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Abstract

We consider the sample complexity of concept learning when we classify by using a
fixed Boolean function of the outputs of a number of different classifiers. Here, we take
into account the ‘margins’ of each of the constituent classifiers. A special case is that
in which the constituent classifiers are linear threshold functions (or perceptrons) and the
fixed Boolean function is the majority function. This corresponds to a ‘committee of per-
ceptrons’, an artificial neural network (or circuit) consisting of a single layer of perceptrons
(or linear threshold units) in which the output of the network is defined to be the majority
output of the perceptrons. Recent work of Aeeal. studied the computational properties
of such networks (where they were called ‘parallel perceptrons’), proposed an incremental
learning algorithm for them, and demonstrated empirically that the learning rule is effec-
tive. As a corollary of the sample complexity result presented here, generalization error
bounds are derived for this special case that provide further motivation for the use of this
learning rule.
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1 Introduction

We consider the sample complexity of concept learning when we classify by using a fixed
Boolean function of the outputs of a number of different classifiers. Here, we take into account
the ‘margins’ of each of the constituent classifiers. A special case is that in which the constituent
classifiers are linear threshold functions (or perceptrons) and the fixed Boolean function is the
majority function. This corresponds to a ‘committee of perceptrons’, an artificial neural network
(or circuit) consisting of a single layer of perceptrons (or linear threshold units) in which the
output of the network is defined to be the majority output of the perceptrons. Recent work of
Auer et al. [5, 6] studied the computational properties of such networks (where they are called
‘parallel perceptrons’), proposed an incremental learning algorithm for them, and demonstrated
empirically that the learning rule is effective. (They also studied a more general model, in
which the outputs of the threshold functions are not passed through a majority function, but are
instead summed to give a real-valued output, thus enabling such circuits to approximate real-
valued functions.) As a corollary of the sample complexity result presented here, generalization
error bounds are derived for this type of network that provide further motivation for the use of
this learning rule.

2 Boolean combinations of classifiers

If F'is asetof functions fromR” to R, thenF’ can be used to classify data points into two classes
(labelled0 and1) by considering the sign of(x) for z € R™. Explicitly, denote by = sgn(f)

the functionh : R” — {0,1} given byh(x) = sgn(f(z)) wheresgn(z) = 1if z > 0 and
sgn(z) = 0if 2 < 0. The setH = sgn(F) = {sgn(f) : f € F} is then a set otlassifiers
Suppose now that, £ € N and thatfy, Fs, ..., F), are sets of functions mappirigf® into R.

For each, let H; = sgn(F;). Suppose thaj : {0, 1}* — {0, 1} is a fixed Boolean function and
let 7 denote thek-tuple (Fy, F, . .., Fi). Then we denote by(F) = g(F1, F, . . ., Fy) the set

of all functions fromR" to {0, 1} of the form

x+— g (hi(z), ho(z), ..., hi(x))

whereh, € Hy,hy € H,, ..., h;, € H,,. We call the functions irF; theith constituent functions
and the corresponding functions Hy theith constituent classifiersThe functions (or classi-
fiers) ing(F) are thus a fixed Boolean function of the outputs of some constituent classifiers,
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where theith constituent classifigs; is from H;. Such classifiers have been considered often
and can describe many natural methods of pattern classification: see [2, 12], for instance.

A special case of this construction is that in which, for ead} = {¢;(a,.) : a € R?}, where
¢ : R x R® — R, anda € R?is a vector of parameters. When, ¢,, . .., ¢, belong to a
particular clas® of functions, the resulting classifig(F) has been called /&combination of
sgn(®) [2]. Such classifiers have been studied extensively in [12] in the case whepgdhe
polynomial in the parameters

Suppose eactlf; is an affine function, of the form — (w',z) — 6 for somew’ € R" and
9' € R. (Here,{a,b) = a’b is the standard inner product @&#.) The corresponding classifier
h; = sgn(f;) is then dinear threshold functiongiven by

hi(x) = sgn ((w',z) — 6') .

Suppose also that is the majority function whose output id if and only if at least[%/2]

of its inputs arel. In this caseg(F) is a majority function of the outputs of linear threshold
functions. This corresponds to a simple type of artificial neural network known as a ‘committee
machine’, a (type of) ‘madaline’, or a ‘parallel perceptron’ [19, 5, 6].

