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Abstract

We consider the sample complexity of concept learning when we classify by using a
fixed Boolean function of the outputs of a number of different classifiers. Here, we take
into account the ‘margins’ of each of the constituent classifiers. A special case is that
in which the constituent classifiers are linear threshold functions (or perceptrons) and the
fixed Boolean function is the majority function. This corresponds to a ‘committee of per-
ceptrons’, an artificial neural network (or circuit) consisting of a single layer of perceptrons
(or linear threshold units) in which the output of the network is defined to be the majority
output of the perceptrons. Recent work of Aueret al. studied the computational properties
of such networks (where they were called ‘parallel perceptrons’), proposed an incremental
learning algorithm for them, and demonstrated empirically that the learning rule is effec-
tive. As a corollary of the sample complexity result presented here, generalization error
bounds are derived for this special case that provide further motivation for the use of this
learning rule.
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1 Introduction

We consider the sample complexity of concept learning when we classify by using a fixed
Boolean function of the outputs of a number of different classifiers. Here, we take into account
the ‘margins’ of each of the constituent classifiers. A special case is that in which the constituent
classifiers are linear threshold functions (or perceptrons) and the fixed Boolean function is the
majority function. This corresponds to a ‘committee of perceptrons’, an artificial neural network
(or circuit) consisting of a single layer of perceptrons (or linear threshold units) in which the
output of the network is defined to be the majority output of the perceptrons. Recent work of
Auer et al. [5, 6] studied the computational properties of such networks (where they are called
‘parallel perceptrons’), proposed an incremental learning algorithm for them, and demonstrated
empirically that the learning rule is effective. (They also studied a more general model, in
which the outputs of the threshold functions are not passed through a majority function, but are
instead summed to give a real-valued output, thus enabling such circuits to approximate real-
valued functions.) As a corollary of the sample complexity result presented here, generalization
error bounds are derived for this type of network that provide further motivation for the use of
this learning rule.

2 Boolean combinations of classifiers

If F is a set of functions fromRn toR, thenF can be used to classify data points into two classes
(labelled0 and1) by considering the sign off(x) for x ∈ Rn. Explicitly, denote byh = sgn(f)

the functionh : Rn → {0, 1} given byh(x) = sgn(f(x)) wheresgn(z) = 1 if z ≥ 0 and
sgn(z) = 0 if z < 0. The setH = sgn(F ) = {sgn(f) : f ∈ F} is then a set ofclassifiers.
Suppose now thatn, k ∈ N and thatF1, F2, . . . , Fk are sets of functions mappingRn into R.
For eachi, letHi = sgn(Fi). Suppose thatg : {0, 1}k → {0, 1} is a fixed Boolean function and
letF denote thek-tuple(F1, F2, . . . , Fk). Then we denote byg(F) = g(F1, F2, . . . , Fk) the set
of all functions fromRn to {0, 1} of the form

x 7→ g (h1(x), h2(x), . . . , hk(x))

whereh1 ∈ H1, h2 ∈ H2, . . . , hk ∈ Hk. We call the functions inFi theith constituent functions
and the corresponding functions inHi the ith constituent classifiers. The functions (or classi-
fiers) ing(F) are thus a fixed Boolean function of the outputs of some constituent classifiers,
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where theith constituent classifierhi is fromHi. Such classifiers have been considered often
and can describe many natural methods of pattern classification: see [2, 12], for instance.

A special case of this construction is that in which, for eachi, Fi = {φi(a, .) : a ∈ Rd}, where
φi : Rd × Rn → R, anda ∈ Rd is a vector of parameters. Whenφ1, φ2, . . . , φk belong to a
particular classΦ of functions, the resulting classifierg(F) has been called ak-combination of
sgn(Φ) [2]. Such classifiers have been studied extensively in [12] in the case where theφi are
polynomial in the parametersa.

Suppose eachfi is an affine function, of the formx 7→ 〈wi, x〉 − θ for somewi ∈ Rn and
θi ∈ R. (Here,〈a, b〉 = aT b is the standard inner product onRn.) The corresponding classifier
hi = sgn(fi) is then alinear threshold function, given by

hi(x) = sgn
(〈
wi, x

〉
− θi

)
.

Suppose also thatg is themajority function, whose output is1 if and only if at leastdk/2e
of its inputs are1. In this case,g(F) is a majority function of the outputs of linear threshold
functions. This corresponds to a simple type of artificial neural network known as a ‘committee
machine’, a (type of) ‘madaline’, or a ‘parallel perceptron’ [19, 5, 6].

