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Abstract

Let L(Qt) denote the number of linear extensions of the t-dimensional Boolean
lattice Qt. We use the entropy method of Kahn to show that
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= log
(

t
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)
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log e + o(1),

where the logarithms are base 2. We also find the exact maximum number of linear
extensions of a d-regular bipartite order on n elements, in the case when n is a
multiple of 2d.
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1 Introduction

Let L(P ) denote the number of linear extensions of a poset P . A natural problem is
to estimate L(P ) when P is the Boolean lattice Qt, consisting of the subsets of [t] =
{1, 2, . . . , t}, ordered by inclusion. This problem was apparently first posed by Richard
Stanley (see Sha and Kleitman [14]), although it has also been raised by several others
independently.

The Boolean lattice Qt is naturally partitioned into its level sets (or simply levels) Aj,
where Aj consists of those subsets of [t] of size exactly j. A trivial lower bound on L(Qt)
is

∏t
j=0

(
t
j

)
!, since this counts exactly those linear extensions of Qt in which all of the jth

level comes below the (j + 1)st, for each j.

A trivial upper bound is
(

t
bt/2c

)2t

; to see this, consider writing down a linear extension
from the bottom up – at each stage the set of possible next elements is an antichain in
Qt, and so has size at most

(
t

bt/2c
)
. For many purposes, these bounds are sufficiently close:

they can be written as

log

(
t

bt/2c
)
− 3

2
log e + o(1) ≤ log(L(Qt))

2t
≤ log

(
t

bt/2c
)

.

Here and throughout, log denotes the base 2 logarithm.

The only previous improvement on these trivial bounds was made by Sha and Kleit-
man [14], who improved the upper bound to

L(Qt) ≤
t∏

j=0

(
t

j

)(t
j)
≤

t∏
j=0

(
t

j

)
! exp(2t),

yielding
log(L(Qt))

2t
≤ log

(
t

bt/2c
)
− 1

2
log e + o(1).

Sha and Kleitman suggested that the simple lower bound in fact gives the right value of
the constant term in the asymptotic expansion for log(L(Qt))/2t, namely 3

2
log e. They

also remarked that the lower bound can be improved slightly to

log L(Qt)

2t
≥ log

(
t

bt/2c
)
− 3

2
log e +

C

t
,

for some positive constant C. Our primary purpose in this paper is to prove the following
result, which indeed shows that the constant term in the asymptotic expansion is 3

2
log e,

and gets reasonably close to the error term.

Theorem 1.1 For any positive integer t,

L(Qt) ≤ exp

(
2t 6 ln t

t

) t∏
j=0

(
t

j

)
! .
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Corollary 1.2

log(L(Qt))

2t
= log

(
t

bt/2c
)
− 3

2
log e + O

(
ln t

t

)
.

Theorem 1.1 supports the intuition that, in a typical linear extension of Qt, most of
the jth level appears below most of the (j + 1)st, for each j.

Theorem 1.1 is a special case of a more general result. A ranked poset P is a poset in
which every maximal chain has the same length. A ranked poset is naturally partitioned
into ranks A1, . . . , Ak, where Aj contains those elements x such that the longest chain
with top element x has exactly j elements. In a ranked poset, if x ∈ Aj is covered by
an element y, then y ∈ Aj+1. Also, every element in Aj is above some element of Aj−1

(provided j > 1) and below some element of Aj+1 (provided j < k).

For a positive integer k ≥ 2, and for j = 1, 2, . . . , k, let nj, uj, and dj be arbitrary
positive integers. Now let P be an n-element ranked poset with ranks A1, A2, . . . , Ak,
of sizes n1, n2, . . . , nk respectively, such that every element of Aj is above exactly dj

elements of Aj−1 (j ≥ 2), and every element of Aj is below exactly uj elements of Aj+1

(j ≤ k − 1). Finally let r =
∑k

j=2(nj−1/dj).

Theorem 1.3 For P a poset as above, the number L(P ) of linear extensions of P satisfies

L(P ) ≤
(

2e(k − 1)n

r

)r

n1! · · ·nk! . (1)

Of course, n1! · · ·nk! is a lower bound on L(P ) for such a poset P . We get a useful
bound whenever r = o(n/ ln k); if we think of r as approximately n/d̃, where d̃ is the
harmonic mean of the “down-degrees” of elements of P , then this corresponds to the mild

condition d̃ = ω(ln k). In this case, the multiplicative “error term”
(

2e(k−1)n
r

)r

is 2o(n); in

the context of counting linear extensions, this means that n1! · · ·nk! is a good estimate of
L(P ).