3 Generalization error

Following a form of the PAC model of computational learning theory (see [4, 17, 9]), we assume
that labelled data points:, b) (wherexz € R™ andb € {0, 1}) have been generated randomly
according to a fixed probability distributioR on Z = R™ x {0,1}. Note that this includes

as a special case the situation in whicls drawn according to a fixed distributiopnon R”

and the labeb is then given byb = t(x) wheret is some fixed function. (More formally, we
should say thaP is defined on an appropriatealgebra of subsets d¢f, usually taken to be the
Borel algebra. Certain measure-theoretic conditions are required for the analysis that follows,
but these are fairly undemanding and will not be addressed here; see [13], for example.) Thus,
if there arem data points, we may regard the data setsamples = ((z1,b1), ..., (Tm,bm)) €

Z™, drawn randomly according to the product probability distributih. Suppose that/ is a

set of functions fronR” to {0, 1}. Given any functiorh € H, we might measure how closely



h matches the classifications given by the samplaough itssample error

ery(h) = %y{z‘ D h(z;) # b}

(the proportion of points in the sample incorrectly classifiechhyAn appropriate measure of
how well h would perform on further examples is (igeneralization) erroy

erp(h) = P ({(x,b) € Z : h(z) # b}),

the probability that a further randomly drawn labelled data point would be incorrectly classified
by h.

Much effort has gone into obtaining high-probability bounds:o#(%) in terms of the sample
error. A typical result would state that, for alke (0, 1), with probability atleast — 6, erp(h) <

ers(h) + €(m,d), for all h € H, wheree(m, J) is decreasing imn and increasing in. Such
results can be derived using uniform convergence theorems from probability theory [18, 13, 11],
in which case:(m, §) would typically involve the VC-dimension; see [18, 9, 17, 2].

Recently, some emphasis has been placed in practical machine learning techniques, such as
Support Vector Machines (see [10], for instance), on ‘learning with a large margin’; see [16, 2,

3, 14], for instance. Broadly speaking, the rationale is that if a classifier has managed to achieve
a ‘wide’ separation between (most of) the points of different classification, then this indicates
that it is a good classifier, possibly with small generalization error. The classical example of this

is linear separation, where the classifier is a linear threshold function. If we have found a linear
threshold function that classifies the points of a sample corractllyy moreover, the points of
opposite classifications are separated by a wide margin (so that the hyperplane achieves not just
a correct, but a ‘definitely’ correct classification), then this function might be a better classifier

of future, unseen, points than one which ‘merely’ separates the points correctly, but with a small
margin.

Here, we obtain generalization error bounds for classifiers that are fixed Boolean functions
of the outputs of constituent classifiers. The bounds we obtain depend on the classification
marginsof the constituent functionghat is, on how ‘definitive’ these individual classifications

are. This is to be contrasted with generalization error bounds that consider the margin obtained
by an aggregation of the constituent classifiers. For example, to be specific, suppose that we
havek constituent classifiers that are linear threshold functions, and the combining Boolean
functiong is the majority function (so that we have the ‘parallel perceptron’ of [5, 6]). We derive
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here bounds on the generalization error that depend on the margins of eaclt ahdihedual

linear threshold functions. These boundsrdi involve the margin achieved by the overall
majority functiong, as measured by the ‘size’ of the majority (to use an electoral analogy).
The problem considered here is therefore similar in nature to that considered by Shawe-Taylor
and Cristianini [15] and Bennett al.[8], where generalization bounds fperceptron decision
treeswere obtained, these bounds depending on the margins obtained at each decision node.

The following definition describes the margins that we consider, and the corresponding defini-
tion of error.

Definition 3.1 Suppose, with the above notation, thaits a fixed Boolean function, thaft;
mapsR” toR (fori = 1,2,..., k), and thath € g(F). Suppose that

h(x) = g(sgn(fi(x)),sgn(fa(x)), ..., sgn(fr(x))),

wheref; € F;. For (z,b) € R" x {0,1}, we say that classifies the labelled example, b)
(correctly and) with margii® = (71,72, ...,7) € R¥, where ally; are positive, ifh(z) = b
and, fori = 1,2,...,k,|fi(x)| > . Forasamples € (R" x {0,1})™, we define thempirical

(or observed) error at margin er! (h), to be the proportion of labelled examples in the sample
s that are not classified with margih.

