is drawn with probabilityzi j according to this distribution by
some device ormediator, player I is toldi and player I is toldj. The first constraints in
(11) state that player I, when recommended to playi, has no incentive to switch fromi to k,
given (up to normalization) the conditional probabilitieszi j on the strategiesj of player II.
Analogously, the second inequalities in (11) state that player II, when recommended to
play j, has no incentive to switch tol .

Theorem 12 The largest leader payoffH as defined in(8) is greater than or equal to any
correlated equilibrium payoff to player I.

Proof. Consider a correlated equilibriumz with probabilitieszi j fulfilling (11) above.
Define the marginal probabilities onN by

y j = ∑
i∈M

zi j for j ∈ N, (12)

and letSbe the support of this marginal distribution,S= { j ∈N | y j > 0}. For eachj in S,
let c j be the conditional expected payoff to player I given that player II is recommended
to (and does) playj,

c j = ∑
i∈M

zi j ai j /y j .

Finally, lets in Sbe a strategy so thatcs = maxj∈Sc j .
We claim thatH ≥ cs, and thatcs is at least the payoff to player I in the correlated

equilibriumz, which proves the theorem. Namely, definex in X by xi = zis/ys for i ∈M,
let player I commit tox in the leadership game, and let player II respond tox by playings.
According to the second inequalities in (11),s is indeed a best reply tox since the column
s of z, which has positive probabilityys, is the distribution onM given byx except for
the normalization factor1/ys. For any commitment other thanx, choose any best reply
of the follower. This may not necessarily define a leadership equilibrium since player I
may possibly improve his payoff by a different commitment, so a leadership equilibrium
may require a change of the commitment (as, for example, in Figure 5), or may require
changing the replys to x. At any rate, however, the payoffcs to player I when leader and
follower play as described fulfillscs≤H. Furthermore, the correlated equilibrium payoff
to player I is an average of the conditional payoffsc j for j ∈ S and therefore not larger
than their maximumcs:

∑
j∈N, i∈M

zi j ai j = ∑
j∈S, i∈M

y j zi j ai j /y j = ∑
j∈S

y j c j ≤ cs≤ H,

as claimed.
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Moulin and Vial (1978) define a generalization of correlated equilibria which involves
a commitment by both players. We show that it may give a payoff to player I which is
higher than any leader payoff.

Thesimple extensionof a correlated equilibrium (see Moulin and Vial (1978), p. 203)
is also given by a distributionzon strategy pairs(i, j), which are chosen according to this
commonly known distribution by a mediator. Each player must decide either to be told
the outcome of the lotteryzand tocommithimself or herself to playing the recommended
strategy, or not to be told the outcome and play some mixed strategy. In the latter case,
the player knows only themarginal probabilitiesunderzof the choices of the other player
(for example, player I would know onlyy j in (12)). In equilibrium, the players commit
themselves to playing the mediator’s recommendation, and do not gain by unilaterally
choosing not to be told the recommendation. The respective inequalities are, for allk∈M
andl ∈ N,

∑
i, j

zi j ai j ≥∑
j

(
∑
i

zi j

)
ak j , ∑

i, j
zi j bi j ≥∑

i

(
∑

j
zi j

)
bil . (13)

These inequalities are obviously implied by the incentive constraints (11) of Aumann’s
correlated equilibrium.
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Figure 7. Game with payoff 0 in a “simple extension” of a correlated equilibrium, which
is higher than any leader payoff.

Figure 7 shows a variation of the “paper–scissors–rock” game. This game is sym-
metric between the two players, and does not change under any cyclic permutation of
the three strategies. The players’ strategies beat each other cyclically, inflicting a loss
−2 on the loser which exceeds the gain1 for the winner. The game has a unique mixed
Nash equilibrium where each strategy is played with probability1/3, each player getting
expected payoff−1/3.

For the game in Figure 7, a simple extension of the correlated equilibrium with payoff
(0,0) is a lottery that chooses each of(P, p), (Q,q) and(R, r) with probability1/3, and
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any other pure strategy pair with probability zero. This fulfills (13), but is not a correlated
equilibrium.

For the leadership game for Figure 7, it suffices to consider only one best reply re-
gion, say for the first strategyp of player II. The best reply region forp is the convex
hull of the points (inX, giving the probabilities forP,Q,R), (1/3,1/3,1/3), (3/4,0,1/4),
(0,1/4,3/4), and(0,0,1), with respective payoffs−1/3,−1/2,−5/4, and−2 for player I.
The maximum of these leader payoffs is therefore−1/3, which is the same for any best
reply region because of the symmetry in the three strategies. In this game, leader and Nash
payoff coincide. By Theorem 12, the highest correlated equilibrium payoff is also−1/3,
which is also the lowest correlated equilibrium payoff since it is the maxmin payoff.

