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Abstract
We give a concise but complete and detailed exposition of the “classical” ap-

proach, based on directional variations, to the first-order and second-order condi-
tions (FOC and SOCs) for finite-dimensional constrained optimisation with both
equality and inequality constraints. Attention is paid to liminal constraints, which
are active inequality constraints with zero Lagrange multipliers. The persistent
assertion in economics texts that all active constraints can be treated like equal-
ity constraints is untrue with liminal constraints, and it gives a false “sufficient”
SOC. Nor can liminal constraints be ignored like inactive constraints; this would
give a false “necessary” SOC. Treating liminal constraints like equalities in the
necessary SOC, or ignoring them in the sufficient SOC is not incorrect, but it
gives weaker optimality criteria than the standard Kuhn-Tucker multiplier rules
(although the resulting Strong Sufficient SOC does have a place in the directional-
derivative results of solution-sensitivity analysis without strict complementarity).
We also show that the square slack-variables method, which reduces inequalities to
equalities, cannot deal properly with liminal constraints in SOCs.
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1 Introduction

This is an exposition of the “classical” approach, based on directional variations, to the
first-order and second-order conditions (FOC and SOCs) for constrained optimisation.
The method consists in linearisation, and second-order expansion, of the objective and
constraint functions. It is presented in the modern geometric language of tangent and
normal cones, but it originated in the Euler-Lagrange calculus of variations. It was de-
signed and developed for infinite-dimensional problems long before being systematically
applied to finite-dimensional problems (which, because of their size in practical applica-
tions, became of real interest only with the advent of high-speed computers). Though
only such problems, with finite numbers of variables and constraints, are considered here
explicitly, the framework is general.
The cone method we use has also a more recent, and more powerful, “nonclassical”

variant which consists in linearising only after mapping the variables to the values of
the nonlinear functions in question (objective and constraints), i.e., a suitable cone is
constructed in their codomain (instead of the domain as in the “classical” approach).
This gives a framework for both optimal control and the calculus of variations that
improves on the classical results. We intend to present this in detail elsewhere, and
here the image method is only noted, as are the augmented Lagrangian and the penalty
method (Section 11).
The problem is therefore linearised at the outset: after the preliminary Section 2, in

which we introduce the relevant functions and their derivatives, we discuss the tangent
and normal cones to the constraint set in Section 3. In Section 4 we linearise the constraint
functions and define the associated linearisation cone. This equals the tangent cone if
constraints are regular. Section 5 provides workable criteria for regularity in terms of
the constraint gradients, viz., linear independence and the significantly less stringent
Mangasarian-Fromovitz Constraint Qualification (MFCQ) a.k.a. normality (which for
convex programmes reduces essentially to Slater’s Condition). Other implications of
linear independence and normality are also noted. Section 6 gives examples of irregularity.
After this preparation, the immediate goal is to state the Lagrange multiplier rules

in readily applicable forms. This is done first for the case of equality constraints only
(Section 7), and then for the case of both equality and inequality constraints (Section 8).
The formulations assume regularity but, provided that the constraints are linearly inde-
pendent (or just normal), no explicit reference to the tangent cone is needed in applying
the multiplier rules. Being simpler, the pure equality-constrained case is presented sepa-
rately and first, but it is of course subsumed in the more general results with both kinds
of constraint, i.e., in the Kuhn-Tucker multiplier rules.
Although this is standard material, even otherwise excellent economics texts persis-

tently give faulty SOCs by overlooking the possibility that inequality constraints may be
liminal, i.e., may have zero Lagrange multipliers. In particular, they give a “sufficient”
second-order condition that is in fact insufficient: see [7] for a counterexample. In addi-
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tion, some seem to regard that “result”, which is false with liminal inequalities, as such
an obvious extension from the equality-constrained case as not to require a proper proof
[12, p. 466]. Other texts “prove” the false “theorem” [3, Theorem II.3.4 (p. 38)]. These
serve as references for later texts, such as [13, E.1.16 (ii)], which also refer to mathemat-
ical sources that could have been consulted for a correct formulation of the SOC itself,
as well as for a better method of proof.
As we point out in Section 9, the failure of [3] to deal correctly with inequality

constraints has its roots in the method employed, which consists in converting inequalities
into equalities by introducing square slack variables. Attributed to Valentine in [5, p. 39]
but actually even older, the method is effective with FOCs–and it “is used sparingly”
in, e.g., [5, pp. 261—262]. But as a way of obtaining SOCs, this approach is inherently
limited to the case of no liminal constraints. It offers no option but to exclude these
by assumption, which is known as strict complementarity. Recognising this would have
at least produced true, though not the best, results. If strict complementarity were
indispensable for further analysis, then arguably not much would have been lost. But
since the work started in [1] and completed in [8], this is no longer justified. Earlier,
strict complementarity used to be the standard assumption for a sensitivity analysis
of the optimal solution, and it is indeed necessary if the solution and its multipliers
are to have ordinary derivatives with respect to the problem’s parameters: see, e.g., [4,
Theorems 2.4.4 and 3.2.2] or [8, Theorem 1]. But although the solution and its multipliers
are usually nondifferentiable without strict complementarity, they are still directionally
differentiable: see, e.g., [4, Theorem 2.4.5] or [8, Theorems 3 and 4]. This suffices for
most purposes, as is noted in [8, Section 3].
Proofs of necessity and sufficiency of the standard FOC and SOCs are deferred to

Section 10, where the multiplier rules of Sections 7 and 8 are derived from more general
results with an abstract constraint set. The Abstract Necessary FOC is put into a
multiplier form by applying Farkas’ Lemma, which is a separation argument extending,
to the case of inequalities, the purely algebraic Factorisation Lemma. These are given
in the Appendix, along with a further extension known as Motzkin’s Lemma (which
is used here only to reformulate the MFCQ, but is also of interest in multi-objective
optimisation).
Throughout, we follow closely the exposition of Hestenes [5, Chapter 1] and [6, Chap-

ters 3 and 4], identifying those statements in the sources that correspond to ours. The
material is selected and arranged to give a concise but complete and detailed account,
and extensive explanation is added to facilitate a thorough understanding of the method,
its techniques and results. Application of the theory requires little other than facility
with the Jacobian and Hessian matrices (reviewed briefly in Section 2, along with the
multivariate Taylor expansion to second order), and with a determinantal or eigenvalue
test of definiteness for quadratic forms subject to linear restrictions.
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2 Problem formulation and preliminaries

The single-objective optimisation problem in question is taken to have been oriented to
maximisation over an intersection of sublevel and level sets. Here, the number of decision
variables, n, is assumed to be finite. So is the number of constraints, m+ l: there are m
equality and l inequality constraints. Neither the constraint set nor the maximand need
be convex. The problem, then, is one of finite-dimensional nonconvex programming.
The equality-constraint functions are he for e = 1, 2, . . . , m ≥ 0 (there may be no

equality constraints at all). The inequality-constraint functions are gi for i = 1, . . . , l
(where l ≥ 0). Each of these functions is assumed to be defined and twice continuously
differentiable on an open set D ⊆ Rn. So the constraint set is

C = {x ∈ D : h (x) = 0, g (x) ≤ 0} . (1)

The maximand, f , is also taken to be of class C2 (twice continuously differentiable) on
D.
In matrix multiplication, the n-tuple of decision variables x = (x1, . . . , xn) is regarded

as a column; its transpose is a row xT = [x1, . . . , xn]. In other words, the “default”
arrangement of any tuple is as a column. This applies equally to the vector-valued
constraint maps h = (h1, . . . , hm) and g = (g1, . . . , gl), which map Rn into Rm and Rl,
respectively. (The term “function” is used to mean a scalar-valued map.)
The Jacobian matrix of a map g: Rn → Rl is the l × n matrix of partial derivatives

Dg (x) =

∙
∂gi
∂xj

¸ l n

i=1 j=1

i.e., its i-th row is the transposed gradient vector ∇gi (x)T.
For an l-row λT and an l×nmatrix A, the matrix product λTA is a linear combination

of the rows of A. So λTDg (x) is a linear combination of the gradients (∇gi) l
i=1.

The matrix product Av, where v is an n-column, is similarly a linear combination of
the columns of A. But its entries can also be viewed as the scalar products of v and the
rows of A; for example, Dg (x) v has ∇gi (x)T v as its i-th entry. The scalar product pTv
is denoted also by p · v.
The right kernel of A is the null space of the linear operation v 7→ Av, i.e.,

ker (A·) = {v ∈ Rn : Av = 0} .
Likewise, the left kernel is ker (·A) = ©λ ∈ Rl : λTA = 0ª.
The Hessian matrix of a C2-function L: Rn → R is the symmetric square (n × n)

matrix of second partial derivatives

D2L (x) =

µ
∂2L

∂xr∂xs
(x)

¶ n n

r=1 s=1

.
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When H is an n× n matrix, the function v 7→ vTHv is called a quadratic form on Rn.
The Euclidean norm (the length) of a v ∈ Rn is1

kvk = (v · v)1/2 =
Ã

nX
j=1

(vj)
2

!1/2
.

When a vector is thought of as an increment to x, it may be denoted by ∆x (which must
be understood as a single symbol).
By definition, a function L is twice differentiable at a point x if2

lim
v→0

L (x+ v)− L (x)−∇L (x) · v
kvk = 0

lim
v→0

L (x+ v)− L (x)−∇L (x) · v − 1
2
vTD2L (x) v

kvk2 = 0.

A sequence (x (k)) ∞
k=1 in Rn converges to x from a direction ∆x if there is a sequence of

positive scalars δ (k) such that

δ (k)→ 0 and
x (k)− x
δ (k)

→ ∆x as k →∞.

For ∆x = 0, this merely means that x (k)→ x as k →∞. For ∆x 6= 0, x (k)→ x from
the direction ∆x if and only if

x (k)→ x and
x (k)− x
kx (k)− xk →

∆x

k∆xk as k →∞. (2)

(See, e.g., [6, p. 204].) If x (k) → x from ∆x then (by substituting x (k) − x for the v
above)

∇L (x) ·∆x
k∆xk = lim

k→∞
L (x (k))− L (x)
kx (k)− xk (3)

1

2

∆xTD2L (x)∆x

k∆xk2 = lim
k→∞

L (x (k))− L (x)−∇L (x) · (x (k)− x)
kx (k)− xk2 . (4)

3 Tangent and normal cones

A cone at the origin 0 of a vector space is a nonempty subset that is closed under
scaling3–i.e., it is a set K 6= ∅ such that αK ⊆ K for each α ∈ R+.4 The cone generated

1All norms on Rn are equivalent, i.e., define the same convergence concept.
2This means twice Fréchet differentiability at x. It follows from the existence and continuity of second

partial derivatives on a neighbourhood of x.
3By this definition, a cone need not be convex or pointed. In some literature, a convex set closed

under scaling is called a wedge, and a pointed wedge is called a cone.
4Then x+K is a cone at x.
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by a set X (a.k.a. the conical hull of X) is the smallest cone containing X. It is the union
of all rays from the origin through the points of X; i.e., coneX =

S
α∈R+ αX if X 6= ∅.

Additionally cone ∅ := {0}, the zero cone. The symbol := means that the left-hand side
(l.h.s.) is by definition equal to the right-hand side (r.h.s.).
The convex hull of X is the smallest convex set containingX; it is denoted by convX.

The convex cone generated by a set X is the smallest convex cone containing X; it equals
cone convX = conv coneX.
The linear span (a.k.a. linear hull) of X is the smallest linear space containing X; it

is denoted by spanX.
A cone K is line-free if K ∩ (−K) = {0}, i.e., if it contains no straight line through

the origin. When K is a convex cone, K ∩ (−K) is the largest linear space contained
in K; it is called the lineality space of K. When it is zero, K is called pointed (a.k.a.
salient).

Definition 1 A convex cone K is pointed if K ∩ (−K) = {0}.
The usual concept of a tangent to a curve is adequate for most applications. It has,

however, a generalisation that is useful when C contains sequences convergent to x but
no curve issuing from x.

Definition 2 A nonzero vector ∆x is a sequential tangent to a set C, at a point x ∈ C,
if there exists a sequence (x (k)) ∞

k=1 in C \{x} that converges to x from the direction ∆x,
i.e., satisfies (2). “Sequential tangent” is henceforth abbreviated to “tangent”.

Definition 3 A vector ∆x is a curvilinear tangent to a set C, at a point x ∈ C, if there
exists a parameterised curve ex, defined on [0, ²] for some ² > 0, such that: ex (0) = x,ex (²) ∈ C for every ² ∈ [0, ²], and (dex/d²) (0) = ∆x.

The tangent cone, to C at an x ∈ C, consists of all the tangent directions and the
zero vector, i.e.,

TxC := cone {∆x : ∆x is a unit vector tangent to C at x} .
In other words, a tangent vector to C at x is any limit of the directions of arbitrarily
small displacements from x within C. A curvilinear tangent is a vector tangent to a curve
in C that issues from the point in question, x.