Informally, then, if(z, b) is classified with margii’, and if the numbers; are quite large, then

the constituent classifications atefinitivein the sense that the sign éf(z) is eitherat leasty;

or is at most—+;, and is not merely positive or negative. (For this interpretation to be valid, we
need to make assumptions about the range of the function classesthat the margins being
‘quite large’ can sensibly be defined. Often this is accomplished, as we shall see, by restricting
the domain of the inputs that are considered.)

To use an electoral analogy—which at least has some merit if the fungti®nthe majority
function—Ilarge margin classification in the sense meant here means that the ‘voters’ (the con-
stituent classifiers) each have a strong opinion about the ‘candiclafgjain, to emphasise a

key difference between this and other analyses based on ‘margins’, we are saying nothing about
how definitive the ‘aggregatiory is: the ‘definitive’ classifications are made at the level of the
individual constituent classifiers. Thus, in the voting analogy, we assume the voters have strong
views, but we assume nothing about the size of the majority that determines the outcome of the
election (beyond the fact that it is a majority).
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4 Generalization error bounds

A key tool in the derivation of margin-based generalization error bounds isoWering num-
ber of a class of real functions. Suppose thfat: X — R is a set of real-valued func-
tions with domainX, which we shall usually take to be a bounded subseR’af Suppose
x = (r1,T9,...,2,) € X™. Then, fore > 0, C C F is ane-cover of F' with respect to the
dz_-metricif for all f € F there isf € C such thatl”_(f, f) < ¢, where

d3o(f, 9) = max [f(z;) — g(x:)|.

1<i<m

The class/ is said to be totally bounded if it has a findecover with respect to thé, metric
forall e > 0 and allz € X™ (for all m). In this case, giver € X™, we define theiZ -

covering numbersV,, (F, ¢, z) to be the minimum cardinality of astcover of F with respect
to thed”_-metric. We then define thé,-covering numberd/,.(F, e, m) by

No(Fye,m) = sup{ Ny (F,e,x) : x € X™}.

The following result bounds the generalization error in terms of the empirical margin error and
the covering numbers of the constituent function classes.

Theorem 4.1 Suppose thag is a fixed Boolean function, and that mapsX C R™ to R (for
i=1,2,...,k). LetH = g(F) (as defined above) and suppose that e&gis totally bounded.
Letvi,72,...,7% € (0,1] be given and leZ denoteX x {0,1}. Then, for any probability
measureP on Z, with P™-probability at leastl — ¢, the following hold fors € Z™:

o if he Handl' = (v,7v2,...,7), then

erp(h) < erl (h) + J % (; In N (Fj,7i/2,2m) + In (;)),

e if h € H classifiess with marginl’ = (74, ..., ) (s0 thater! (h) = 0), then
2 [ 5
eI'p(]’L) < E (zzl logQNoo<-Fu7z/272m) + 10g2 (5)) .
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One difficulty with Theorem 4.1 is that the marginsare specifiedh priori. A more useful
result is the following, which would apply to situations in which we might choose, or observe,
these parameters after learning.

Theorem 4.2 Suppose thag is a fixed Boolean function, and thal mapsX C R" to R (for

i=1,2,...,k). LetH = g(F) (as defined above) and suppose that eBgcis totally bounded.
Let Z denoteX x {0, 1}. Then, for any probability measure on Z™, with P"-probability at
leastl — ¢, the following hold fors € Z™:

o if h € H,thenforanyl = (71,72, ...,7%)s

erp(h) < erg(h)—i—J % (i In Noo(F3, 7;/4,2m) + In (g) +kIn2+ iln (i)>;

i=1 Vi

o foranyl’ = (vi,%,...,7), if h € H classifiess with marginT" (so thater! (k) = 0),
then

k k
2 2 1
i=1 =1

1

5 A special case: parallel perceptrons and the p-delta
learning rule

We now apply the above results to the special case in whistthe majority function and the
constituent classifiers are linear threshold functions (or perceptrons). In this case, the results
tell us something about the generalization performance of a learning algorithm from [5, 6]
known as thep-delta learning rule(for Boolean-valued parallel perceptrons). This algorithm
incrementally updates the weight-vectors of the constituent perceptrons in such a way as to try
to maintain, for each, a margin In their papers [5, 6], Auest al. write that: “Since our parallel
perceptron is an aggregation of many simple perceptrons with large margins [...], one expects
that parallel perceptrons [trained with the p-delta algorithm] also exhibit good generalization.”
They provide empirical evidence of good generalization on standard data-sets. Theorem 4.1 and
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Theorem 4.2 help in giving some further justification for this learning paradigm, by providing
generalization error bounds that depend on the margins achieved by the constituent perceptrons.
Specifically, Theorem 5.1 (below) indicates that one might well expect better generalization
when the margins of the constituent linear threshold functions are large; and this is the rationale
behind the p-delta learning procedure. (The generalization error bounds given are just upper
bounds, and they also involve the empirical margin esrb(h), which increases as the margins

