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Abstract

A basic model of commitment is to convert a game in strategic form to a “leader-
ship game” with the same payoffs, where one player commits to a strategy to which
the second player chooses a best reply. This paper studies such leadership games for
the mixed extension of a finite game, where the leader commits to a mixed strategy.
The set of leader payoffs is an interval (for generic games a singleton), which is at
least as good as the set of that player’s Nash and correlated equilibrium payoffs in the
simultaneous game. This no longer holds for leadership games with three or more
players.
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1 Introduction

The possible advantage admmitment powes a game-theoretic result known to the gen-
eral public, ever since its popularization by Schelling (1960). Cournot’s (1838) duopoly
model of quantity competition was modified by von Stackelberg (1934), who demon-
strated that a firm with the power to commit to a quantity of production profits from this
leadershipposition. In modern parlance, Cournot found a Nash equilibrium in a game
where firms choose their quantitisgnultaneouslyTheleadership gamef von Stackel-

berg uses the same payoff functions, but where one firmiettteer, moves first, assuming

a best reply of the second-moving firm, fielower. The “Stackelberg solution” is then a
subgame perfeaquilibrium of this sequential game. The leader-follower issue has been
studied in depth in oligopoly theory; see Friedman (1977), Hamilton and Slutsky (1990),
Shapiro (1989), or Amir and Grilo (1999) for discussions and references.

This paper studies the leadership game forriieed extensionf a finite strategic-
form game, one of the most basic models of nhoncooperative game theory. We provide
a complete analysis of two-player games, including nongeneric cases, showing that the
possibility to commit never hurts a player. Further results, explained later in this intro-
duction, compare leadership and correlated equilibria, concern games with more than two
players, and study the possible follower payoffs.

Our basic setting is to compare the simultaneous version of a two-player game with
the corresponding leadership game. In the simultaneous game, both players choose their
actions independently and simultaneously, possibly by randomizing with a mixed strategy,
which is in general necessary for the existence of a Nash equilibrium. In the leadership
game, the leader, player I, say, commits to a mixed strategye follower, player I, is
fully informed aboutx, and chooses her own action, possibly by randomization, with a
pure or mixed strategy(x). The pair of pure actions, and corresponding payoffs, is then
chosen independently accordingt@andy(x) as in the original game. We only consider
subgame perfect equilibria of the leadership game where the follower chooses only best
repliesy(x) against any, even off the equilibrium path. The set of equilibria that are
not subgame perfect seems too large to allow any interesting conclusions. The payoff to
the leader in a subgame perfect equilibrium of the leadership game will be t=dider
payoff, his payoff in the simultaneous garash payoff

The main result comparing leadership and simultaneous game states that the leader
payoff is not worse than the Nash payoff, so commitment power is beneficial. When
best replies ar@nique this is a near-trivial result (and has been observed earlier, e.g.,
by Simaan and Cruz (1973) or Basar and Olsder (1982, p. 126)): The leader can always
commit to his Nash strategy and thus receive at least the payoff in the Nash equilibrium.
If there are several Nash equilibria, the leader can choose the equilibrium with the largest
payoff to him. The leader may even do better with a different commitment.

Best replies are typically not unique, however, in Nash equilibria with mixed strate-
gies. If the follower’s best reply is a properly mixed strategy, she may choose any of her
pure best replies, which may be to the disadvantage of the leader. In a zero-sum game,
von Neumann’'s minimax theorem asserts that the leader is not harmed by committing to



his mixed strategy. This is a possible motivation for using mixed strategies in a zero-sum
game, apart from existence of an equilibrium. Von Neumann and Morgenstern (1947)
explicitly define the leadership game of a zero-sum game, first with commitment to pure
(p. 100) and then to mixed strategies (p. 149), as a way of introducing the maxmin and
minmax value of the game; they consider the leader to be a priori at an obvious disad-
vantage. A commitment to pure strategies only may of course harm the leader, as in
“matching pennies”, or any other, even non-zero-sum game with payoffs nearby.

Commitment to mixed strategies are also considered by Rosenthal (1991), who de-
fines “commitment robust” Nash equilibria that remain equilibria in the leadership game.
Landsberger and Monderer (1994) also treat commitment to mixed strategies, as discussed
in the context of Figure 3 below. Compared to pure strategies, a commitment to mixed
strategies is obviously harder to verify. Bagwell (1995) considers games with commit-
ment to pure strategies only, but where the pure strategy is imperfectly observed by the
follower. He notes that then the commitment effect vanishes since the leader would al-
ways renege on the commitment, given that the follower attributes the differently observed
strategy to an erroneous observation. Van Damme and Hurkens (1997) note that the lead-
ership advantage can be re-instated by considarnngd equilibria, still in the game
where the leader can only commit to a pure strategy. Reny and Robson (2002) consider
commitment to mixed strategies as a possible “classical” view of mixed strategies, as done
by von Neumann and Morgenstern.

Even when best replies are not unique, ¢éiestenceof a leader payoff that is at least
as good as any Nash payoff is again obvious. Namely, the follower may simply respond
as in a Nash equilibrium, or, even better, to the leader’s advantage when she is indifferent.
In the context of inspection games, Maschler (19663tulatesthe latter behavior of
the follower, calling it “pareto-optimal”. This postulate is unnecessary, as observed by
Avenhaus, Okada and Zamir (1991), since on the equilibrium path the follower must
choose her best reply that is most favorable to leader, in order to obtain a subgame perfect
equilibrium of the leadership game. This is argued in detail for Figure 2 below. Section 2
gives a number examples that illustrate this and other aspects of leadership games.

In generic two-player games, the leader payoff is unique and at least as large as any
Nash payoff, as stated in Theorem 3 below. This is due to the fact that the follower’s
best replies aranique almost everywhenelative to the set of all mixed strategies of the
leader. A favorable reply of the follower can thusibducedif necessary.

For nongeneric games, it cannot be true that all leader payoffs are at least as good as
all Nash payoffs. The simplest example has one pure strategy for the leader and two best
replies by the follower, with different payoffs to the leader. Either best reply defines a
Nash equilibrium, commitment does not change the game, and one leader payoff is worse
than the other Nash payoff. The obvious fair comparison should involveetioé payoffs
to the leader. Indeed, we will prove that every leader payoff is at least as |asyares
Nash payoff.

More precisely, our first main result (Theorem 11 below) states: All subgame perfect
equilibrium payoffs to the leader (player 1) in the leadership game belong to an interval
[L,H]. The highest possible leader paysffis at least as high as any Nash equilibrium



payoff to player | in the simultaneous game. The lowest possible leader gayofit

least as high as the lowest Nash equilibrium payoff. In other words, the set of equilibrium
payoffs “moves upwards” for the leader (or stays unchanged, as in a zero-sum game). If
no pure strategy of the follower is weakly dominated by or payoff equivalent to a different
(possibly mixed) strategy, then the leader’s payoff is unidque {). In particular, this is

the case in a generic game. The mathematics for Theorem 11 are developed in Section 3.
The three Theorems 3, 10, and 11 are of increasing generality, but are stated separately
since they build on each other.

Section 4 shows that the highest (for a generic game, unique) leader plagatt least
as high as angorrelated equilibrium payofbf the simultaneous game. This is interesting
because commitment can serve as a coordination device, which is a possible motive for
considering correlated equilibria. (As shown before, the lowest leader phyisffat
least as large as some Nash equilibrium payoff, and hence as some correlated equilibrium
payoff.) We also show that the largest payoff to player | in the “simple extension” of a
correlated equilibrium due to Moulin and Vial (1978) may possihdt be obtained as
a leader payoff. The Moulin—Vial coordination device requires a commitmeiolly
players.

In Section 5, we show that commitment to mixed strategies may no longer be advan-
tageous in games with more than two players. The games considered have one leader and
k followers, who play an equilibrium among themselves in the subgame induced by the
commitment of the leader. In games ofemmof several players, with identical payoffs,
who play a zero-sum game against an adversary (as studied by von Stengel and Koller
(1997)), the adversary will never profit when made a leader. On the contrary, the set
of subgame perfect equilibrium payoffs in the leadership game will “move downwards”
compared to the simultaneous game. The reason is that the commitment helps the team
of followers to coordinate their actions, to their advantage. This result holds also for a set
of positive measure of generic games nearby.