Remark 4 Every curvilinear tangent vector is a (sequential) tangent, i.e., ∆x ∈ TxC if
there is a curve ex in C that meets the conditions of Definition 3.
The tangent cone is always closed: see, e.g., [5, Lemma 1.8.1] or [6, Lemma 4.4.2].

In general, it may be nonconvex; but it is convex if C is. In the convex case there is, in
a sense, little need for “proper” curves: the straight-line segments lying in C, and their
limits, give all the tangent directions.
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Definition 5 A vector ∆x is a feasible direction (a.k.a. a linear tangent) at a point
x ∈ C if there exists a scalar ² > 0 such that the segment joining x and x+ ²∆x lies in
C.

Feasible directions form a subcone of TxC, denoted by

FxC := {∆x : [x, x+ ²∆x] ⊆ C for some ² > 0} .

Remark 6 If C is convex then so is FxC. Furthermore, TxC equals the closure of FxC.
So TxC is convex, too. Also, C ⊆ x+ FxC ⊆ x+TxC (a cone at x).5

An outward normal (a.k.a. exterior normal) is a vector whose scalar product with
every tangent vector is zero or less.6

Definition 7 A vector p is normal to a set C at a point x ∈ C if p ·∆x ≤ 0 for every
∆x ∈ TxC.

The normal cone, to C at x, is

NxC := {p : p is normal to C at x} = {p : p ·∆x ≤ 0 for every ∆x ∈ TxC} .

This is a case of polarity for cones.

Definition 8 For any cone K ⊆ Rn, its polar cone is7

K◦ := {p ∈ Rn : p ·∆x ≤ 0 for every ∆x ∈ K} .

When K is a linear subspace, K◦ is equal to the orthogonal complement K⊥.

In these terms, the normal cone is polar to the tangent cone, i.e., NxC := (TxC)
◦.

Like any polar cone, NxC is always convex and closed. Finally, note that the normal
cone to TxC at 0 is also NxC (since T0TxC = TxC).

5This is in [6, Lemma 4.4.3].
6Geometrically, an outward normal forms an obtuse angle (an unoriented angle of at least π/2 radians)

to every tangent vector.
7Its negative, −K◦, is also known as the the dual of K.
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4 Linearisation of constraints and their regularity

Linearisation of a set C, around a point x ∈ C, consists in replacing C by x+TxC, i.e.,
the condition x ∈ C is replaced by: x − x ∈ TxC. Here, “replacing” means that local
optimality of x on the constraint set C is to be characterised by a necessary or sufficient
condition which is to hold for every vector in TxC.
If such an abstract condition is to expand into a multiplier rule, the tangent cone

TxC must be described in terms of the gradients of the constraint functions. To this end,
the constraints h (x) = 0 and g (x) ≤ 0 are linearised to

Dh (x) (x− x) = 0 and ∇gi (x) · (x− x) ≤ 0 for each i with gi (x) = 0 (5)

(any inactive inequality constraint, gi (x) < 0, is irrelevant to local linearisation around
x). The linearised a.k.a. tangential constraints (5) are met whenever the increment ∆x
= x − x is a tangent vector, but in general they can also be met by some nontangent
vectors. In other words, with

A(x) := {i : gi (x) = 0} (6)

denoting the set of all the active inequality constraints, TxC is always contained in the
convex cone

Lx (h, g) := {∆x : Dh (x)∆x = 0, ∇gi (x) ·∆x ≤ 0 for every i ∈ A(x)} . (7)

In the case of no inequality constraints, g = ∅ formally, and the cone Lx (h, ∅) is actually
a linear space.
Since Lx (h, g) consists of the increments ∆x = x − x satisfying the linearised con-

straints (5), it is called the linearisation cone. It can be larger than the tangent cone,
even when the latter is also convex. For example, in the pure equality-constrained case,
Lx is a always a linear space, but Tx can be a “proper” cone, i.e., not a linear space
(Example 19 below). However, the two cones should be equal if multiplier rules are to
hold–and this condition is known as regularity.

Lemma 9 TxC ⊆ Lx (h, g).8

Proof. Take any nonzero ∆x ∈ TxC, scale it to unit length and take a sequence
x (k) in C converging to x from the direction ∆x. Then

Dh (x)∆x = lim
k

h (x (k))− h (x)
kx (k)− xk = 0

8This is in, e.g., [5, p.35, lines 12—14], [6, pp. 221—222] and [10, 5.2.12].
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since h (x (k)) = h (x) for each k. Similarly, if gi (x) = 0 then

∇gi (x) ·∆x = lim
k

gi (x (k))− gi (x)
kx (k)− xk ≤ 0

since gi (x (k)) ≤ 0 for each k.

Definition 10 A point x ∈ C is regular for the representation of the constraint set C
by the constraint functions h and g (abbreviated to: x is regular for h and g) if TxC
= Lx (h, g).

Regularity is also known as Abadie’s Constraint Qualification (ACQ) and as the Basic
CQ. The somewhat stronger requirement that every vector from Lx (h, g) be a curvilinear
tangent is known as Kuhn-Tucker regularity or KTCQ; it holds for linearly independent
constraints (Lemma 13 below). A constraint with a vanishing gradient may fail the
KTCQ and still be regular.9

For the first-order multiplier rule, all that matters is that the normal cone NxC be
expressed in terms of the constraint gradients. Regularity ensures this because the polar
of Lx (h, g) is always equal to the convex cone generated by the constraint gradients
(without regard to sign in the case of equalities), i.e.,

Lx (h, g)
◦ = cone conv ({±∇he (x) : e = 1, . . . ,m} ∪ {∇gi (x) : i ∈ A(x)}) (8)

= span {∇he (x) : e = 1, . . . ,m}+ cone conv {∇gi (x) : i ∈ A(x)}

by Farkas’ Lemma (Lemma 34). And if x is regular then

NxC := (TxC)
◦ = Lx (h, g)

◦ . (9)

Known as quasi-regularity, this is exactly what is needed for the Kuhn-Tucker first-order
multiplier rule to hold. The condition is somewhat weaker than regularity because the
two polars in (9) are equal if and only if Lx (h, g) equals the closed convex hull of TxC,
and this can be larger than TxC itself. (It is larger if, and only if, TxC is nonconvex.
For such an example, see Section 18.)
The simplest nonlinear example of (Kuhn-Tucker) regularity is a single constraint

with a nonzero gradient; this generalises to regularity of linearly independent constraints
and further to regularity of so-called normal constraints (Lemmas 13 and 16 below).

9For a one-variable example with a C2-constraint, take either h or g equal to x5 sin (1/x) for x 6= 0,
and to 0 for x = 0. Its derivative at x = 0 vanishes, and this point fails the KTCQ because the constraint
set contains no interval [−², 0] or [0, ²] with ² > 0. But the constraint is nevertheless regular, since the
(sequential) tangent cone is T0 = R = L0.
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Example 11 (Single regular equality constraint) The tangent cone to a hypersur-
face C with the locus equation h (x) = 0, at a point x with ∇h (x) 6= 0, is the hyperplane

TxC = {∆x : ∇h (x) ·∆x = 0} . (10)

The normal cone is the straight line

NxC = span {∇h (x)} . (11)

Example 12 (Single regular inequality constraint) The tangent cone to a sublevel
set C = {x : g (x) ≤ 0}, at a point x with g (x) = 0 and ∇g (x) 6= 0, is the half-space

TxC = {∆x : ∇g (x) ·∆x ≤ 0} . (12)

The normal cone is the ray (half-line)

NxC = cone {∇g (x)} . (13)

So, with nonzero constraint gradients, regularity means that the tangent and normal
cones can be expressed in terms of the tangent and normal cones to the individual
constraints. Specifically, the tangent cone equals the intersection (7) of the hyperplanes
(10) and half-spaces (12) which are tangent to the individual constraints (Examples 11
and 12). And the normal cone is the (algebraic) sum (8) of the straight lines (11) and
outward rays (13) which are normal to the individual constraints.

Comment: Regularity can be thought of as commutativity of two operations, viz.,
the linearisation and the definition of a constraint set in terms of constraint functions:
starting from the functions (h, g), one can first define the set C and then linearise it to
the cone TxC. The alternative is to linearise h and g first, and then define the cone
Lx (h, g). Either way, the result is the same–in the regular case.

5 Linear independence and Mangasarian-Fromovitz
normality as conditions for regularity

Constraints are regular if their gradients are linearly independent. Known as LICQ, this
condition can be restated as a rank condition on the constraints’ Jacobian–viz., that
the Jacobian matrix of the equality and active inequality constraint functions be of full
row-rank. For brevity, denote the number of active inequality constraints by

a (x) := cardA (x)

and let gA(x) mean the (finite) sequence of the active constraint functions; then DgA(x) (x)
is the corresponding a (x)× n submatrix of Dg (x).10
10Formally, gA(x) = (gik)

a(x)
k=1 , and the k-th row of DgA(x) (x) is ∇gik (x)T, where ik increases with k

and A(x) = {ik : k = 1, 2, . . . , a (x)}.
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Lemma 13 (Linearisation under LICQ) If h (x) = 0 and g (x) ≤ 0, and the vectors
(∇he (x))me=1 and (∇gi (x))i∈A(x) are linearly independent or, equivalently,

rank

∙
Dh (x)
DgA(x) (x)

¸
= m+ a (x) (14)

(i.e., this matrix has a full row rank), then:11

1. Every ∆x ∈ Lx (h, g) is a curvilinear tangent vector at x to the set C given by (1),
i.e., the Kuhn-Tucker Constraint Qualification holds at x.12

In other words, there is a curve ex: [0, ²] → C (for some ² > 0) with ex (0) = x
and (dex/d²) (0) = ∆x. This implies that he (ex (²)) = 0 for each e and ² ≤ ², i.e.,
h ◦ ex = 0. In addition, ex can be chosen so that gi (ex (²)) = ²∇gi (x) ·∆x for each
i ∈ A(x) and each ² ≤ ², i.e., gA(x) (ex (²)) = ²D ¡gA(x)¢ (x)∆x.13 If h and g are of
class Ck (for an integer k ≥ 1), then ex can be chosen to be of class Ck also.

2. So Lx (h, g) = TxC (i.e., x is regular for the representation of C by h and g).

Proof. Part 2 follows from Part 1 by Remark 4.
For Part 1, ex (²) can be obtained from x + ²∆x by adding a correction term ec (²),

which is generally needed because h (x+ ²∆x) is not exactly 0 and g (x+ ²∆x) is not
linear in ².14 (Nor is gi (x+ ²∆x) always nonpositive if gi (x) = 0 and ∇gi (x) ·∆x = 0;
although if ∇gi (x) ·∆x < 0 then gi (x+ ²∆x) < 0 for small enough ² > 0.) Fix any basis
for Rn; like any vector, ec (²) is a linear combination of the basis vectors. To minimise
the number of nonzero coefficients, choose a subsequence E (1) , . . ., E (m+ a (x)) of as
many basis vectors as there are active inequality and equality constraints in such a way
that the (m+ a (x))-square matrix

J =

" £ ∇he (x) · E (k) ¤ m m+a(x)

e=1 k=1£ ∇gi (x) · E (k) ¤ m+a(x)

i∈A(x) k=1

#
=

∙
Dh (x)
DgA(x) (x)

¸
E

is nonsingular; then seek a correction of the form

ec (²) = m+a(x)X
k=1

E (k) erk (²) = Eer (²)
11This is in [5, Lemma 1.10.1]; it is also a part of [6, Theorem 4.10.3]. For equality constraints only,

it is also in [6, Theorem 3.5.1] and [10, 5.1.7]; this is known as the Tangent Space Theorem.
12The KTCQ is further discussed in, e.g., [13, 1.D].
13In other words, any active constraint function gi decreases along the curve ex at a constant nonneg-

ative rate, viz., −∇gi (x) ·∆x per unit of the curve’s parameter.
14The correction is not needed if the constraints are locally linear, i.e., of the form h (x) = Bx+const.,

etc.–so linear constraints are always regular, even when they are linearly dependent.
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where the columns E (1), E (2) , . . . are concatenated in the n × (m+ a (x)) matrix E
with entries Ejk := E (k)j. (If the unit coordinate vectors of Rn are chosen as the basis,
then J is simply any maximal nonsingular submatrix of the Jacobian of

¡
h, gA(x)

¢
, the

matrix E consists of the corresponding columns of the n × n unit matrix I (n), and c
= Er is just r but with n−m− a (x) zeros inserted at the right places.)
By the Implicit Function Theorem (in, e.g., [5, Theorem 1.7.1] and [6, Theorem 3.7.1]),

the system of m+ a (x) nonlinear equations for r

h (x+ ²∆x+Er) = 0 (15)

gA(x) (x+ ²∆x+Er)− ²DgA(x) (x)∆x = 0 (16)

determines (er1, er2, . . .) as smooth functions of ², on an interval [−², ²] for some ² > 0,
with er (0) = 0. This is because, at (², r) = (0, 0), the Jacobian w.r.t. r of the l.h.s. of
(15)—(16) is the nonsingular matrix J . It also follows that

der
d²
(0) = −J−1

∙
Dh (x)∆x
DgA(x) (x)∆x−DgA(x) (x)∆x

¸
= −J−1

∙
0
0

¸
= 0

and so the curve ex (²) := x+ ²∆x+Eer (²)
meets all the requirements: ex (0) = x

dex
d²
(0) = ∆x+E

der
d²
(0) = ∆x

and h (ex (²)) = 0 as well as gA(x) (ex (²)) = ²DgA(x) (x) · ∆x ≤ 0 by (15)—(16), for every
positive ² ≤ ².
For inequality constraints, the linear independence condition can be weakened–

without loss of regularity–to that of positive independence, i.e., nonexistence of a
vanishing linear combination with positive coefficients (Definition 37). This is equiv-
alent to the existence of a vector that meets the linearised inequality constraints strictly
(when substituted for x − x in (5)): see Lemma 36. So the weaker CQ, known as the
Mangasarian-Fromovitz normality, has two equivalent forms.