In Figure 7, the simple extension of a correlated equilibrium by Moulin and Vial
(1978) gives a payoff which is higher than the leader payoff. This concept involves a
commitment byboth players to a correlated device. Moreover, it does not generalize a
leadership game. The latter has generically a unique payoff to the leader, whereas the
concept by Moulin and Vial has correlated and Nash equilibria of the simultaneous game
as special cases.

5 More than two players

In a game with three or more players, it may no longer be advantageous for a player to
commit to a mixed strategy if he has the opportunity to do so. If the game hask+1players,
any commitment by player I, say, to a mixed strategy induces a game withk players. The
natural definition of the leadership game is then to look for a subgame perfect equilibrium
where for any commitment of player I the remainingk players, called followers, play an
equilibrium of the induced game.

Given any Nash equilibrium of the simultaneous(k+1)-player game, a commitment
by player I to his equilibrium strategy, with the corresponding replies in that equilibrium
played by the other players, should give player I at least the payoff he gets in the simul-
taneous game. From that perspective, the situation does not seem to differ from the two-
player case. Indeed, any Nash payoff to player I is a possible leader payoff in a subgame
perfect equilibrium of the leadership game, by the preceding argument. However, there
may be additional leader payoffs, all of which are strictlyworsefor the leader, compared
to the simultaneous game. That is, the set of payoffs to player I may “move downwards”
when introducing commitment, in direct contrast to the two-player case where it “moves
upwards” according to Theorem 11.

This situation arises in theteam gamesinvestigated by von Stengel and Koller (1997).
These are games ofk+ 1 players where player I plays against the remainingk players
which form a team because they receive identical payoffs, which are the negative of the
payoffs to player I. Here, commitment generally hurts player I since it allows the opposing
team tocoordinatetheir actions, which is not the case in the simultaneous game. In
particular, the team may always reply to a commitment by a profile ofk purestrategies,
which is simply the profile that maximizes their joint payoff. In that case, the leader
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will commit to a mixed strategy which is his maxmin strategy in the zero-sum game
where the otherk strategies are chosen by the team acting as a single opponent, where
a pure reply suffices in the leadership game. The simultaneous game, in contrast, may
require mixed strategies by the team players, who cannot correlate their random choices
and are therefore in general worse off than if they acted as a single player. They may
choose to play a “team-maxmin” profile ofk mixed strategies that maximizes the worst
possible payoff to the team. This profile can be completed to a Nash equilibrium of the
simultaneous game, as shown by von Stengel and Koller (1997).
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Figure 8. Game with player I against the team of player II and III which has leader pay-
offs that are worse than any Nash payoff.

The three-player game in Figure 8 is an example. Player I chooses the left (L) or right
(R) panel, and players II and III form the team and have two strategies each. The Nash
equilibria in this game are as follows. Suppose that player I choosesRwith probabilityx.
Then players II and III each receive expected payoff1+ 3x for the strategy pair(P, p),
and4−3x for (Q,q), and zero otherwise. Any Nash equilibrium of the three-player game
induces a Nash equilibrium in this2× 2 coordination game, which is either(P, p), or
(Q,q), or the mixture whereP and p are each played with probability(4−3x)/5, with
resulting team payoff(4−3x)(1+ 3x)/5. Since player I wants to minimize that payoff,
his best reply to(P, p) is L and to(Q,q) is R, with team payoff1 in both cases. When
player I choosesL (wherex = 0) and players II and III mix by playingP andp each with
probability4/5, against whichL is a best reply, the team does even worse, getting4/5;
the same applies for the mixed reply againstR. For0 < x < 1, the mixed reply of II and
III gives an equilibrium only if the resulting payoff cannot be improved by player I by
choosingL or R. It is easy to see that ifP and p have larger (smaller) probability than
Q andq, thenL (R) is a best reply. Hence, the only remaining equilibrium is where each
player chooses each strategy with probability1/2. This is the mentioned “team-maxmin”
equilibrium with payoff5/4 for the team, and payoff−5/4 for player I.

In the leadership game, any commitment to playingR with probabilityx induces the
above game for the team which has three equilibria. Players II and III may coordinate
to play their favorable pure equilibrium, namely(Q,q) with team payoff4−3x for x ∈
[0,1/2] and(P, p) with team payoff1+3x for x∈ (1/2,1], say. The optimal commitment
is thenx = 1/2. This defines a subgame perfect equilibrium with leader payoff−5/2,
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which is much worse for player I than in any Nash equilibrium. On the other hand, the
leader gets his best payoff when the team players play their mixed equilibrium, and the
leader commits to eitherL or R. This is already a Nash payoff, and not improved for
the leader by commitment. So commitment worsens the set of payoffs for player I, as
claimed.