are increased. Therefore it does not follow that the smallest error is necessarily achieved when
the margins are large. Nonetheless, the bounds suggest that maximizing these margins, subject
to maintaining a small empirical margin error, is a sensible strategy.)

We shall assume, for simplicity—and because there is no loss of generality in doing so—that
the threshold9); are fixed at0, so that the constituent threshold functions hoenogeneous
threshold functions. (Any threshold function with a non-zero threshold can be realized as a
restriction of a homogeneous threshold function in one more variable.) We shall also assume
that the domain of interest (the support of the marginal distributiori®"otihat we consider) is

the bounded seBr = {x € R™ : ||z|| < R} for someR > 1. The threshold functions then take

the formh(z) = sgn({w, z)) and, since scaling by a positive constant does not change the
functionality, we may assume th@i|| = 1. So, we can assume that, for eactif; = sgn(F’)
whereF is the set{x — (w, x) : |Jw|| = 1}, regarded as a set of functioBs;, — [— R, R].

The first part of the following theorem bounds the error when the margins are prescribed in
advance, and the second part bounds the error when the margins areanptisat

Theorem 5.1 Suppose thaj is the majority function ok variables, and that{ is the set of all
functionsBgr — {0, 1} of the form

h(x) = g(hi(x), ho(z), ... hi(2))
where eachh; is a homogeneous linear threshold function. FedlenoteBy x {0, 1}.

1. Letl’ = (y1,72,...,7) € (0,1]* be given. Then, for any probability measureon Z,
with probability at leastl — ¢, the following hold fors € Z™:

o forall h € H,

erp(h) < erl(h) + % (216 In(13m) Z R—j +In (%)) ;

=1 '?




e if h € H classifiess with marginl" (so thater! () = 0) then

p bR 2
h — | 2161 1 — +1 — .
erp( )<m< 6 log,( 3m)i21%2+ 0g5 (5>>

2. For any probability measur® on Z™, with probability at least — §, the following hold
for s € Z™: forall y1, 72, ..., v € (0, 1],

o if he Handl' = (1,72, ...,7%), then

i=1 i i=1 i

erp(h) < erg(h)+J % <864. In(18m) zk: %2 +In (%) +kIn2+ zkzln (l>);

e if h € H classifiess with marginl’ = (4, ..., ) (so thaterl (1) = 0) then

2 kR 2 e 1
erp(h) < — (864 log, (18m) >~ 7 +log <5> +E+ log, (7» :
‘ i—1 ‘

i=1 ¢

We see from these bounds that a key term controlling the amount by which the truerg(for
can differ from the observed margin erkef (%) is the quantity> ", (1/42).

The bounds take simpler forms, of course, when alhth&re equal. For example, we see that,
for any distributionP, with probability at least — 4, for all T" € (0, 1]* wherey; = ~ for all 4,
if h € H classifiess with marginI’, then

2 R? 2 1
erp(h)<E 864k10g2(18m)?+10g2 5 + k| 1+ log, 5 :

In particular, therefore, if it is observed that each constituent perceptron has achieved a margin
~ > 0 after training on a sample, this gives a bound on the generalization error. (This is
one way in which the results where the margins are not pre-specified can be useful: this result
probabilistically bounds the generalization error of any classifiéf lmaving zero sample error,

in terms of the (observed) margins that are achieved by its constituent classifiers.)



6 Proofs

Proof of Theorem 4.1

The proof follows [1], which extends a technique from [15, 8] (where the cegé) = 0 is
considered). It is a modification of proofs in [2, 3, 7, 14], which in turn are based on [18].