Lemma 14 (Two forms of MFCQ a.k.a. normality) Given a point x ∈ C, the fol-
lowing two conditions are equivalent to each other:15

1. If
µTDh (x) + λTDgA(x) (x) = 0 (17)

and λ ≥ 0 (where λ ∈ Ra(x)), then λ = 0 and µ = 0.

15This is in [6, Theorem 4.10.4].
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2. (a) The equality constraint gradients (∇he (x))me=1 are linearly independent; and
(b) there is a vector v ∈ Rn such that DgA(x) (x) v ¿ 0 and Dh (x) v = 0, i.e.,

∇he (x) · v = 0 for each e and ∇gi (x) · v < 0 for each i ∈ A(x) . (18)

Proof. WhenA(x) 6= ∅ (i.e., there is an active inequality constraint), apply Lemma 35
(Motzkin’s Alternative) withA = ∅–i.e., without the matrixA–toDh (x) andDgA(x) (x)
in place of the remaining matrices B and C (renaming ν to λ). This shows that Condi-
tion 2b (i.e., solubility of (65) with the above substitutions) is equivalent to nonexistence
of a µ and λ > 0 meeting (17). Nonexistence of such µ and λ follows obviously from
Condition 1 (since the latter means nonexistence of a nonzero pair µ and λ ≥ 0 meeting
(17)).
Furthermore, when Condition 2b holds, multiplication of (17) by such a v shows that

the λ in (17) must then be 0. This means that, under Condition 2b, Condition 2a is equiv-
alent to Condition 1. So Condition 1 is equivalent to the conjunction of Conditions 2a
and 2b.
This argument applies formally also when A(x) = ∅. But this case is actually trivial:

if no inequality constraint is active, then Condition 2b holds vacuously, and Condition 1
reduces to Condition 2a.
Geometrically, the MFCQ means that: (i) the equality constraint gradients (∇he)

are linearly independent, (ii) the convex cone generated by the inequality constraint
gradients (∇gi) is pointed, and (iii) the interior of its polar Lx (∅, g), which is nonempty
by Lemma 36, contains a vector tangent to the equality-constraint manifold (i.e., a vector
v tangent to each hypersurface with the locus equation he = 0).
That the MFCQ is weaker than the LICQ is obvious from its first form.

Corollary 15 (LICQ and MFCQ) If the vectors (∇he (x))me=1 and (∇gi (x))i∈A(x) are
linearly independent, then the Mangasarian-Fromovitz Constraint Qualification holds at
x.16

Proof. Linear independence of all the relevant gradients (∇he and∇gi for each active
i) obviously implies Condition 1 of Lemma 14.
But the MFCQ is strong enough to ensure regularity.

Lemma 16 (Linearisation under MFCQ) The Mangasarian-Fromovitz Constraint
Qualification, at an x ∈ C, implies that Lx (h, g) = TxC (i.e., that the point x is regular
for the representation of the constraint set C by the functions h and g).17

16This is a part of the first implication in [6, Theorem 4.10.3]: the conclusion “r = p” means there
the same as Condition 2b of Remark 14 here. Therefore, like the Proof of Remark 14, the derivation
of MFCQ from LICQ in [6, p. 239, lines 6—12] uses a theorem of the alternative (Stiemke’s, which is
Lemma 38).
17This is the second implication in [6, Theorem 4.10.3], where it is derived from [6, Theorem 3.5.1]

and thus from the Implicit Function Theorem, like Lemma 16 here.
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Proof. When there is no inequality constraint, i.e., l = 0, this is a special case of
Lemma 13. When l > 0, the Proof of Lemma 13 has to be modified. To simplify the
notation, one can assume that all the inequality constraints are active.
First consider any ∆x ∈ Lx (h, g) with Dg (x)∆x ¿ 0 (in addition to Dh (x)∆x

= 0).18 If actually there is no equality constraint, i.e., m = 0, then–to show that ∆x is
a tangent to C at x–it suffices to take the curve ² 7→ x + ²∆x (since ∇gi (x) ·∆x < 0
implies that gi (x+ ²∆x) < gi (0) = 0 for small ² > 0 and each i). But if m > 0
then a correction term ec (²) must be added to ensure that the curve meets the equality
constraints. This is done as in the Proof of Lemma 13: from any basis for Rn, choose m
vectors E (1) , . . ., E (m) such that the m×m square matrix

J := Dh (x)E =
£ ∇he (x) · E (k) ¤ m m

e=1 k=1

is nonsingular, and seek a correction of the form

ec (²) = mX
k=1

E (k) erk (²) = Eer (²)
where the columns E (1) , . . ., E (m) are concatenated in an n ×m matrix with entries
Ejk := E (k)j. By the Implicit Function Theorem, the system of m nonlinear equations
for r

h (x+ ²∆x+Er) = 0 (19)

determines (er1, . . . , erm) as smooth functions of ², on an interval [−², ²] for some ² > 0,
with er (0) = 0. This is because the Jacobian w.r.t. r of the l.h.s. of (19) is the nonsingular
matrix J . It also follows that

der
d²
(0) = −J−1Dh (x)∆x = −J−10 = 0

and so the curve ex (²) := x+ ²∆x+Eer (²)
meets all the requirements: ex (0) = x,

dex
d²
(0) = ∆x+E

der
d²
(0) = ∆x

and ex (²) ∈ C for every sufficiently small ² > 0. This is because h (ex (²)) = 0 by (19),
and because for each i

d

d²
(gi ◦ ex) (0) = ∇gi (x) ·µ∆x+ der

d²
(0)

¶
= ∇gi (x) ·∆x < 0 (20)

18The MFCQ means that the set of such vectors is nonempty, in which case it is the relative interior
of Lx, i.e., its interior in ker (Dh (x) ·).
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which implies that gi (ex (²)) < gi (ex (0)) = 0 for small enough ² > 0.
Finally, given an arbitrary ∆x ∈ Lx (h, g), use the MFCQ to take a v satisfying (18).

Then ∆x+ ²v ∈ TxC for every ² > 0 by the preceding argument (since Dg (x) (∆x+ ²v)
¿ 0 and Dh (x) (∆x+ ²v) v = 0). As ² & 0, it follows that ∆x ∈ TxC because TxC is
closed.
As the Proof of Lemma 16 shows, the MFCQ implies the existence of a point satisfying

all the inequality constraints strictly, i.e., a point xS with

gi
¡
xS
¢
< 0 for each i and he

¡
xS
¢
= 0 for each e. (21)

In convex programming this is known as Slater’s Condition (SCQ). It implies, conversely,
that the MFCQ holds after discarding any dependent equality constraints.

Remark 17 The Mangasarian-Fromovitz Constraint Qualification (at any x ∈ C) im-
plies Slater’s. For the converse, assume that gi is convex and he is linear, for each i and
e (and their domain D is a convex open set). Then:

1. For every x ∈ C, (21) implies that the vector v := x− xS meets (18).
2. So if I is any maximal set of linearly independent equality constraints, i.e., (∇he)e∈I
are linearly independent with the same span as the whole system (∇he) m

e=1 , then the
MFCQ holds for the representation of C by hI := (∇he)e∈I and g (at every x ∈ C).

Proof. That the MFCQ implies SCQ is shown in proving Lemma 16, after (20): for
a small ² > 0, ex (²) will do as xS in (21).
For the converse, if gi (x) = 0 then, by the gradient inequality for a convex function,

∇gi (x) ·
¡
x− xS¢ ≤ gi (x)− gi ¡xS¢ = −gi ¡xS¢ < 0.

And if he (x) = 0 then ∇he ·
¡
x− xS¢ = he (x)− he ¡xS¢ = 0. This proves Part 1. Part 2

follows because hI defines the same constraint set as h.
Comments:

1. These qualifications have implications other than regularity. The MFCQ means
that there is no degenerate multiplier system in the Fritz John formulation of the
necessary first-order condition, which assigns a multiplier ν ≥ 0 to the objective f .
Such a generalised multiplier system exists always, also for irregular constraints:
see, e.g., [5, p. 181] or [6, Theorem 6.6.2 and 6.10.3]. When ν > 0, it can be set
equal to 1 by scaling. When ν = 0, the multiplier system is called degenerate (or
singular). Nonexistence of a degenerate multiplier system is exactly the MFCQ
(as is obvious from its first form, viz., Condition 1 of Lemma 14). Regularity,
being a weaker condition, ensures only that a non-degenerate multiplier system
exists (Theorems 22 and 25 below), without excluding the existence of a degenerate
system. LICQ guarantees that a multiplier system exists, is not degenerate, and is
unique after scaling ν to 1.
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2. An equality constraint can be expressed as a pair of inequality constraints; this does
not affect regularity (since the linearisation cone remains unchanged). Of course,
neither LICQ nor MFCQ can hold once the constraints include a pair of opposite
inequalities (with the same constraint function). The conversion of an equality to a
pair of inequalities by itself gives rise to a degenerate multiplier system (with just
two nonzero entries); this effect can be removed by strengthening the Fritz John
FOC as in, e.g., [6, Theorem 5.7.1].

3. After linearisation, equalities can be replaced by inequalities without any disadvan-
tage; this is done in the proofs of Appendix A.

6 Examples of irregular constraint representation

As the terminology and notation of Definition 10 make clear, regularity depends on a
particular choice of the functions (h and g) representing the constraint set C, and not
only on C itself. This is because the linearisation cone Lx does depend on h and g,
although the tangent cone Tx depends only on C. The widely used abbreviation “x
is a regular point of C” can mislead, since x can be regular for one representation of
C but irregular for another. For example, a regular description of C (with a nonzero
Jacobian matrix) can always be made irregular by squaring the equalities and cubing
the inequalities.19 This produces constraint functions with zero gradients; such examples
exist of course even with just one variable.
With two-variables, another zero-gradient example of irregularity can be constructed

from a curve with a cusp: take the single constraint 0 = h (x1, x2) := x31 + x
2
2. Then

T(0,0)
©
(x1, x2) : x

3
1 + x

2
2 = 0

ª
= R− × {0} 6= R2 = L(0,0) (h, ∅)

because ∇h (0) = 0 (where g = ∅ means absence of inequality constraints)–i.e., the
tangent cone is a half-line, but the linearisation cone is the whole plane. (So the constraint
is not quasi-regular either: polars of the two cones are different, too.) The same is true
when the same function is used in the single inequality constraint 0 ≥ g (x1, x2) := x31+x22,
i.e.,

T(0,0)
©
(x1, x2) : x

3
1 + x

2
2 ≤ 0

ª
= R− × {0} 6= R2 = L(0,0) (∅, g) .

But the reverse inequality constraint, g ≥ 0 or −g ≤ 0, is regular because its tangent
cone is

T(0,0)
©
(x1, x2) : x

3
1 + x

2
2 ≥ 0

ª
= R2 = L(0,0) (∅,−g) .

19The set C does not change when h and g are replaced by h2 and g3. But at an x with h (x) = 0
and g (x) = 0, one has D

¡
h2
¢
(x) = 0 and D

¡
g3
¢
(x) = 0 by the Chain Rule. So Lx

¡
h2, g3

¢
is the whole

space Rn, which cannot equal TxC because TxC ⊆ Lx (h, g) 6= Rn (unless both Dh (x) = 0 and Dg (x)
= 0).
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This shows also that regularity does depend on whether the constraints functions serve
as equality or inequality constraints, and on the sense of any inequality. By contrast, the
LICQ does not distinguish between equality and active inequality constraints.
Another constraint function with a zero gradient gives an example of quasi-regularity

without regularity: take the single constraint 0 = h (x1, x2) := x21 − x22. Then T0C is C
itself (i.e., two intersecting straight lines), but L0 (h, ∅) is the whole plane (since ∇h (0)
= 0). However, their polars are both equal to the zero cone. (A three-dimensional
variant gives an example of quasi-regularity, without regularity, in which the tangent
cone is convex but not polyhedral like the linearisation cone: take the single constraint
0 ≥ g (x1, x2, x3) := x21 + x22 − x23; then T0C, equal to C, is the “ice-cream cone”.)
Examples of irregularity with non-zero constraint gradients require two variables and

can be constructed from two curves tangent to each other.