Section 6 compares our approach to leadership equilibria with the related “Stackel-
berg” concept in dynamic games (see Baser and Olsder (1982), Mallozzi and Morgan
(2002), Morgan and Patrone (2004), and references therein). In that literature, leadership
IS seen as an optimization problem. A typical “pessimistic” assumption is that if there is
more than one best reply of a follower, or more than one induced equilibrium akfolRg
lowers, the chosen reply is theorstone for the leader. The resulting payoff to the leader
as a function of his commitment is typically discontinuous. We show in Theorem 13 that
the resulting limit payoff is obtained in a subgame perfect equilibrium of the leadership
game. The only difference to the view of optimization theory is that the followers do not
(and cannot) act according to the described “pessimistic” view in the equilibrium itself.

If the pessimistic view is adopted, the leader should choose a nearby, slightly suboptimal,
commitment.

Leadership is advantageous when compared to the simultaneous game, but not neces-
sarily compared to the follower’s situation. Section 7 addresses the payoff to the follower
in leadership equilibria. We give an example of a symmeric3 game where the leader
payoff is better than the Nash payoff, but where the follower payoff may take any value,



depending on a parameter of the game which leaves the best replies of the follower, and
the optimal commitment, unchanged. In a separate paper (von Stengel (2003)), it is shown
that in a symmetric duopoly game, as considered, for example, by Hamilton and Slutsky
(1990), the follower is either worse off than in the simultaneous game, or even better off
than the leader.

Section 8 concludes with possible topics for further research.

2 Examples

The well-knownultimatum gamas a sequential game where player | first offers a split
of a unit “pie” into the nonnegative amountsand1 — x for player | and Il, respectively,
which player Il then can accept, whereupon the players receive the payoftsl — x, or
reject, in which case both players receive zero.

T
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Figure 1. Ultimatum game with the leader’s demand as probabiliB; of

The ultimatum game can be cast as the leadership game of the game in Figure 1, with
player | as the leader (as throughout the paper), whose own denistite probability of
playing the bottom stratedy. The left column means “accept” andmeans “reject”.

If x can be chosen continuously from the interj@ll], the unique subgame perfect
equilibrium is a textbook example in bargaining (e.g., Binmore (1992, p. 199)): Player Il
acceptsany split, even when she receives nothirfdg;- x = 0, where she is indifferent
between accepting and rejecting, and player | demands the whole unit for hixself,
on the equilibrium path. The reason is that by subgame perfection, the best reply of
player Il is to acceptlj wheneveix < 1. Then offering an amountless than one, which
Is is player I's payoff, can never be an equilibrium choice since it could be improved to
X+ € with 0 < € < 1—x. Hence in a subgame perfect equilibrium, player | demands
everything k= 1), and player Il is indifferent. If, in reply ta = 1, player Il rejects with
positive probabilityy > 0O, then player | would receivé—y and could improve his payoff
by changing his demand tb—y/2, say, which is not an equilibrium choice as argued
before. So a subgame perfect equilibrium is given only if player Il accepts with certainty,
despite being indifferent on the equilibrium path. The same reasoning applies also to the
subgame perfect equilibrium of the multiple-round bargaining game due to Rubinstein
(1982).



In the simultaneous game shown in Figure 1, player | choBsasany Nash equilib-
rium (a positive probability fol would entail the unique best repghand, in turnB), and
player 1l can mixl andr with arbitrary probabilityy, say, forr. The resulting payoffs are
1—yfor player I, which is any number if®, 1], and O for player Il. The leader payoff 1
(that is, the payoff to player I in the subgame perfect equilibrium of the leadership game)
Is at least as good as any Nash payoff to player | (in the simultaneous game).

The effect of leadership is also familiar in the contexinspection gamesee Masch-
ler (1966), Avenhaus and Canty (1996), Avenhaus, Okada, and Zamir (1991)nyV
(2002), and the survey by Avenhaus, von Stengel, and Zamir (2002)).

T
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Figure 2. Inspection game.

Figure 2 shows a simple example of an inspection game where the inspector, player I,
can choose not to inspect) or to inspect B), and the inspectee, player Il, can either
comply with a legal obligationl} or cheat ). The reference strategy pdif,|) defines
the pair of payoffs(0,0) for players I, I, which is the most desirable outcome for the
inspector. In all other cases, negative payoffs to the inspector reflect his preference for
compliance throughout, rather than catching an inspectee who cheats. An inspection is
costly for the inspector, with payoffs-1,0) for (B,l). The inspectee gains from cheat-
ing without inspection, with payoffé—10,1) for (T,r), but loses when inspected, with
payoffs(—6,—9).

The unique Nash equilibrium of the simultaneous game in Figure 2 is in mixed strate-
gies, where player | chooses to inspeBj (ith probability 1/10 and player Il cheats
(choosing) with probability1/5. The resulting payoff pair i—2,0).

The leadership game for Figure 2 has a unique best reply by player Il when the proba-
bility x for inspection is not equal tb/10: cheat forx < 1/10, and comply forx > 1/10.

Since the inspector prefers the inspectee to coniplin(any case, he will commit to a
probabilityx with x > 1/10. Since the resulting payoffx to player | is decreasing ix a
subgame perfect equilibrium requires a commitment to the smallest probabiity/ 10

for B where player Il still responds with Then the follower is indifferent, but chooses
the reply with the most favorable payoff to the leader, namely compliance. The reason is
the same as before: Any positive probability fowould reduce the payoff1/10to the
leader, which he could improve upon by committingcte: 1/10+ € and thusnducethe
follower to comply. As mentioned in the introduction, Maschler (1966) assumes that the



inspectee complies when indifferent. Avenhaus, Okada, and Zamir (1991) note that this
Is the only subgame perfect equilibrium. For a more detailed discussion see Avenhaus,
von Stengel, and Zamir (2002, Section 5).

The resulting leader payoff1/10in the leadership game for Figure 2 is much better
for player | than his Nash payo# 2 in the simultaneous game. In the game of Figure 2,
the leader commits to the same mixed strategy as in the unique Nash equilibrium of the
simultaneous game (this holds for a2y 2 game with a unique completely mixed equi-
librium, but is not true for larger games). The follower is indifferent, but chooses the
favorable action (herB for the leader in the leadership game.

Inspection games model a scenario where the inspector is a natural leader. An inspec-
tion policy can be made credible, whereas the inspectee cannot reasonably commit to a
strategy that involves cheating. We do not try to “endogenize” leadership (as, for exam-
ple, Hamilton and Slutsky (1990)), but assume that one of the players has commitment
power, and study its effect.

5 5

Figure 3. Game with a weakly dominated strategy of player II.

For the game in Figure 3, Landsberger and Monderer (1994) have argued that player I,
when offered a choice to commit or not to commit (possibly to a mixed strategy), would
choose not to commit, assuming the iterated elimination of weakly dominated strategies
as a solution concept. In contrast, we shall argue that the followers’ preference for using
only the undominated strategy can be enhanced, rather than weakened, with commitment.

The Nash equilibria of the game in Figure 3 are given by player | chodsingh cer-
tainty, and player Il mixing betwedrandr, choosing with some probability if0,4/9].

The resulting Nash payoffs are any numbef5r9] for player |, and for player II.

In the leadership game corresponding to Figure 3, player | commits &nd, by the
usual reasoning, player Il always responds byith resulting payoff® for both players.

This is arguably better for player | than the simultaneous game. The relationship of Nash
to leader payoffs in this game is similar to Figure 1. If the leader has any doubt about the
reply of| to his commitment since the follower is indifferent, the leader can commit to
playing B with a small probabilitye in order to induce as a unique best reply.

