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Abstract

A symmetry of a game is a permutation of the player set and their strategy sets
that leaves the payoff functions invariant. In this paper we introduce and discuss
two relatively mild symmetry properties for set-valued solution concepts (that are
equivalent when the solution concepts are single-valued) and show using examples
that stable sets satisfy neither version. These examples also show that for every
integerq, there exists a game with an equilibrium component of inglex

1 Introduction

A symmetry of a game is a permutation of the player set and their strategy sets that
leaves the payoff functions invariant. Nash (1951) proved that every finite game has an
equilibrium point that is invariant under all the symmetries of the game. This result, and
its ready extension to a wider class of games, has proved to be a very useful property.
Indeed, in many economic applications (for e.g., the theory of auctions) there is a natural
symmetry among the players; and, analyses of these games focus on their symmetric
equilibria. Since the 1970s, a steady stream of refinements have been proposed, with little
or no attention paid to their symmetry properties. (Cf. van Damme, 1991, for a survey of
the refinements literature.) In this paper, we examine the implications of the symmetry
axiom for refinements, especialpystable sets as defined by Mertens (1989, 1991).

For singleton solution concepts, the formulation of a symmetry axiom is straightfor-
ward: we require the existence of a solution that is invariant under all the symmetries of
the game. Itis very easily verified then that Nash’s result extends to (all the different no-
tions of) perfect equilibria, proper equilibria, and sequential equilibria. In fact, persistent
equilibrium seems to be the only single-valued solution concept that does not satisfy the
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symmetry axiom: consider the battle of sexes game; its unique symmetric equilibrium is
the mixed equilibrium, which is not persistent.

Since stability is a set-valued solution concept, there is not a unique formulation of
the symmetry axiom. In Section 2 we provide two, relatively mild, symmetry axioms for
stability (that are equivalent for single-valued solution concepts) and show in Section 4
that p-stable sets fail to satisfy either of these two axioms. What is not clear to us, at
present, is whether stability as defined by Hillas (see Hillas, 1990, and Hillas et al, 2001)
violates these axioms, too.

One by-product of our analysis is that the examples we use to prove our result show
that for any integen, there exists a game with an equilibrium component of ingex
While the example for the casg= 0 is sufficient for proving our main result, we present
the entire class of examples, since they are of interest per se.

2 The Symmetry Axiom

Let G be a finite normal form game with player $¢t For each playen, let S, (resp.,2)

be his pure (resp., mixed) strategy set; andiet S — R be his payoff function, where
S=TxS,. We will denote still byrg, the extension of players payoff function to the set

> = MpZ, of mixed strategy profiles. Finally, let,S, = Un({n} x S,) be the set sum of

the pure strategy sets. The following definition of a symmetry of a game is due to Nash
(1951).

Definition 2.1 A symmetry of a gan® is a permutationp of S, such that
(a) For each playen, ¢({n} x S;) = {m} x S, for some playem.

(b) Lety and¢ be, resp., the permutations dfand Sthat are induced by; then, for all
neN, andse€ S Th(s) = Tyn) ($(S)).

The permutatiorp of Sin the definition above extends in the obvious way to a per-
mutation onZ, which, too, leaves the payoff functions invariant. Since a symmety of
Is completely specified by the induced permutatiorzpive will talk about symmetries
only in terms of thep’s. We will say that a subset* of ¥ is invariant under a symmetry
¢ if $(X*) =Z*. A subsetz* is symmetric if it is invariant under all symmetries of the
game.

In formulating a symmetry axiom, we could ask for a solution to be invariant under all
symmetries or just the existence of an invariant solution for each symmetry. The former
notion is really strong and intuitively appealing. On the other hand, if a game admits many
different symmetries, it is conceivable that the equilibrium that is played might depend
on which symmetry the players focus on. Hence, the latter notion of symmetry seems an
acceptable formulation, as well; in any case, it is certainly the weaker of the two notions
and, as such, will be our focus here.