Example 18 (Irregular inequality constraints) Define g1 (x1, x2) = x31 − x2 and
g2 (x1, x2) = x31 + x2. (The constraint set C = {g ≤ 0} has a cusp.) At (0, 0), the
tangent cone is a half-line:

T(0,0)C = {(∆x1, 0) : ∆x1 ≤ 0} = R− × {0} .
But ∇g2 (0, 0) = (0, 1) = −∇g1 (0, 0), so the linearisation cone is a whole line:

L(0,0) (∅, g) = R× {0} 6= T(0,0)C.
So the point (0, 0) is not regular. (Nor is it quasi-regular: the normal cone N = T◦ is the
half-space R+ ×R, but the polar L◦ is the line {0} ×R.)
In Example 18, both cones stay the same when just one of the inequalities is changed

to an equality. Changing both inequalities into equalities gives an irregularity example
with a zero tangent cone: if h1 (x1, x2) = x31 − x2 and h2 (x1, x2) = x31 + x2 then C is
the single point {(0, 0)}, and T(0,0)C = {(0, 0)}. But L(0,0) (h, ∅) is the line R× {0}, as
before. So the point (0, 0) is not regular or quasi-regular. (The normal cone N = T◦ is
the half-space R+ ×R, but the polar L◦ is the line {0} × R.)
A variant of Example 18 gives irregular equality-constraints with a half-line as the

tangent cone (which is therefore a “proper” cone, not a linear space).

Example 19 (Irregular equality constraints) Define h1 (x1, x2) =
¡
x+1
¢3 − x2 and

h2 (x1, x2) =
¡
x+1
¢3
+ x2, where x+ := max {x, 0}. Then h is of class C2, and the

constraint set is the half-line

C = {(x1, 0) : x1 ≤ 0} = R− × {0} .
The tangent and linearisation cones are the same as in Example 18: T(0,0)C is the half-
line R− × {0}, but L(0,0) (h, ∅) is the whole line R× {0}.
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Adjoining a redundant constraint (a constraint implied by the other constraints)
spoils linear independence. But it can never spoil regularity, and it can even regularise
the constraints. Indeed, this is what happens when the redundant constraint x1 ≤ 0 is
adjoined to Example 18 or Example 19. Of course, redundancy depends on whether the
constraint is an equality or an inequality (and on the inequality’s sense). For example,
the single constraint g1 (x1, x2) = x21 + x2 ≤ 0 is regular, and the system remains regular
when the redundant constraint x2 ≤ 0 is adjoined. But the constraint x2 = 0 is not
redundant, and to adjoin it would make the point (0, 0) irregular, with a single point as
T but a whole line as L. (The same happens when the constraint x2 ≥ 0 is adjoined.)
This gives another case in which regularity depends on whether the constraints functions
serve as equality or inequality constraints (and on the sense of any inequality).

7 Multiplier rules for maxima with equality const-
raints only

In terms of the constraint map h with g = ∅, i.e., with no inequality constraints, the
constraint set is C = {x : h (x) = 0} and the cone Lx is actually a linear space. The FOC
for a maximum at a regular point x, given next, means in geometric terms that ∇f (x)
is orthogonal to Lx (h, ∅), i.e., is a linear combination of (∇he)me=1. Since Lx (h, ∅) = TxC
by regularity, this means exactly that ∇f (x) is orthogonal to C.

Theorem 20 (Necessary FOC in Lagrange Multiplier Rule) Assume that h (x) =
0, and that x is regular for h (with g = ∅). If x is a local maximum point of f on C,
then there exists a µ ∈ Rm with

∇f (x)T = µTDh (x) (22)

or, in expanded form, ∇f (x) =Pm
e=1 µe∇he (x). If the vectors (∇he (x))me=1 are linearly

independent, i.e., rankDh (x) = m, then such a µ is unique.20

Note that ∇x (f − µ · h), which vanishes at x, is the gradient of the Lagrangian a.k.a.
Lagrange function L.21 Its additional arguments, µ, are called Lagrange multipliers
(though the term is also used more narrowly to mean the particular multiplier values µ
in the FOC).

Definition 21 L (µ, x) := f (x)− µ · h (x) for every µ ∈ Rm and x ∈ D ⊆ Rn.
20This is in [5, Theorem 1.9.1] and [6, Theorem 3.2.2 and p. 166, lines 4—7.].
21In variational calculus, “Lagrange function” is a better name because “Lagrangian” means the

maximand (or minimand).
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Points of C meeting the Necessary FOC, called stationary points a.k.a. critical points,
are examined by using the SOC. This consists in restricted definiteness of the La-
grangian’s Hessian, i.e., its definiteness as a quadratic form on the subspace tangent
to C. With no inequality constraints, the Lagrangian is equal to the objective function
on the whole constraint set, i.e., f (x) = L (µ, x) for every µ and x ∈ C (in brief, f = L
on C). This simplifies both formulation and proof of the SOCs.

Theorem 22 (SOCs in Lagrange Multiplier Rules) Assume that x is a stationary
point supported by a multiplier µ ∈ Rm, i.e., h (x) = 0 and

0 = ∇xL (µ, x)T = ∇f (x)T − µTDh (x)
or, in expanded form, ∇f (x) =Pm

e=1 µe∇he (x). Then:22

1. (Necessary SOC) If x is a local maximum point of f on C, and x is regular for h
(with g = ∅), then

∆xTD2xxL (µ, x)∆x ≤ 0
for every ∆x such that Dh (x)∆x = 0 (i.e., such that ∇he (x)·∆x = 0 for each e).

2. (Sufficient SOC) Conversely, if

∆xTD2xxL (µ, x)∆x < 0

for every nonzero ∆x such that Dh (x)∆x = 0, then x is a strict local maximum
point of f on C. What is more, there exist numbers δ > 0 and ζ > 0 such that

f (x) < f (x)− ζ kx− xk2

for every x ∈ C with kx− xk < δ (i.e., for every x in the δ-neighbourhood of x
relative to C).23

To use the SOCs, one needs a computational criterion of definiteness for a quadratic
form on a linear subspace of Rn. One such result, given next, extends Sylvester’s Deter-
minantal (Principal Minor) Test of unrestricted definiteness. It is stated in terms of the
n× n symmetric matrix H representing the quadratic form and an m× n matrix B (of
full row-rank) representing the subspace as ker (B·).24
22This is in [5, Theorem 1.9.2], though without the tangent space spelt out, and in [6, Theorems 3.2.2

and 3.3.1].
23One could, of course, equalise δ and ζ downwards to min {δ, ζ}, but this is meaningless unless both

can be measured in the same unit.
24An alternative to using the extension is to change the variables, from x to a y, so that the subspace

is spanned by a set of n − m coordinate vectors (i.e., so that its locus equations become ∆yn−m+1
= 0, . . . , ∆yn = 0 instead of B∆x = 0): then the original Sylvester’s Criterion can be applied to the
(n−m)-square leading submatrix of the new matrix representing the quadratic.
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Definition 23 The d-th leading submatrix of a square matrix M is the d × d matrix
[Mrs]

d d
r=1 s=1. Its determinant is the d-th leading minor.

25

Lemma 24 (Determinantal test of restricted definiteness) For a symmetric n×
n matrix H and an m × n matrix B of rank m, the following conditions are equivalent
to each other:

1. H is negative definite on the right kernel of B (i.e., vTHv < 0 for every nonzero
v ∈ Rn such that Bv = 0).

2. For each d = 2m+1, . . ., m+n the d-th leading minor of the (m+ n)-square matrix∙
0 B
BT H

¸
(23)

is of the sign (−1)d−m (i.e., the signs alternate and start from (−1)m+1 or, equiv-
alently, end with (−1)n for the determinant of the whole matrix (23)).

Proof. See, e.g., [2].
Comments:

1. In Lemma 24, the ignored leading minors of (23) are those of dimension d ≤ 2m.
Those of dimensions d ≤ 2m−1 are zero. The one of dimension 2m is independent
of H; its sign is either (−1)m or 0.

2. For negative definiteness of H, on ker (B·), the minor-sign sequence in Condition 2
of Lemma 24 must alternate and start from the correct sign (−1)m+1 for dimension
d = 2m+ 1 or, equivalently, end with (−1)n for d = m+ n. A constant sign equal
to (−1)m indicates positive definiteness of H, on ker (B·). If the sign alternates
but starts from (−1)m and hence ends with (−1)n−1, or it is constant but equal to
(−1)m+1, or it is neither constant nor alternating, then the form is not definite.26

3. To verify the SOC for a constrained maximum (Theorem 22), the Determinantal
Test (Lemma 24) can be applied to H = D2xxL (µ, x) with B = −Dh (x). With this
choice of sign, the compound matrix (23) is the total Hessian of L with respect to
(µ, x), i.e., ∙

0 B
BT H

¸
= D2L =

∙
0 −Dh

− (Dh)T D2xxL

¸
. (24)

25Other matrices obtained by selecting a subset of rows and the corresponding subset of columns (with
the same indices) are principal but not leading.
26This is easiest to see in the unconstrained case with n = 2 (and m = 0). When the minor sign

sequence is either (+−) or (−−), this means that the eigenvalues of H are of opposite signs, i.e., the
form H is not definite (and so, when ∇f (x) = 0 and H = D2xxf (x), the stationary point x is a saddle
point of f). When the sign sequence is either (++) or (−+), the eigenvalues are of the same sign, i.e.,
the form is definite (and so x is a minimum or a maximum, respectively).
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This is also known as the bordered Hessian–since the partial Hessian of L, w.r.t.
x alone, is bordered by the constraint map’s Jacobian matrix (and its transpose).

4. The partial Hessian in (24) is that of L, not of f ; this matters when the constraints
are nonlinear. For more explanation, see the Comment after the Proof of Theorem
22.

5. Of course, Lemma 24 can just as well be applied with B = Dh (x) instead of
−Dh (x): the leading minors of the matrix (23) do not change when B is replaced
by −B (since this means changing the signs of m columns and m rows, in the d-th
leading submatrix, for d ≥ 2m+ 1).

6. The SOC for a constrained maximum (Theorem 22) can also be verified by applying
the determinantal test of positive definiteness to −D2xxL (µ, x). In other words, a
stationary point x (supported by µ) is a maximum if all the leading minors, of
dimensions from 2m+ 1 to m+ n, of the (m+ n)-square matrix

−D2L =
∙

0 Dh

(Dh)T −D2xxL
¸

have the sign (−1)m.

8 Multiplier rules for maxima with equality and in-
equality constraints

In terms of the constraint maps h and g, the constraint set is now

C = {x : h (x) = 0, g (x) ≤ 0}

and in the FOC there are additional multipliers λ for the inequality constraints. These
are always nonnegative, unlike the multipliers µ for the equality constraints, whose sign
is a priori indefinite.

Theorem 25 (Necessary FOC in Kuhn-Tucker Multiplier Rule) Assume that
h (x) = 0, g (x) ≤ 0, and that x is regular for h and g. If x is a local maximum point of
f on C, then there exist a µ ∈ Rm and a λ ∈ Rl with

λ ≥ 0 (25)

λ · g (x) = 0 (26)

∇f (x)T = µTDh (x) + λTDg (x) (27)
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i.e., in expanded form, ∇f (x) = Pm
e=1 µe∇he (x) +

Pl
i=1 λi∇gi (x). If additionally the

vectors (∇he (x))me=1 and (∇gi (x))i∈A(x) are linearly independent, i.e.,

rank

∙
Dh (x)
DgA(x) (x)

¸
= m+ cardA (x)

then such a (µ,λ) is unique.27

With inequalities, the constraints may have a corner point, i.e., a point at which the
linearisation cone is pointed (and a fortiori the tangent cone is also line-free). For such
points, there is a sufficient first-order condition.

Theorem 26 (Sufficient FOC in a multiplier rule) Assume that x is a stationary
point supported by multipliers µ ∈ Rm and λ ∈ Rl, i.e., h (x) = 0, g (x) ≤ 0, and

0 ≤ λ

0 = λ · g (x)
0 = ∇xL

¡
µ,λ, x

¢T
= ∇f (x)T − µTDh (x)− λ

T
Dg (x)

or, in expanded form, ∇f (x) =Pm
e=1 µe∇he (x) +

Pl
i=1 λi∇gi (x). If additionally28

∇f (x) ·∆x 6= 0 (28)

for every nonzero ∆x ∈ Lx (h, g), then x is a strict local maximum point of f on C. What
is more, there exist numbers δ > 0 and ζ > 0 such that

f (x) ≤ f (x)− ζ kx− xk (29)

for every x ∈ C with kx− xk < δ.

But more usually the Sufficient FOC fails at a stationary point x because, although
∇f (x) ·∆x ≥ 0 for every ∆x ∈ Lx by the Necessary FOC, the inequality is not always
strict, i.e., ∇f (x) ·∆x = 0 for some nonzero ∆x ∈ Lx. Second-order conditions are then
needed.

