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Abstract

Liminal constraints are active inequality constraints with zero Lagrange mul-

tipliers. This is the borderline case between inactive and binding inequality con-

straints. In correctly formulated second-order conditions, inactive constraints are

ignored, and binding ones are treated like equality constraints. But liminal con-

straints can neither be ignored nor be treated like equalities; examples are given.

The persistent assertion in economics texts that all active constraints can be treated

like equalities is untrue, and gives a false “sufficient” second-order condition.
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1 Introduction

In a scalar optimisation problem, oriented to maximisation over an intersection of sublevel
sets, an inequality constraint has a nonnegative Lagrange multiplier, which is actually
zero if the constraint is inactive, i.e., met as a strict inequality. But the multiplier may
be zero also if the constraint is active. We propose calling such a constraint liminal, and
to reserve the term “binding” for an inequality constraint with a nonzero multiplier.1

Liminal constraints are allowed in second-order conditions (SOCs), but–as we point
out here–they must be distinguished both from the binding and from the inactive con-
straints. They also complicate sensitivity analysis, and have to be excluded by assump-
tion to get the ordinary differentiability of the optimal solution and its multipliers with
respect to the problem’s parameters: see, e.g., [2, Theorems 2.4.4 and 3.2.2] or [6, The-
orem 1]. With liminal constraints, i.e., without the strict complementarity assumption,
the solution (and its multipliers) is usually nondifferentiable, although it is still direction-
ally differentiable: see, e.g., [2, Theorem 2.4.5] or [6, Theorems 3 and 4]. Some topics,
such as the Le Chatelier Principle, involve liminal constraints of necessity: see, e.g., [8].

Such constraints seem to have no established name apart from “just active” or “de-
generate active”, which are occasionally used. In both mathematics and economics, the
terms “active”, “effective”, “tight” and “binding” are used as synonyms, which is mis-
leading: one feels that “binding” should mean more than merely “active”.

Terminology apart, mathematicians have long been aware of the difference between
binding and liminal constraints, and of its relevance for correct formulations of SOCs–
which we state for completeness in Section 2 by following, e.g., [3] or [4]. But this has been
overlooked in several generations of economics texts. Many do not discuss SOCs with
inequality constraints at all; those which do, persistently mishandle liminal constraints.
For example, [1], [9] and [10] treat all the active constraints like equality constraints.
The principle of doing so whenever possible is sound and useful, but it must be limited
to those constraints which are binding in our sense (i.e., have nonzero multipliers). To
treat every active constraint, binding or liminal, in the same way is incorrect because
this weakens the SOCs by requiring the Hessian to be definite on a smaller set. As a
result, the so-called “sufficient” SOC of [1, Theorems I.2.5 and II.3.4 (pp. 11 and 38)],
[9, 19.8 and p. 468] and [10, 1.E.16 (ii)] is in fact insufficient (when there is a liminal
constraint). Its use can even lead to a strict minimum point being misidentified as a strict
maximum (or vice versa) when there is no binding inequality:2 see Section 3. In that
example, the stationary point does not even meet the standard Necessary SOC (NSOC)
for a maximum–but it does meet that of [1, Theorems I.2.4 and II.3.3 (pp. 10 and

1Of course, when multipliers are nonunique, this classification of constraints will depend on the choice
of multipliers.

2When there is a binding inequality, maximum and minimum points are distinguished from each
other already by the multiplier signs in the FOCs: for a point to be stationary for both maximisation
and minimisation, all the active inequality constraints must be liminal.
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37)], [9, p. 468] or [10, 1.E.16 (i)]. This is because their necessary SOC, though indeed
necessary, is unnecessarily weak. Its power to eliminate stationary points as candidates
for an optimum is thus diminished. (This shortcoming is found also in mathematical
literature, e.g., [7, 5.3.2]; it is obviously much less of a fault than the false “sufficient”
SOC.)

So, liminal constraints must not be treated like binding ones in the SOCs. Nor can
they be simply ignored like inactive constraints–except when there is just one liminal
constraint. A single liminal constraint can be ignored because definiteness of a quadratic
form on a half-space is equivalent to its definiteness on the whole space. But when there
are two or more liminal constraints, to ignore even one of them is to strengthen the
SOCs. This produces a different kind of error: the “necessary” SOC is then not in fact a
necessary condition. Its use can lead to a point being wrongly rejected as a candidate for
an optimum even though it does meet the standard Sufficient SOC (SSOC), and therefore
actually is a strict optimum (Section 4). As for the sufficient SOC that ignores liminal
constraints, though indeed sufficient, it is unnecessarily stringent as an optimality test.3

Its proper place is with the directional-derivative results of solution-sensitivity analysis
without strict complementarity, where it is known as the Strong SSOC: see, e.g., [2,
Theorem 2.4.5] or [6, Theorems 3 and 4].

