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Abstract

A symmetry of a game is a permutation of the player set and their strategy sets
that leaves the payoff functions invariant. In this paper we introduce and discuss
two relatively mild symmetry properties for set-valued solution concepts (that are
equivalent when the solution concepts are single-valued) and show using examples
that stable sets satisfy neither version. These examples also show that for every
integerq, there exists a game with an equilibrium component of indexq.

1 Introduction

A symmetry of a game is a permutation of the player set and their strategy sets that
leaves the payoff functions invariant. Nash (1951) proved that every finite game has an
equilibrium point that is invariant under all the symmetries of the game. This result, and
its ready extension to a wider class of games, has proved to be a very useful property.
Indeed, in many economic applications (for e.g., the theory of auctions) there is a natural
symmetry among the players; and, analyses of these games focus on their symmetric
equilibria. Since the 1970s, a steady stream of refinements have been proposed, with little
or no attention paid to their symmetry properties. (Cf. van Damme, 1991, for a survey of
the refinements literature.) In this paper, we examine the implications of the symmetry
axiom for refinements, especiallyp-stable sets as defined by Mertens (1989, 1991).

For singleton solution concepts, the formulation of a symmetry axiom is straightfor-
ward: we require the existence of a solution that is invariant under all the symmetries of
the game. It is very easily verified then that Nash’s result extends to (all the different no-
tions of) perfect equilibria, proper equilibria, and sequential equilibria. In fact, persistent
equilibrium seems to be the only single-valued solution concept that does not satisfy the
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symmetry axiom: consider the battle of sexes game; its unique symmetric equilibrium is
the mixed equilibrium, which is not persistent.

Since stability is a set-valued solution concept, there is not a unique formulation of
the symmetry axiom. In Section 2 we provide two, relatively mild, symmetry axioms for
stability (that are equivalent for single-valued solution concepts) and show in Section 4
that p-stable sets fail to satisfy either of these two axioms. What is not clear to us, at
present, is whether stability as defined by Hillas (see Hillas, 1990, and Hillas et al, 2001)
violates these axioms, too.

One by-product of our analysis is that the examples we use to prove our result show
that for any integerq, there exists a game with an equilibrium component of indexq.
While the example for the caseq = 0 is sufficient for proving our main result, we present
the entire class of examples, since they are of interest per se.

2 The Symmetry Axiom

Let G be a finite normal form game with player setN. For each playern, let Sn (resp.,Σn)
be his pure (resp., mixed) strategy set; and letπn : S→ R be his payoff function, where
S= ΠnSn. We will denote still byπn the extension of playern’s payoff function to the set
Σ = ΠnΣn of mixed strategy profiles. Finally, let∨nSn = ∪n({n}×Sn) be the set sum of
the pure strategy sets. The following definition of a symmetry of a game is due to Nash
(1951).

Definition 2.1 A symmetry of a gameG is a permutationφ of∨nSn such that

(a) For each playern, φ({n}×Sn) = {m}×Sm for some playerm.

(b) Letψ andϕ be, resp., the permutations ofN andSthat are induced byφ; then, for all
n∈ N, ands∈ S, πn(s) = πψ(n)(ϕ(s)).

The permutationϕ of S in the definition above extends in the obvious way to a per-
mutation onΣ, which, too, leaves the payoff functions invariant. Since a symmetry ofG
is completely specified by the induced permutation ofΣ, we will talk about symmetries
only in terms of theϕ’s. We will say that a subsetΣ∗ of Σ is invariant under a symmetry
ϕ if ϕ(Σ∗) = Σ∗. A subsetΣ∗ is symmetric if it is invariant under all symmetries of the
game.

In formulating a symmetry axiom, we could ask for a solution to be invariant under all
symmetries or just the existence of an invariant solution for each symmetry. The former
notion is really strong and intuitively appealing. On the other hand, if a game admits many
different symmetries, it is conceivable that the equilibrium that is played might depend
on which symmetry the players focus on. Hence, the latter notion of symmetry seems an
acceptable formulation, as well; in any case, it is certainly the weaker of the two notions
and, as such, will be our focus here.
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Kohlberg and Mertens (1986) argued that certain basic axioms force us to consider set-
valued solution concepts. For such concepts, there are at least two different formulations.
One could require that, for each symmetry, there exists a solution that contains an invariant
equilibrium; or that there exists a solution that is invariant. Both these requirements are
equally attractive. If we interpret solution concepts as saying that nothing outside them
is a rational outcome, then the first formulation would be reasonable since symmetric
equilibria are plausible. The second requirement, on the other hand, is a way of requiring
solutions themselves to treat equilibria symmetrically. Therefore, we have the following
two versions of the Symmetry Axiom.