Definition 27 L (µ,λ, x) := f (x)− µ · h (x)− λ · g (x) for every (µ,λ) ∈ Rm × Rl and
x ∈ D ⊆ Rn.
27This is in [5, Theorem 1.10.1], [6, Theorem 4.7.1] and [10, 5.2.18].
28Since Lx (h, g) is a finitely generated convex cone, it suffices to assume (28) for each generator ∆x.

The assumption means that ∇f (x) lies in the interior of Lx (h, g)◦, and it obviously implies that Lx (h, g)
is pointed.
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Unlike µ · h, the extra term λ · g of the Lagrangian L does not usually vanish on all
of C. The condition λ · g (x) = 0 is called complementary slackness (CS). Given a λ ≥ 0,
the set of those points of C which meet the CSC is

Cb (λ) := {x ∈ C : ∀i (λi 6= 0⇒ gi (x) = 0)} . (30)

Note that the Lagrangian is equal to the objective function only at those points which
meet the constraints in a way consistent with the multiplier signs, i.e.,

L (µ,λ, x) = f (x) if x ∈ Cb (λ) .

In contrast to the pure equality-constrained case, f does not equal L on all of C.
After solving the Necessary FOC system for (µ,λ, x), it is known which inequality

constraints are active and which of these are binding, i.e., have nonzero multipliers.29

In the SOCs, binding constraints are treated just like equalities (and any inactive con-
straints are simply ignored). Active inequalities with zero multipliers are called liminal
constraints; these are active but nonbinding (and hence are also known as “just active”
or “degenerate active”). Except when there is just one such constraint, they cannot be
ignored like inactive constraints.30 Nor can liminal constraints be treated as equalities,
like binding constraints. This has been persistently overlooked in economics texts: as
a result, the so-called “sufficient” SOC of, e.g., [3, Theorems I.2.5 and II.3.4 (pp. 11
and 38)], [12, 19.8] and [13, 1.E.16 (ii)] is in fact insufficient (when there is a liminal
constraint). See [7] for a counterexample. As for the error made in [3, Proof of Theorem
II.3.4 (p. 38)], it is pinpointed at the end of our discussion of that method, in Section 9
before the final Comment.
The set of all the binding constraints is denoted by

B(λ) := {i : λi 6= 0} .

A binding constraint is active: for λ ≥ 0 and x ∈ C, the CSC means that B (λ) ⊆ A(x).
The set of all the liminal constraints is A(x) \ B(λ). In this notation

Cb (λ) =
©
x : h (x) = 0, gB(λ) (x) = 0, g\B(λ) ≤ 0

ª
where \B (λ) = {1, . . . , l} \ B(λ). The SOCs are formulated as though the optimisation
problem had this larger system of equality constraints, viz.,

¡
h, gB(λ)

¢
= 0.

29In both mathematics and economics, the terms “active”, “effective”, “tight” and “binding” are used
as synonyms, which is misleading: one feels that “binding” should mean more than merely “active”.
30A single liminal constraint can be ignored because definiteness of a quadratic form on a half-space

is equivalent to its definiteness on the whole space.
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Theorem 28 (SOCs in Kuhn-Tucker Multiplier Rules) Assume that x is a sta-
tionary point supported by multipliers µ ∈ Rm and λ ∈ Rl, i.e., h (x) = 0, g (x) ≤ 0,
and

0 ≤ λ

0 = λ · g (x)
0 = ∇xL

¡
µ,λ, x

¢T
= ∇f (x)T − µTDh (x)− λ

T
Dg (x)

or, in expanded form, ∇f (x) =Pm
e=1 µe∇he (x) +

Pl
i=1 λi∇gi (x). Then:31

1. (Necessary SOC) If x is a local maximum point of f on C, and x is regular as a

point of Cb
¡
λ
¢
, i.e., regular for

³
h, gB(λ)

´
and g\B(λ), then

∆xTD2xxL
¡
µ,λ, x

¢
∆x ≤ 0 (31)

for every ∆x such that

Dh (x)∆x = 0, i.e., ∇he (x) ·∆x = 0 for each e (32)

DgB(λ) (x)∆x = 0, i.e., ∇gi (x) ·∆x = 0 for each i such that λi > 0 (33)

DgA(x)\B(λ) (x)∆x ≤ 0, i.e., ∇gi (x) ·∆x ≤ 0 for i with λi = 0 and gi (x) = 0.

(34)

2. (Sufficient SOC) Conversely, if

∆xTD2xxL
¡
µ,λ, x

¢
∆x < 0 (35)

for every nonzero ∆x meeting (32)—(34), then x is a strict local maximum point of
f on C. What is more, there exist numbers δ > 0 and ζ > 0 such that

f (x) ≤ f (x)− ζ kx− xk2 (36)

for every x ∈ C with kx− xk < δ.

Comments (on the SO Multiplier Rules): These can be elucidated by reflecting on
Cb’s tangent and linearisation cones, and on its relationship to C.

1. Conditions (32)—(34) mean exactly that ∆x is in Lx
³³
h, gB(λ)

´
, g\B(λ)

´
. This

must equal TxCb
¡
λ
¢
if the Necessary SOC is indeed to hold at an optimum x

(supported by µ and λ).

31This is in [6, Theorems 4.7.4 and 4.7.5] and, with all the constraints assumed active, also in [5,
Theorems 1.10.2 and 1.10.3].
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2. In other words, x must be regular for the representation of Cb
¡
λ
¢
by
³
h, gB(λ)

´
and g\B(λ). This does not always follow from regularity of x for the representation

of C by h and g.32

3. But linear independence of constraint gradients (14) implies both of the regular-
ity conditions–since the LICQ does not distinguish between equalities and active
inequalities. It then follows that TxCb

¡
λ
¢
= TxC ∩

T
i∈B(λ) ker∇gi (x).

4. Assume that the LICQ holds at x, a stationary point supported by multipliers µ
and λ ≥ 0. If additionally A(x) = B ¡λ¢ then Cb ¡λ¢ is, locally around x, equal to
the topological boundary of C relative to the manifold {x : h (x) = 0}.

5. Absence of liminal constraints, known also as strict complementarity, simplifies the
use of the sufficient SOC: if all the active inequalities are binding, then (34) plays
no part, and so the range for ∆x, defined by the remaining Conditions (32)—(33),
is actually a linear subspace (rather than a “proper” cone). So the Determinantal

Test (Lemma 24) can be applied to the bordered Hessian of
³
h, gB(λ)

´
, with m+

cardB
¡
λ
¢
in place ofm. The same technique applies when there is just one liminal

constraint: it can be ignored.33

Comments (on strict complementarity):

1. In sensitivity analysis, liminal constraints have to be excluded by assumption if the
optimal solution and its multipliers are to have ordinary derivatives with respect to
the problem’s parameters: see, e.g., [4, Theorems 2.4.4 and 3.2.2] or [8, Theorem 1].
Without the strict complementarity assumption, the solution (and its multipliers)
is usually nondifferentiable, but it is still directionally differentiable: see, e.g., [4,
Theorem 2.4.5] or [8, Theorems 3 and 4].

2. Some topics involve liminal constraints of necessity. An example is the Le Chatelier
Principle, discussed in, e.g., [11].

32For example, take the constraints g1 (x1, x2) = −x31 + x2 ≤ 0 and g2 (x1, x2) = x31 + x2 ≤ 0 (with
h = ∅) at x = (0, 0); these meet the MFCQ and are therefore regular. But they cease to be regular
once one or both inequalities are turned into equality constraints, as the representation of Cb

¡
λ1,λ2

¢
requires (if λ 6= 0). For any maximand with ∇f (0, 0) = (0, 1), the point (0, 0) is stationary, and every
supporting λ is nonzero.
33Matters complicate with two (or more) liminal constraints. In the two-variable case (and no other

constraints), the question is whether D2xxL (equal to D
2
xxf , since λ1 = 0 = λ2) is negative definite on

a planar sector between the tangents to the two borders {g1 = 0} and {g2 = 0} of the sublevel sets. In
addition to negative definiteness on the two extreme rays of the sector, one needs to verify that the form
does not vanish anywhere in the sector.
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9 Square slack reduction to equality constraints and
its limitations

Each inequality constraint, gi (x) ≤ 0, on the decision variables x = (x1, . . . , xn) can be
converted to an equality gi (x) + s2i /2 = 0 by introducing a variable whose square takes
up any slack. Even though the maximand f does not depend on it, si is an extra decision
variable: the converted problem is to be solved for both x and s = (s1, . . . , sm). This
artifice can be used to derive optimality conditions for the original inequality-constrained
problem from those for the converted, purely equality-constrained problem. It is adequate
as a way of deriving the Kuhn-Tucker Necessary FOC, although even this necessitates the
use of both the FOC and the Necessary SOC (for the converted problem): the multiplier
signs (25) do not follow from the FOC alone.
By replacing all inequalities with equalities, the method may also seem to somehow

by-pass the complication of liminal (active but not binding) inequality constraints, but
in fact it offers nothing in this respect. Applied to the equality-constrained converted
problem, the second-order Lagrange multiplier rules translate into inferior results for the
inequality-constrained original problem: instead of the standard Kuhn-Tucker second-
order rules, they yield only a weaker necessary condition and a much stronger sufficient
condition. Both consequences are undesirable, and widen the gap between the necessary
and the sufficient conditions. The weaker necessary condition is so because, when there
are liminal constraints, it asserts the Hessian’s negative semidefiniteness on a smaller set
of vectors ∆x than that defined by (32)—(34) in the standard Necessary SOC. The “much
stronger” sufficient condition rules out liminal constraints (i.e., it implies that gi (x) and
the associated multiplier µi cannot both be zeros). It is simply the conjunction of strict
complementarity and the standard Sufficient SOC (of Theorem 28). It is, pointlessly,
even stronger than the so-called Strong Sufficient SOC.34 The latter, though needlessly
stringent as an optimality test,35 does have a place in the directional-derivative results of
solution-sensitivity analysis without strict complementarity: see, e.g., [4, Theorem 2.4.5]
or [8, Theorems 3 and 4].
To derive the Kuhn-Tucker Necessary FOC in this way, and to see that it yields

inferior second-order conditions, take for simplicity a problem with inequality constraints
only, i.e., maximisation of f (x) over x subject to g (x) ≤ 0; even the one-variable, one-
constraint case (n = 1, l = 1) can provide an illustration. After conversion, the problem
is to maximise f (x) over x ∈ Rn and s ∈ Rl subject to gi (x) + s2i /2 = 0 for i = 1, . . . , l.
34The Strong Sufficient SOC is like the the standard Sufficient SOC except for ignoring any liminal

constraints, i.e., treating them just like inactive ones. This makes no difference if there is just one liminal
constraint, but if there are two or more, to ignore even one of them is to strengthen the SOC: see [7].
35It is put as an optimality test in, e.g., [10, 5.3.4].
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Its Lagrangian is

L (µ, x, s) = f (x)−
lX
i=1

µi

µ
gi (x) +

s2i
2

¶
= f (x)− µ · g (x)− 1

2
sT diag (µ) s

= L (µ, x)− 1
2
sT diag (µ) s

where L is the Lagrangian for the original problem, and diag (µ) is the square matrix
with the m-tuple µ as the diagonal and with zero off-diagonal entries. By Theorem 20,
the Necessary FOC for the converted problem is

0 = −gi (x)− s
2
i

2
for each i (37)

0 = ∇xL = ∇f (x)−
lX
i=1

µi∇gi (x) (38)

0 = ∇sL = −diag (µ) s. (39)

By (37), gi (x) = −s2i /2 ≤ 0. And (39) means that µisi = 0 for each i–i.e., µi = 0 or
gi (x) = 0 for each i. To show that µ ≥ 0 when x is a maximum point, use the Necessary
SOC on the Lagrangian’s Hessian

D2(x,s)(x,s)L (µ, x, s) =
∙
D2xxL (µ, x) 0

0 −diag (µ)
¸
. (40)

That is, by Part 1 of Theorem 22, D2(x,s)(x,s)L is negative semidefinite on the linear space
ker
¡£
Dg (x) diag (s)

¤ ·¢, i.e.,
0 ≥ £ ∆xT ∆sT

¤ ∙ D2xxL (µ, x) 0
0 −diag (µ)

¸ ∙
∆x
∆s

¸
(41)

= ∆xTD2xxL (µ, x)∆x−∆sT diag (µ)∆s

for every (∆x,∆s) such that

∇gi (x) ·∆x+ si∆si = 0 for each i. (42)

For ∆x = 0, this means that

0 ≤
lX
i=1

µi (∆si)
2 for every ∆s with

lX
i=1

si∆si = 0.

For any i with si = 0, the last condition does not restrict ∆si, and it follows that µi ≥ 0.
So µ ≥ 0 (since µi = 0 if si 6= 0). This completes the derivation of the Kuhn-Tucker FOC
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(for the original problem): it has been shown that g (x) ≤ 0, µ ≥ 0, µ · g (x) = 0 and
∇f (x)T = µTDg (x). The same argument is in [3, Proof of Theorem II.3.1 (pp. 34—36)].
The inferior second-order results obtainable in this way are derived next. Given a

stationary point (x, s) and a supporting multiplier µ, which meet (37)—(39), recall the
notation (6) for the set of active constraints (for the original problem), i.e.,

A(x) = {i : gi (x) = 0} = {i : si = 0} .