3 Generalization error

Following a form of the PAC model of computational learning theory (see [4, 17, 9]), we assume
that labelled data points(x, b) (wherex ∈ Rn andb ∈ {0, 1}) have been generated randomly
according to a fixed probability distributionP on Z = Rn × {0, 1}. Note that this includes
as a special case the situation in whichx is drawn according to a fixed distributionµ on Rn

and the labelb is then given byb = t(x) wheret is some fixed function. (More formally, we
should say thatP is defined on an appropriateσ-algebra of subsets ofZ, usually taken to be the
Borel algebra. Certain measure-theoretic conditions are required for the analysis that follows,
but these are fairly undemanding and will not be addressed here; see [13], for example.) Thus,
if there arem data points, we may regard the data set as asamples = ((x1, b1), . . . , (xm, bm)) ∈
Zm, drawn randomly according to the product probability distributionPm. Suppose thatH is a
set of functions fromRn to {0, 1}. Given any functionh ∈ H, we might measure how closely
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h matches the classifications given by the samples through itssample error

ers(h) =
1

m
|{i : h(xi) 6= bi}|

(the proportion of points in the sample incorrectly classified byh). An appropriate measure of
how wellh would perform on further examples is its(generalization) error,

erP (h) = P ({(x, b) ∈ Z : h(x) 6= b}) ,

the probability that a further randomly drawn labelled data point would be incorrectly classified
by h.

Much effort has gone into obtaining high-probability bounds onerP (h) in terms of the sample
error. A typical result would state that, for allδ ∈ (0, 1), with probability at least1−δ, erP (h) <

ers(h) + ε(m, δ), for all h ∈ H, whereε(m, δ) is decreasing inm and increasing inδ. Such
results can be derived using uniform convergence theorems from probability theory [18, 13, 11],
in which caseε(m, δ) would typically involve the VC-dimension; see [18, 9, 17, 2].

Recently, some emphasis has been placed in practical machine learning techniques, such as
Support Vector Machines (see [10], for instance), on ‘learning with a large margin’; see [16, 2,
3, 14], for instance. Broadly speaking, the rationale is that if a classifier has managed to achieve
a ‘wide’ separation between (most of) the points of different classification, then this indicates
that it is a good classifier, possibly with small generalization error. The classical example of this
is linear separation, where the classifier is a linear threshold function. If we have found a linear
threshold function that classifies the points of a sample correctlyand, moreover, the points of
opposite classifications are separated by a wide margin (so that the hyperplane achieves not just
a correct, but a ‘definitely’ correct classification), then this function might be a better classifier
of future, unseen, points than one which ‘merely’ separates the points correctly, but with a small
margin.

Here, we obtain generalization error bounds for classifiers that are fixed Boolean functions
of the outputs of constituent classifiers. The bounds we obtain depend on the classification
marginsof the constituent functions; that is, on how ‘definitive’ these individual classifications
are. This is to be contrasted with generalization error bounds that consider the margin obtained
by an aggregation of the constituent classifiers. For example, to be specific, suppose that we
havek constituent classifiers that are linear threshold functions, and the combining Boolean
functiong is the majority function (so that we have the ‘parallel perceptron’ of [5, 6]). We derive
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here bounds on the generalization error that depend on the margins of each of thek individual
linear threshold functions. These bounds donot involve the margin achieved by the overall
majority functiong, as measured by the ‘size’ of the majority (to use an electoral analogy).
The problem considered here is therefore similar in nature to that considered by Shawe-Taylor
and Cristianini [15] and Bennettet al. [8], where generalization bounds forperceptron decision
treeswere obtained, these bounds depending on the margins obtained at each decision node.

The following definition describes the margins that we consider, and the corresponding defini-
tion of error.

Definition 3.1 Suppose, with the above notation, thatg is a fixed Boolean function, thatFi

mapsRn to R (for i = 1, 2, . . . , k), and thath ∈ g(F). Suppose that

h(x) = g(sgn(f1(x)), sgn(f2(x)), . . . , sgn(fk(x))),

wherefi ∈ Fi. For (x, b) ∈ Rn × {0, 1}, we say thath classifies the labelled example(x, b)
(correctly and) with marginΓ = (γ1, γ2, . . . , γk) ∈ Rk, where allγi are positive, ifh(x) = b

and, fori = 1, 2, . . . , k, |fi(x)| ≥ γi. For a samples ∈ (Rn×{0, 1})m, we define theempirical
(or observed) error at marginΓ, erΓ

s (h), to be the proportion of labelled examples in the sample
s that are not classified with marginΓ.