Axiom 2.2 For every gameG, and every symmetryϕ of G, there exists a solutionΣ∗ that
is invariant underϕ.

Axiom 2.3 For every gameG, and every symmetryϕ of G, there exists a solutionΣ∗ that
contains a pointσ∗ that is invariant underϕ.

The main result of the paper is the following Proposition, which is proved in Section 4
using the examples constructed in Section 3.

Proposition 2.4 p-stable sets satisfy neither of the two symmetry axioms.

3 Equilibrium Components with Arbitrary Index

The index of a component of equilibria of a game is an integer that is computed as the
local degree of a map for which the Nash equilibria of the game are the zeros. The index is
independent of the particular displacement map used and, for generic bimatrix games, it is
the negative of the index defined by Shapley (1974)—cf. Govindan and Wilson (1997b),
and, for games with any number of players, Demichelis and Germano (2000). In this
section, we will show how games with equilibrium components of arbitrary index can be
constructed. We explain these constructions in some detail, as readers might find them
unfamiliar; they may also be of use in other contexts.

First, consider a2×2 coordination game, say

H2 =
[
10,10 0,0
0,0 10,10

]

(in agreement with the notation in (5) below). This game has two pure strategy equilibria,
and one mixed equilibrium where both players play the mixed strategy(1

2, 1
2). The index

of any of these equilibria is easily determined by the following two properties, which
hold for any game: A pure strategy equilibrium which isstrict (that is, all unplayed pure
strategies have a payoff that is strictly lower than the equilibrium payoff) has index+1;
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and the sum over all equilibria of their indices is+1. Therefore, the mixed equilibrium in
H2 has index−1.

Next, we add anoutside optioncalledOut to the set of pure strategies of player 1, say,
giving the game

G− =




10,10 0,0
0,0 10,10
9,9 9,9


 . (1)

An outside option (which we may add for one or both players) can be thought of as an
initial move that a player can make which terminates further play, and gives a constant
payoff to both players. If the player has not chosen his outside option, the original game is
played. The outside option payoff above is 9 for both players. This has the effect that an
equilibrium of the original game with payoff less than 9 disappears, in this case the mixed
strategy equilibrium. Geometrically, one can consider the “upper envelope”, that is, the
maximum, of the expected payoffs for the pure strategies of player 1 as functions of the
mixed strategy played by player 2. Any equilibrium strategy of player 2, together with
its payoff to player 1, is on that upper envelope. The outside option gives an additional
constant function that “cuts off” any former equilibrium payoffs below it.

In the gameG−, the original pure strategy equilibria ofH2 are unaffected, and con-
tinue to have index+1. Any such equilibrium, as long as it remains strict after introducing
the outside option, keeps its index, as the index of a strict equilibrium can be defined in
terms of the payoff sub-matrices corresponding to the pure best responses (cf. Shapley,
1974). The mixed strategy equilibrium ofH2 is absorbed into an equilibriumcomponent
where player 1 plays his last strategyOut. The original mixed equilibrium strategy(1

2, 1
2)

of player 2 is part of the outside option component, which is given by the set of mixed
strategies of player 2 so thatOut is a best response. InG− above, it is easy to see that
these are all mixed strategies of player 2 where each pure strategy has probability at most
9/10. In general, the outside option component is defined by a set of linear inequalities,
one for each pure strategy of the player who playsOut.

Let γ be some game with an outside option. We will denote the outside option equilib-
rium component of the gameγ by C (γ). In (1), the index ofC (G−) is−1, which is simply
the sum of the indices all equilibria of the original gameH2 that have been obsorbed into
the outside option component, because the sum of all indices is+1. Technically, the index
of an equilibrium component can be defined as the sum of the indices of equilibria near
the component when the payoffs are perturbed generically; this sum does not depend on
the perturbation.