The Necessary SOC for the converted problem–i.e., the negative semidefiniteness (41)
under the restrictions (42) on (∆x,∆s)–can be restated as

∆xTD2xxL (µ, x)∆x ≤
X
i∈A(x)

µi (∆si)
2 if ∇gi (x) ·∆x+ si∆si = 0 for each i (43)

since µi = 0 for any i /∈ A(x). Furthermore, for any i /∈ A(x) its restriction on (∆x,∆s)
can be simply deleted from (43). This is because it can be solved for ∆si = −∇gi (x) ·
∆x/si given any ∆x, and because the summation in (43) excludes any such i (i.e., the
sum does not depend on ∆si). So (43) is equivalent to

∆xTD2xxL (µ, x)∆x ≤
X
i∈A(x)

µi (∆si)
2 if ∇gi (x) ·∆x = 0 for each i ∈ A(x) .

Finally, since each ∆si in the above sum is unrestricted and µ ≥ 0, the Necessary SOC
for the converted problem is equivalent to

∆xTD2xxL (µ, x)∆x ≤ 0 if ∇gi (x) ·∆x = 0 for each i ∈ A(x) . (44)

The same argument is in [3, Proof of Theorem II.3.3 (pp. 37—38)]. Note that (44) is
weaker than the standard Kuhn-Tucker Necessary SOC for the original problem because
it treats liminal constraints just like equality constraints: when i is liminal (i.e., gi (x)
= 0 and µi = 0), the equality restriction on ∆x in (44) is more stringent than the
corresponding inequality in (34). For example, when there is just one liminal constraint,
the standard formulation shows negative semidefiniteness on a space of one dimension
higher than does (44). In the very simplest case of just one variable x and one constraint
with dg/dx 6= 0, if g (x) = 0 and µ = 0 then (44) becomes the tautology 0 ≤ 0 (since
∆x can only be 0), whereas the standard Kuhn-Tucker Necessary SOC means then that
d2f/dx2 ≤ 0.
The Sufficient SOC for the converted problem is that (40) be negative definite under

the restrictions (42), i.e., that

∆xTD2xxL (µ, x)∆x ≤
lX
i=1

µi (∆si)
2 if

½ ∇gi (x) ·∆x+ si∆si = 0 for each i
(∆x,∆s) 6= (0, 0) . (45)

28



This can be similarly restated (by recalling that µi = 0 for any i /∈ A(x), and by solving
again for ∆si = −∇gi (x) ·∆x/si, which is 0 if ∆x = 0) as

∆xTD2xxL (µ, x)∆x <
X
i∈A(x)

µi (∆si)
2 if

½ ∇gi (x) ·∆x = 0 for each i ∈ A(x)¡
∆x,∆sA(x)

¢ 6= (0, 0) . (46)

Next, by considering three cases: (i) ∆x 6= 0 but ∆sA = 0, (ii) ∆x = 0 but ∆sA 6= 0,
and (iii) both ∆x 6= 0 and ∆sA 6= 0, (46) is shown to be equivalent to the conjuction of36

∆xTD2xxL (µ, x)∆x < 0 if ∆x 6= 0 and ∇gi (x) ·∆x = 0 for each i ∈ A(x) (47)
µi > 0 for each i ∈ A(x) . (48)

Without (48), Condition (47) is generally weaker than the standard Kuhn-Tucker Suffi-
cient SOC (for the original problem) because, like (44), it treats liminal constraints just
like equality constraints: when i is a liminal constraint (i.e., gi (x) = 0 and µi = 0), the
equality restriction on ∆x in (47) is more stringent than the corresponding inequality in
(34). In other words, it is weaker because it requires the Hessian to be negative definite
on a smaller set of nonzero vectors ∆x than in (32)—(34). Under (48), which is strict
complementarity, (47) becomes of course equivalent to the Kuhn-Tucker Sufficient SOC.
Thus the method reproduces the standard sufficiency result–but only under the strong
and extraneous assumption of strict complementarity.
Being weaker than the standard Sufficient SOC, Condition (47) is by itself insufficient

for a local maximum–contrary to the assertion of [3, Theorems I.2.5 and II.3.4 (pp. 11
and 38)], which is reproduced in, e.g., [12, 19.8] and [13, 1.E.16 (ii)]. Although the
argument in [3, Proof of Theorem II.3.4 (p. 38)] is largely the same as the above one, it
goes wrong at the end [3, p. 38, line 3 f.b.]: in our notation, from

¡
∆x,∆sA(x)

¢ 6= (0, 0) it
obviously does not follow that∆x 6= 0 (whichwould have given∆xTD2xxL∆x < 0). When
∆x = 0, this argument must rely on positivity of

P
i∈A(x) µi (∆si)

2 for ∆sA(x) 6= 0–and
it necessitates the missing assumption of strict complementarity. This oversight produces
a false “sufficient” SOC, which is in fact insufficient when there is a liminal constraint.
When all inequality constraints are liminal,37 its use can lead to a strict minimum point
being misidentified as a strict maximum: see [7] for an example.

Comment: That the square-slack approach to inequalities cannot deal properly with
liminal constraints is easiest to see in the one-variable, one-constraint case: the Sufficient
SOC for the converted problem is that the 2× 2 Hessian matrix D2(x,s)(x,s)L be negative
36Case (iii) does not add another condition because the inequality in (46) then follows from either of

(47) and (48).
37When there is a binding inequality, maximum and minimum points are distinguished from each

other already by their multiplier signs in the FOCs: for a point to be stationary for both maximisation
and minimisation, all the active inequality constraints must be liminal.
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definite on ker ((dg/dx, s) ·), i.e., on nonzero scalar multiples of the vector (−s,dg/dx).
This means that

0 > s2
µ
d2f

dx2
− µd

2g

dx2

¶
− µ(dg

dx
)2 (49)

which implies that (µ, s) 6= (0, 0), i.e., it implies strict complementarity. This can also be
viewed as the simplest application of the Determinantal Test (Lemma 24): the expression
in (49) equals

det

⎡⎣ 0 dg/dx s
dg/dx −d2f/dx2 + µd2g/dx2 0
s 0 µ

⎤⎦ .
10 Maxima with abstract constraints and derivation

of multiplier rules

The multiplier rules derive from the FOC and SOCs for a maximum on an arbitrary set
C, which are given next.

Theorem 29 (Abstract Necessary FOC) If x is a local maximum point of f on C,
then ∇f (x) ·∆x ≤ 0 for every ∆x ∈ TxC (i.e., ∇f (x) ∈ NxC). So ∇f (x) ·∆x = 0 for
every ∆x ∈ TxC ∩ (−TxC).38

Proof. One can assume that k∆xk = 1. Take a sequence (x (k)) ∞
k=1 in C \ {x}

converging to x from the direction ∆x, i.e., (x (k)− x) / kx (k)− xk → ∆x as k → ∞.
Then f (x (k)) ≤ f (x) for every sufficiently large k, and so

0 ≥ lim
k→∞

f (x (k))− f (x)
kx (k)− xk = ∇f (x) ·∆x

by (3).
Proof of Theorem 20 (NFOC in Lagrange Multiplier Rule, equalities only).

Here
C = {x : h (x) = 0} .

By Theorem 29, ∇f (x) · ∆x ≤ 0 for ∆x ∈ TxC. By the regularity assumption, TxC
equals Lx (h), which is a linear space (by its definition (7), since there are no inequality
constraints). So actually

∇f (x) ·∆x = 0 for every ∆x ∈ TxC = Lx (h) := ker (Dh (x) ·) .
To complete the proof, apply Lemma 33 (the Factorisation Lemma) to p = ∇f (x) and
B (e) = ∇he (x).
38This is in [5, Theorem 1.8.1] and in [6, Theorem 4.6.1].
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Comment: So, without inequality constraints, conversion of the Abstract Necessary
FOC into a Lagrange multiplier rule requires only the Factorisation Lemma, which is
a purely algebraic result: it does not rely on separation of convex sets. The case of
inequality constraints, dealt with next, does require a separation argument (viz., Farkas’
Lemma).
Proof of Theorem 25 (NFOC in Kuhn-Tucker Multiplier Rule, with in-

equalities). Here
C = {x : h (x) = 0, g (x) ≤ 0} .

By Theorem 29 and the regularity assumption,

∇f (x) ·∆x ≤ 0 for every ∆x ∈ TxC = Lx (h, g) .
To complete the proof, apply Lemma 34 (Farkas’ Lemma) to p = ∇f (x) with B =
Dhe (x) and A = Dgi (x).

Theorem 30 (Abstract Sufficient FOC) If ∇f (x) · ∆x < 0 for every nonzero ∆x
∈ TxC (which implies that TxC is line-free), then x is a is a strict local maximum point
of f on C.39 What is more, there exist numbers δ > 0 and ζ > 0 such that

f (x) ≤ f (x)− ζ kx− xk
for every x ∈ C with kx− xk < δ.40

Proof. Suppose contrarily that there is a sequence (x (k)) ∞
k=1 in C such that

x (k)→ x as k →∞ and f (x (k)) > f (x)− 1
k
kx (k)− xk for each k.

Then x (k) 6= x, and since the unit sphere is compact, one can assume (by passing to a
subsequence) that (x (k)− x) / kx (k)− xk converges to some ∆x (a unit vector). So, by
(3),

∇f (x) ·∆x = lim
k→∞

f (x (k))− f (x)
kx (k)− xk ≥ − lim

k→∞
1

k
= 0

which contradicts the assumption.
Proof of Theorem 26 (SFOC, for corner points). For every ∆x ∈ Lx (h, g)

∇f (x) ·∆x = µTDh (x)∆x+ λ
T
Dg (x)∆x = 0 + λ

T
Dg (x)∆x ≤ 0.

Since equality is excluded by the assumption (28), it follows that actually∇f (x)·∆x < 0
every nonzero ∆x ∈ Lx (h, g), and a fortiori for every nonzero ∆x ∈ TxC. So, by
Theorem 30, x is a strict local maximum point of f on C = {x : h (x) = 0, g (x) ≤ 0}.
The next result will be applied to the Lagrangian L as a function of the decision

variables x (with the multipliers µ and λ fixed).
39If, as in the case of regular constraints, TxC is a finitely generated convex cone, then it obviously

suffices that ∇f (x) ·∆x < 0 for each generator ∆x.
40This is in [6, Theorem 4.6.3].

31



Theorem 31 (Abstract SOCs) Assume that ∇L (x) = 0, for a real-valued function L
that is twice differentiable at a point x ∈ C. Then:41

1. (Necessary SOC) If x is a local maximum point of L on C, then∆xTD2L (x)∆x ≤ 0
for every ∆x ∈ TxC.

2. (Sufficient SOC) Conversely, if ∆xTD2L (x)∆x < 0 for every nonzero ∆x ∈ TxC,
then x is a strict local maximum point of L on C. What is more, there exist numbers
δ > 0 and ζ > 0 such that

L (x) ≤ L (x)− ζ kx− xk2

for every x ∈ C with kx− xk < δ.

Proof. For Part 1, after scaling ∆x to unit length, take a sequence (x (k)) ∞
k=1 in C \

{x} converging to x from the direction ∆x. Then L (x (k)) ≤ L (x) for every sufficiently
large k, and so

0 ≥ lim
k→∞

L (x (k))− L (x)
kx (k)− xk2 = lim

k→∞
L (x (k))− L (x)−∇L (x) · (x (k)− x)

kx (k)− xk2 (50)

=
1

2
∆xTD2L (x)∆x

by (4).
For Part 2, suppose contrarily that there is a sequence (x (k)) ∞

k=1 in C such that

x (k)→ x as k →∞ and L (x (k)) > L (x)− 1
k
kx (k)− xk2 for each k.

Then x (k) 6= x, and since the unit sphere is compact, one can assume (by passing to
a subsequence) that (x (k)− x) / kx (k)− xk converges to some ∆x (a unit vector). So,
again by (4),

1

2
∆xTD2L (x)∆x = lim

k→∞
L (x (k))− L (x)−∇L (x) · (x (k)− x)

kx (k)− xk2 (51)

= lim
k→∞

L (x (k))− L (x)
kx (k)− xk2 ≥ − lim

k→∞
1

k
= 0

which contradicts the assumption.
In the case of equality constraints only, to maximise f on C means exactly the same

as to maximise L (µ, ·) on C (since the two functions are simply equal on all of C).42

41This is in [5, Theorem 1.8.2]; Part 1 is also in [6, Theorem 4.6.5].
42In [5], this gives [5, Theorem 1.9.2] immediately from [5, Theorem 1.8.2].
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So both of the above Abstract SOCs can be applied (to L) to prove the corresponding
second-order multiplier rules without further ado.
Proof of Theorem 22 (SOCs as Multiplier Rules, equality constraints only).