Informally, then, if(x, b) is classified with marginΓ, and if the numbersγi are quite large, then
the constituent classifications aredefinitivein the sense that the sign offi(x) is eitherat leastγi

or is at most−γi, and is not merely positive or negative. (For this interpretation to be valid, we
need to make assumptions about the range of the function classesFi, so that the margins being
‘quite large’ can sensibly be defined. Often this is accomplished, as we shall see, by restricting
the domain of the inputsx that are considered.)

To use an electoral analogy—which at least has some merit if the functiong is the majority
function—large margin classification in the sense meant here means that the ‘voters’ (the con-
stituent classifiers) each have a strong opinion about the ‘candidate’x. Again, to emphasise a
key difference between this and other analyses based on ‘margins’, we are saying nothing about
how definitive the ‘aggregation’g is: the ‘definitive’ classifications are made at the level of the
individual constituent classifiers. Thus, in the voting analogy, we assume the voters have strong
views, but we assume nothing about the size of the majority that determines the outcome of the
election (beyond the fact that it is a majority).
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4 Generalization error bounds

A key tool in the derivation of margin-based generalization error bounds is thecovering num-
ber of a class of real functions. Suppose thatF : X → R is a set of real-valued func-
tions with domainX, which we shall usually take to be a bounded subset ofRn. Suppose
x = (x1, x2, . . . , xm) ∈ Xm. Then, forε > 0, C ⊆ F is anε-cover ofF with respect to the
dx
∞-metric if for all f ∈ F there isf̂ ∈ C such thatdx

∞(f, f̂) < ε, where

dx
∞(f, g) = max

1≤i≤m
|f(xi)− g(xi)|.

The classF is said to be totally bounded if it has a finiteε-cover with respect to thedx
∞ metric

for all ε > 0 and allx ∈ Xm (for all m). In this case, givenx ∈ Xm, we define thedx
∞-

covering numbersN∞(F, ε, x) to be the minimum cardinality of anε-cover ofF with respect
to thedx

∞-metric. We then define thed∞-covering numbersN∞(F, ε,m) by

N∞(F, ε,m) = sup{N∞(F, ε, x) : x ∈ Xm}.

The following result bounds the generalization error in terms of the empirical margin error and
the covering numbers of the constituent function classes.

Theorem 4.1 Suppose thatg is a fixed Boolean function, and thatFi mapsX ⊆ Rn to R (for
i = 1, 2, . . . , k). LetH = g(F) (as defined above) and suppose that eachFi is totally bounded.
Let γ1, γ2, . . . , γk ∈ (0, 1] be given and letZ denoteX × {0, 1}. Then, for any probability
measureP onZ, withPm-probability at least1− δ, the following hold fors ∈ Zm:

• if h ∈ H andΓ = (γ1, γ2, . . . , γk), then

erP (h) < erΓ
s (h) +

√√√√ 8

m

(
k∑

i=1

lnN∞(Fi, γi/2, 2m) + ln

(
2

δ

))
;

• if h ∈ H classifiess with marginΓ = (γ1, . . . , γk) (so thaterΓ
s (h) = 0), then

erP (h) <
2

m

(
k∑

i=1

log2N∞(Fi, γi/2, 2m) + log2

(
2

δ

))
.

6



One difficulty with Theorem 4.1 is that the marginsγi are specifieda priori. A more useful
result is the following, which would apply to situations in which we might choose, or observe,
these parameters after learning.

Theorem 4.2 Suppose thatg is a fixed Boolean function, and thatFi mapsX ⊆ Rn to R (for
i = 1, 2, . . . , k). LetH = g(F) (as defined above) and suppose that eachFi is totally bounded.
LetZ denoteX × {0, 1}. Then, for any probability measureP onZm, withPm-probability at
least1− δ, the following hold fors ∈ Zm:

• if h ∈ H, then foranyΓ = (γ1, γ2, . . . , γk),

erP (h) < erΓ
s (h)+

√√√√ 8

m

(
k∑

i=1

lnN∞(Fi, γi/4, 2m) + ln

(
2

δ

)
+ k ln 2 +

k∑
i=1

ln

(
1

γi

))
;

• for anyΓ = (γ1, γ2, . . . , γk), if h ∈ H classifiess with marginΓ (so thaterΓ
s (h) = 0),

then

erP (h) <
2

m

(
k∑

i=1

log2N∞(Fi, γi/4, 2m) + log2

(
2

δ

)
+ k +

k∑
i=1

log2

(
1

γi

))
.