Kohlberg and Mertens (1986) argued that certain basic axioms force us to consider set-
valued solution concepts. For such concepts, there are at least two different formulations.
One could require that, for each symmetry, there exists a solution that contains an invariant
equilibrium; or that there exists a solution that is invariant. Both these requirements are
equally attractive. If we interpret solution concepts as saying that nothing outside them
Is a rational outcome, then the first formulation would be reasonable since symmetric
equilibria are plausible. The second requirement, on the other hand, is a way of requiring
solutions themselves to treat equilibria symmetrically. Therefore, we have the following
two versions of the Symmetry Axiom.

Axiom 2.2 For every gamés, and every symmetiy of G, there exists a solutiob* that
is invariant underp.

Axiom 2.3 For every gamés, and every symmetiy of G, there exists a solutiok* that
contains a point™ that is invariant under.

The main result of the paper is the following Proposition, which is proved in Section 4
using the examples constructed in Section 3.

Proposition 2.4 p-stable sets satisfy neither of the two symmetry axioms.

3 Equilibrium Components with Arbitrary Index

The index of a component of equilibria of a game is an integer that is computed as the
local degree of a map for which the Nash equilibria of the game are the zeros. The index is
independent of the particular displacement map used and, for generic bimatrix games, it is
the negative of the index defined by Shapley (1974)—cf. Govindan and Wilson (1997b),
and, for games with any number of players, Demichelis and Germano (2000). In this
section, we will show how games with equilibrium components of arbitrary index can be
constructed. We explain these constructions in some detail, as readers might find them
unfamiliar; they may also be of use in other contexts.

First, consider 2 x 2 coordination game, say

42_ [1010 00
~ |00 1010

(in agreement with the notation in (5) below). This game has two pure strategy equilibria,
and one mixed equilibrium where both players play the mixed stre(t%@). The index

of any of these equilibria is easily determined by the following two properties, which
hold for any game: A pure strategy equilibrium whichstsct (that is, all unplayed pure
strategies have a payoff that is strictly lower than the equilibrium payoff) has idex
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and the sum over all equilibria of their indicestd. Therefore, the mixed equilibrium in
H2 has index-1.

Next, we add amutside optiorcalledOut to the set of pure strategies of player 1, say,
giving the game

10,10 00
G =| 00 1010|. (1)
99 99

An outside option (which we may add for one or both players) can be thought of as an
initial move that a player can make which terminates further play, and gives a constant
payoff to both players. If the player has not chosen his outside option, the original game is
played. The outside option payoff above is 9 for both players. This has the effect that an
equilibrium of the original game with payoff less than 9 disappears, in this case the mixed
strategy equilibrium. Geometrically, one can consider the “upper envelope”, that is, the
maximum, of the expected payoffs for the pure strategies of player 1 as functions of the
mixed strategy played by player 2. Any equilibrium strategy of player 2, together with
its payoff to player 1, is on that upper envelope. The outside option gives an additional
constant function that “cuts off” any former equilibrium payoffs below it.

In the gameG—, the original pure strategy equilibria &f? are unaffected, and con-
tinue to have index-1. Any such equilibrium, as long as it remains strict after introducing
the outside option, keeps its index, as the index of a strict equilibrium can be defined in
terms of the payoff sub-matrices corresponding to the pure best responses (cf. Shapley,
1974). The mixed strategy equilibrium B is absorbed into an equilibriusomponent
where player 1 plays his last strateQut. The original mixed equilibrium strateg(% %)
of player 2 is part of the outside option component, which is given by the set of mixed
strategies of player 2 so th@wt is a best response. @~ above, it is easy to see that
these are all mixed strategies of player 2 where each pure strategy has probability at most
9/10. In general, the outside option component is defined by a set of linear inequalities,
one for each pure strategy of the player who pl@ys.

Letybe some game with an outside option. We will denote the outside option equilib-
rium component of the gamgby C(y). In (1), the index ofC(G™) is —1, which is simply
the sum of the indices all equilibria of the original gahéthat have been obsorbed into
the outside option component, because the sum of all indiees.i$echnically, the index
of an equilibrium component can be defined as the sum of the indices of equilibria near
the component when the payoffs are perturbed generically; this sum does not depend on
the perturbation.