GivenT = (71,72, ...,7,) and(s,s’) € Z™ x Z™, we note that iferp(h) > erl (k) + ¢ and
erg(h) > erp(h) — ¢/2, thenery (h) > erl (h) — ¢/2. It follows that if

Q= {s€ Z™:3h € H with erp(h) > erl(h) + ¢}

and
R=1{(s,8)€ Z™x Z™:3h € H with ery(h) > erl (h) +¢/2},

then
P*™R) > P> (3h € H :erp(h) >er,(h)+e and eryg(h) > erp(h) — €/2)
_ / P ({s':3h € H,erp(h) > et (h) + ¢ and erg(h) > erp(h) — ¢/2}) dP™(s)
Q

1

> §Pm(Q),

for m > 2/¢2, where the final inequality follows fron®™ (ery (h) > erp(h) — €/2) > 1/2,
for anyh € H, by Chebychev’s inequality. Henc€™(Q) < 2 P*(R). Let G be the permu-
tation group (the ‘swapping group’) on the dét 2,...,2m} generated by the transpositions
(i,m +1i) fori = 1,2,...,m. ThenG acts onZ*™ by permuting the coordinates: fere G,
0(21,22, ... %2m) = (Zo(1)s---+20(m)). NOW, by invariance ofP?™ under the action of7,
P*™(R) = EPr(c € R) < max{Pr(cz € R) : 2 € Z*"}, wherePr denotes the probability
over uniform choice ot from Gz, and the expectation is with respect®d'. (See [18, 2], for
instance.) Nowfix z € Z*™, wherez; = (x;,b;). Letz = (x1, 29, ..., Toy). Suppose thaf;

is a,/2-cover of F; with respect taiZ_, of minimum cardinality, which will be no more than
N (Fi,7vi/2,2m). Suppose thatz = (s,s’) € R. This means that for sonmee H = g(F),
ery(h) > erl(h) + €/2. Now, suppose that

W) = g (sgn(fi(x)),sgn(fa(x)), .. ., sgn(fu(2))),
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wheref; € F;, and letf, € C; be such thatl” (f;, f;) < 7;/2. Then, for alli, j,
f(z;)] <i/2. Leth be the function iry(F") defined by

fL(:L’) =g (sgn(fl(x)), sgn(fg(:c)), . ,sgn(fk(w))>

filzy) —

and letH denote the set of all sudh Now, 0z = (s,5') € R, soery(h) > erl (k) + ¢/2.

This implies thater/*(h) > erl/?(h) + ¢/2, whereT'/2 = (v1/2,...,7/2). This claim
follows from two observations: (§r'/*(h) > ery(h), and (ii) et} (h) > ert/*(h). To see (i),
suppose that does not classifyz, b) correctly. For each, eithersgn(f;(z)) = sgn(fi(z));

or, sgn(fi(z)) # sgn(fi(z)) but|f;(x)| < 7:/2. This is because replacing tha constituent
function f; by f; changes the output of that constituent functionzdsy at mosty; /2; this may

be enough of a change to change the sign of this output, but it is not enough to do so in such
a way as to achieve a margin ¢f/2. So, it follows that eithe classifiesr in the same way

as h does (that is, wrongly), or it classifiescorrectly, but not with margii’. To see (ii),
suppose that does not classifyz, b) with marginI'/2. Then, either, does not classifyz, b)
correctly, or it does classify the example correctly, but at least one of its constituent functions
fi is such that f;(z)| < ~;/2. Itis possible that: will classify (z, b) correctly even though

does not: this would mean that for at least anegn(f;(z)) # sgn(f;(z)). However, in this
case, sincéfi(z) — fi(z)| < 7;/2, we would havef;(z)| < v/2 < ~. In the second case, since
|fi(2)| < /2, we have

|fi(2)| <7i/2+ |fi(r) — fz($)| <%

and soh does not classify the example with mardin It now follows thatoz € R if and only
if oz € S, where

S={(s.s) € 2% : 3h € H with ex}/*(h) > er}/2(h) + ¢/2} = | ] S(h),
hel
and where
S(h) ={(s,s") € Z*™: erE,/Q(h) > erl/2(h) 4 ¢/2}.
Hence,
Pr(cz € R) <Pr(oz e S) < Z Pr (O'Z € S(h)) .
heH

Now, fix h € H and lety; = 0 if h classifies:; with margin at leasF /2, and1 otherwise. Then

NE

(Vmyi — i) > 6/2) =Pr <%ZT2W)@ — Y| > 6/2) ;

1
m < -
7 =1

Pr (O‘Z € S(ﬁ)) = Pr (

1
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where the; are independent (Rademachgf1, 1} random variables, each taking valuith
probability1/2, and where the last probability is over the joint distribution ofithdHoeffding’s
inequality bounds this probability by /8. (See [2], for instance, for details.) We therefore
have (form > 2/¢?)

