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Abstract

We revisit the question of counting the number of linear extensions of the Boolean
lattice, relating this to the polyhedral methods of Kahn and Kim, and of Stanley. We
give simpler proofs of various known results, and give an upper bound on the number
of linear extensions of an arbitrary ranked poset satisfying the LYM condition.

[Note: This preprint is not intended for journal publication, as it is a record of
some alternative proofs of known theorems. The one result, Theorem 2.1, that does
not appear in the literature will appear in the forthcoming paper of Brightwell and
Tetali [1]. Other material here is likely to find its way into the book of Brightwell and
Trotter.]

1 Introduction

One frequently-asked question in the theory of partially ordered sets (posets) is to estimate
the number of linear extensions of the Boolean lattice 2n, consisting of the subsets of [n] =
{1, 2, . . . , n}, ordered by inclusion. This problem was attributed by Sha and Kleitman [5] to
Richard Stanley, but the author has been asked it by several others independently.

A trivial lower bound is
∏n

i=0

(
n
i

)
!, since this counts exactly those linear extensions of 2n

in which all of the ith level comes before the (i + 1)st, for each i. A trivial upper bound is
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(
n

bn/2c
)2n

; to see this, consider writing down the linear extension from the bottom up – at
each stage the set of possible next elements is an antichain in 2n, and so has size at most(

n
bn/2c

)2n

. For most purposes, these bounds are sufficiently close: the lower bound is of the
form ((

n

n/2

)
1

e3/2
(1 + o(1))

)2n

.

Sha and Kleitman [5] proved an appealing upper bound of
∏n

i=0

(
n
i

)(n
i) on the number of

linear extensions of 2n. This upper bound is of the form

((
n

n/2

)
1

e1/2
(1 + o(1))

)2n

.

They suggested that the simple lower bound gives the right value of the constant. Recently,
Brightwell and Tetali [1] have proved this conjecture, using the entropy method of Kahn.

The proof of Sha and Kleitman proceeds by considering, for each k, the size of the largest
antichain in 2n with k elements below it; the point is that this is an upper bound on the
number of choices available at the (k+1)st step when building a bottom-up linear extension,
so the product of these numbers is an upper bound on the total number of linear extensions.

The analysis of Sha and Kleitman was extended by Shastri [6] to cover any ranked poset
satisfying the LYM condition the sizes of whose ranks form a symmetric unimodal sequence.
To be precise, let P be a ranked poset with rank numbers N0, N1, . . . , Nn, and suppose
that N0 ≤ N1 ≤ · · ·Nbn/2c and Ni = Nn−i for each i, and also that P satisfies the LYM
condition (we will discuss the LYM condition in due course). Then the number e(P ) of linear
extensions of P satisfies

n∏
i=0

Ni! ≤ e(P ) ≤
n∏

i=0

NNi
i .

Here, of course, the trivial lower bound requires none of the extra conditions on the ranked
poset P . The proof gives a rather weaker conclusion if one removes the conditions on the
ranks.

Our purpose in this note is to give an alternative proof (in two versions) of Shastri’s
result, without the conditions on the unimodality and symmetry of the sequence of rank
numbers. The first version of the proof is a simple probabilistic argument: the second is a
direct and extremely straightforward application of a result of Kahn and Kim [3] based on
a theorem of Stanley [7] – for completeness we shall supply proofs from first principles. Our
proof(s) might point the way to narrowing the gap between the lower and upper bounds,
perhaps to providing an alternative proof of the result of Brightwell and Tetali, but so far
we have not been able to make progress along these lines.

It is well-known that the LYM condition has several different equivalent formulations; we
look at some of these in the context of polyhedra associated with P , which may also be of
some interest.
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2 The proof: probabilistic version

From now on, P will always be a ranked poset (i.e., all maximal chains have the same length
n) on [N ] with ranks A0, A1, . . . , An of sizes (rank numbers) N0, N1, . . . , Nn respectively. The
weight w(x) of an element x ∈ Ai is defined to be 1/Ni. The LYM condition is that, for any
antichain A of P , the sum w(A) of the weights of elements of A is at most 1. (Note that
equality is achieved for each of the ranks Ai.)

Theorem 2.1 Let P be a ranked poset satisfying the LYM condition, with rank numbers
N0, . . . , Nn. Then e(P ) ≤ ∏n

i=0 NNi
i .

Proof. Consider the following random procedure for building a linear extension of P
from the bottom up. At each stage, from the set of available elements, choose the next
element with probability proportional to its weight.