It is well known that the best response structure of a bimatrix game remains unchanged
when adding a constant to any column of the payoffs to the row player, or a constant to a
row of the column player’s payoffs. This will allow us to cut off pure strategy equilibria
rather than mixed equilibria by using an outside option. We start with a2×2 coordination
game with payoffs1,1 on and0,0 off the main diagnal, and add the constant 12 to the
first column of player 1 and row of player 2, and 7 to the second column respectively row.
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The resulting gameH and a corresponding outside option gameG are given by

H =
[
13,13 7,12
12,7 8,8

]
, G =




13,13 7,12
12,7 8,8
9,9 9,9


 .

The gameH has two pure equilibria with payoffs13,13 and8,8, respectively, and one
mixed equilibrium where both play(1

2, 1
2) with payoffs10,10. The outside option with

payoff 9 cuts off the pure strategy equilibrium with payoffs8,8 but leaves the other equi-
libria intact. Consequently,C (G) has index+1.

Next, we “destroy” the pure strategy equilibrium inG by adding another column to
the game. Consider the games

H ′ =
[
13,13 7,12 1,14
12,7 8,8 2,1

]
, G′ =




13,13 7,12 1,14
12,7 8,8 2,1
9,9 9,9 9,9


 .

Compared toH, the pure strategy equilibrium with payoffs13,13 is no longer present in
H ′. It is replaced by another, mixed equilibrium where player 1 plays(6

7, 1
7) and player 2

plays(1
2,0, 1

2), with payoffs7 to player 1 and85/7 to player 2. This new mixed equilib-
rium has index+1. Since the payoff to player 1 in that equilibrium is less than the outside
option payoff 9, that equilibrium disappears inG′. Consequently,C (G′) has index+2,
because the only equilibrium that is not cut off has index−1.

Finally, we consider the following gameH− which is a symmetrized version ofH ′:

H− =




13,13 7,12 1,14
12,7 8,8 2,1
14,1 1,2 1,1


 . (2)

In this game, the mixed strategy equilibrium where both players play(1
2, 1

2,0) is the equi-
librium with the highest payoff, yielding10 for both players. This equilibrium has index
−1. The other equilibria are as follows: The mixed strategy(1

2,0, 1
2) of player 2, which

together with(6
7, 1

7) of player 1 forms an equilibrium ofH ′, is no longer part of an equilib-
rium as the third strategy of player 1 inH− gives a higher payoff. By playing that strategy
as well, we obtain acompletely mixedequilibrium where both players play(1

2, 1
12,

5
12),

with resulting payoff15/2 to both players. This equilibrium has index+1, as has the
pure strategy equilibrium with payoffs8,8. There are no other equilibria ofH−.

We useH− for constructing components with arbitrarily high positive index. For
k > 1, let H−k be the game consisting ofk copies of the gameH− on the diagonal and
zeros everywhere else, that is,

H−k =




H− 0,0 · · · 0,0
0,0 H− 0,0

...
...

...
0,0 0,0 · · · H−




︸ ︷︷ ︸
k copies

. (3)
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Each player has3k strategies inH−k. For any nonempty set of thek copies ofH−, and
any equilibrium in such a copy, one obtains an additional equilibrium ofH−k by suitable
probability weights assigned to the copies. All such mixtures involving more than one
copy, however, give payoffs less than 8. There are no other equilibria ofH−k as the
payoffs in a copy ofH− are all positive, and the other payoffs are zero.

The superscript inH−k indicates the sum of indices of those equilibria that are not cut
off by adding a suitable outside option. To preserve symmetry between players, we give
bothplayers an outside optionOut as an additional pure strategy, which gives the game

Gk+1 =




H−k
9,9

...
9,9 · · · 9,9


 . (4)

The gameGk+1 hask+1 equilibrium components: thek mixed strategy equilibria where
both players play strategies 1 and 2 in one copy ofH− with probability 1

2 (yielding a
payoff of 10 for both), and the equilibrium component in which at least one player chooses
the last strategy, the outside optionOut. That componentC (Gk+1) is given by those
strategy pairs where at least one player playsOut, and the other player playing such
that Out is a best response. The unique symmetric strategy pair in that component is
(Out,Out). All isolated equilibria have index−1. Since the indices of all equilibrium
components have to add up to one, the outside option equilibrium componentC (Gk+1)
has indexk+1, which we chose as a superscript forG in (4). Therefore, for each positive
integerq, the gameGq in (4) has a component with indexq; this includes the trivial case
q = 1, k = 0, which is a1×1 game.