The game in Figure 4 is an interesting variation of Figure 3. Again, player Il has
a weakly dominating strategy, in this caseather than. The Nash equilibria of the
simultaneous game a(&,r) with payoff pair(5,7), or T and a mixture of andr with
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Figure 4. Game with two possible commitments in the leadership garaedB.

probability at mos#/9 for r as in Figure 3, with payoffs ifb,9] for player | and9 for
player II.

In the leadership game for Figure 4, the subgame perfect equilibria depend on the
reply by the follower against a commitment by the leader to dlayith certainty; to
any other commitment, the follower responds by playin{j the follower responds t@,
where she is indifferent, with probability at masto for r, then the leader gets a payoff in
[5,9] and the commitment t® is optimal. However, the leader canioaducethe follower
to playl, which is preferred by the leader, as in the previous games, since any variation
from this commitment will induce the reply Instead, the follower may indeed respond
to T by choosing with probability4/9 or higher. In that case, the leader maximizes his
payoff by committing tdB, with resulting payoff paif5, 7). If the follower responds td
by choosing with probability exactly4/9, bothT andB are optimal commitments.

In the game of Figure 4, the sets of Nash and leadership payoffs coincide, for both
players. The set of leader payoffs is an intefga8|, where any payoff greater th&to
the leader depends on the “goodwill” of the follower since her reply to the commitment
to T cannot be induced by changing the commitment slightly. The smallest leader payoff
cannot be induced by a commitmentToor a slight variation of this commitment, but
requires a different commitment to the “remote” strat&yThis smallest leader payoff
is found by ignoring pure replies of the follower that are weakly dominated. This is also
done in the general proof of Theorem 10 below.

T
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Figure 5. Commitment to a strictly dominated stratdglgy the leader.



Player Il will never play a strictly dominated pure strategy, neither in the simultaneous
game, nor in a subgame perfect equilibrium when she is the follower in a leadership
game, so we can disregard such a strategy. In contrast, player | may commit to a strictly
dominated strategy in the leadership game if it induces a reply that is favorable for him, as
demonstrated by the game in Figure 5, sometimes called the “quality gameT witdB
representing a good or bad service, alaadr the choices of a customer of buying or not
buying the service. The simultaneous game has the unique Nash equililBjujwith
payoffs (1,1). In the leadership game, even committing only to a pure strategy would
give the subgame perfect equilibrium with commitmentltand replyl, and payoffs
(2,2). The optimal commitment to a mixed strategy is to the mixturd afnd B with
probability 1/2 each, where the follower is indifferent, but responds by chookifog
the usual reason that otherwise this reply can be induced by committing t@ plagh
probabilityl/2+ €. The resulting payoff pair i§5/2,1).

| Cc r
1 1 0
T
0 0 0
0 0 1
M
0 8 0
0 0 1
B
8 0 1

Figure 6. Game with “equivalent” repli¢sandr for the follower.

The example in Figure 6 illustrates a point that may arise with general nongeneric
games. Here, the pure strategleand c have identical payoffs for player II, so that
player | can never induce player Il to play one strategy or the other. The simultaneous
game has the unique Nash equilibriiBir) with payoffs(1,1), obtained, for example,
by iterated elimination of strictly dominated strategies, flrsthenl andr, thenM.

In the leadership game for Figure 6, player | as leader can induce player Il td play
or ¢ by committing to playT with probability at leas/2. Against the commitment to the
mixed strategy(1/2,1/2,0) for (T,M,B), for example, the follower is indifferent among
all her strategies. In particular, she may respond by plagimgving the leader the good
expected payofft, so this is a possible payoff to the leader in the leadership game (in
fact, the maximum possible). However, she may also respond by playing, with a
much smaller payoff which the leader cannot change to a payoffAieaa commitment
nearby.

In this game, the set of leader payoffs is again an interval, naf@edy. The lowest
possible leader payof is not even found at an extreme point of a “best reply region”



for either pure replyl, c or r (these best reply regions are crucial for the analysis of
the leadership game, see Section 3). Rather, it results from a commitment to the mixed
strategy(1/2,1/4,1/4), where the follower is again indifferent between all replies. For
| andc, the resulting expected payoff to the leadeRjsand this is in fact a subgame
perfect equilibrium payoff if player Irandomizeswith probability 1/2 for both| and
¢ (which she can always do wheneVesndc are best replies, since these strategies are
equivalent in the sense of having identical payoffs for her). Player | could also respond to
(1/2,1/4,1/4) with r, with payoff 1/4 to the leader, but this would not be part of a sub-
game perfect equilibrium since player | could indlia# c as a best reply by committing
to (1/2+2¢,1/4—¢€,1/4—¢), say.

Equivalent pure strategies likeandc in Figure 6 require the consideration ofero-
sum gamein terms of the payoffs of player I, played on the region of mixed strategies
of player | where these equivalent strategies of player Il are best replies; for details see
Theorem 11 and its proof.

3 Leadership games

We consider a bimatrix game with x n matricesA andB of payoffs to player | and II,
respectively. The set of pure strategies of player | (matrix rows) is denotétldryd the
set of pure strategies of player Il (columns) iy

M={1,....m} N=1{1,...,n}.

The sets of mixed strategies of the two players are caleddY. For mixed strategies
andy, we want to write expected payoffs as matrix produe&tgandxBy, so thatx should
be a row vector angl a column vector. That is,

X={(Xt,..,Xm) | VIi€eM x >0, xi=1}

i€
and
IE

As elements oK, the pure strategies of player | are the unit vectors, which we denote by
g fori e M, that is,g € X and

e =(1,0,...,0), &=(0,10,...,0), ..., en=(0,...,0,1). (1)

The simultaneous gamis played with player | choosingin X, player Il choosing/
inY, and player | and Il receiving payofiddy andxByY, respectively. ANash equilibrium
always means an equilibrium of the simultaneous gamiash payoff(to any player) is
the payoff in any Nash equilibrium.

The leadership gamas played with strategy seX for player |, called thdeader,
and any functionf: X — Y as a strategy of player Il, called ttiellower, whereupon
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the players receive payoffeA f(x) andxBf(x), respectively. The interpretation of the
leadership game is that the leader commits to the strateglyout which the follower is
fully informed, and can choosBx) in Y separately for eack A leadership equilibrium
is anysubgame perfeaquilibrium (x, f) of the leadership game, that is(x) is a best
reply to anyx’ in X, even ifx is not the strategy that the leader commits to. kader
payoff is the payoff to the leader in any leadership equilibriunfpllower payoffthe
payoff to the follower in any leadership equilibrium.

For any pure strategyof player II, both payoffs to player | and to player Il depending
onx € X will be of interest. We denote the columns of the makiRy Aj and those oB
by Bj,

A=A Ay, B=[B1--Bnl.
An inequality between two vectors, like, for examBg,< By for somej € N andy € Y
(which states that the pure strategys strictly dominated by the mixed strategy, is
understood to hold in each component.

For j in N, thebest reply regiorX(j) is the set of thosg in X where| is a best reply

to x:
X(j)={xeX|Vvke N xBj > xBy}.

Any best reply regioiX( j) is a closed convex polytope, and
X=JX() 2)
jeN

since anyx in X has at least one best regly N.

The main power of commitment in a leadership game is that the leadé@ndacethe
follower to play certain pure strategies, by our assumption that the follower uses only best
replies.

Definition 1 A strategyj in N is calledinducibleif j is the unique best reply to some
in X.

Let a; denote the maximal payoff that player | can get when choasingm X(j):
aj = max{xA;j | xe X(j) }. (3)
If jis inducible, then the leader can get at least pagpih any leadership equilibrium:
Lemma 2 If j is inducible, then any leader payoff is at leagtas defined ir(3).