Itis well known that the best response structure of a bimatrix game remains unchanged
when adding a constant to any column of the payoffs to the row player, or a constant to a
row of the column player’s payoffs. This will allow us to cut off pure strategy equilibria
rather than mixed equilibria by using an outside option. We start w2tk 8 coordination
game with payoffsl, 1 on andO, 0 off the main diagnal, and add the constant 12 to the
first column of player 1 and row of player 2, and 7 to the second column respectively row.



The resulting gameél and a corresponding outside option ga@are given by

1313 7,12 1313 712
H=155 S8l G=1|127 88].
’ ’ 9,9 99

The gameH has two pure equilibria with payoffs3 13 and8, 8, respectively, and one
mixed equilibrium where both plags, ) with payoffs10,10. The outside option with
payoff 9 cuts off the pure strategy equilibrium with paydf8 but leaves the other equi-
libria intact. Consequently;(G) has index+1.

Next, we “destroy” the pure strategy equilibrium @by adding another column to
the game. Consider the games

o [1313 712 1,14] o [1132, 173 g _1%2 ]é 114]
- 12, 7 8, 8 2’ 1 ) - U p) ) .

99 99 99

Compared tdH, the pure strategy equilibrium with payoff8, 13is no longer present in
H'. Itis replaced by another, mixed equilibrium where player 1 pl@ys) and player 2
plays(%,o, %), with payoffs7 to player 1 and5/7 to player 2. This new mixed equilib-
rium has index+1. Since the payoff to player 1 in that equilibrium is less than the outside
option payoff 9, that equilibrium disappears®\. Consequently”(G’) has index+2,
because the only equilibrium that is not cut off has index

Finally, we consider the following ganté— which is a symmetrized version &f':
1313 712 114

H =127 88 21]|.
141 12 11

(2)

In this game, the mixed strategy equilibrium where both players @a%/, 0) is the equi-
librium with the highest payoff, yieldin@0 for both players. This equilibrium has index

—1. The other equilibria are as follows: The mixed strateé;o, %) of player 2, which

together with(%, %) of player 1 forms an equilibrium dfl’, is no longer part of an equilib-

rium as the third strategy of player 1k~ gives a higher payoff. By playing that strategy
as well, we obtain @ompletely mixeequilibrium where both players plais, i3, ),
with resulting payoff15/2 to both players. This equilibrium has indexi, as has the
pure strategy equilibrium with payof& 8. There are no other equilibria &f .

We useH ™ for constructing components with arbitrarily high positive index. For
k > 1, let H K be the game consisting &fcopies of the gamél~ on the diagonal and
zeros everywhere else, that is,

H- 0,0 --- 0,0
K 0,0 H™ 0,0
H™ = : . : ) (3)
0,0 00 --- H~™
kcgpies
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Each player ha8k strategies irH —%. For any nonempty set of tHecopies ofH —, and

any equilibrium in such a copy, one obtains an additional equilibriutd of by suitable
probability weights assigned to the copies. All such mixtures involving more than one
copy, however, give payoffs less than 8. There are no other equilibridfas the
payoffs in a copy oH ™ are all positive, and the other payoffs are zero.

The superscript itd ~K indicates the sum of indices of those equilibria that are not cut
off by adding a suitable outside option. To preserve symmetry between players, we give
bothplayers an outside opticQut as an additional pure strategy, which gives the game

. 99
Gk+1 _ H . 4
99 ... 9.9

The gameG*+! hask+ 1 equilibrium components: themixed strategy equilibria where
both players play strategies 1 and 2 in one copyof with probability% (yielding a
payoff of 10 for both), and the equilibrium componentin which at least one player chooses
the last strategy, the outside opti@ut. That component’(G¥*1) is given by those
strategy pairs where at least one player pléyg, and the other player playing such
that Out is a best response. The unique symmetric strategy pair in that component is
(Out,Out). All isolated equilibria have index-1. Since the indices of all equilibrium
components have to add up to one, the outside option equilibrium compgoneht?)

has indeX+ 1, which we chose as a superscript @i (4). Therefore, for each positive
integerq, the gameG! in (4) has a component with index this includes the trivial case
g=1, k=0, whichis al x 1 game.