A similar, simpler construction gives equilibrium components with arbitrary negative
index. Fork > 2, let Hk be the followingk×k game:

Hk =




10,10 0,0 · · · 0,0
0,0 10,10 0,0

...
...

...
0,0 0,0 · · · 10,10




︸ ︷︷ ︸
k columns

(5)

Just as (4) is obtained from (3), we add outside options for both players, and obtain

G−(k−1) =




Hk
9,9

...
9,9 · · · 9,9


 (k > 2). (6)

The equilibria of gameG−(k−1) are thek pure strategy equilibria of the coordination game,
yielding a payoff of 10 for both players, and the outside option equilibrium component
C (G−(k−1)). Since pure strategy equilibria have index+1, it follows that C (G−(k−1))
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has index−(k−1). Hence, for each negative integerq, there exists a game that has an
equilibrium component with indexq. The casek = 1 gives an equilibrium with index 0,
but this game is too symmetric for our purpose, which is why we requirek > 2 in (6).

In order to show that0-stable sets violate the symmetry axioms, we construct a game
whose only symmetric equilibrium component has index 0. We are doing this by com-
bining the gamesHk andH−(k−1) to a new game by placing them on the diagonal, and
adding outside options as before. For our purpose,k = 3 is sufficient. Thus, letG0 be the
following 10×10game:

G0 =




H3 0 9,9

0 H−2 ...
9,9 · · · 9,9


 . (7)

As argued after (3), the only equilibria inG0 that are not cut off are those with payoffs
10,10 in H3 or H−2. Thus, by a counting argument, the outside option equilibrium com-
ponentC (G0) has index 0. Our constructions prove the following proposition.

Proposition 3.1 For each integerq, there exists a (bimatrix) game that has a component
of equilibria with indexq.

Let nowq 6= 1,2 be some integer and consider the gameGq as defined in (4), (6), or
(7), respectively. Then the componentC (Gq), which by construction has indexq, is the
unique component of equilibria that is symmetric, i.e., invariant under all symmetries of
the game, and(Out,Out) is the unique symmetric equilibrium. Moreover, there exists a
permutation under whichC (Gq) is the unique invariant component and(Out,Out) is the
unique invariant equilibrium.

Example 3.2 For the game in(7), the outside option componentC (G0) (respectively,
the equilibrium(Out,Out)) is the only equilibrium component (respectively, equilibrium)
that is invariant under the symmetry that leaves the players invariant, but permutes the
strategies with the following permutation, written as a product of cycles, assuming the
first nine strategies are1,2, . . .9:

(123)(47)(58)(69)(Out).

The first part of the permutation has order 3, and permutes the gameH3. The middle part
of the permutation has order 2, and permutes the gameH−2. The last part is the identity
on the outside option, having order 1. Hence, the whole permutation has order 6.

The initial examples show that an outside option for only one player would be suffi-
cient to construct an equilibrium component with arbitrary indexq. However, since we are
interested in the symmetry properties of a game, we add outside options for both players.
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4 Analysis of the GameGq

Before we analyse the stable sets of the gamesGq, we characterize the perfect equilibria
of the componentC (Gq). Let P (Gq) denote the subset of perfect equilibria ofC (Gq).

Lemma 4.1 The subsetP (Gq) of perfect equilibria ofC (Gq) is path-connected.

Proof. For a two-player bimatrix game, an equilibrium is perfect if and only if it is in
undominated strategies, i.e., if and only if there exists a completely mixed strategy against
which it is a best reply. This already implies that(Out,Out) is perfect, sinceOut is the
unique best reply against the uniform strategy of the other player. We will now show that
every other perfect equilibrium inP (Gq) can be path-connected with(Out,Out).

At least one of the two players playsOut with probability 1 in the componentC (Gq).
Therefore, and for reasons of symmetry, we can restrict our attention to perfect equilibria
of the form(σ1,Out). Now let η be a completely mixed strategy against whichσ1 is a
best reply. This implies that the strategies used inσ1 must give a payoff of at least 9
againstη. Let H be the game obtained fromGq by deleting the strategyOut for both
players, and consider the completely mixed strategy equilibrium, call itτ, of H (which
exists, see the comments following (2) and (3) above). This equilibrium gives both players
a payoff strictly smaller than 9. Hence there existsλ ∈ [0,1) such thatσ1 is a best reply
againstλτ + (1− λ)η, and the strategies played inσ1 yield a payoff of 9. Note that
η̃ := λτ +(1−λ)η is a completely mixed strategy. But thenµσ1 +(1−µ)Out is a best
reply against̃η for all µ∈ [0,1], showing that(µσ1 +(1−µ)Out,Out) ∈ P (Gq), which
implies that the setP (Gq) is star-shaped and, hence, path-connected.