5 A special case: parallel perceptrons and the p-delta
learning rule

We now apply the above results to the special case in whichg is the majority function and the
constituent classifiers are linear threshold functions (or perceptrons). In this case, the results
tell us something about the generalization performance of a learning algorithm from [5, 6]
known as thep-delta learning rule(for Boolean-valued parallel perceptrons). This algorithm
incrementally updates the weight-vectors of the constituent perceptrons in such a way as to try
to maintain, for each, a marginγ. In their papers [5, 6], Aueret al. write that: “Since our parallel
perceptron is an aggregation of many simple perceptrons with large margins [...], one expects
that parallel perceptrons [trained with the p-delta algorithm] also exhibit good generalization.”
They provide empirical evidence of good generalization on standard data-sets. Theorem 4.1 and
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Theorem 4.2 help in giving some further justification for this learning paradigm, by providing
generalization error bounds that depend on the margins achieved by the constituent perceptrons.
Specifically, Theorem 5.1 (below) indicates that one might well expect better generalization
when the margins of the constituent linear threshold functions are large; and this is the rationale
behind the p-delta learning procedure. (The generalization error bounds given are just upper
bounds, and they also involve the empirical margin errorerΓ

s (h), which increases as the margins
are increased. Therefore it does not follow that the smallest error is necessarily achieved when
the margins are large. Nonetheless, the bounds suggest that maximizing these margins, subject
to maintaining a small empirical margin error, is a sensible strategy.)

We shall assume, for simplicity—and because there is no loss of generality in doing so—that
the thresholdsθi are fixed at0, so that the constituent threshold functions arehomogeneous
threshold functions. (Any threshold function with a non-zero threshold can be realized as a
restriction of a homogeneous threshold function in one more variable.) We shall also assume
that the domain of interest (the support of the marginal distributions onRn that we consider) is
the bounded setBR = {x ∈ Rn : ‖x‖ ≤ R} for someR ≥ 1. The threshold functions then take
the formh(x) = sgn(〈w, x〉) and, since scalingw by a positive constant does not change the
functionality, we may assume that‖w‖ = 1. So, we can assume that, for eachi, Hi = sgn(F )

whereF is the set{x 7→ 〈w, x〉 : ‖w‖ = 1}, regarded as a set of functionsBR → [−R,R].

The first part of the following theorem bounds the error when the margins are prescribed in
advance, and the second part bounds the error when the margins are not seta priori.

Theorem 5.1 Suppose thatg is the majority function ofk variables, and thatH is the set of all
functionsBR → {0, 1} of the form

h(x) = g(h1(x), h2(x), . . . , hk(x))

where eachhi is a homogeneous linear threshold function. LetZ denoteBR × {0, 1}.

1. LetΓ = (γ1, γ2, . . . , γk) ∈ (0, 1]k be given. Then, for any probability measureP onZ,
with probability at least1− δ, the following hold fors ∈ Zm:

• for all h ∈ H,

erP (h) < erΓ
s (h) +

√√√√ 8

m

(
216 ln(13m)

k∑
i=1

R2

γ2
i

+ ln

(
2

δ

))
;
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• if h ∈ H classifiess with marginΓ (so thaterΓ
s (h) = 0) then

erP (h) <
2

m

(
216 log2(13m)

k∑
i=1

R2

γ2
i

+ log2

(
2

δ

))
.

2. For any probability measureP onZm, with probability at least1− δ, the following hold
for s ∈ Zm: for all γ1, γ2, . . . , γk ∈ (0, 1],

• if h ∈ H andΓ = (γ1, γ2, . . . , γk), then

erP (h) < erΓ
s (h)+

√√√√ 8

m

(
864 ln(18m)

k∑
i=1

R2

γ2
i

+ ln

(
2

δ

)
+ k ln 2 +

k∑
i=1

ln

(
1

γi

))
;

• if h ∈ H classifiess with marginΓ = (γ1, . . . , γk) (so thaterΓ
s (h) = 0) then

erP (h) <
2

m

(
864 log2(18m)

k∑
i=1

R2

γ2
i

+ log2

(
2

δ

)
+ k +

k∑
i=1

log2

(
1

γi

))
.