It is, of course, only the usefulness and lasting value of works such as [1], [9] and [10]
that makes their errors worth correcting.

2 The standard second-order multiplier rules

The maximand, f , is assumed to be defined and twice continuously differentiable on an
open set D ⊆ R

n, as are the constraint functions. The equality constraints are he (x) = 0
for e = 1, 2, . . . , m; and the inequality constraints are gi (x) ≤ 0 for i = 1, . . . , l. So the
constraint set is

C = {x ∈ D : h (x) = 0, g (x) ≤ 0} . (1)

In matrix multiplication, the n-tuple of decision variables x = (x1, . . . , xn) is regarded as
a column; its transpose is a row xT = [x1, . . . , xn]. The scalar product p

Tx is also denoted
by p · x. The Jacobian matrix of the map h: Rn → R

m is the m × n matrix of partial

derivatives Dh (x) =
[
∂hr

∂xs

] m n

r=1 s=1
, i.e., its r-th row is the gradient vector ∇hr (x)

T. The

Lagrangian is

L (µ, λ, x) := f (x)− µ · h (x)− λ · g (x)

for every µ ∈ R
m, λ ∈ R

l and x ∈ D ⊆ R
n. The set of all active inequality constraints is

A(x) := {i : gi (x) = 0}

3This is so in, e.g., [7, 5.3.4]; it is much less of a fault than the false “necessary” SOC.
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and the set of all binding constraints is

B(λ) := {i : λi > 0} .

Under the Complementary Slackness Condition (5), in addition to (3)—(4), a binding
constraint is active–i.e., B

(
λ
)
⊆ A(x). The set of all liminal constraints is A(x)\B

(
λ
)
.

Theorem 1 (SOCs for programmes with inequality constraints) Assume that x
is a stationary point for maximisation, supported by multipliers µ ∈ R

m and λ ∈ R
l–i.e.,

that it meets the Kuhn-Tucker First-Order Conditions (FOCs)

h (x) = 0 (2)

g (x) ≤ 0 (3)

0 ≤ λ (4)

0 = λ · g (x) (5)

0 = ∇xL
(
µ, λ, x

)
= ∇f (x)T − µTDh (x)− λ

T
Dg (x) (6)

or, in expanded form, ∇f (x) =
∑m

e=1 µe∇he (x) +
∑l

i=1 λi∇gi (x).
In addition, assume that the vectors (∇he (x))

m
e=1 and (∇gi (x))i∈A(x) are linearly in-

dependent. Then:

1. (Necessary SOC) If x is a local maximum point of f on the set C defined by (1),
then

∆xTD2
xxL

(
µ, λ, x

)
∆x ≤ 0 (7)

for every ∆x such that

Dh (x)∆x = 0, i.e., ∇he (x) ·∆x = 0 for each e (8)

DgB(λ) (x)∆x = 0, i.e., ∇gi (x) ·∆x = 0 for each i with λi > 0 (9)

DgA(x)\B(λ) (x)∆x ≤ 0, i.e., ∇gi (x) ·∆x ≤ 0 for i with λi = 0 and gi (x) = 0.

(10)

2. (Sufficient SOC) Conversely, if

∆xTD2
xxL

(
µ, λ, x

)
∆x < 0 (11)

for every nonzero ∆x meeting (8)—(10), then x is a strict local maximum point
of f on the set C defined by (1). What is more, there exist numbers ε > 0 and
ζ > 0 such that f (x) ≤ f (x) − ζ ‖x− x‖2 for every x ∈ C with ε > ‖x− x‖

:= ((x− x) · (x− x))1/2.
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Proof. See, e.g., [3, Theorems 1.10.2 and 1.10.3] or [4, Theorems 7.4 and 7.5]. For a
concise but complete exposition based on these sources, see [5].

Comment: The assumption of linearly independent constraints can be weakened to
that of regularity, in the sense of [3] or [4]. That is, it suffices to assume that x is regular
as a point of the set

Cb

(
λ
)
:=

{
x : h (x) = 0, gB(λ) (x) = 0, gA(x)\B(λ) ≤ 0

}

or, more precisely, that x is regular for the representation of Cb

(
λ
)
by the functions(

h, gB(λ)

)
as equality constraints and g\B(λ) as inequality constraints. (Regularity de-

pends on the particular functions representing the constraint set, and not just on the set
itself.)

3 Counterexample to the “sufficient” SOC that treats

a liminal constraint as binding

A one-variable example can be given.

Example 2 Maximise f (x) := x2 over x subject to g (x) := x ≤ 0. The point x = 0 is a
global constrained strict minimum (and even the global unconstrained strict minimum).
But it meets both the FOC and the false “sufficient” SOC for a local constrained (strict)
maximum as stated in [1, Theorems I.2.5 and II.3.4 (pp. 11 and 38)], [9, 19.8 and p.
468] and [10, 1.E.16 (ii)]–i.e., with an equality instead of the correct inequality in (10).