The same analysis is possible in a game where only one player has an outside option.
This gives the following property of generic outside option equilibrium components:

Corollary 4.2 The set of perfect equilibria in an outside option equilibrium component
is path-connected if the payoffs for the equilibria that have been cut off are generic and if
the original game has an equilibrium in completely mixed strategies.

Since stable sets are connected sets of perfect equilibria, the following Proposition, in
conjunction with the remarks in Example 3.2, proves Proposition 2.4.

Proposition 4.3 Let p be either zero or a prime number greater than 1. Then,P (Gq)
contains ap-stable set iffq 6= 0 and p does not divideq. In particular, P (G0) does not
contain ap-stable set for anyp.

Before proving the above Proposition, we review the concept ofp-stability. Let
Σi denote the mixed strategy set of playeri, and Σ = Σ1× Σ2. Let m be the num-
ber of pure strategies of each player. Given a vectorη ∈ Rm

+×Rm
+, one defines a per-

turbed gameGq(η) as the game where the strategy sets are the same as inGq but where
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the payoff to playeri from a strategy profileσ is the payoff he gets under the pro-

file
(
(1+η1)

−1
(σ1 +η1),(1+η2)

−1
(σ2 +η2)

)
in Gq, where for eachj = 1,2, η j =

∑m
k=1η j

k. For each0 6 ε 6 1, define

Pε = {η ∈ Rm
+×Rm

+ | for i = 1,2, ηi 6 ε}.
We use∂Pε to denote the topological boundary ofPε. Let N the graph of the equilibrium
correspondence defined overP1, i.e.,

N = {(η,σ) ∈ P1×Σ | σ is an equilibrium ofGq(η)},
and letNε be defined accordingly. Denote byproj the natural projection fromN to P1. For
eachX ⊆ N, andε > 0, let (Xε,∂Xε) = proj−1(Pε,∂Pε)∩X. In the following definition,
we use simplicial homology with coefficients inZp (whereZ0 = Z).

Definition 4.4 Thep-stable sets ofGq are the Hausdorff limits of the sets{σ | (0,σ)∈X}
whereX varies over those closed, semi-algebraic subsets ofN such that:

(a) Connexity:Xε\∂Xε is connected and dense inXε for each sufficiently smallε > 0.

(b) Essentiality:proj : H∗(Xε,∂Xε;Zp)→ H∗(Pε,∂Pε;Zp) is nonzero for some, and then
for all sufficiently small,ε > 0.

Each of the isolated equilibria ofGq is p-stable: indeed, since these equilibria are
regular, the projection map from a neighbourhood of the equilibrium inN is a homeomor-
phism ontoPε for smallε and thus satisfies the connexity and the essentiality condition.

We will now prove Proposition 4.3. By Govindan and Wilson (2001), ifP (Gq) con-
tains ap-stable set, thenP (Gq) is itself p-stable. Therefore, it suffices to show that this
component is not ap-stable set ifq = 0 or p dividesq.

Choose an open neighbourhoodU of C in Σ such that its closure does not contain
any of the isolated equilibria ofGq. Govindan and Wilson (2001, Remark 3.3) show that
there existsε0 > 0 so that the closureS of the set{(η,σ) ∈ Nε0\∂Nε0 | σ ∈U } satisfies
the connexity condition of Definition 4.4. (The formulation in Govindan and Wilson,
2001, is different from ours in a few inessential aspects. Firstly, for every perturbationη,
they consider the gameGq(η/(1−η)). Secondly, they consider the graph of the per-
turbed equilibrium correspondence. Clearly, there is a homeomorphism between the two
equilibrium graphs that commutes with the respective projections, so that the connexity
property is preserved.) Thus, for every0 < ε 6 ε0, the setSε\∂Sε is connected and dense
in Sε, whereSε is the closure of the set{(η,σ) ∈ Nε\∂Nε | σ ∈ U }. Moreover,S is a
closed semi-algebraic subset ofN such thatP (Gq) = {σ | (0,σ) ∈ S}. For future use, we
will also assume thatε0 is chosen to be small enough such that for eachη ∈ Pε0, none of
its equilibria belongs to the boundary ofU .