A similar, simpler construction gives equilibrium components with arbitrary negative
index. Fork > 2, let HX be the followingk x k game:

10,20 00 --- 0,0
K 0,0 1010 00
H =1 . L (5)
0,0 00 --- 10,10
kcoﬁjmns

Just as (4) is obtained from (3), we add outside options for both players, and obtain
Hk 9,9
Gkl = : (k> 2). (6)
9,9 --- 99
The equilibria of gam&— (k1 are thek pure strategy equilibria of the coordination game,

yielding a payoff of 10 for both players, and the outside option equilibrium component
(G-, Since pure strategy equilibria have index, it follows that C(G~ (1)
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has index—(k — 1). Hence, for each negative integgrthere exists a game that has an
equilibrium component with indeg. The casé& = 1 gives an equilibrium with index 0,
but this game is too symmetric for our purpose, which is why we redui*e in (6).

In order to show tha-stable sets violate the symmetry axioms, we construct a game
whose only symmetric equilibrium component has index 0. We are doing this by com-
bining the games$i* andH &1 to a new game by placing them on the diagonal, and
adding outside options as before. For our purpkse 3 is sufficient. Thus, le6° be the
following 10 x 10 game:

H® 0 99
G=|0 H2 . (7)
99 --- 99

As argued after (3), the only equilibria @° that are not cut off are those with payoffs
10,10in H3 or H=2. Thus, by a counting argument, the outside option equilibrium com-
ponentC(G®) has index 0. Our constructions prove the following proposition.

Proposition 3.1 For each integen, there exists a (bimatrix) game that has a component
of equilibria with indexg.

Let now(q # 1,2 be some integer and consider the gd@¥eas defined in (4), (6), or
(7), respectively. Then the componantGY), which by construction has index is the
unique component of equilibria that is symmetric, i.e., invariant under all symmetries of
the game, andOut, Out) is the unique symmetric equilibrium. Moreover, there exists a
permutation under whiclg(GY) is the unique invariant component a(@dut, Out) is the
unique invariant equilibrium.

Example 3.2 For the game in(7), the outside option componegiGP®) (respectively,

the equilibrium(Out, Out)) is the only equilibrium component (respectively, equilibrium)
that is invariant under the symmetry that leaves the players invariant, but permutes the
strategies with the following permutation, written as a product of cycles, assuming the
first nine strategies aré, 2,...9:

(123)(47)(58)(69) (Out).

The first part of the permutation has order 3, and permutes the d##n@he middle part
of the permutation has order 2, and permutes the geiné The last part is the identity
on the outside option, having order 1. Hence, the whole permutation has order 6.

The initial examples show that an outside option for only one player would be suffi-
cient to construct an equilibrium component with arbitrary ingelowever, since we are
interested in the symmetry properties of a game, we add outside options for both players.



4  Analysis of the GameG*1

Before we analyse the stable sets of the ga@fesve characterize the perfect equilibria
of the component’(GY). Let P(GY) denote the subset of perfect equilibria@fG9).

Lemma 4.1 The subse®(GY) of perfect equilibria ofC(GY) is path-connected.

Proof. For a two-player bimatrix game, an equilibrium is perfect if and only if it is in
undominated strategies, i.e., if and only if there exists a completely mixed strategy against
which it is a best reply. This already implies tH&ut, Out) is perfect, sincéut is the
unique best reply against the uniform strategy of the other player. We will now show that
every other perfect equilibrium i®?(G%) can be path-connected witut, Out).