Proof. Consider a leadership equilibrium. Assume that the maxirapim (3) is taken
atxin X(j), that is,a; = xA;. Furthermore, lek’ € X(j) be a strategy whergis the
unique best reply of player Il, so thatB; > X'By for all kin N, k# j. Furthermore,
XBj > xBy for all kin N. Thenj is also the unique best reply to the convex combination
X(€) = (1—¢)x+¢€X, for anye € (0,1], sinceX(j) is convex and payoffs are linear. By
subgame perfection, the follower’s replyx(e) is j. The payoff to player | when playing

11



X(€) is then(1—€)xA; +ex'Aj, which is arbitrarily close t@; by choosing sufficiently
small. So if player II's reply on the equilibrium path (that is, to the actual commitment of
player | in equilibrium) gave player | a payoff less thay then player | could switch to
x(€) (with smalle) and thereby get a higher payoff, contradicting the equilibrium property.
So the payoff to player I in the leadership equilibrium is at leqsts claimed. O

If every strategy] of player Il is inducible, then the preceding lemma gives an easy
way to find a leadership equilibrium: Choogén N such thala; is maximal, and let the
leader commit tox in X(j) wherea; in (3) is attained, that isxA; is maximal. Then
the follower responds so that player | receives indeed pagAff This is stated in the
following theorem, which also asserts that the resulting leader payoff is at least as good
as any Nash payoff to player I. The preceding proof of Lemma 2 explains this advantage
of the leader, the player with “commitment power”. Namely, arsuch thaxA; = a; is
typically an extreme point oX( j), asx maximizes a linear function on the polytol¢j),
and sox typically belongs to several best reply regiof&). In that case, the follower is
indifferent between several best replies, but nevertheless chooses thg tleatys best
for the leader, since otherwise the leader would induce this desired reply of the follower
by changingx slightly to x(¢) where j is the unique reply, as argued repeatedly in the
examples in Section 2. The following theorem has already been observed®lingVv
(2002).

Theorem 3 Suppose that everyin N is inducible. Then the leader payoff is uniquely
given byl = maxjen @, that is,

L = max max xA;. 4)
jeN xeX(j)

Furthermore, no Nash payoff to player | exceéds

Proof. Player | cannot obtain a higher payoff thann a leadership equilibrium since
player Il always chooses best replies. On the other hand, player | will ggtchoosing
X so that the maximum in (4) is attained, according to Lemma 2.

Let (x,y) in X x Y be a Nash equilibrium of the simultaneous game. Then any pure
strategy played with positive probability yjnmust be a best reply tg, that is,y; > 0
impliesx € X(j). Hence we have for the Nash payoff to player |

(XA))Yj = Nz (XA))yj < ajyj <maxaj = L.
jgw jeNTy;>0 JEZV IeN O

The remainder of this section concerns the case that player Il has strajdabigts
are not inducible. A strategy is not inducible if it is payoff equivalent to or weakly
dominated by a (different) pure or mixed stratggy Y so thatBj < By. Then whenever
j is a best reply to some in X, so isy and hence all the pure strategies chosery by
with positive probability. (We can assume tlyadoes not choosg, that is,yj = 0, since
otherwise we can omij from the mixture and play the other pure strategiey imith
proportionally higher probabilities.) The following lemma shows that this is the only case
wherej is not inducible.

12



Lemma 4 A strategyj is not inducible if and only iBj < Byfor someyinY withy; = 0.

Proof. If j is payoff equivalent to or weakly dominated by the stratg@gs stated, then
y is a best reply wheneveris, so j is certainly never a unique best reply. To prove
the converse, suppose that for ye Y with y; = 0 we haveB; < By. We find anx in
X to which j is the unique best reply, using linear programming duality. Consider the
following linear program (LP): maximize with variablesu andyy > 0 for ke N, k # j,
so that

— BiYk + 1u < —B;

keN, k#j
Yk =1
keN, k#]j

wherel is a column ofm ones. The LP (5) is feasible, with aiyc Y with y; =0
and sufficiently negative, and its optimal valuel is negative since otherwidg; < By.
The dual of the LP (5) is to find nonnegatixe= (x1,...,Xn) and unconstrainet! so
that —xBj +t is minimal, subject to the equatioq + - - - + xm = 1 (corresponding to the
primal variableu), i.e.,x € X, and subject to the inequalitiesxB, +t > 0 for all k # j.
The optimal value of this dual LP is equal to that of (5) and negative. In the corresponding
optimal solution withx andt, this meansB; >t > xBy for all k # |, that is, j is the unique
best reply ta, as desired. ]

(5)

If ] is strictly dominated, then is never a best reply, and both in the simultaneous
game and in the leadership game player Il will never chgess® such a strategy can
safely be omitted from the game. (Strictly dominated strategies of player I, on the other
hand, may be relevant for the leadership game, as Figure 5 shows.)

Secondly, a strategyis not inducible ifBj = By for somek # j, since thenj andk
give the same payoff for any. If the leader tries to induce the follower to playthe
follower may also play, which may not be what the leader wantsif # A,. We will
treat this case last.

The remaining possibilities thatis not inducible are therefore thpis is either payoff
equivalent to a mixturg of at least two other pure strategies, wigh= By, or thatj is
weakly dominated by a pure or mixed strategywith B; < By but Bj # By. In the
following, we will show that such best reply regioXsj) have lowerdimensionthanX
itself.

We recall some notions from affine geometry for that purposeaffine combination
of pointsZ., ...,z in some Euclidean space is of the fogﬁl)\iz‘ wherelA,..., A are
reals withsX ; Aj = 1. Affine combinations are thus like convex combinations, except
that some\; may be negative. Thaffine hullof some points is the set of their affine
combinations. The pointg,...,Z areaffinely independerit none of these points is an
affine combination of the others, or equivalentlyy# ;A\iZ = 0andsX ;A = 0 imply
A1 =--- = A= 0. A convex set hadimensiord if and only if it hasd + 1, but no more,
affinely independent points.

SinceX is the convex hull of then affinely independent unit vectoes, . ..,eyin (1),
it has dimensiorm— 1. Any convex subseZ of X is said to befull-dimensionalif it
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also has dimensiom— 1. The following lemma implies th&Z is full-dimensional if it
Is possible to move withiZ from somex a small distance in the direction of afl unit
vectorsg, the extreme points of the unit simplx

Lemmab Letx € X and0 < € < 1. Then the vector§l —€)x+¢€g for 1 <i < mare
affinely independent, andis a convex combination of these vectors.

Proof. Consider real numberps,...,Amwith $7"; Aj =0. Theny ", Ai((1—€)x+¢€q) =
eSM1Aie, so if this is the zero vectd, thenA; = ... = Ay, = 0 since the unit vectors
e1,...,en are linearly independent. This proves the claimed affine independence. Sec-
ondly, lettingA; = x; for 1 <i < mshowsy ™ Ai((1—€)x+¢€6) = (31 A)(1—€)x+

SN Aiga = (1—€)x+ex = x, which is the representation &fas a convex combination

of the described vectors. O

The next lemma shows that full-dimensional sets are those that contain an open set, in
the topology relative tX. Recall that fore > 0, thee-neighborhoodf a pointx in X is
the set{y € X | |ly—X|| < €} where||y— x| is the Euclidean distance gfandy.

Lemma 6 LetZ be convexZ C X. Then the following are equivalent:

(a) Zis full-dimensional;

(b) for somex € Z ande > 0, the vector§1—¢)x+¢eg areinZfor1<i<m;
(c) Z contains a neighborhood.

Proof. By Lemma 5, (b) implies (a). To show that (c) implies (b), ¥ebe an interior
point of Z. Then for sufficiently small positive, each vectof1— €)x+ g has distance
e|[x— g | from x and hence belongs to a neighborhood,aind thus tdZ.

It remains to show that (a) implies (c). Let, by (&),...,z" be affinely independent
vectors inZ, and consider the simplex that is the convex hull of these vectors. Then it
can be shown that the center of grawity= 1/m- (21 4 .. +2Z™) of that simplex is in the
interior of that simplex. Namely, every vectgrhas positive distance from the affine hull
of the othem — 1 vectors, so thax has1/m that distance, call . Any yin X that is
not in the simplex is an affine combinatign= $™, AjZ with, by affine independence,
uniquel,...,Am, wherey ™™ ; A = 1 andAg < O for at least ond. Then it easy to see that
this implies||y — x|| > &, which shows that th&-neighborhood ok, with & = miny &, is
included in the simplex and hence4n O

The preceding topological condition in (c) shows easily thad covered by the full-
dimensional best reply regions, so these are of particular interest:

Lemma 7 X is the union of the best-reply set$j) that are full-dimensional.