Our proof of this theorem is based on what seems to be emerging as an “entropy
method,” stemming from Kahn’s proof [10] of a result of Kleitman and Markowsky on
Dedekind’s problem concerning the number of antichains in the Boolean lattice. Other
applications of this method can be found in [2], [8] and [9].

In the case where there are just two ranks, i.e., the poset P is bipartite, we are able
to prove a more precise result.

Theorem 1.4 Let P be a ranked poset on n elements, with two ranks A and B, such that
every element of A is below exactly u elements of B, and every element of B is above
exactly d elements of A. Then

L(P ) ≤ n!

(
d + u

u

)−n/(d+u)

.
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This result is best possible for n a multiple of d + u. Indeed the expression given is
the number of linear extensions of the disjoint union of n/(d + u) copies of the complete
bipartite poset Kd,u with d minimal and u maximal elements.

Perhaps curiously, we cannot replace “exactly” by “at least” in the degree conditions
of Theorem 1.4. Indeed, for n large, form a bipartite poset P with some d elements of
A below all elements of B, some u elements of B above all elements of A, and no other
relations. Then L(P ) ≥ (n−d−u)!, which is much larger than the bound in Theorem 1.4.

Fishburn and Trotter [7] studied a seemingly related problem, where they fixed the
number n of elements and the number m of comparable pairs, and sought to maximize
the number of linear extensions. They proved that the extremal poset for their problem
is always a semiorder; our extremal examples are not.

In Section 2, we provide the necessary background on entropy. Then we prove Theo-
rem 1.4 in Section 3; this proof is particularly close to one given by Kahn in [9].

In Section 4, we give the proof of Theorem 1.3, which requires overcoming various
technical difficulties. Theorem 1.1 follows almost immediately from Theorem 1.3.

The result, and the method, of Sha and Kleitman was extended by Shastri [15] to cover
any ranked poset satisfying the LYM condition, the sizes of whose ranks form a symmetric
unimodal sequence. In Section 5, we show that the Sha-Kleitman bound L(P ) ≤ ∏k

j=1 n
nj

j

holds for any ranked poset satisfying the LYM condition, regardless of the degrees and
rank sizes n1, . . . , nk: in fact this is an immediate consequence of a result of Kahn and
Kim [11] – for which we supply an alternative proof that might be of some interest.

2 Basics on Entropy

In this section we recall various basic facts on entropy, including a powerful lemma of
Shearer. Our presentation follows that in [9] very closely. Some standard references for
material on entropy include [5], [6], and [12].

Let X, Y, and Z denote arbitrary discrete random variables. The entropy of X is
defined to be

H(X) =
∑

x

p(x) log
1

p(x)
,

where p(x) = P(X = x). The conditional entropy of X given Y is

H(X | Y) = EH(X | Y = y) =
∑

y

p(y)
∑

x

p(x|y) log
1

p(x|y)
,

where p(x|y) = P(X = x | Y = y).

For a random vector X = (X1, . . . ,Xn), viewed as a random variable, the chain rule of
entropy tells us that

H(X) = H(X1) + H(X2 | X1) + · · ·+ H(Xn | X1, . . . ,Xn−1). (2)
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We will also make use of the inequalities

H(X) ≤ log |range(X)|, with equality if X is uniform, (3)

H(X | Y) ≤ H(X),

and more generally,

if Y determines Z then H(X | Y) ≤ H(X | Z), (4)

where “Y determines Z” means formally that H(Z | Y) = 0. Note that (2) and (4) imply

H(X) ≤ H(Y) + H(X | Y) (5)

and also the sub-additive property of entropy:

H(X1, . . . ,Xn) ≤
∑

H(Xi). (6)

We also have a conditional version of (6):

H(X1, . . . ,Xn | Y) ≤
∑

H(Xi | Y).

Finally we need the following lemma of Shearer (see page 33 in [4]), which refines the
sub-additivity property (6). A particularly elegant and short proof of this useful lemma is
given in [13]. For a random vector X = (X1, . . . ,Xm) and A ⊆ [m], set XA = (Xi : i ∈ A).

Lemma 2.1 Let X = (X1, . . . ,Xm) be a random vector and A a collection of (not nec-
essarily distinct) subsets of [m], with each element of [m] contained in at least d members
of A. Then

H(X) ≤ 1

d

∑
A∈A

H(XA).