We see from these bounds that a key term controlling the amount by which the true errorerP (h)

can differ from the observed margin errorerΓ
s (h) is the quantity

∑k
i=1(1/γ

2
i ).

The bounds take simpler forms, of course, when all theγi are equal. For example, we see that,
for any distributionP , with probability at least1− δ, for all Γ ∈ (0, 1]k whereγi = γ for all i,
if h ∈ H classifiess with marginΓ, then

erP (h) <
2

m

(
864 k log2(18m)

R2

γ2
+ log2

(
2

δ

)
+ k

(
1 + log2

(
1

γ

)))
.

In particular, therefore, if it is observed that each constituent perceptron has achieved a margin
γ > 0 after training on a sample, this gives a bound on the generalization error. (This is
one way in which the results where the margins are not pre-specified can be useful: this result
probabilistically bounds the generalization error of any classifier inH having zero sample error,
in terms of the (observed) margins that are achieved by its constituent classifiers.)
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6 Proofs

Proof of Theorem 4.1

The proof follows [1], which extends a technique from [15, 8] (where the caseerΓ
s (h) = 0 is

considered). It is a modification of proofs in [2, 3, 7, 14], which in turn are based on [18].

GivenΓ = (γ1, γ2, . . . , γn) and(s, s′) ∈ Zm × Zm, we note that iferP (h) ≥ erΓ
s (h) + ε and

ers′(h) ≥ erP (h)− ε/2, theners′(h) ≥ erΓ
s (h)− ε/2. It follows that if

Q = {s ∈ Zm : ∃h ∈ H with erP (h) ≥ erΓ
s (h) + ε}

and
R = {(s, s′) ∈ Zm × Zm : ∃h ∈ H with ers′(h) ≥ erΓ

s (h) + ε/2},

then

P 2m(R) ≥ P 2m
(
∃h ∈ H : erP (h) ≥ erΓ

s (h) + ε and ers′(h) ≥ erP (h)− ε/2
)

=

∫
Q

Pm
({
s′ : ∃h ∈ H, erP (h) ≥ erΓ

s (h) + ε and ers′(h) ≥ erP (h)− ε/2
})

dPm(s)

≥ 1

2
Pm(Q),

for m ≥ 2/ε2, where the final inequality follows fromPm(ers′(h) ≥ erP (h) − ε/2) ≥ 1/2,
for anyh ∈ H, by Chebychev’s inequality. Hence,Pm(Q) ≤ 2P 2m(R). LetG be the permu-
tation group (the ‘swapping group’) on the set{1, 2, . . . , 2m} generated by the transpositions
(i,m + i) for i = 1, 2, . . . ,m. ThenG acts onZ2m by permuting the coordinates: forσ ∈ G,
σ(z1, z2, . . . , z2m) = (zσ(1), . . . , zσ(m)). Now, by invariance ofP 2m under the action ofG,
P 2m(R) = E Pr(σ ∈ R) ≤ max{Pr(σz ∈ R) : z ∈ Z2m}, wherePr denotes the probability
over uniform choice ofσ from G, and the expectation is with respect toPm. (See [18, 2], for
instance.) Now,fix z ∈ Z2m, wherezi = (xi, bi). Let x = (x1, x2, . . . , x2m). Suppose thatCi

is aγi/2-cover ofFi with respect todx
∞, of minimum cardinality, which will be no more than

N∞(Fi, γi/2, 2m). Suppose thatσz = (s, s′) ∈ R. This means that for someh ∈ H = g(F ),
ers′(h) ≥ erΓ

s (h) + ε/2. Now, suppose that

h(x) = g (sgn(f1(x)), sgn(f2(x)), . . . , sgn(fk(x))) ,
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wherefi ∈ Fi, and letf̂i ∈ Ci be such thatdx
∞(f̂i, fi) < γi/2. Then, for alli, j, |fi(xj) −

f̂(xj)| < γi/2. Let ĥ be the function ing(F ) defined by

ĥ(x) = g
(
sgn(f̂1(x)), sgn(f̂2(x)), . . . , sgn(f̂k(x))