Proof. LetF = {j € N [ X(j) is full-dimensiona}. ConsidelZ = X —Ujcg X(j). Sup-
pose that, contrary to the claim, the open &é$ not empty. Then for any in N —F,
the setZj = Z— X(j) is also open and not empty, since otherwdsend hence a neigh-
borhood, would be a subset of the ¥gtj) which is not full-dimensional, contradicting
Lemma 6. Repeating this argument withinstead ofZ for the next strategy itN — F,
and so on, shows tha@t— Ujen_r X(]), that is,X — Ujen X(]), is not empty, contradict-
ing (2). O
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The next lemma shows that the intersection of two best reply regions cannot be full-
dimensional, except when the regions are identical.

Lemma 8 If X(j) N X(K) is full-dimensional, thelB; = B.

Proof. Consider, by Lemma 6(bk ande > 0 so that(1—&)x+€g are inX(j) N X(k)
for alli € M. Thenx, by Lemma 5 a convex combination of these vectors, also belongs
to X(j) N X(k). Sincej andk are best replies te and to(1— €)x+€g for all i € M, we
havexBj = xBx and((1—¢€)x+¢€6)Bj = ((1—€)x+£6)By, and therefore B; = & By, for
I € M. This means that the column vect&@gsandBy agree in all components, as claimed.

O

The following lemma shows the close connection between inducible strategres
full-dimensional best reply se¥(j). The only complication arises when there are other
strategiek in N with Bj = By.

Lemma9 Letj € N.

(@) If jisinducible, therX(j) is full-dimensional.

(b) X(j) is full-dimensional if and only if the only mixed strategjes Y with B; < By
are those whergy > 0 impliesBj = By .

(c) If Bj # Bk forall ke N, k# j, andX(j) is full-dimensional, ther is inducible.

Proof. If j is inducible, then the s€itx € X | xBj > xBy for all k # j } is not empty and
open and a subset &f( j), which is then full-dimensional by Lemma 6. (An easy direct
argument with Lemma 5 is also possible.) This shows (a).

To show (b), suppose first thi(j) is full-dimensional, and that there is sommén
Y whereBj < By and, contrary to the claimy > 0 and Bj # By for somek. Thenk
is a best reply whenevegris, which showsX(j) C X (k) and thusX(j) = X(j) N X(K).
This is a full-dimensional set, but th&) = B, by Lemma 8, a contradiction. Conversely,
suppose thaB; < By holds only wheryy > 0 impliesB; = Bi. Consider the game where
all strategiek in N, k # j with B; = By are omitted. In this game, there is no mixed
strategyy with B; < Byandy; = 0. Thenj is inducible by Lemma 4, and hen&gj) is
full-dimensional by (a).

In the same manner, (b) and Lemma 4 imply (c). ]

Theorem 3 is strengthened as follows. We still exclude the case that there are different
pure strategieg andk with Bj = By.

Theorem 10 Suppose thaB; # By for all j,k € N, j # k. Then the set of all leader
payoffs is an intervalL,H|, where

L= max max XA, H = max max xA; . (6)
J€N, j inducible xeX(j) JeN xeX(j)

Some Nash payoff to player | is less than or equdl,tand all Nash payoffs to player |
are less than or equal tol.
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Proof. By Lemma 9 and Lemma 7,

x=" U X3 (7)

j€N, j inducible

Player Il therefore has an inducible best reply to anyX. Consider now the “inducible-

only” game, both in the simultaneous and in the leadership version, where all pure strate-
gies of player Il that are not inducible are omitted. Giveim X, any pure best reply

j to x in this “inducible-only” game is also a best replystan the original game, since

this meansBy < xB; for all induciblek, and for any non-inducible best replyto x in

the original game there is also some inducible best r&gly x by (7), which implies

XB = xBx < XB;j .

Hence, any Nash or leadership equilibrium of the “inducible-only” game remains such
an equilibrium in the original game. By Theorem 3, the leader payoff in the “inducible-
only” game isL as in (6). Thereforel. is also a possible leader payoff in the original
game, and greater than or equal to some Nash payoff of the original game. The original
game cannot have a lower leader payoff thaaven though player Il may have additional
best replies, by Lemma 2.

The highest possible leader payoff is cledflyas in (6), by letting the follower always
choose a best reply iN that maximizes the payoff to the leader, and letting the leader
commit tox*, say, where the maximud in (6) is taken, withx*Aj« = H, for a best
reply j* to x* that is best for player I. As argued for TheorenH3is greater than or equal
to any Nash payoff.

Trivially, L <H. If L < H, it remains to show that arflywith L < P < H is a possible
leader payoff. Then the above repjy to x* is clearly not inducible, so that there is,
by (7), an inducible best repll to x*, wherex*Ax < L. We let the leader commit to
x*, and let the follower respond ¢ by randomizing betweekand j* with probabilities
such the expected payoff to player |, a convex combinatiodi&f andx*Aj:, isP. To any
commitment other thaxi, the follower chooses only inducible replies, so tkfas indeed
the optimal commitment. Then this is a leadership equilibrium with leader p&yaté
claimed. O

Call two pure strategieg andk of player Il equivalentif B = Bj, which defines an
equivalence relation oN. If two strategies are equivalent, neither of them is inducible,
and the previous theorem does not apply, because then (7) is not true. However, Lemma 7
is still true. Indeed, the leader payoffs in the general case (where equivalent strategies are
allowed) can be described in terms of the strategiesch thatX( j) is full-dimensional,
rather than the more special inducible strategies.

The strategieg such thatX(j) is full-dimensional are characterized in Lemma 9(b):

Bj < Byis only possible for mixed strategigshat assign positive probability to strategies
that are equivalent tg, so that then obviouslg; = By. Indeed, omitting from the game alll
strategies that are equivalentjtgexceptj) would makej inducible, as used in the proof

of Lemma 9(b). The possible leader payoffs, however, would not be captured correctly
by such an omission, since inducibility is crucial for Lemma 2, and Player 1l may respond
to j by some equivalent strategy instead, as argued for Figure 6.
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If there are several equivalent strategies and these define a full-dimensional best reply
region, then the leader payoff is determined by the “pessimistic” view that the follower’s
reply among these equivalent strategies is worst possible for the leader, since the follower
is indifferent among all of them. The next theorem, which generalizes the preceding
Theorems 3 and 10, states in (8) the lowest possible leader payofterms of this
“max-max-min” computation. The first maximization is over puch thatX(j) is full-
dimensional, where it in fact suffices to consider one such strategy among all its equivalent
strategies (which defines a maximization over the equivalence classes, not stated in (8) to
save notation). Thexis maximized oveK( ) (which is the same best reply region for all
strategies that are equivalentjio Finally, the payofixAy is minimized over all strategies
k that are equivalent tg. Notably, L is still at least as large asomeNash payoff to
player I.

The highest possible leader payéifin (8) is determined as before in (6). Here,
all strategieg in N are considered separately, under the “optimistic” view that player Il
chooses the replythat is best for the leader, regardless of whether the strategy has equiv-
alent strategies or whether it defines a best reply region of lower dimension.

Theorem 11 LetF = { j € N | X(j) is full-dimensiona}. The set of all leader payoffs is
an interval[L,H], where
L = max max min XAy, H = max max xA, . (8)
jeF xeX(j) keN, By=B; JjeN xeX(j)
Some Nash payoff to player | is less than or equdl,tand all Nash payoffs to player |
are less than or equal tbl.

Proof. For j in N, we use the equivalence class notafiph= {k € N | B, = B;j }. Obvi-
ously,[]] is a subset oF wheneverj € F.

First, we show thaL as defined in (8) is indeed a possible leader payoff. The corre-
sponding leadership equilibrium is constructed as follows.jleeF, x e X(j) andk € [ j]
be such that the max-max-min in (8) is achieved wifa = L. The leader commits t®.