Now consider any single linear extension ≺ of P , say x1 ≺ x2 ≺ · · · ≺ xN . The probability
that our random procedure results in ≺ is exactly

∏N
j=1 w(xj)/w(Bj), where Bj is the set of

elements minimal in P |{xj, . . . , xN}. Since the Bj are antichains, each w(Bj) is at most 1,

and the probability of ≺ is at least
∏N

j=1 w(xj). This is independent of the particular linear
extension ≺, so we conclude that the total number of possible linear extensions is at most
1/

∏
w(xj), which is exactly

∏n
i=0 NNi

i , since each of the Ni elements of Ai contributes a
factor Ni to the product. ¤

3 The proof: polyhedral version

The chain polytope C(P ) of a poset P on [N ] is defined as

{x ∈ [0, 1]N :
∑
j∈C

xj ≤ 1 for all chains C of P}.

It is well-known that C(P ) is the convex hull of the indicator vectors of antichains of P
– since the comparability graph of P is perfect. A theorem of Stanley [7] states that the
volume of C(P ) is exactly e(P )/N !. (We shall discuss these issues in full later.)

Define the vector y ∈ [0, 1]N by yj = 1/Ni whenever j ∈ Ni. If z is the indicator function
of any antichain in P , then by the LYM condition we have z · y ≤ 1. Therefore this linear
inequality is satisfied by all x ∈ C(P ), and C(P ) ⊆ {x ∈ [0, 1]N : x · y ≤ 1}, a simplex
of volume (1/N !)

∏
j(1/yj) = (1/N !)

∏n
i=0 NNi

i . Applying Stanley’s Theorem now yields
Theorem 2.1.

As we shall explain in the next section, this proof reveals Theorem 2.1 to be a special
case of a more general observation due to Kahn and Kim [3].
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4 The proof(s) in context

The antichain polytope A(P ) of a poset P is defined as

{x ∈ [0, 1]N :
∑
j∈A

xj ≤ 1 for all antichains A of P}.

The LYM condition states exactly that the vector y in the previous section lies in A(P ). It
is clear that either of our two proofs of Theorem 2.1 could work just as well with any other
point of A(P ): if z is any vector in A(P ), then e(P ) ≤ ∏N

j=1 1/zj. It is natural to wonder
whether any of these other bounds could be better, but the answer is no.

The following material can all be found in the papers of Csiszar, Körner, Lovász, Marton
and Simonyi [2] and/or Kahn and Kim [3]. A convex corner in RN is a compact convex
downset of full dimension contained within the positive quadrant. The antiblocker of a
convex corner K is

K∗ = {x ∈ RN
+ : x · y ≤ 1 for all y ∈ K}.

The antiblocker K∗ is always a convex corner, and K∗∗ = K. The clique polytope Cl(G) of
a graph G is the convex hull of the indicator vectors of cliques in G; it is always a convex
corner, and it is easy to see that Cl(G) ⊆ (Cl(G))∗. In fact, we have equality if and only if
the graph G is perfect. As the comparability graph of a poset P is perfect, the chain and
antichain polytopes form an antiblocking pair.

For a convex corner K, set V (K) = maxx∈K

∏
xj. This is related to the entropy H(K)

of K; specifically V (K) = 2−nH(K). For any antiblocking pair K, K∗ of convex corners in
RN , a pair x ∈ K, y ∈ K∗ maximises

∏
xj and

∏
yj if and only if xjyj = 1/N for each j. In

other words, x ∈ K maximises
∏

xj if and only if the vector y defined by yj = 1/(Nxj) lies
in K∗. This implies that V (K)V (K∗) = 1/NN . In the case of a ranked poset P with rank
numbers N0, . . . , Nn, the vector y given by yj = Ni/N whenever j ∈ Ai is indeed clearly
in the chain polytope, and therefore the LYM condition does indeed give rise to the ‘best’
upper bound of this type.

We have seen that e(P ) ≤ ∏N
j=1 1/zj for any z ∈ A(P ) (although we only stated this for

LYM posets, both our arguments go through for any poset P ); evidently the best bound we
can obtain is 1/V (A(P )), and we record this as a theorem.

Theorem 4.1 e(P ) ≤ 1/V (A(P )) = V (C(P ))NN .

Of course, Theorem 2.1 is a special case.

Theorem 4.1 is due to Kahn and Kim [3], who proved it exactly as in Section 3. This
was the first paper to make use of Stanley’s Theorem as a tool for estimating e(P ); in the
paper, this is basically a side observation, while the main purpose was to use the ideas of
entropy to prove powerful results about comparison sorting algorithms.