)
and letĤ denote the set of all sucĥh. Now, σz = (s, s′) ∈ R, so ers′(h) ≥ erΓ

s (h) + ε/2.
This implies thaterΓ/2

s′ (h) ≥ er
Γ/2
s (h) + ε/2, whereΓ/2 = (γ1/2, . . . , γk/2). This claim

follows from two observations: (i)erΓ/2
s′ (ĥ) ≥ ers′(h), and (ii) erΓ

s (h) ≥ er
Γ/2
s (ĥ). To see (i),

suppose thath does not classify(x, b) correctly. For eachi, eithersgn(f̂i(x)) = sgn(fi(x));
or, sgn(f̂i(x)) 6= sgn(f̂i(x)) but |f̂i(x)| < γi/2. This is because replacing theith constituent
functionfi by f̂i changes the output of that constituent function onx by at mostγi/2; this may
be enough of a change to change the sign of this output, but it is not enough to do so in such
a way as to achieve a margin ofγi/2. So, it follows that either̂h classifiesx in the same way
ash does (that is, wrongly), or it classifiesx correctly, but not with marginΓ. To see (ii),
suppose that̂h does not classify(x, b) with marginΓ/2. Then, either̂h does not classify(x, b)
correctly, or it does classify the example correctly, but at least one of its constituent functions
f̂i is such that|f̂i(x)| < γi/2. It is possible thath will classify (x, b) correctly even thougĥh
does not: this would mean that for at least onei, sgn(fi(x)) 6= sgn(f̂i(x)). However, in this
case, since|fi(x)− f̂i(x)| < γi/2, we would have|fi(x)| < γ/2 < γ. In the second case, since
|f̂i(x)| < γi/2, we have

|fi(x)| < γi/2 + |fi(x)− f̂i(x)| < γi

and soh does not classify the example with marginΓ. It now follows thatσz ∈ R if and only
if σz ∈ S, where

S = {(s, s′) ∈ Z2m : ∃ĥ ∈ Ĥ with er
Γ/2
s′ (ĥ) ≥ erΓ/2

s (ĥ) + ε/2} =
⋃
ĥ∈Ĥ

S(ĥ),

and where
S(ĥ) = {(s, s′) ∈ Z2m : er

Γ/2
s′ (ĥ) ≥ erΓ/2

s (ĥ) + ε/2}.

Hence,
Pr(σz ∈ R) ≤ Pr(σz ∈ S) ≤

∑
ĥ∈Ĥ

Pr
(
σz ∈ S(ĥ)

)
.

Now, fix ĥ ∈ Ĥ and letψi = 0 if ĥ classifieszi with margin at leastΓ/2, and1 otherwise. Then

Pr
(
σz ∈ S(ĥ)

)
= Pr

(
1

m

m∑
i=1

(ψm+i − ψi) ≥ ε/2

)
= Pr

(
1

m

m∑
i=1

ri|ψi − ψm+i| ≥ ε/2

)
,

11



where theri are independent (Rademacher){−1, 1} random variables, each taking value1 with
probability1/2, and where the last probability is over the joint distribution of theri. Hoeffding’s
inequality bounds this probability bye−ε2m/8. (See [2], for instance, for details.) We therefore
have (form ≥ 2/ε2)

Pr(σz ∈ R) ≤ |Ĥ|e−ε2m/8,

which gives

Pm(Q) ≤ 2P 2m(R) ≤ 2
k∏

i=1

|Ci| exp(−ε2m/8) ≤ 2
k∏

i=1

N∞(Fi, γi/2, 2m)e−ε2m/8.

This quantity is at mostδ if

ε ≥

√√√√ 8

m

(
k∑

i=1

lnN∞(Fi, γi/2, 2m) + ln

(
2

δ

))

(which also impliesm ≥ 2/ε2). The first statement of the Theorem follows.

The second part of the Theorem is proved similarly. It uses, first, the fact (see [18, 2]) that if

Q = {s ∈ Zm : ∃h ∈ H with erΓ
s (h) = 0, erP (h) ≥ ε}

and
R = {(s, s′) ∈ Zm × Zm : ∃h ∈ H with erΓ

s (h) = 0, ers′(h) ≥ ε/2},

thenPm(Q) ≤ 2P 2m(R). As before,P 2m(R) ≤ maxz∈Z2m Pr(σz ∈ R), wherePr denotes the
probability over uniform choice ofσ from the ‘swapping group’G. It can be shown that for any
z ∈ Z2m,

Pr (σz ∈ R) ≤ Pr

σz ∈ ⋃
ĥ∈Ĥ

S(ĥ)

 ,

where
S(ĥ) = {(s, s′) ∈ Z2m : ∃h ∈ H with erΓ

s (h) = 0, ers′(h) ≥ ε/2}.