The follower responds t& by k, and to any other commitment by choosing a pure best
reply that minimizes the payoff to the leader. Thaa the optimal commitment. Any best
reply k among the strategies is also a best reply when considering all strategids,in

due to Lemma 7, as argued for Theorem 10. Hence, we obtain a leadership equilibrium
with leader payofi..

Furthermore,L is the lowest leader payoff, by an argument similar to Lemma 2.
Namely, X(j) is full-dimensional and thus contains an interior poinby Lemma 6(c).
Any convex combinatiomx(e) = (1—€)x+ X for € € (0,1] is then also in the interior of
X(]), so that the follower’s best reply tqe) is anyk € [j]. The minimum (over these
k € [j]) of the leader payoffg(g)Ax is a continuous function of, and is arbitrarily close
to L ase tends to zero. Hence, the follower must play such that the leader gets dt least
on the equilibrium path.

Similarly to Theorem 10, it easily seen thats the highest leader payoff, and that the
interval [L, H] is the set of possible leader payoffs. Moreover, no Nash payoff to player |
exceedd.
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In order to prove that the simultaneous game has a Nash equilibrium with payoff at
mostL for player I, we modify the given game in two steps. First, the “full-dimensional-
only” game is constructed similar to the “inducible-only” game in the proof of Theo-
rem 10, whereN is replaced by, so that player Il can only use strategijeshereX(j)
is full-dimensional. As argued above, any Nash or leadership equilibrium of this game
remains an equilibrium in the original game.

In a second step, we consider the “factored” game where the pure strategies of player
correspond to the equivalence classgsfor j € F. For each suchj], player Il has a
single payoff columrBj, which is by definition the same for any strategy] i, so we
may call itByj.

The payoff columns to player | in the “factored” game are obtained as certain convex
combinations of the original columm for k € [j]. Namely, we consider the “con-
strained matrix game” where player | chooses X(j) and player Il mixes among the
pure strategiekin [ j ], with the zero-sum payoff columm to player |. This game has a
value (see Charnes (1953)), given by

Lj = max minxAy.
xeX(j) kelj]

For completeness, and to clarify the players’ strategy sets in this constrained game, we
prove this by linear programming duality. Clearly, is the maximal real numbersuch
thatxA, > u for all k € [ j] andx € X(]j), where the latter can be written as X and
X(Bj—Bj) >0foralll € N—[j]. As a minimization problem, this says: minimizeu
subject to

xXA—u >0, ke [j]

X(Bj~B) >0, leN-[j] -
x1 =1,
X >0

wherel is a column ofm ones. The dual of this LP uses nonnegative variahldsr
ke [j]andw forl € N—[]j] and an unconstraingdand says: maximizesubject to

Azt Y (Bj—B)w +1t <0,
kel]] leN—[j]
and, corresponding to the unconstrained variabite(9),

— z z=—1
kel )]

Consider an optimal solution to this LP. Thens equal to the optimum of (9), that
is,t = —u= —L;. Furthermore, whenever player Il uses the mixed strategy with
probabilitiesz, for k € [ j], and zero elsewhere, then for ang X( j) the expected payoff
to player I fulfills (notew; > 0)

Z XAz < z XAz + Z X(Bj —By)w < —xlt=-t=L;.
kel]] kel ] leN—[j]
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That is, player | indeed cannot get more thgnfor any x € X(j) when player Il plays

according the probabilitie for k € [j]; call themz‘[(” since they depend drj|. In the
“factored” game, the payoff colum#y;; to player | for strategy j] of player Il is given

by

Aj= Y AGl
kel]]
so that
Li = max minxA = max X 10
V7 xex(i) kelj] A= xeX (i) Al (10)

By construction, all payoff columnBy;; for player Il in the “factored” game are dif-
ferent. Moreover, all best-reply regions are full-dimensional since we only consiggred
for j € F, and hence all replies are inducible by Lemma 9(c). So Theorem 3 applies, and
in some (indeed, any) Nash equilibrium of the “factored” game, the payoff to player | is
at most equal to the leader payoff, which by (4), (10) and (8) is equal to

max max XAjjp =maxLj=L.
JeF xeX(] jeF

Finally, any Nash equilibriun{x,y’), say, of the “factored” game translates to a Nash
equilibrium(x,y) of the “full-dimensional-only” game, and hence of the original game, as

follows: Player | playx as before, and player |l choodes | j | for j € F with probability

Yk = y’[ ]ZLJ] Then player | receives the same expected payoffs as before, sodlzdbest

reply toy, and sinceBx = By, for k€ []], anyk € F so thatyx > 0 (and hencq/m > 0)
is a best reply t, as required. The resulting Nash payoff to player | is at nhosis
claimed. O

Generic gamedo not need the development following Theorem 3. Games with iden-
tical payoff columns for player Il as in Theorem 11 are obviously not generic. Even games
that require the assumptions of Theorem 10 (with non-empty best reply regions that are
not full-dimensional, see Lemmas 4 and 9) are not generic. Namely, a strategy that is
only weakly but not strictly dominated entails a linear equation among the payoffs, which
only holds for a set of measure zero in the space of all games (with independently chosen
payoffs). The same holds for games where a strategy is payoff equivalent to a different
mixed strategy.

4 Correlated equilibria

Games like the familiar “battle of sexes” illustrate the use of commitment as a coordi-
nation device. Coordination can also be achieved byctireelated equilibrium due to
Aumann (1974) which generalizes the Nash equilibrium. In this section, we first show
that the highest leader paydff as defined in (8) is greater than or equal to the highest
correlated equilibrium payoff to player I. Trivially, the lowest leader payoif (8) is at

least as large as some correlated payoff, since it is at least as large as some Nash payoff.
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We consider theanoncial formof a correlated equilibrium, which is a distribution on
strategy pairs. With the notation of the previous section, this isxanmn matrix z with
nonnegative entrieg; fori € M, j € N that sum to one. They have to fulfill thecentive
constraintsthat for alli,k € M and allj,| € N,

szijaijz szijakja zjbij >y zjby. (11)

je j€ i€ i€
When a strategy paifi, j) is drawn with probabilityz; according to this distribution by
some device omediator, player | is toldi and player | is toldj. The first constraints in
(11) state that player I, when recommended to plégas no incentive to switch froimok,
given (up to normalization) the conditional probabilitison the strategiegof player II.
Analogously, the second inequalities in (11) state that player Il, when recommended to
play j, has no incentive to switch 1o

Theorem 12 The largest leader payoit as defined ir{8) is greater than or equal to any
correlated equilibrium payoff to player I.

Proof. Consider a correlated equilibriumwith probabilitiesz; fulfilling (11) above.
Define the marginal probabilities dw by

Yi= ) Zj for j €N, (12)
ie
and letSbe the support of this marginal distributid®s= { j € N | yj > 0}. For eachj in S
let c; be the conditional expected payoff to player | given that player Il is recommended

to (and does) play,
Ci=) zjaj/y;-
j ig jqij/Yj

Finally, letsin Sbe a strategy so that = maxjcsc;j .

We claim thatH > cs, and thatcs is at least the payoff to player | in the correlated
equilibriumz, which proves the theorem. Namely, definm X by x; = zs/ys fori € M,
let player | commit tocin the leadership game, and let player 1l responxitg playings.
According to the second inequalities in (14)s indeed a best reply tosince the column
s of z, which has positive probabilitys, is the distribution orM given by x except for
the normalization factot /ys. For any commitment other thag choose any best reply
of the follower. This may not necessarily define a leadership equilibrium since player |
may possibly improve his payoff by a different commitment, so a leadership equilibrium
may require a change of the commitment (as, for example, in Figure 5), or may require
changing the replgto x. At any rate, however, the payadf to player | when leader and
follower play as described fulfillss < H. Furthermore, the correlated equilibrium payoff
to player | is an average of the conditional payaffdor j € Sand therefore not larger
than their maximunts:

Zjai; = yjzi,-aaj/yj:XSyjchcng,
IE

jeN;1eM jeS 1eM

as claimed. ]
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Moulin and Vial (1978) define a generalization of correlated equilibria which involves
a commitment by both players. We show that it may give a payoff to player | which is
higher than any leader payoff.