With µ fixed, abbreviate L (µ, ·) to L; then ∇L (x) = 0 by assumption. So Theo-
rem 31 applies, and the result transcribes exactly into Theorem 22, since L = f on C
= {x : h (x) = 0}, and since ker (Dh (x) ·) = Lx (h) = TxC by regularity (which is needed
only for Part 1, since Lx always contains Tx by Lemma 9).
Comment: The preceding proofs are next examined to explain why the SOCs must

use the Hessian of the Lagrangian L (µ, ·) and not that of the maximand f (unless all
the constraints h are linear functions, in which case the two Hessians are equal).

1. Theorem 31 cannot be applied to f instead of L (µ, ·) because ∇f (x) does not
vanish (unlike ∇xL (µ, x), which vanishes by the FOC).

2. And Theorem 31 does depend on the assumption that ∇L (x) = 0: this cannot be
weakened to

∇L (x) ·∆x = 0 for ∆x ∈ TxC. (52)

When TxC is a linear space, the weaker condition (52) is exactly the FOC for x to
be a maximum point of L (and hence it would hold in Part 1 of Theorem 31 even if
∇L (x) were nonzero). But (52) would not suffice (for the Proof of Theorem 31 if
∇L (x) were nonzero) because the term ∇L (x) · (x (k)− x) in (50) and (51) would
not vanish (unless the constraints are linear, in which case C and x + TxC are
locally identical, so x (k)− x ∈ TxC and hence ∇L (x) · (x (k)− x) = 0 purely by
(52)). Nor would this term generally vanish in the limit after the division, i.e., it
would not be of higher order than kx (k)− xk2 (although it would still be of higher
order than kx (k)− xk, purely by (3) and (52)).

Even with inequality constraints, the Necessary Abstract SOC is still applicable
enough to prove the corresponding multiplier rule. It is applied, to L

¡
µ,λ, ·¢, on the

smaller set Cb
¡
λ
¢
–on which f and L are still equal. Elsewhere on the constraint set,

f ≤ L. So a maximum point x for f , which always lies in Cb, need not be a maximum
point for L on C (since L (x) = f (x) ≥ f (x) ≤ L (x) for x ∈ C). But it is, of course, a
maximum point for L on Cb.
By contrast, the above Sufficient Abstract SOC is not readily applicable if the binding

inequality constraints are indeed to be treated just like equality constraints.43 It is to
achieve this important objective that the Hessian’s negative definiteness is assumed,

43There are at least two advantages from being able to handle the binding constraints like equality
constraints. First, the sufficient SOC matches the necessary SOC (i.e., is obtained just by making the
definiteness strict). Second, when there is no liminal constraint, the negative definiteness condition is to
be verified on a linear subspace (rather than on a cone).
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in Part 2 of Theorem 28, only for those ∆x ∈ TxC with ∇gi (x) · ∆x = 0 for each
binding constraint i. Since Part 2 of Theorem 31 requires negative definiteness for every
∆x ∈ TxC, it does not apply as it stands. What is needed, then, is a variant (of Part 2 of
Theorem 31) that, from the weaker premise, draws the weaker but adequate conclusion
that x is a (local) maximum point for f , though not necessarily for L (on C).44 Such a
variant is given next.

Theorem 32 (Modified Abstract Sufficient SOC) In addition to ∇L (x) = 0, for
a real-valued L that is twice differentiable at x ∈ C, assume that L ≥ f on C and
L (x) = f (x). If, furthermore,

∆xTD2L (x)∆x < 0

for every nonzero ∆x ∈ TxC such that ∇ (L− f) (x)∆x = 0 (i.e., ∇f (x) · ∆x = 0),
then x is a (strict) local maximum point of f on C. What is more, there exist numbers
δ > 0 and ζ > 0 such that

f (x) ≤ f (x)− ζ kx− xk2

for every x ∈ C with kx− xk < δ.45

Proof. Suppose contrarily that there is a sequence (x (k)) ∞
k=1 in C such that

x (k)→ x as k →∞ and f (x (k)) > f (x)− 1
k
kx (k)− xk2 for every k.

Then x (k) 6= x; and one can assume that (x (k)− x) / kx (k)− xk converges to a unit
vector ∆x. So, by (4),

1

2
∆xTD2L (x)∆x = lim

k→∞
L (x (k))− L (x)
kx (k)− xk2 ≥ lim sup

k→∞

f (x (k))− f (x)
kx (k)− xk2

≥ lim inf
k→∞

f (x (k))− f (x)
kx (k)− xk2 ≥ − lim

k→∞
1

k
= 0.

This also shows that the sequence (L− f) (x (k)) / kx (k)− xk2 is bounded. Since L (x)
= f (x), it follows that

0 = lim
k→∞

(L− f) (x (k))
kx (k)− xk = lim

k→∞
(L− f) (x (k))− (L− f) (x)

kx (k)− xk = ∇ (L− f) (x) ·∆x

by (3). This, together with ∆xTD2L (x)∆x ≥ 0, contradicts the assumption.
44Optimality of x for L on C would imply its optimality for f on C, from f (x) = L (x) ≥ L (x)
≥ f (x).
45This is in [6, Theorem 4.6.4], and implicitly in [5, Proof of Theorem 1.10.3].

34



Proof of Theorem 28 (SOCs as Multiplier Rules, with inequality con-
straints). Here

C = {x : h (x) = 0, g (x) ≤ 0} .
With µ and λ fixed, abbreviate L

¡
µ,λ, ·¢ to L; then L = f on the set Cb ¡λ¢ given by

(30). Also, ∇L (x) = 0 by assumption.
For Part 1, since x is a (local) maximum point of f on C, it is a fortiori a maximum

point of L on Cb
¡
λ
¢
. So Theorem 31 applies, with Cb in place of C. This gives the semi-

definiteness (31) of D2xxL for every ∆x ∈ TxCb
¡
λ
¢
, which equals Lx

³³
h, gB(λ)

´
, g\B(λ)

´
by the regularity assumption.
For Part 2, note first that L ≥ f on C and L (x) = f (x). So, to apply Theorem 32,

one needs only to verify the definiteness (35) of D2xxL for every nonzero ∆x ∈ TxC such
that ∇ (L− f) (x) ·∆x = 0. Since λi = 0 for i /∈ B

¡
λ
¢
, and since Dh (x) ·∆x = 0,

∇ (L− f) (x) ·∆x =
X
i∈B(λ)

λi∇gi (x) ·∆x.

In other words, it suffices to verify (35) for every nonzero ∆x in the cone

TxC ∩
\

i∈B(λ)

ker∇gi (x) = TxC ∩ ker
³
DgB(λ) (x) ·

´
.

Since, by Lemma 9, this is contained in

Lx (h, g) ∩ ker
³
DgB(λ) (x) ·

´
= Lx

³³
h, gB(λ)

´
, g\B(λ)

´
(53)

the requirement is met by the assumption for Part 2 (of Theorem 28)–which is exactly
that (35) holds for every nonzero ∆x in the last cone in (53).46 So Theorem 32 applies;
this yields the inequality (36), which shows that x is a strict maximum point.

11 Remarks on image linearisation as another ap-
proach

The above derivation of the FOCs consists in linearising the objective f and the inequal-
ity constraints g as functions of the decision variables, x (assuming for simplicity that
there are no equality constraints). For a small increment ∆x to the point in question,
x, this guarantees a close approximation to the functions’ values and thus, for regular

46Under the regularity assumption of Part 1, Lx
¡
(h, gB) , g\B

¢
= TxCb. This is not needed for Part 2,

though.
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constraints, an adequate approximation of the original problem by optimisation of the
linear functional p· = ∇f (x) · over the cone Lx (g), which is equal to the tangent at x
to the constraint set C = {g ≤ 0}. When x is a corner point of C (i.e., Lx is a pointed
cone), this actually gives a sufficient FOC: if x is a unique optimum for the linearised
problem, then it is also a local optimum for the original problem (Theorems 26 and 30).
Of more importance is the corresponding necessary FOC: if x is any local optimum for
the original problem, then it is also an optimum for the linearised problem (Theorem 29).
This is converted into a multiplier rule (Theorem 25) by applying Farkas’ Lemma, which
can be proved by separating a point from a closed convex cone with a hyperplane. The
separation argument has two versions dual to each other. In the First Proof of Lemma 34,
the point p = ∇f (x) is separated from the relevant cone by means of a v ∈ Rn, i.e., a
vector of decision variables with the interpretation of an increment to x.47 In the Second
Proof of Lemma 34, an orthant with its vertex at (1, 0) ∈ R × Rl, where l is the num-
ber of constraints, is separated from the range of the linearised objective and constraint
functions, i.e., from the image of Rn under the map v 7→ (p · v,Av) with p = ∇f (x) and
A = Dg (x). This time, the sets being separated lie in the space of values of the objective
and constraint functions, and they are separated by means of a vector

¡−1,λ¢ that gives
the multipliers λ ∈ Rl.
The latter separation argument can also be set up by linearising only after map-

ping the variables space (here, Rn or a subset D) to the values space (here, R1+l)
by means of the nonlinear objective and constraint functions (f, g). The image set
{(f (x) , g (x)) : x ∈ D} is then linearised, around a point (f (x) , g (x)), by taking ei-
ther the whole tangent cone, if it is convex, or a suitably chosen convex subcone of the
tangent: see [5, Chapter 4] or [6, Chapter 6].48 By dealing primarily with the functions’
values rather than their variables, this method allows any variation of x, say to ex (²),
that results in small changes of the relevant values (f and g). This is particularly useful
when the decision variables form an infinite-dimensional space X, since it allows also the
use of a nondirectional variation x − x (²) that may converge to zero in some topology
on X, as ² & 0, but not necessarily from any particular direction in the specified space
X. When X is a space of absolutely continuous functions, one well-known example is
Weierstrass’ needle-like variation. Used originally to derive his necessary condition for a
strong extremum, the method was later adapted for a derivation of Pontriagin’s Maxi-
mum Principle. Thus the image approach provides a unifying framework for the classical
calculus of variations and the more recent optimal control theory: see [5, Chapters 4 ff.].
Another approach to multiplier rules consists in convexifying the Lagrangian by aug-

menting it with quadratic penalty terms. This leads to the principle of constraint removal
and to an algorithm using both penalties and multipliers: see [6, Chapter 5].

47The separated cone and point (p) lie in what is the dual parameter space when the linearised problem
is regarded as the primal, in the duality framework of linear or convex programming.
48Even the case of a convex image set captures some nonconvex programmes: see [6, Example 6.6.1].
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A Theorems of the Alternative

The linear algebra tool for converting the abstract FOC into a multiplier rule is the
Factorisation Lemma with a “signed” extension known as Farkas’ Lemma. For multi-
objective optimisation,49 there are “multi-vector” extensions of Farkas’ Lemma, known as
Tucker’s and Motzkin’s Lemmas. The latter is used here for a different purpose, viz., to
show the equivalence of two forms of the Mangasarian-Fromovitz Constraint Qualification
(Lemma 14).
The Factorisation Lemma can be stated as a criterion for a nonhomogeneous system

of linear equations to have a solution–i.e., for a given vector p to be a linear combination
of, say, the rows of a given matrix B (when the system’s variables µ are arranged in a
row to the left of B). For the system pT = µTB to be soluble for µ, it is obviously
necessary that the system Bv = 0 and pTv 6= 0 have no solution for v. The point is that
this condition is also sufficient. Thus the lemma is a theorem of the alternative–stating
that always either one system or the other has a solution (but obviously never both).

Lemma 33 (Factorisation) Given a vector p ∈ Rn and an m × n (real) matrix B,
exactly one of the following two systems has a solution: either

pT = µTB for some µ (54)

or ½
pTv 6= 0
Bv = 0

for some v (55)

(but not both (54) and (55)).
In other words, with Be• denoting the e-th row of B, there exists a µ ∈ Rm such that

pT =
mX
e=1

µeBe• (56)

if (and only if)
ker (B·) ⊆ ker ¡pT·¢ . (57)

Comments:

1. In (57), the data are viewed as linear operations, v 7→ Bv and v 7→ pTv. The
inclusion between their kernels is not only necessary but also sufficient for (56) to
be met by some µ. (In the Proof of Theorem 20), this is applied to the maximand’s
gradient ∇f as p and the constraints’ Jacobian Dh as B.)

49See, e.g., [10, (7.5.14)].
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2. In the language of linear operations, whose composition corresponds to matrix
multiplication, Lemma 33 means that, given a linear functional p: Rn → R and a
linear map B: Rn → Rm, the inclusion ker (B) ⊆ ker (p) is sufficient (and obviously
necessary) for p to factorise into the composition, µ ◦ B, of B and some linear
functional µ: Rm → R (hence the lemma’s name). The lemma extends to linear
operations between any linear spaces; in particular, p may be vector-valued.50

Farkas’ Lemma gives a similar criterion for a (nonhomogeneous) system of linear
equations to have a nonnegative solution (for λ)–i.e., for a given vector p to be a linear
combination with nonnegative coefficients of a given set of vectors, say the rows of a
given matrix A. For the system pT = λTA to be soluble for λ, it is obviously necessary
that the system of homogeneous linear inequalities Av ≤ 0 and pTv > 0 have no solution
for v. The point is that this condition is also sufficient. Lemma 33 can be deduced from
this by rewriting the equality Bv = 0 as a pair of opposite inequalities (Bv ≤ 0 and Bv
≥ 0). Indeed, as stated next, Farkas’ Lemma contains the Factorisation Lemma.