In this example, there is no local constrained maximum. For either maximisation
or minimisation, the one stationary point is x = 0, supported by the unique multiplier
λ = 0 (i.e., the pair

(
λ, x

)
= (0, 0) meets (3)—(6), and also (2) vacuously). This is

actually the minimum point (and even the global unconstrained minimum). It must fail
the correct SSOC for a maximum, and it does: the Lagrangian’s Hessian is D2

xxL
(
λ, x

)
= f ′′ (x) − λg′′ (x) = 2, and its negative definiteness is to be tested on every increment
∆x �= 0 such that 0 ≥ Dg (x)∆x = g′ (0)∆x = ∆x, i.e., for ∆x < 0–as per (10). Since
∆xD2

xxL∆x = 2 (∆x)2 > 0, the point fails even the NSOC (for a maximum).
But the constraint is liminal; and if it is, incorrectly, treated as one that is binding–

i.e., like an equality constraint–then the minimum point does meet the “sufficient” SOC
for a maximum (local, constrained). This is because, after changing the inequality to an
equality in (10), the Hessian’s definiteness is to be tested only on any nonzero increment
∆x such that 0 = Dg (x)∆x = g′ (0)∆x = ∆x. Since no such ∆x exists, there is nothing
to check–and thus the minimum passes for a maximum!
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4 Counterexample to the “necessary” SOC that ig-

nores liminal constraints

A two-constraint, two-variable example is needed.

Example 3 Maximise f (x1, x2) := x1x2 over (x1, x2) subject to g1 (x1, x2) := x1 ≤ 0
and g2 (x1, x2) := −x2 ≤ 0. The point (x1, x2) = (0, 0) is a global constrained maximum.
But it does not meet the false “necessary” SOC (for a local constrained maximum)–i.e.,
it fails the test if (10) is deleted.

In this example, the (global) constrained maximum points are those with x1 ≤ 0,
x2 ≥ 0 and x1x2 = 0. These are also the only stationary points for maximisation. There
is no local constrained minimum. The only point stationary for minimisation is (x1, x2)
= (0, 0), supported by the multipliers

(
λ1, λ2

)
= (0, 0).4 Being actually a maximum

point, it must meet the correct NSOC for a maximum, and it does: the Lagrangian’s
Hessian form is

∆xTD2
xxL

(
λ, x

)
∆x = ∆xTD2

xxf (x)∆x =
[
∆x1 ∆x2

] [ 0 1
1 0

] [
∆x1

∆x2

]
= 2∆x1∆x2

and, as per (10), its negative semidefiniteness is to be tested on every increment ∆x

= (∆x1, ∆x2) such that

[
0
0

]
≥

[
∇g1 (0, 0)

T

∇g2 (0, 0)
T

] [
∆x1

∆x2

]
=

[
1 0
0 −1

] [
∆x1

∆x2

]
=

[
∆x1

−∆x2

]

i.e., for ∆x1 ≤ 0 and ∆x2 ≥ 0. Since this implies that 0 ≥ 2∆x1∆x2 = ∆xTD2
xxL∆x,

the point passes the test.
But both constraints are liminal, and if they are, incorrectly, ignored (treated like

inactive constraints), then the “necessary” SOC for a constrained maximum becomes
identical to the NSOC for an unconstrained (local) maximum. This test fails the point
because the Lagrangian’s Hessian form, 2∆x1∆x2, is indefinite on R

2: without the con-
straints, (0, 0) is a saddle point. (Ignoring just one of the two liminal constraints has the
same effect, since definiteness on a half-space is equivalent to definiteness on the whole
space.)

Comment: The example can be modified so that the point (0, 0) is the strict global
maximum and, furthermore, meets the standard SSOC (for a maximum): take the same
f with g1 (x1, x2) := x1+ εx2 and g2 (x1, x2) := −x2− εx1 for a small ε > 0. Negativity of

4The multiplier system is unique because the constraint gradients are linearly independent: ∇g1 (0, 0)
= (1, 0) and ∇g2 (0, 0) = (0,−1).
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∆xTD2
xxL∆x = 2∆x1∆x2 is to be tested on every nonzero ∆x with 0 ≥ ∇gi (x) ·∆x for

i = 1, 2–i.e., for nonzero (∆x1, ∆x2) with both ∆x1 + ε∆x2 ≤ 0 and ε∆x1 +∆x2 ≥ 0.
Since this implies that

0 > (∆x1 + ε∆x2) (ε∆x1 +∆x2)− ε (∆x1)
2 − ε (∆x2)

2 =
(
1 + ε2

)
∆x1∆x2

the point (0, 0) meets the SSOC.
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