Thesimple extensioof a correlated equilibrium (see Moulin and Vial (1978), p. 203)
is also given by a distributionon strategy pairi, j), which are chosen according to this
commonly known distribution by a mediator. Each player must decide either to be told
the outcome of the lotteryand tocommithimself or herself to playing the recommended
strategy, or not to be told the outcome and play some mixed strategy. In the latter case,
the player knows only thenarginal probabilitiesunderz of the choices of the other player
(for example, player | would know only; in (12)). In equilibrium, the players commit
themselves to playing the mediator’s recommendation, and do not gain by unilaterally
choosing not to be told the recommendation. The respective inequalities are kfarMll
andl € N,

s g o

These inequalities are obviously implied by the incentive constraints (11) of Aumann’s
correlated equilibrium.

, p q r
0 1 -2
P
o |2 |1
-2 0 1
Q
1 0o |2
1] -2/ 0
R
2 |1 0

Figure 7. Game with payoff 0 in a “simple extension” of a correlated equilibrium, which
is higher than any leader payoft.

Figure 7 shows a variation of the “paper—scissors—rock” game. This game is sym-
metric between the two players, and does not change under any cyclic permutation of
the three strategies. The players’ strategies beat each other cyclically, inflicting a loss
—2 on the loser which exceeds the gdifor the winner. The game has a unique mixed
Nash equilibrium where each strategy is played with probalili§, each player getting
expected payoff-1/3.

For the game in Figure 7, a simple extension of the correlated equilibrium with payoff
(0,0) is a lottery that chooses each (@ p), (Q,q) and (R r) with probability1/3, and
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any other pure strategy pair with probability zero. This fulfills (13), but is not a correlated
equilibrium.

For the leadership game for Figure 7, it suffices to consider only one best reply re-
gion, say for the first strategy of player Il. The best reply region fqgo is the convex
hull of the points (inX, giving the probabilities foP,Q,R), (1/3,1/3,1/3), (3/4,0,1/4),
(0,1/4,3/4), and(0,0,1), with respective payoffs1/3, —1/2, —5/4, and—2for player I.

The maximum of these leader payoffs is therefer®/ 3, which is the same for any best

reply region because of the symmetry in the three strategies. In this game, leader and Nash
payoff coincide. By Theorem 12, the highest correlated equilibrium payoff is-alg@,

which is also the lowest correlated equilibrium payoff since it is the maxmin payoff.

In Figure 7, the simple extension of a correlated equilibrium by Moulin and Vial
(1978) gives a payoff which is higher than the leader payoff. This concept involves a
commitment byboth players to a correlated device. Moreover, it does not generalize a
leadership game. The latter has generically a unique payoff to the leader, whereas the
concept by Moulin and Vial has correlated and Nash equilibria of the simultaneous game
as special cases.

5 More than two players

In a game with three or more players, it may no longer be advantageous for a player to
commit to a mixed strategy if he has the opportunity to do so. If the gamiehaplayers,

any commitment by player I, say, to a mixed strategy induces a gamépittyers. The
natural definition of the leadership game is then to look for a subgame perfect equilibrium
where for any commitment of player | the remainikglayers, called followers, play an
equilibrium of the induced game.

Given any Nash equilibrium of the simultanedist 1)-player game, a commitment
by player I to his equilibrium strategy, with the corresponding replies in that equilibrium
played by the other players, should give player | at least the payoff he gets in the simul-
taneous game. From that perspective, the situation does not seem to differ from the two-
player case. Indeed, any Nash payoff to player | is a possible leader payoff in a subgame
perfect equilibrium of the leadership game, by the preceding argument. However, there
may be additional leader payoffs, all of which are strietigrsefor the leader, compared
to the simultaneous game. That is, the set of payoffs to player | may “move downwards”
when introducing commitment, in direct contrast to the two-player case where it “moves
upwards” according to Theorem 11.

This situation arises in theam gamegvestigated by von Stengel and Koller (1997).
These are games &f+ 1 players where player | plays against the remairkngayers
which form a team because they receive identical payoffs, which are the negative of the
payoffs to player I. Here, commitment generally hurts player | since it allows the opposing
team tocoordinatetheir actions, which is not the case in the simultaneous game. In
particular, the team may always reply to a commitment by a profilepire strategies,
which is simply the profile that maximizes their joint payoff. In that case, the leader
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will commit to a mixed strategy which is his maxmin strategy in the zero-sum game
where the othek strategies are chosen by the team acting as a single opponent, where
a pure reply suffices in the leadership game. The simultaneous game, in contrast, may
require mixed strategies by the team players, who cannot correlate their random choices
and are therefore in general worse off than if they acted as a single player. They may
choose to play a “team-maxmin” profile &fmixed strategies that maximizes the worst
possible payoff to the team. This profile can be completed to a Nash equilibrium of the
simultaneous game, as shown by von Stengel and Koller (1997).

I Y q I Y q

P|-1,1,1| 00,0 P |-4,4,4| 00,0

Q 03070 _47474 Q 0,0,0 —1 1 1

Yl

I: L R
Figure 8. Game with player | against the team of player Il and Il which has leader pay-
offs that are worse than any Nash payoff.

The three-player game in Figure 8 is an example. Player | chooses the) leftr{ght
(R) panel, and players Il and Il form the team and have two strategies each. The Nash
equilibria in this game are as follows. Suppose that player | chd®gseth probabilityx.
Then players Il and 11l each receive expected payoff 3x for the strategy pai(P, p),
and4 — 3x for (Q,q), and zero otherwise. Any Nash equilibrium of the three-player game
induces a Nash equilibrium in thdx 2 coordination game, which is eithéP, p), or
(Q,q), or the mixture wher® and p are each played with probabilitg — 3x) /5, with
resulting team payoff4 — 3x)(1+ 3x)/5. Since player | wants to minimize that payoff,
his best reply taP, p) is L and to(Q,q) is R, with team payoffl in both cases. When
player | chooset (wherex = 0) and players Il and Il mix by playing and p each with
probability 4/5, against whichL. is a best reply, the team does even worse, getijftg
the same applies for the mixed reply agaiRstor0 < x < 1, the mixed reply of 1l and
[l gives an equilibrium only if the resulting payoff cannot be improved by player | by
choosinglL or R. It is easy to see that P and p have larger (smaller) probability than
Q andq, thenL (R) is a best reply. Hence, the only remaining equilibrium is where each
player chooses each strategy with probabilit@. This is the mentioned “team-maxmin”
equilibrium with payoff5/4 for the team, and payoff5/4 for player I.

In the leadership game, any commitment to playihgith probability x induces the
above game for the team which has three equilibria. Players Il and Ill may coordinate
to play their favorable pure equilibrium, name€l, q) with team payoff4 — 3x for x €
[0,1/2] and(P, p) with team payoffl + 3x for x € (1/2,1], say. The optimal commitment
is thenx = 1/2. This defines a subgame perfect equilibrium with leader payiff2,
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which is much worse for player | than in any Nash equilibrium. On the other hand, the
leader gets his best payoff when the team players play their mixed equilibrium, and the
leader commits to eithdr or R. This is already a Nash payoff, and not improved for
the leader by commitment. So commitment worsens the set of payoffs for player I, as
claimed.

The game in Figure 8 is of course non-generic. However, the same arguments apply
for any other generic game with payoffs nearby.

Can Theorem 12 on correlated equilibria be extended to gameskwith players,
for k > 2? In that case, a natural extension of the leadership game would be to consider
correlated equilibria of the game withplayers that results from each commitment to a
mixed strategy. The resulting “subgame perfect correlated equilibria” are then compared
with the correlated equilibria of the original simultaneous game.