The conditional analog of Shearer’s lemma, where all entropies are taken conditional on
the same random variable Y, is true as well, and we make use of it in our proof.

3 Bipartite posets

In this section, we prove Theorem 1.4.

Let CM denote the M -element chain with groundset [M ] = {1, . . . , M}, with the
standard order. We make use of an idea of Shepp [16, 17]: rather than work directly
with linear extensions, we count the number OM(P ) of order-preserving maps from the
n-element poset P to CM , i.e., functions f from P to CM such that x < y implies
f(x) ≤ f(y). The connection with linear extensions is given by the following easy lemma,
first observed by Shepp.
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Lemma 3.1 For any n-element poset P ,

lim
M→∞

OM(P )

Mn
=

L(P )

n!
.

Thus Theorem 1.4 will be an easy consequence of the following result.

Theorem 3.2 Let P be an n-element ranked poset with two ranks A and B, such that
each element of A is below exactly u elements of B, and each element of B is above exactly
d elements of A, and let M be any natural number. Then

OM(P ) ≤
(

M∑
j=1

[(M − j + 1)u − (M − j)u] jd

)n/(d+u)

= OM(Kd,u)
n/(d+u).

To see the final identity, note that the j-term in the sum counts order-preserving maps
f of Kd,u in which miny∈B f(y) is equal to j. Of course, here too we have equality when
P is the disjoint union of copies of Kd,u.

For M = 2, order-preserving maps from P to C2 are in 1-1 correspondence with
antichains in P , which in turn are exactly independent sets in the (bipartite) comparability
graph. So the number of independent sets in a “(u, d)-biregular” bipartite graph on n
vertices is at most (2u + 2d − 1)n/(d+u), with equality if the graph is a disjoint union of
Kd,us. This result is in fact Theorem 4.3 of Kahn [9], and in this case our proof is nothing
more than a direct translation of Kahn’s. Indeed, our proof of Theorem 3.2 follows Kahn’s
proof very closely.

Proof. Let P be a poset with ranks A and B satisfying the conditions of the theorem,
and let f be a uniform random variable over all elements of OM(P ). Set a = |A| and
b = |B|, so that n = a + b.

For X a subset of the ground-set of P , let fX be the restriction of f to X. For
x ∈ A, let U(x) be the set of elements in B covering x, and define the random variable
Yx = min fU(x). Finally, for x ∈ A and j ∈ [M ], let px(j) be the probability that Yx is
equal to j.

Now we have
log OM(P ) = H(f) = H(fB) + H(fA | fB).

If B = {y1, . . . , yb}, set fi = f(yi), and think of fB as the vector (f1, . . . , fb). We apply
Shearer’s lemma to this vector, with A the collection of sets {i : yi ∈ U(x)}, for x ∈ A.
As each yi is in d of these sets, we get

H(fB) ≤ 1

d

∑
x∈A

H(fU(x)).

Furthermore, noting that H(Yx | fU(x)) = 0, we have

H(fU(x)) = H(Yx) + H(fU(x) | Yx) =
M∑

j=1

px(j) log(1/px(j)) +
M∑

j=1

px(j)H(fU(x) | Yx = j).
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As |U(x)| = u for every x, there are exactly (M − j + 1)u− (M − j)u values that fU(x)

can take consistent with min fU(x) = Yx = j, so

H(fU(x) | Yx = j) ≤ log [(M − j + 1)u − (M − j)u] .

The term H(fA | fB) is at most

∑
x∈A

H(f(x) | fB) ≤
∑
x∈A

H(f(x) | Yx), using (4)

=
∑
x∈A

M∑
j=1

px(j)H(f(x) | Yx = j) ≤
∑
x∈A

M∑
j=1

px(j) log j,

as, if min fU(x) = Yx = j, then f(x) takes one of the values 1, . . . , j.

Combining all these estimates, we have:

log OM(P ) ≤ 1

d

∑
x∈A

M∑
j=1

px(j) log

(
[(M − j + 1)u − (M − j)u] jd

px(j)

)
.

Finally, we apply Jensen’s inequality to the sum, and find that

log OM(P ) ≤ 1

d

∑
x∈A

log

(
M∑

j=1

[(M − j + 1)u − (M − j)u] jd

)
,

so

OM(P ) ≤
(

M∑
j=1

[(M − j + 1)u − (M − j)u] jd

)a/d

.