At least one of the two players plagut with probability 1 in the component(GY).
Therefore, and for reasons of symmetry, we can restrict our attention to perfect equilibria
of the form (oq,Out). Now letn be a completely mixed strategy against whahis a
best reply. This implies that the strategies usedirmust give a payoff of at least 9
againstn. Let H be the game obtained fro@9 by deleting the strateg@ut for both
players, and consider the completely mixed strategy equilibrium, csllat H (which
exists, see the comments following (2) and (3) above). This equilibrium gives both players
a payoff strictly smaller than 9. Hence there exists [0,1) such thaio; is a best reply
againstAt + (1 —A)n, and the strategies played @ yield a payoff of 9. Note that
N :=At+ (1—A)n is a completely mixed strategy. But thea; + (1— p)Out is a best
reply againstj for all p € [0,1], showing that{uo; + (1 — p)Out,Out) € P(GY), which
implies that the seP(GY) is star-shaped and, hence, path-connected. ]

The same analysis is possible in a game where only one player has an outside option.
This gives the following property of generic outside option equilibrium components:

Corollary 4.2 The set of perfect equilibria in an outside option equilibrium component
is path-connected if the payoffs for the equilibria that have been cut off are generic and if
the original game has an equilibrium in completely mixed strategies.

Since stable sets are connected sets of perfect equilibria, the following Proposition, in
conjunction with the remarks in Example 3.2, proves Proposition 2.4.

Proposition 4.3 Let p be either zero or a prime number greater than 1. Th&(GY)
contains ap-stable set ifig # 0 and p does not dividey. In particular, ?(G°) does not
contain ap-stable set for any.

Before proving the above Proposition, we review the concepp-sfability. Let
> denote the mixed strategy set of playerand = = =1 x ¥2. Let m be the num-
ber of pure strategies of each player. Given a vegterRT x R, one defines a per-
turbed gameéz9(n) as the game where the strategy sets are the sameGishiat where
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the payoff to playen from a strategy profileo is the payoff he gets under the pro-
file ((1+ﬁ1)_1(01—|—n1)’(1+ﬁ2)_1(02+n2)> in Gq’ where for ea.Chj — 172, ﬁj _
Z?;lrhj(- For eachD < € < 1, define

P={neRTxRY|fori=12n;<e}.

We usedP; to denote the topological boundary®f Let N the graph of the equilibrium
correspondence defined oy, i.e.,

N = {(n,0) € PLx X | gis an equilibrium ofG9(n) },

and letN; be defined accordingly. Denote pyoj the natural projection frorNl to P;. For
eachX C N, ande > 0, let (X¢,0X¢) = proj‘l(Pg,an) N X. In the following definition,
we use simplicial homology with coefficients &}, (whereZg = 7).

Definition 4.4 Thep-stable sets 089 are the Hausdorff limits of the sefs | (0,0) € X}
whereX varies over those closed, semi-algebraic subsek$ sifich that:

(a) Connexity:X¢\0X; is connected and denseXa for each sufficiently smadl > 0.

(b) Essentiality: proj : H.(Xe,0Xe; Zp) — H.(Pg,0P:; Zp) is nonzero for some, and then
for all sufficiently smallg > 0.

Each of the isolated equilibria @9 is p-stable: indeed, since these equilibria are
regular, the projection map from a neighbourhood of the equilibriukhimia homeomor-
phism ontoP: for smalle and thus satisfies the connexity and the essentiality condition.

We will now prove Proposition 4.3. By Govindan and Wilson (2001)P{f5%) con-
tains ap-stable set, thetP(GY) is itself p-stable. Therefore, it suffices to show that this
component is not a-stable set ify = 0 or p dividesq.

Choose an open neighbourhoddof ¢ in Z such that its closure does not contain
any of the isolated equilibria d89. Govindan and Wilson (2001, Remark 3.3) show that
there exist€g > 0 so that the closur® of the set{ (n,0) € Ng,\0ONg, | 0 € U } satisfies
the connexity condition of Definition 4.4. (The formulation in Govindan and Wilson,
2001, is different from ours in a few inessential aspects. Firstly, for every perturlygtion
they consider the gam@9(n/(1—1n)). Secondly, they consider the graph of the per-
turbed equilibrium correspondence. Clearly, there is a homeomorphism between the two
equilibrium graphs that commutes with the respective projections, so that the connexity
property is preserved.) Thus, for evéry € < g, the setS:\0S: is connected and dense
in &, where$§ is the closure of the s€t(n,o0) € Ne\oNg | 0 € U }. Moreover,Sis a
closed semi-algebraic subsetdfuch thatP(G%) = {o | (0,0) € S}. For future use, we
will also assume thadp is chosen to be small enough such that for egehP;,, none of
its equilibria belongs to the boundary 0f

If Scontains a seX that satisfies the essentiality condition, ttf&would satisfy the
essentiality condition as well. Therefor(GY) is p-stable iff S satisfies the essentiality
requirement.