The game in Figure 8 is of course non-generic. However, the same arguments apply
for any other generic game with payoffs nearby.

Can Theorem 12 on correlated equilibria be extended to games withk+ 1 players,
for k≥ 2? In that case, a natural extension of the leadership game would be to consider
correlated equilibria of the game withk players that results from each commitment to a
mixed strategy. The resulting “subgame perfect correlated equilibria” are then compared
with the correlated equilibria of the original simultaneous game.

In this context, Figure 8 does, at first sight, not seem to give a counterexample since
the worst leader payoff−5/2 is also a possible correlated equilibrium payoff to player I.
(Players II and III correlate by playing(P, p) and(Q,q) each with probability1/2, and
player I mixes independently betweenL andR.) However, if player II (or III) is made a
leader, she can no longer get payoff5/2, since by her commitment to a mixed strategy,
player II loses the ability to correlate with player III. Any commitment by player II in-
duces a two-person zero-sum game between players I and III, and the resulting value is
maximal for the leader if the players play as in the team-maxmin equilibrium, choosing
each pure strategy with probability1/2. So Figure 8 shows indeed that, compared to
correlated equilibria in the simultaneous game, a player maystrictly loseby becoming
a leader who unilaterally commits to a mixed strategy, if the game has more than two
players.

6 Leadership equilibria and Stackelberg problems

In this section, we connect our concept with the closely related notion of “Stackelberg
solutions” in the literature ondynamic gamesand optimization theory, as in Başar and
Olsder (1982). There the payoffs to the players are usually declared as costs which are
minimized, but we keep our view of payoff maximization.

Consider a finite game withk+1 players, where the mixed strategy set of the leader is
X and the mixed strategy sets of thek followers areY1, . . . ,Yk, and letY = Y1×·· ·×Yk.
Everyx in X, representing a commitment by the leader, induces ak-player game where
we assume that thek followers play an element of the setN(x) of Nash equilibria of that
game, which is a subset ofY. If there is only one follower (k = 1), thenN(x) is simply the
set of best replies tox. Forx in X andy in Y, the payoff to the leader is denoted bya(x,y).

Başar and Olsder (1982, p. 136, p. 141) define theStackelbergpayoff to the leader as

S= sup
x∈X

min
y∈N(x)

a(x,y) . (14)

This equation describes the “pessimistic” view that among all the possible equilibria (or
best replies if there is only one follower) inN(x), the followers choose that which is
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worst for the leader. The set of Nash equilibriaN(x) is compact, so that it is indeed
possible to take the minimum in (14) rather than the infimum. However,miny∈N(x) a(x,y)
is a discontinuous function ofx, as for example the inspection game in Figure 2 and its
analysis demonstrates. (Başar and Olsder (1982, p. 137) give a similar example.) In the
game in Figure 2, the follower is indifferent when the leader choosesB with probability
1/10. According to (14), the follower should then choose the replyr that is bad for the
leader, so the supremum in (14) is not obtained as a maximum.

The discontinuity is usually seen as a problem in the optimization theory literature
and addressed by various “regularization” approaches that justify taking a solution that
approximatesS (see Mallozzi and Morgan (2002) or Morgan and Patrone (2005) and
references therein).

The theorem of this section states that the Stackelberg payoffS in (14) in the case of
one follower is identical to the lowest leader payoffL in (8), and perhaps more concisely
expressed by (14). The main difference is that in general, (14) doesnot describe the
follower’s behavior in the leadership equilibrium, where the follower usually chooses a
reply that is favorable for the leader. Furthermore,S is the lowest possible equilibrium
payoff to the leader for any number of followers.

Theorem 13 Consider the mixed extension of a finite game withk+1 players. Then the
corresponding leadership game with one leader andk followers has a subgame perfect
equilibrium(x,y) with y∈ N(x) so thata(x,y) = Sin (14). Any other leader payoff is at
leastS.

Proof. The difficulty is that typicallya(x,y) 6= miny∈N(x) a(x,y) sinceN(x) is usually not
a singleton.