This is the desired result, as au = bd, so a/d = b/u = n/(d + u).

To deduce Theorem 1.4, we could estimate the sum in Theorem 3.2, but it is easier
and more informative to use the result in the form OM(P ) ≤ OM(Kd,u)

n/(d+u).

Proof of Theorem 1.4. For P a poset satisfying the conditions of the theorem, we have,
using Theorem 3.2 and Lemma 3.1,

L(P )

n!
= lim

M→∞
OM(P )

Mn
≤ lim

M→∞
OM(Kd,u)

n/(d+u)

Mn
=

(
lim

M→∞
OM(Kd,u)

Md+u

)n/(d+u)

=

(
L(Kd,u)

(d + u)!

)n/(d+u)

=

(
d! u!

(d + u)!

)n/(d+u)

,

which is the required result.
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As an example of an application, consider the poset consisting of the middle two levels
of the Boolean cube Qt, with t = 2s− 1, so the number of elements is n = 2

(
2s−1

s

)
. This

is a regular bipartite poset with up- and down-degree both equal to s, so the number of
linear extensions is at most

n!

(
2s

s

)−n/2s

≤ (n/2)!2 exp ((1 + o(1))n log s/4s) .

We do not know of any other way to obtain this good an estimate.

4 Proof of Main Theorem

As in the introduction, let P be a ranked poset with ranks A1, A2, . . . , Ak, of sizes n1, n2,
. . . , nk respectively, such that every element of Aj is below exactly uj elements of Aj+1

(j ≤ k − 1), and every element of Aj is above exactly dj elements of Aj−1 (j ≥ 2).

While our basic approach will be the same as in the previous section, we have a number
of additional difficulties to overcome in this more general case.

Proof of Theorem 1.3. As in the bipartite case, our plan is to bound the number
OM(P ) of order-preserving maps from P to the chain CM , for M suitably larger than n,
and then to deduce the desired bound on L(P ) from it.

Again, let f be a uniform random variable on the set of all order-preserving maps from
P to CM , and let fX denote the restriction of the map f to the subset X. For x ∈ Ai with
i ≤ k − 1, set U(x) = {y ∈ Ai+1 : y > x} (the set of ui elements covering x), and let the

random variable Bx be
⌈ s

M
min fU(x)

⌉
, where s ≤ M is fixed and will be specified later.

Thus Bx takes an integer value between 1 and s inclusive; we think of CM as divided
into blocks of consecutive integers of size M/s: Bx tells us which is the lowest block an
element of U(x) is mapped to. Suppose that x > y in P , with Bx = bx and By = by; then
f(x) ≤ min fU(x) ≤ M

s
bx, while f(x) ≥ min fU(y) > M

s
(by − 1), so f(x) takes one of at most

M
s
(bx − by + 1) values. Therefore,

H(fx | Bx = bx,By = by) ≤ log((M/s)(bx − by + 1)), (7)

which is a crucial bound in what follows.

For x ∈ P and b ∈ [s], let px(b) be the probability that Bx = b. For y < x in P , and
c ≤ b in [s], let py|x(c | b) be the probability that By = c conditioned on Bx = b.

We have

log OM(P ) = H(f) = H(fAk
) + H(fAk−1

| fAk
) + · · ·+ H(fA1 | fA2∪···∪Ak

).

We claim that, for j = 1, . . . , k, the sum of the final j terms above, i.e.,

H(fA1∪···∪Aj
| fAj+1∪···∪Ak

),
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is bounded above by

1

nj

∑
x∈Aj

s∑

bj=1

px(bj) log

(
srj(M/s)n1+···+nj max

[
bn1
1

j∏
i=2

(bi − bi−1 + 1)ni

])
,

where rj =
∑j

i=2(ni−1/di) (so rk = r) and the maximum is taken over all (b1, . . . , bj−1)
with 1 ≤ b1 ≤ b2 ≤ · · · ≤ bj: it is well-known and easy to check (using Lagrange
multipliers) that this maximum is attained by taking each bi− bi−1 +1 proportional to ni

(where b0 := 1).

We prove the above claim by induction on j. For j = 1, we argue that:

H(fA1 | fA2∪···∪Ak
) ≤

∑
x∈A1

H(f(x) | fA2∪···∪Ak
) ≤

∑
x∈A1

H(f(x) | Bx)

=
∑
x∈A1

s∑

b1=1

px(b1)H(fx | Bx = b1) ≤
∑
x∈A1

s∑

b1=1

px(b1) log[(M/s)b1]

=
1

n1

∑
x∈A1

s∑

b1=1

px(b1) log[(M/s)n1bn1
1 ],

which is as claimed. (Note that r1 = 0.)