Let A’ be playeli’s payoff matrix inGY. Every vector(g!,g?) in T = R™ x R™ defines
a perturbed game in which playés payoff matrix haijk + gij as its(j,k)-entry. Define
amapf : PL — I by f(n) = gwith g; = Af-n?andg? = A?-n'. Then the gamé(n) has
the same set of equilibria &9(n). Observe thaf is a homeomorphism, sinéé andA?
are nonsingular. For eadh< € < €, let (Qg,0Q¢) = f(P:,0P:) and let(T¢,0T¢) be the
image of(S,0S) under the homeomorphisinx id. It is sufficient to show tha®(GY) is
p-stable iff the projection map frorile,0Te) to (Qg, 0Q) is essential for all smad > 0.

Fix 0 < € < &. Sincef is a homeomorphism(Qg,0Q;) is a2m-ball with boundary.
LetE be the graph of the Nash equilibrium correspondencelovBy the definition of the
setS, we have thal\0T equalsE N (Q:\0Qe x U) and is, therefore, open B. It follows
readily from the proof of the Kohlberg-Mertens structure theorem (1986, Proposition 3.1)
that E is homeomorphic td"; hence,T¢\0T, is an open semi-algebrafim-manifold.
Moreover, T;\0T; is connected and dense Tg as S satisfies the connexity condition.
Consequently(Te,0T) is a pseudomanifold with boundary. (Cf. Munkres, 19883
Ex. 3.)

By Govindan and Wilson (1997a), the index®@fGY) can be computed as the local
degree of the projection map from a neighbourhood of the compondatténl”, for a
suitable orientation oE. By the choice ofeg, there exists a neighbourhood \bf of
(Qg,0Q¢) such that no game W has an equilibrium on the boundarydf Therefore,
the projection map fronv := EN (W x U) is proper ovelW. Since the index of the
componeniC(GY) is q, for every gamey € W, the sum of the indices of the components
of its equilibria that are contained W is g. Hence, the projection map froffg,dTe) to
(Qg,0Q¢) has degree. If g is zero, the map has degree zero; andgfes O the map is
essential mog iff p does not dividey. Thus?(GY) is p-stable iffqg # 0 and p does not
divide g, proving Proposition 4.3. ]

As an immediate consequence of the proof of Proposition 4.3, we obtain the following
Corollary.

Corollary 4.5 Let C be an equilibrium component of indexof a bimatrix game with
payoff matricesA! and A? for player 1 and 2, respectively. Al and A% have full rank
and if P(C) is connected, theq is p-stable if and only ify # 0 and p does not divide.

Remark 4.6 For every abelian grougM and a subgrougV’, Mertens (1991) defines

(M, M’)-stability just like p-stability, with the essentiality condition modified as follows:
proj.(H.(S,0S;M)), viewed as a subset bf ~ H, (P;,0P;;M), is not contained iM’.

The special case @M, M’) = (Z,,0) corresponds to the-stable sets. It is readily seen

that 2(GP) does not contain afiM,M’)-stable set for any paitM,M’). Thus all these
other variants fail to satisfy either of our symmetry axioms. Moreover, asking for es-
sentiality in homotopy—which is the idea of homotopy stability (see Mertens, 1991, Sec-
tion 4)—does not yield a positive result either: in the ga@fethe projection map from
($,0S) to (Pg,0P:) is homotopic to a map to the boundary (as maps between pairs),
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since the projection map has degree zero as a map from a pseudomanifold with boundary
to a ball pair.

Remark 4.7 As remarked in the Introduction, we do not know if the®gg%) contains
a stable set in the sense of Hillas.
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