For anyx, the set of equilibriaN(x) is the set of fixed points of a suitable continuous
mappingTx : Y→Y, for example the mappingT defined by Nash (1951, p. 288). Further-
more, this mapping is continuous inx as well. Let the continuous functionF on X×Y
be defined byF(x,y) = Tx(y)− y (with values in a Euclidean space extendingY). Then
N(x) = {y | F(x,y) = 0} and the correspondence

[

x∈X

(
{x}×N(x)

)
= F−1(0)

is also closed and therefore a compact set, as a subset of the compact setX×Y.
Consider a sequence(xn,yn) for n = 1,2, . . . so that for alln,

a(xn,yn) = min
y∈N(xn)

a(xn,y)

and so thata(xn,yn) converges toS in (14). This sequence belongs toF−1(0) and has a
convergent subsequence with limit(x,y) in F−1(0). Sincea is continuous,a(x,y) = Sas
required.

This shows that the claimed leadership equilibrium exists. If(x∗,y∗) was another
leadership equilibrium so thata(x∗,y∗) ≤ S− ε for someε > 0, then for somen in the
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above sequence we would havea(xn,yn) > a(x∗,y∗) and the leader could deviate fromx∗
to xn and thereby get a higher payoff, contradicting the equilibrium property. Hence,S is
the smallest possible leadership payoff.

7 Follower payoff

In the leadership game, the leader’s payoff is never worse than his Nash payoff in the
simultaneous game. The follower may do worse or better, and even profit more from
leadership than the leader himself. We show this for the mixed extension of a3×3 game.
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Figure 9. Symmetric game with leader payoff5/2 and follower payoff3−d/2, compared
to the unique Nash payoff pair(2,2).

Figure 9 shows a symmetric game, where the payoffs for each player’s first strategy
depend on a real parameterd. The game has a unique Nash equilibrium(B, r), obtained
by iteratively eliminating first the strictly dominated strategiesT andl and thenM andc.
The Nash payoff pair is(2,2). In the leadership game, the follower’s strategyl is strictly
dominated, andc is a best reply whenever(2−d)x1 + 4x2 ≥ (1−d)x1 + 5x2 + 2x3, that
is, x1≥ x2+2x3, for the probabilities(x1,x2,x3) for (T,M,B). Thus, the best reply region
for c is the convex hull of the extreme points(1,0,0), (2/3,0,1/3), and (1/2,1/2,0)
with corresponding payoffs1, 7/3, and5/2 to player I. Of these,5/2 is the maximum,
and larger than any payoff whenr is a best reply. The leader payoff is therefore5/2,
corresponding to the commitment to(1/2,1/2,0) with best replyc. The payoff to the
follower is3−d/2.

For d = 0, the follower receives3 in the leadership game, and therefore profits more
from the commitment power of the leader than the leader himself. Ford = 1, both leader
and follower receive the same payoff5/2 in the leadership game. Ford = 2, the follower
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gets2 in the leadership game, which is the same as her Nash payoff. Finally, ford > 2,
the follower gets less in the leadership game than what she would get in the simultaneous
game.

Interestingly, many types of duopoly games, like quantity or price competition, have
the property that when the follower’s payoff is not worse than her Nash payoff, it is already
better than the payoff she would get when she was a leader. This is not the case in the
game in Figure 9, but relies on strategy sets that are intervals, and certain monotonicity
conditions of the players’ payoffs, as in Hamilton and Slutsky (1990). Since it would lead
too far afield, this result is the topic of a separate paper (von Stengel (2003)).

8 Open questions

As a possible theme for further work, one may consider more general games than mixed
extensions of finite games that are known to have Nash equilibria. A general class is given
by games fulfilling the concept of “better reply security” by Reny (1999). An example,
due to Dufwenberg and Stegeman (2002), is that player I choosesx, player II choosesy,
each from[0,1], and they get the payoff pair(x,y), except whenx = 1 andy < 1, where
the payoffs are(0,y), and whenx < 1 andy = 1, where the payoffs are(x,0). The unique
Nash equilibrium is(1,1) with payoffs(1,1). Here, the strategy pair(0.99,0.99) is much
safer and therefore more reasonable, even though it is not a Nash equilibrium, but it is
strictly dominated by(0.999,0.999), and so on. The resulting leadership game has also
payoffs(1,1), but a subgame perfect equilibrium does not exist because best replies do not
existoff the equilibrium path: There is no best replyy against a commitment ofx = 0.99,
for example, since the resulting payoff to the follower as a function ofy is discontinuous
and has no maximum. This does not look like a reasonable objection to analyzing the
leadership game. However, we do not analyze this topic further.

Another possible research may relate leadership equilibria to “nonoptimizing” agents,
whose behavior represents a form of commitment, in evolutionary games, as studied by
Banerjee and Weibull (1995).
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