It can then be seen (by an easy counting argument) that, for each fixedĥ ∈ Ĥ,

Pr
(
σz ∈ S(ĥ)

)
≤ 2m(1−ε/2)

|G|
= 2−εm/2.

The argument continues as above.

12



Proof of Theorem 4.2

We use a result from [1], which is ak-dimensional version of a ‘sieve’ result from [7]. This
states that ifP is any probability measure,k ∈ N, and

{E(Γ1,Γ2, δ) : Γ1,Γ2 ∈ (0, 1]k, δ ≤ 1}

is a set of events such that:

• for all Γ ∈ (0, 1]k, P(E(Γ,Γ, δ)) ≤ δ,

• Γ1 ≤ Γ ≤ Γ2 (component-wise) and0 < δ1 ≤ δ ≤ 1 imply E(Γ1,Γ2, δ1) ⊆ E(Γ,Γ, δ),

then

P

 ⋃
Γ∈(0,1]k

E

(
(1/2)Γ,Γ, δ 2−k

k∏
i=1

γi

) ≤ δ

for 0 < δ < 1. If Γ1 = (γ
(1)
1 , . . . , γ

(1)
k ) andΓ2 = (γ

(2)
1 , . . . , γ

(2)
k ), let

E(Γ1,Γ2, δ) =
{
(s, s′) : ∃h ∈ H with erP (h) ≥ erΓ2

s (h) + ε(Γ1,m, δ)
}
,

where

ε(Γ1,m, δ) =

√√√√ 8

m

(
k∑

i=1

lnN∞(Fi, γ
(1)
i /2, 2m) + ln

(
2

δ

))
.

Then Theorem 4.1 states thatPm(E(Γ,Γ, δ)) ≤ δ for any probability measureP on Z. It is
also easily seen that ifΓ1 ≤ Γ ≤ Γ2 and0 < δ1 ≤ δ ≤ 1, thenE(Γ1,Γ2, δ1) ⊆ E(Γ,Γ, δ): this
is becauseerΓ2

s (h) ≥ erΓ
s (h) andε(Γ1,m, δ1) ≥ ε(Γ,m, δ). It follows that

Pm

 ⋃
Γ∈(0,1]k

E

(
(1/2)Γ,Γ, δ 2−k

k∏
i=1

γi

) ≤ δ.

That is, withPm-probability at least1−δ, for anyh ∈ H and anyΓ = (γ1, γ2, . . . , γk) ∈ (0, 1]k,

erP (h) < erΓ
s (h) +

√√√√ 8

m

(
k∑

i=1

lnN∞(Fi, γi/4, 2m) + ln

(
2 2k

δ
∏k

i=1 γi

))
,

from which the first part of Theorem 4.2 follows. The second part is obtained similarly.
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Proof of Theorem 5.1

We use a recent bound of Zhang [20] for thed∞-covering numbers of sets bounded linear
mappings. This shows that ifF is the set of functions{x 7→ 〈w, x〉 : ‖w‖ = 1}, regarded as
mapping fromBR to [−R,R], then

log2N∞(F, ε,m) ≤ 36
R2

ε2
log2 (2 d4R/ε+ 2em+ 1) .

We prove the first of the four stated bounds: the others are very similarly derived from Theo-
rem 4.1 and Theorem 4.2. It follows from the bound of Zhang that

lnN∞(Fi, γi/2, 2m) ≤ 144R2

γ2
i

ln

(
42Rm

γi

)
,

so by the first part of Theorem 4.1, for a givenΓ, with probability at least1− δ, for all h ∈ H,
we have

erP (h) < erΓ
s (h) +

√√√√ 8

m

(
144R2

k∑
i=1

1

γ2
i

ln

(
42Rm

γi

)
+ ln

(
2

δ

))
.

The bound we require is

erP (h) < erΓ
s (h) +

√√√√ 8

m

(
216 ln(13m)

k∑
i=1

R2

γ2
i

+ ln

(
2

δ

))
.

This bound is trivially true if, for somei, m ≤ R2/γ2
i (since the term under the square root is

larger than1 in this case). Ifm > R2/γ2
i for all i, then

ln

(
42Rm

γi

)
<

3

2
ln(13m),

and so the required bound follows from the one obtained.
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