If Scontains a setX that satisfies the essentiality condition, thenSwould satisfy the
essentiality condition as well. Therefore,P (Gq) is p-stable iffSsatisfies the essentiality
requirement.
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Let Ai be playeri’s payoff matrix inGq. Every vector(g1,g2) in Γ≡Rm×Rm defines
a perturbed game in which playeri’s payoff matrix hasAi

jk +gi
j as its( j,k)-entry. Define

a mapf : P1→ Γ by f (η) = g with g1
j = A1

j ·η2 andg2
j = A2

j ·η1. Then the gamef (η) has
the same set of equilibria asGq(η). Observe thatf is a homeomorphism, sinceA1 andA2

are nonsingular. For each0 6 ε 6 ε0, let (Qε,∂Qε) = f (Pε,∂Pε) and let(Tε,∂Tε) be the
image of(Sε,∂Sε) under the homeomorphismf × id. It is sufficient to show thatP (Gq) is
p-stable iff the projection map from(Tε,∂Tε) to (Qε,∂Qε) is essential for all smallε > 0.

Fix 0 < ε 6 ε0. Since f is a homeomorphism,(Qε,∂Qε) is a2m-ball with boundary.
LetE be the graph of the Nash equilibrium correspondence overΓ. By the definition of the
setS, we have thatTε\∂Tε equalsE∩(Qε\∂Qε×U) and is, therefore, open inE. It follows
readily from the proof of the Kohlberg-Mertens structure theorem (1986, Proposition 3.1)
that E is homeomorphic toΓ; hence,Tε\∂Tε, is an open semi-algebraic2m-manifold.
Moreover,Tε\∂Tε is connected and dense inTε as S satisfies the connexity condition.
Consequently,(Tε,∂Tε) is a pseudomanifold with boundary. (Cf. Munkres, 1984,§63
Ex. 3.)

By Govindan and Wilson (1997a), the index ofC(Gq) can be computed as the local
degree of the projection map from a neighbourhood of the component inE to Γ, for a
suitable orientation ofE. By the choice ofε0, there exists a neighbourhood ofW of
(Qε,∂Qε) such that no game inW has an equilibrium on the boundary ofU . Therefore,
the projection map fromV := E ∩ (W×U) is proper overW. Since the index of the
componentC (Gq) is q, for every gameg∈W, the sum of the indices of the components
of its equilibria that are contained inU is q. Hence, the projection map from(Tε,∂Tε) to
(Qε,∂Qε) has degreeq. If q is zero, the map has degree zero; and forq 6= 0 the map is
essential modp iff p does not divideq. ThusP (Gq) is p-stable iffq 6= 0 andp does not
divideq, proving Proposition 4.3.

As an immediate consequence of the proof of Proposition 4.3, we obtain the following
Corollary.

Corollary 4.5 Let C be an equilibrium component of indexq of a bimatrix game with
payoff matricesA1 and A2 for player 1 and 2, respectively. IfA1 and A2 have full rank
and if P (C ) is connected, thenC is p-stable if and only ifq 6= 0 and p does not divideq.

Remark 4.6 For every abelian groupM and a subgroupM′, Mertens (1991) defines
(M,M′)-stability just likep-stability, with the essentiality condition modified as follows:
pro j∗(H∗(Sε,∂Sε;M)), viewed as a subset ofM ≈ H∗(Pε,∂Pε;M), is not contained inM′.
The special case of(M,M′) = (Zp,0) corresponds to thep-stable sets. It is readily seen
that P (G0) does not contain an(M,M′)-stable set for any pair(M,M′). Thus all these
other variants fail to satisfy either of our symmetry axioms. Moreover, asking for es-
sentiality in homotopy—which is the idea of homotopy stability (see Mertens, 1991, Sec-
tion 4)—does not yield a positive result either: in the gameG0, the projection map from
(Sε,∂Sε) to (Pε,∂Pε) is homotopic to a map to the boundary (as maps between pairs),
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since the projection map has degree zero as a map from a pseudomanifold with boundary
to a ball pair.

Remark 4.7 As remarked in the Introduction, we do not know if the setP (Gq) contains
a stable set in the sense of Hillas.
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