It is worth emphasising that our probabilistic argument from Section 2 goes through un-
changed in the general setting, and thus yields an alternative proof of Theorem 4.1, perhaps
simpler in that it does not appeal to Stanley’s Theorem.
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5 A proof of Stanley’s Theorem

For completeness, we include a proof of Stanley’s Theorem. This is somewhat different from
Stanley’s original [7], although ultimately the ideas are related. As we discuss below, the
main idea of our proof can again be found in the influential paper of Kahn and Kim [3].

The order polytope O(P ) of a partial order P is defined as

{x ∈ [0, 1]N : xi ≤ xj whenever i < j in P}.

Theorem 5.1

vol(C(P )) = vol(O(P )) =
e(P )

N !
.

Proof. To see the second identity, note that the unit cube [0, 1]N breaks up into N !
pieces, according to the order of the co-ordinates. These pieces are disjoint up to a set of
measure zero, and all have the same volume by symmetry; thus the volume of any piece is
1/N !, and O(P ) is the union of those pieces corresponding to linear extensions of P .

The main content of the theorem is the first identity; to establish this, we give a bijection
from O(P ) to C(P ) that we shall demonstrate to be measure-preserving.

For x ∈ O(P ), define yj = xj if j is minimal, and yj = xj−maxi<j xi for all other j ∈ [N ].
To see that y ∈ C(P ), note that all the yi are non-negative since x ∈ O(P ), and that, for
any chain i1 < i2 < · · · < ik, we have

yi1 ≤ xi1 , yi2 ≤ xi2 − xi1 , . . . , yik ≤ xik − xik−1
,

so yi1 + yi2 + · · ·+ yik ≤ xik ≤ 1.

We claim that the inverse of this map x 7→ y is given by xj = maxC(j)

∑
i∈C(j) yi, where

C(j) runs over all chains in P with top element j. Indeed, this is trivial for all minimal j: if
it is true for all elements ` below j in P , then

max
C(j)

∑

i∈C(j)

yi = yj + max
`<j

max
C(`)

∑

i∈C(`)

yi = yj + max
`<j

x` = xj.

As this inverse map y 7→ x evidently takes any point of C(P ) to a point of O(P ), this
establishes that the original map is a bijection.

To check that it is measure-preserving, consider the map x 7→ y acting on the piece of
O(P ) where xi1 < xi2 < · · · < xiN . This is a linear map, represented by a matrix which,
when written with co-ordinates in the order i1, i2, . . . , iN , has 1s on the leading diagonal,
some −1s below it, and 0s everywhere else. Therefore this matrix has determinant 1, and
the map is measure-preserving on each such piece.

Therefore, as claimed, our map is a measure-preserving bijection from O(P ) to C(P ). ¤

There is another way to look at this proof, as we sketch below, which links it to the
well-known correspondence between antichains and up-sets in a poset.
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For each linear extension i1 < i2 < · · · < iN of P , let Aj be the set of minimal elements
in the restriction of P to {ij, . . . , iN}. Now for any non-negative multipliers λ1, . . . , λN

summing to 1, the vector
∑

j λjeAj
is in C(P ), where eA is the indicator vector of the set

A. The volume of C(P ) associated with a given linear extension is 1/N !, and (up to a set
of measure zero) every vector in C(P ) has a unique representation in this form – this is
Theorem 2.4 of Kahn and Kim [3], they call this the laminar decomposition. Now the map
taking

∑
j λjeAj

to
∑

j λje{xj ,...,xN} is a measure-preserving bijection from C(P ) to O(P ).
Indeed it is the same map as we studied in our proof of Theorem 5.1.

In other words, each extreme point of C(P ) is the indicator vector of an antichain A, we
map this to the extreme point of O(P ) given by the indicator vector of the up-set of elements
above or in A, we associate each point of C(P ) or O(P ) to a canonical simplex spanned by
extreme points, and interpolate linearly. Note that this approach does in fact represent C(P )
as the union of e(P ) essentially disjoint simplices of volume 1/N !; this means that Stanley’s
Theorem can be deduced quickly from Theorem 2.4 of Kahn and Kim.

6 The LYM condition in a polyhedral context

In 1974, Kleitman [4] proved that the LYM condition was equivalent to various others, one
of which is the existence of a regular covering of P by chains, i.e., a non-empty collection
of maximal chains such that, for each i, every element of rank i occurs in the same number
of chains. A moment’s thought reveals that this says that the vector y given by yj = 1/Ni

for j ∈ Ai can be written as a convex combination of indicator vectors of chains – the
polyhedral theory assures us that this is equivalent to y being in A(P ), which is exactly the
LYM condition.
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