In this context, Figure 8 does, at first sight, not seem to give a counterexample since
the worst leader payoff5/2 is also a possible correlated equilibrium payoff to player I.
(Players Il and Il correlate by playing?, p) and(Q,q) each with probabilityl /2, and
player | mixes independently betwekrandR.) However, if player Il (or 1) is made a
leader, she can no longer get paysfR, since by her commitment to a mixed strategy,
player Il loses the ability to correlate with player Ill. Any commitment by player Il in-
duces a two-person zero-sum game between players | and 1ll, and the resulting value is
maximal for the leader if the players play as in the team-maxmin equilibrium, choosing
each pure strategy with probabiliy/2. So Figure 8 shows indeed that, compared to
correlated equilibria in the simultaneous game, a player stagtly loseby becoming
a leader who unilaterally commits to a mixed strategy, if the game has more than two
players.

6 Leadership equilibria and Stackelberg problems

In this section, we connect our concept with the closely related notion of “Stackelberg
solutions” in the literature odynamic gameand optimization theory, as in Basar and
Olsder (1982). There the payoffs to the players are usually declared as costs which are
minimized, but we keep our view of payoff maximization.
Consider a finite game witk+ 1 players, where the mixed strategy set of the leader is
X and the mixed strategy sets of théollowers areY?,..., YK and lety = Y1 x ... x YK
Everyxin X, representing a commitment by the leader, induckgkayer game where
we assume that tHefollowers play an element of the sid{x) of Nash equilibria of that
game, which is a subset ¥f If there is only one followerl= 1), thenN(x) is simply the
set of best replies te. Forxin X andy in Y, the payoff to the leader is denoted &, y).
Basar and Olsder (1982, p. 136, p. 141) defineStaekelbergayoff to the leader as

S=sup min a(x,y). (14)
xeX YEN(X)

This equation describes the “pessimistic” view that among all the possible equilibria (or
best replies if there is only one follower) M(x), the followers choose that which is
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worst for the leader. The set of Nash equilibNéx) is compact, so that it is indeed
possible to take the minimum in (14) rather than the infimum. Howemey,cy ) a(X,y)

is a discontinuous function of, as for example the inspection game in Figure 2 and its
analysis demonstrates. (Basar and Olsder (1982, p. 137) give a similar example.) In the
game in Figure 2, the follower is indifferent when the leader cho8segh probability

1/10. According to (14), the follower should then choose the reptyat is bad for the
leader, so the supremum in (14) is not obtained as a maximum.

The discontinuity is usually seen as a problem in the optimization theory literature
and addressed by various “regularization” approaches that justify taking a solution that
approximatesS (see Mallozzi and Morgan (2002) or Morgan and Patrone (2005) and
references therein).

The theorem of this section states that the Stackelberg p8yoft14) in the case of
one follower is identical to the lowest leader paybfin (8), and perhaps more concisely
expressed by (14). The main difference is that in general, (14) doedescribe the
follower’s behavior in the leadership equilibrium, where the follower usually chooses a
reply that is favorable for the leader. Furthermdgas the lowest possible equilibrium
payoff to the leader for any number of followers.

Theorem 13 Consider the mixed extension of a finite game Withl players. Then the
corresponding leadership game with one leader &rfdllowers has a subgame perfect
equilibrium (X,y) with y € N(X) so thata(X,y) = Sin (14). Any other leader payoff is at
leastS.

Proof. The difficulty is that typicallya(X, ) # minynx) a(X,y) sinceN(X) is usually not
a singleton.

For anyx, the set of equilibridN(x) is the set of fixed points of a suitable continuous
mappingTy: Y — Y, for example the mapping defined by Nash (1951, p. 288). Further-
more, this mapping is continuous x1as well. Let the continuous functidhon X xY
be defined byF (x,y) = Tx(y) —y (with values in a Euclidean space extendifig Then
N(x) ={y| F(x,y) = 0} and the correspondence

U (64 xNe ) =F(0)

XeX

is also closed and therefore a compact set, as a subset of the compagtéet
Consider a sequencgg,, y,) forn=1,2,... so that for alln,

a(x = in alx
( n7Yn) yeN(xn) ( nay)

and so thaB(x,,yn) converges t&in (14). This sequence belongsko!(0) and has a
convergent subsequence with lifit y) in F~1(0). Sincea is continuousa(x,y) = Sas
required.

This shows that the claimed leadership equilibrium exists(x1fy*) was another
leadership equilibrium so that(x*,y*) < S— € for somee > 0, then for somen in the
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above sequence we would haaen, yn) > a(x*,y*) and the leader could deviate froth
to X, and thereby get a higher payoff, contradicting the equilibrium property. H&1se,
the smallest possible leadership payoff. O

7 Follower payoff

In the leadership game, the leader’s payoff is never worse than his Nash payoff in the
simultaneous game. The follower may do worse or better, and even profit more from
leadership than the leader himself. We show this for the mixed extensiodof3agame.

C r
I
—d 2—d 1-d
T
—d 1 0
1 4 5
M
2—d 4 0
0 0 2
B
1-d 5 2

Figure 9. Symmetric game with leader pay®f2 and follower payof3—d/2, compared
to the unique Nash payoff paig, 2).

Figure 9 shows a symmetric game, where the payoffs for each player’s first strategy
depend on a real parameter The game has a unique Nash equilibrigi#)r), obtained
by iteratively eliminating first the strictly dominated strategleandl and therM andc.
The Nash payoff pair i§2,2). In the leadership game, the follower’s stratégy strictly
dominated, and is a best reply whenevéR — d)x; + 4xz > (1 —d)x; + 5x2 + 2x3, that
is, X1 > X2+ 2x3, for the probabilitiegxs, X2, X3) for (T,M,B). Thus, the best reply region
for c is the convex hull of the extreme point$,0,0), (2/3,0,1/3), and (1/2,1/2,0)
with corresponding payoff§, 7/3, and5/2 to player I. Of these5/2 is the maximum,
and larger than any payoff whanis a best reply. The leader payoff is therefée,
corresponding to the commitment (&/2,1/2,0) with best replyc. The payoff to the
follower is3—d/2.

Ford = 0, the follower receive8 in the leadership game, and therefore profits more
from the commitment power of the leader than the leader himselfd Fel, both leader
and follower receive the same pay6ff2 in the leadership game. Fdr= 2, the follower
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gets2 in the leadership game, which is the same as her Nash payoff. Finally,$dz,
the follower gets less in the leadership game than what she would get in the simultaneous
game.

Interestingly, many types of duopoly games, like quantity or price competition, have
the property that when the follower’s payoff is not worse than her Nash payoff, itis already
better than the payoff she would get when she was a leader. This is not the case in the
game in Figure 9, but relies on strategy sets that are intervals, and certain monotonicity
conditions of the players’ payoffs, as in Hamilton and Slutsky (1990). Since it would lead
too far afield, this result is the topic of a separate paper (von Stengel (2003)).

8 Open questions

As a possible theme for further work, one may consider more general games than mixed
extensions of finite games that are known to have Nash equilibria. A general class is given
by games fulfilling the concept of “better reply security” by Reny (1999). An example,
due to Dufwenberg and Stegeman (2002), is that player | choogdayer 1l choosey,
each from[0, 1], and they get the payoff pafx,y), except wherx = 1 andy < 1, where
the payoffs aré0,y), and wherx < 1 andy = 1, where the payoffs arg, 0). The unique
Nash equilibrium ig1, 1) with payoffs(1,1). Here, the strategy pa(0.99,0.99) is much
safer and therefore more reasonable, even though it is not a Nash equilibrium, but it is
strictly dominated by0.999 0.999), and so on. The resulting leadership game has also
payoffs(1,1), but a subgame perfect equilibrium does not exist because best replies do not
existoff the equilibrium pathThere is no best replyagainst a commitment of= 0.99,
for example, since the resulting payoff to the follower as a functiopisfdiscontinuous
and has no maximum. This does not look like a reasonable objection to analyzing the
leadership game. However, we do not analyze this topic further.

Another possible research may relate leadership equilibria to “nonoptimizing” agents,
whose behavior represents a form of commitment, in evolutionary games, as studied by
Banerjee and Weibull (1995).
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