Lemma 34 (Farkas’ Alternative) Given a vector p ∈ Rn, an m×n matrix B and an
l×n matrix A (both real), exactly one of the following two systems has a solution: either

pT = µTB + λTA for some µ and λ ≥ 0 (58)

or ⎧⎨⎩ pTv > 0
Bv = 0
Av ≤ 0

for some v (59)

(but not both (58) and (59)).51

In other words, , with Ai• denoting the i-th row of A, there exists a µ ∈ Rm and a
nonnegative λ ∈ Rl+ such that

pT =
mX
e=1

µeBe• +
lX
i=1

λiAi• (60)

if (and only if) for every v ∈ Rn

(Bv = 0 and Av ≤ 0)⇒ p · v ≤ 0. (61)

First Proof. To start with, one can assume that m = 0, i.e., one can omit
B (replacing µTB and Bv by zeros in (58) and (59)). Since both systems cannot be

50Also, the Factorisation Lemma has its counterparts for other algebraic structures–groups, rings,
etc. It is also known as the Homomorphism Theorem or Sard’s Quotient Theorem.
51This is in [5, Lemma 1.5.3], [6, Theorem 4.3.4], [9, pp. 11, 68—69, 115, 141] and [10, 5.2.3].
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soluble (simultaneously), it suffices to choose either system and show that its insolubility
implies solubility of the other. With either choice, this can be done by separation with
a hyperplane. If (59) is chosen to be insoluble, suitable subsets of R1+l are separated. If
(58) is chosen to be insoluble then p can be separated, by a v ∈ Rn, from the range of
·A on Rl+. The latter argument, detailed next, is slightly simpler.
By assumption, p does not lie inRl+A, the image of Rl+ under the linear map λ 7→ λTA.

Since this is a finitely generated convex cone,52 it is a closed set: : see, e.g., [5, Lemma
1.5.5] or [6, Theorem 4.3.2].53 Therefore, p can be separated strongly from Rl+A by a
hyperplane, i.e., there exists a v ∈ Rn and a scalar z such that

pTv > z ≥ λTAv (62)

for every λ ≥ 0. It follows that z ≥ 0 (by setting λ = 0). Furthermore, z can be chosen
to be 0 (since if λTAv were positive, it could be made arbitrarily large by scaling λ up,
and so it could not be bounded from above). So λTAv ≤ 0 for every λ ≥ 0, i.e., Av ≤ 0.
And pTv > 0, as required.
The case of m > 0 is reduced to the case of m = 0 (with 2m + l instead of l) by

rewriting Bv = 0 as Bv ≤ 0 and −Bv ≤ 0. This is because the existence of λ0 ≥ 0,
λ00 ≥ 0 and λ ≥ 0 such that p = (λ0 − λ00)TB + λTA is equivalent to (58), by setting µ
= λ0 − λ00.
Comments:

1. Farkas’ Lemma contains the Factorisation Lemma because if a linear functional
has a semidefinite sign on a linear space then it actually vanishes on it. Here, this
means that the condition p · v ≤ 0 for every v ∈ ker (B·) is actually equivalent to
the apparently stronger condition p · v = 0 for v ∈ ker (B·).
Second Proof of Lemma 34. This time, it is (59) that is assumed to be
insoluble, and solubility of (58) is to be deduced. As before, one can set m = 0.

By assumption, the image of Rn under the linear map v 7→ ¡
pTv,Av

¢ ∈ R1+l is
disjoint from the set

R++ ×Rl− := {(w,−u) : w > 0, u ≥ 0} .

This means that the image space
¡
pT, A

¢
Rn is disjoint from the closed orthant

(1, 0) +
¡
R+ ×Rl−

¢
. Equivalently

(1; 0, . . . , 0) /∈ ¡pT, A¢Rn + ¡R− ×Rl+¢ .
52It is the convex hull of the cone generated by {Ii•A : i = 1, . . . , l}, the images under ·A of the

coordinate unit vectors
£
0 . . . 1 0 . . .

¤
.

53What is more, a finitely generated convex cone is the same as a polyhedral cone (intersection of a
finite number of half-spaces): see, e.g., [9, 4.6.1 and 4.6.2].
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Being the (algebraic) sum of a linear space and an orthant, this set is a finitely gen-
erated convex cone, so it is closed: see, e.g., [5, Lemma 1.5.5] or [6, Theorem 4.3.2].
Therefore it can be separated strongly from (1, 0) by a hyperplane perpendicular
to a vector (−ν,λ), i.e., there exists a scalar ν, a λ ∈ Rl and a scalar z such that

−ν < z ≤ ¡−νpT + λTA
¢
v + (νw + λ · u) (63)

for every v, u ≥ 0 and (scalar) w ≥ 0. It follows that z ≤ 0 (by setting v = 0,
w = 0 and u = 0). Furthermore, z can be chosen to be 0 (since if the r.h.s. of
the second inequality in (63) were negative, it could be made arbitrarily large in
absolute value by scaling up v, w and u). It follows that λ ≥ 0 (since λ · u ≥ 0 for
every u ≥ 0, by setting v = 0 and w = 0), and similarly ν ≥ 0 (by setting v = 0
and u = 0). Actually ν > 0 (by the first inequality in (63)) and so, by scaling
(ν,λ), one can set ν = 1. Then, finally,

pT = λTA

(because if not, then the term
¡−pT + λTA

¢
v in (63) could be made negative and

arbitrarily large in absolute value by a choice of v).

Lemma 35 (Motzkin’s Alternative) Given a q × n matrix C, an m × n matrix B
and an l×n matrix A (all real), exactly one of the following two systems has a solution:
either

0 = νTC + µTB + λTA for some ν > 0 and µ and λ ≥ 0 (64)

or54 ⎧⎨⎩ Cv ¿ 0
Bv = 0
Av ≤ 0

for some v (65)

(but not both (64) and (65)).55

First Proof. This can be proved like Farkas’ Lemma (which it contains): as in
the Proof of Lemma 34, it suffices to choose either system and show that its insolubility
implies solubility of the other; and one can assume that m = 0 (replacing µTB and Bv
by zeros in (64) and (65)).

54The symbols < and ¿ denote semistrict and strict vector inequalities, i.e., < means “≤ but 6=”,
whilst ¿ means strict inequality for each pair of entries. Also, it is usually assumed that the matrix C
is nonempty, i.e., that q ≥ 1 (in addition to n ≥ 1). Formally, this is unnecessary because when q = 0,
there is no ν > 0 (so (64) is insoluble, whilst (65) has v = 0 as a solution).
55This is in [9, p. 135] and [10, 7.5.3]. In [10], Proof 3 needs a correction: instead of being scaled to

have 1 as one of its entries, the y∗1 in [10, (7.5.6)] should be scaled to lie in a compact base for R
q
+–such

as the unit simplex in (66) here. This will make the set H in [10, (7.5.6)] convex and compact. As it
stands, H has neither property, but both are needed for the strong separation argument.
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Suppose that (64) is insoluble, i.e., the ranges of ·C on − (Rq+ \ {0}) and of ·A on Rl+
are disjoint. Equivalently, Rl+A is disjoint from −Sq1C, where

Sq1 :=

(
ν ∈ Rq : ν ≥ 0,

nX
j=1

νj = 1

)
(66)

is the unit simplex in Rq+ (i.e., the image of Rl+ under the linear map λ 7→ λTA is disjoint
from the image of −Sq1 under the linear map ν 7→ νTC). Since Sq1 is compact and convex,
so is its linear image; and therefore −Sq1C can be strongly separated, by a hyperplane,
from the closed convex cone Rl+A. In other words, there exists a v ∈ Rn and a scalar z
such that

−νTCv > z ≥ λTAv (67)

for every ν ∈ Sq1 and λ ≥ 0. It follows that z ≥ 0 (by setting λ = 0). Furthermore, z
can be chosen to be 0 (since if λTAv were positive, it could be made arbitrarily large by
scaling λ up). So λTAv ≤ 0 for every λ ≥ 0, i.e., Av ≤ 0.
Similarly Cv ¿ 0 (i.e., Cv is strictly negative), since νTCv < 0 for every ν ∈ Sq1 (or,

equivalently, for every ν > 0, i.e., for semipositive v).
Comments:

1. Like Farkas’ Lemma, Motzkin’s Lemma can also be proved by separation in the
other space, viz., Rq+l.
Second Proof of Lemma 35. This time, it is (65) that is assumed to be
insoluble, and solubility of (64) is to be deduced. As before, one can set m = 0.

By assumption, the image of Rn under the linear map v 7→ (Cv,Av) ∈ Rq+l is
disjoint from the set

Rq−− ×Rl− := − {(w, u) : wÀ 0, u ≥ 0} .
This means that the image space (C,A)Rn is disjoint from the closed orthant
(−1; 0) + ¡Rq+ ×Rl−¢. Equivalently

(−1, . . . ,−1; 0, . . . , 0) /∈ (C,A)Rn + ¡R+ ×Rl+¢ .
Therefore this closed convex cone can be separated strongly from (−1; 0) by a
hyperplane (in R × Rl), i.e., there exists a ν ∈ Rq, a λ ∈ Rl and a scalar z such
that

−
qX
k=1

νk < z ≤
¡
νTC + λTA

¢
v + (ν · w + λ · u) (68)

for every v, u ≥ 0 and w ≥ 0. It follows that z ≤ 0 (by setting v = 0, w = 0
and u = 0). Furthermore, z can be chosen to be 0 (since if the r.h.s. of the second
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inequality in (68) were negative, it could be made arbitrarily large in absolute value
by scaling up v, w and u). So λ ≥ 0 (by setting v = 0 and w = 0), and similarly
ν ≥ 0 (by setting v = 0 and u = 0). And ν 6= 0 (by the first inequality in (68)); so
ν > 0. Finally,

0 = νTC + λTA

(because if not, then the term
¡
νTC + λTA

¢
v in (68) could be made negative and

arbitrarily large in absolute value by a choice of v).

2. The proof by separation in Rq+l = Rq ×Rl (with m = 0) can also be split into two
stages, as in [10, p. 170, Proof 2]: first, a separation argument in Rq produces a ν,
which is then be used to “scalarise” one dimension of C, i.e., to reduce Motzkin’s
Lemma to Farkas’ Lemma with pT = −νTC.

3. Another theorem of the alternative, Tucker’s, is obtained “by swapping the strict-
ness and semi-strictness” in Motzkin’s, i.e., by having ν À 0 in (64) and Cv < 0
in (65)–which together imply that νTCv < 0, as before. See, e.g., [9] or [10,
7.5.7]. The two, Motzkin’s and Tucker’s, are combined in what is known as Slater’s
Alternative (which contains all those given here) : see, e.g., [9] or [10, 7.5.11].

A special cases of Motzkin’s Lemma gives a criterion for a homogeneous system of
linear equations to have a semipositive solution.

Lemma 36 (Gordan’s Alternative) Given a q×n (real) matrix C, exactly one of the
following two systems has a solution: either

0 = νTC for some ν > 0 (69)

or
Cv ¿ 0 for some v (70)

(but not both).56

Proof. Set l = 0 and m = 0 in Lemma 35 (i.e., take both A and B to be empty).

Definition 37 A set of vectors is positively independent if none of its semipositive lin-
ear combinations equals zero (i.e., if a nonnegative combination vanishes, then all its
coefficients are zeros).

By Gordan’s Lemma, a finite set of vectors p (1), p (2) , . . ., p (q) is positively inde-
pendent if and only if there exists a v with p (i) · v < 0 for each i.57 Geometrically, a

56This is in [9, pp. 71 and 137] and [10, pp. 171—172].
57The rows of a matrix C are positively independent if and only if system (69) is insoluble for ν, i.e.,

if and only if system (70) has a solution v.
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finite set of nonzero vectors is positively independent if and only if the convex cone they
generate is pointed (i.e., line-free): see, e.g., [6, Exercise 4.3.13]. And a linear functional
has a negative scalar product with each of a finite number of nonzero vectors if and only
if it lies in the interior of the polar to the convex cone they generate. So, in geometric
terms, Gordan’s Lemma means that a finitely generated convex cone is pointed if and
only if its polar is solid (i.e., has a nonempty interior).
Another special case of Motzkin’s Lemma gives a similar criterion for a homogeneous

system of linear equations to have a strictly positive solution.

Lemma 38 (Stiemke’s Alternative) Given a m × n (real) matrix B, exactly one of
the following two systems has a solution: either

0 < µTB for some µ (71)

or ½
v À 0
Bv = 0

for some v (72)

(but not both).58

Proof. Set q = n and C = −I (n) and an empty A (i.e., l = 0) in Lemma 35.
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