Pr(ocz € R) < |Hl|e ™8,

which gives

k k
P™(@Q) < 2P (R) <2 [ [ICil exp(~€*m/8) <2 H/\foo(Fi,%/ZQm)e*eQm/g.
=1 i=1

This quantity is at mostf if

i)

(which also impliesn > 2/¢). The first statement of the Theorem follows.

The second part of the Theorem is proved similarly. It uses, first, the fact (see [18, 2]) that if
Q={s€Z™:3h e Hwitherl (h) =0, erp(h) > ¢}

and
R={(s,8)€ Z™x Z™:3h € H witherl (h) =0, ery(h) > ¢/2},

thenP™(Q) < 2 P™(R). As before,P?™(R) < max,cz2n Pr(cz € R), wherePr denotes the
probability over uniform choice af from the ‘swapping group’=. It can be shown that for any
z e 7,

Pr(cz € R) <Pr (O’Z € U S(ﬁ)) :
heHA
where
S(h) ={(s,s') € Z*™ : 3h € H with er (h) = 0, ery(h) > €/2}.
It can then be seen (by an easy counting argument) that, for eachhfixefd,

2m(1—e/2)

_ 2—em/2.
|Gl

Pr (UZ € S(ﬁ)) <

The argument continues as above.
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Proof of Theorem 4.2

We use a result from [1], which is fadimensional version of a ‘sieve’ result from [7]. This
states that i is any probability measuré, € N, and

{BE(T',Ty,0) :Ty,Ty € (0,1]%,6 < 1}

is a set of events such that:

e forall T € (0,1]%, P(E(T,T,6)) <4,

e [y <TI' <Ty(component-wise) and < §; < 6 < 1imply E(I';,T'2,d,) C E(I', T, 6),

then

]P( U E ((1/2)r,r,52kH%>) <4
Te(0,1]% i=1

foro<d <11, = (Y. 4y andly = (117, ...,4?), let

E(T1,T5,0) = {(s,s') : 3h € H with erp(h) > er;?(h) + €(I'1,m,8) },

(T, m, §) J <Zln/\/ A /22m)+ln(§)>

Then Theorem 4.1 states that*(E(I',T",6)) < ¢ for any probability measur® on Z. It is
also easily seen thatlf; <I' <T'yand0 < §; < < 1,thenE(I'1,['y,0,) C E(I',T,0): this
is becauserL2(h) > erl (h) ande(T'y, m, d;) > €(T',m, §). It follows that

( U E<1/2FP52 kH7>) < 4.
re(0,1]k i=1

That is, withP™-probability at least — ¢, foranyh € H and anyl’ = (71,72, ..., 7%) € (0, 1],

erp(h) < erl J (Z In Ny (Fi,7i/4,2m) + In (zk—Qk))

4 H¢:1 Vi

where

from which the first part of Theorem 4.2 follows. The second part is obtained similarly.
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Proof of Theorem 5.1

We use a recent bound of Zhang [20] for thhg-covering numbers of sets bounded linear
mappings. This shows that K is the set of functiongz — (w,z) : ||w|| = 1}, regarded as
mapping fromBy, to [— R, R], then

R2
logy Noo (Fye,m) < 36 = log, (2[4R/e+2]m+1).

We prove the first of the four stated bounds: the others are very similarly derived from Theo-

rem 4.1 and Theorem 4.2. It follows from the bound of Zhang that

144 R? < 42Rm)
In ,

In Noo (F3,vi/2,2m) <

%2 Vi

so by the first part of Theorem 4.1, for a givEnwith probability at least — ¢, forallh € H,

we have
k
8 1 42Rm 2
I j :
o) < et J m (144R2 i=1 7_1'2111 ( Vi ) o <5>)

The bound we require is

erp(h) < erl(h) + J % (2161n(13m) Z R—; +1In (%))

=1 't

This bound is trivially true if, for somé, m < R?/~? (since the term under the square root is
larger thanl in this case). Ifn > R?/~2? for all 4, then

In (42;)7”) < gln(l?)m),
and so the required bound follows from the one obtained.
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