For the induction step, we assume the result for j − 1, and consider the new term
H(fAj

| fAj+1∪···∪Ak
). This is at most

1

dj

∑
y∈Aj−1

H(fU(y) | fAj+1∪···∪Ak
), by Shearer’s lemma

≤ 1

dj

∑
y∈Aj−1

(
H(By | fAj+1∪···∪Ak

) + H(fU(y) | By, fAj+1∪···∪Ak
)
)
, using the conditional version of (5)

≤ 1

djuj−1

∑
y∈Aj−1

∑

x∈U(y)

H(By | Bx) +
1

dj

∑
y∈Aj−1

∑

x∈U(y)

H(fx | By,Bx), using (4)

=
1

djuj−1

∑
y∈Aj−1

∑

x∈U(y)

s∑

bj=1

px(bj)

bj∑

bj−1=1

py|x(bj−1 | bj) log(1/py|x(bj−1 | bj))+

+
1

dj

∑
y∈Aj−1

∑

x∈U(y)

s∑

bj=1

px(bj)

bj∑

bj−1=1

py|x(bj−1 | bj)H(fx | By = bj−1,Bx = bj)

≤ 1

djuj−1

∑
y∈Aj−1

∑

x∈U(y)

s∑

bj=1

px(bj)

bj∑

bj−1=1

py|x(bj−1 | bj) log

(
(M/s)uj−1(bj − bj−1 + 1)uj−1

py|x(bj−1 | bj)

)
,

using (7).
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By the induction hypothesis, the sum of the final j − 1 terms is at most

1

nj−1

∑
y∈Aj−1

s∑

bj−1=1

py(bj−1) log X(bj−1),

where
X(bj−1) = srj−1(M/s)n1+···+nj−1 max [bn1

1 · · · (bj−1 − bj−2 + 1)nj−1 ] ,

and this sum can be rewritten as

1

nj−1uj−1

∑
y∈Aj−1

∑

x∈U(y)

s∑

bj−1=1

s∑

bj=bj−1

px(bj)py|x(bj−1 | bj) log X(bj−1).

Therefore the sum of all the relevant terms is at most

1

djuj−1

∑
y∈Aj−1

∑

x∈U(y)

s∑

bj=1

px(bj)

bj∑

bj−1=1

py|x(bj−1 | bj) log

(
(M/s)uj−1(bj − bj−1 + 1)uj−1(X(bj−1))

dj/nj−1

py|x(bj−1 | bj)

)

≤ 1

djuj−1

∑
x∈Aj

∑
y∈Aj−1

y<x

s∑

bj=1

px(bj) log




bj∑

bj−1=1

(M/s)uj−1(bj − bj−1 + 1)uj−1(X(bj−1))
dj/nj−1


 ,

by Jensen’s inequality, and the above is in turn at most

≤ 1

uj−1

∑
x∈Aj

s∑

bj=1

px(bj) log

(
s(M/s)uj−1 max

bj−1

[(bj − bj−1 + 1)uj−1X(bj−1)
dj/nj−1 ]

)

(now we use that 1/uj−1 = (nj−1/dj)(1/nj))

=
1

nj

∑
x∈Aj

s∑

bj=1

px(bj) log

(
snj−1/dj(M/s)nj max

bj−1

[(bj − bj−1 + 1)njX(bj−1)]

)

=
1

nj

∑
x∈Aj

s∑

bj=1

px(bj) log

(
srj(M/s)n1+···+nj max

[
bn1
1

j∏
i=2

(bi − bi−1 + 1)ni

])
,

which completes the induction step.

Carrying it through to the end, we can treat Bx as identically equal to s for x in the
top class Ak, and we emerge with

OM(P ) ≤ sr(M/s)n1+···+nk max bn1
1 (b2 − b1 + 1)n2 · · · (bk−1 − bk−2 + 1)nk−1(s− bk−1 + 1)nk .

Now we do the maximization and, setting n = n1 + · · ·+ nk, we get:

OM(P ) ≤ sr(M/s)n
(n1

n
(s + k − 1)

)n1 · · ·
(nk

n
(s + k − 1)

)nk

= sr(M/s)n(s + k − 1)n nn1
1 · · ·nnk

k

nn
.

10



For any M , we certainly have OM(P ) ≥ L(P )
(

M
n

)
. Therefore

L(P ) ≤ srMn

(
1 +

k − 1

s

)n
nn1

1 · · ·nnk
k

nn

n!

(M − n)n

≤ sr

(
1 +

n

M − n

)n (
1 +

k − 1

s

)n

n1! · · ·nk! .

Taking the limit as M →∞ now yields, for any choice of s:

L(P ) ≤ sre(k−1)n/sn1! · · ·nk! .

Finally we optimize this bound by setting s = d(k − 1)n/re; as r ≤ n and k − 1 ≥ 1, we
have (k − 1)n/r ≤ s ≤ 2(k − 1)n/r. Hence

L(P ) ≤
(

2(k − 1)n

r

)r

ern1! · · ·nk! ,

proving the theorem.

Proof of Theorem 1.1. Recall that r =
∑k

j=2(nj−1/dj). For the Boolean cube P = Qt,

we have n = 2t, k = t + 1, nj =
(

t
j−1

)
and dj = j − 1, so

r =
t−1∑
i=0

(
t

i

)
1

i + 1
=

1

t + 1

(
2t+1 − 2

)
< 2n/t.

Therefore, by Theorem 1.3, we have, for t ≥ 3,

L(Qt) ≤ (et2)2n/t

t∏
j=0

(
t

j

)
! ≤ e6n ln t/t

t∏
j=0

(
t

j

)
! .

Of course, we have L(Qt) =
∏ (

t
j

)
! for t < 3, so the result follows.

5 LYM posets

Let P be a ranked poset on [n] with ranks A1, A2, . . . , Ak of sizes n1, n2, . . . , nk respectively.
The weight w(x) of an element x ∈ Aj is defined to be 1/nj. The LYM condition is that,
for any antichain A of P , the sum w(A) of the weights of elements of A is at most 1.
(Note that equality is achieved for each of the ranks Aj.)
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Theorem 5.1 Let P be a ranked poset satisfying the LYM condition, with rank sizes
n1, . . . , nk. Then L(P ) ≤ ∏k

j=1 n
nj

j .

The well-known LYM theorem states that the Boolean lattice Qt satisfies the LYM
condition (see for instance Bollobás [1]), so Theorem 5.1 extends the result of Sha and
Kleitman [14], as well as that of Shastri [15], who proved it under the additional assump-
tion that (ni) is a symmetric unimodal sequence.

Theorem 5.1 is a special case of the following result from Kahn and Kim [11].

Theorem 5.2 Let P be any n-element poset, and let w(x) be any non-negative func-
tion on P satisfying w(A) =

∑
x∈A w(x) ≤ 1 for all antichains A of P . Then e(P ) ≤∏

x∈P 1/w(x).

Theorem 5.1 follows immediately from Theorem 5.2, as the function given by w(x) =
1/nj for x ∈ Aj satisfies the hypotheses, so that each of the nj elements of Aj contributes
a factor of nj to the product

∏
x∈P 1/w(x).

Kahn and Kim’s proof of Theorem 5.2 uses polyhedral methods, and is based on a
theorem of Stanley. (They go on to use these techniques to prove important results on
comparison sorting algorithms.) A research report [3] of the first author contains further
information on this topic, and also gives an alternative proof of Theorem 5.2, which we
include here as it is very short and natural, and may be of some interest.

Proof. Consider the following random procedure for building a linear extension of P
from the bottom up. At each stage, from the set of available elements, choose x as the
next element with probability proportional to w(x).

Now consider any single linear extension ≺ of P , say x1 ≺ x2 ≺ · · · ≺ xn. The
probability that our random procedure results in ≺ is exactly

∏n
i=1 w(xi)/w(Bi), where

Bi is the set of elements minimal among {xi, . . . , xn}. Since the Bi are antichains, each
w(Bi) is at most 1, and the probability of ≺ is at least

∏n
i=1 w(xi). This is independent of

the particular linear extension ≺, so we conclude that the total number of possible linear
extensions is at most 1/

∏
w(xi), as required.

The disjoint union P of n/k chains, each of k elements, is an LYM poset, and

L(P ) = n!/k!n/k =
(n

k
(1− o(1))

)n

,

in close agreement with the upper bound in Theorem 5.1. What this means is that
Theorem 5.1 gives (in some sense) close to the best possible result for LYM posets in
general, so that information on the degrees was essential for our improved upper bound
in the case of the Boolean lattice.
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