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Abstract

This paper compares the leader and follower payoffs in a duopoly game, as they
arise in sequential play, with the Nash payoffs in simultaneous play. If the game
is symmetric, has a unique symmetric Nash equilibrium, and players’ payoffs are
monotonic in the opponent’s choice along their own best reply function, then the
follower payoff is either higher than the leader payoff, or lower than even in the
simultaneous game. As a possible interpretation, endogenous timing in such games
is difficult since the players either want to move both second or both first.
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1 Introduction

The classic duopoly model of quantity competition by Cournot (1838) is a game between
two firms that simultaneously choose quantities, with Cournot’s solution as the unique
Nash equilibrium. The “leadership game” of von Stackelberg (1934) uses the same payoff
functions, but where one firm, the leader, moves first, assuming a best reply of the second-
moving firm, the follower. The Stackelberg solution is then a subgame perfect equilibrium
of this sequential game.

Many recent papers are concerned with endogenizing the “timing” in the sequential
game, that is, the order of play which determines the roles of leader and follower. In
a much-cited paper, Hamilton and Slutsky (1990) take a given duopoly game and let
players decide to act in one of two periods. If one player moves in the first period and
the other in the second, they become leader and follower, respectively. If they move in
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the same period, their payoffs are as in simultaneous play. The leader-follower outcome
is a Nash equilibrium of the two-period game only if the follower’s payoff is not smaller
than her Nash payoff in the simultaneous game. In that case, there are typically two pure
Nash equilibria, with either order of play; van Damme and Hurkens (1998; 2004) use
risk dominance to select one of these equilibria. If the follower would suffer compared to
simultaneous play, both players act in the first period, using their equilibrium strategies
from the simultaneous game.

These papers and others (for example, Amir (1995)) compare explicitly the follower
payoff to the payoff the player would get as a leader or in simultaneous play. The point
of the present paper is a simple observation which so far, apparently, has not been made
explicitly: If the game is symmetric and certain standard assumptions hold, then the fol-
lower gets either less than in the simultaneous game or more than the leader. That is,
the seemingly natural case that both players profit from sequential play as compared to
simultaneous play, but the leader more so than if he was follower, can only occur in non-
symmetric games.

Our assumptions about the duopoly game are designed to be general while allowing
for a very simple proof. Apart from symmetry, we assume intervals as strategy spaces,
unique best replies, a unique symmetric Nash equilibrium in the simultaneous game, and
monotonicity of payoffs in the other player’s strategy along the own best reply function.

These assumptions encompass many duopoly models of quantity or price compe-
tition. Hamilton and Slutsky (1990) make similar assumptions. Gal-Or (1985) com-
pares leader and follower payoffs for identical firms with differentiable payoff functions.
Dowrick (1985) assumes specific functional forms of quantity competition or price com-
petition with heterogeneous goods, and also looks at simultaneous play.

The following papers on endogenous timing differ from our setup, and give further
references, in particular to applied work in industrial organization. Boyer and Moreaux
(1987) allow firms to choose both prices and quantities. In Robson (1990), timing is
over more than two periods and affects the cost parameter of the game. Deneckere and
Kovenock (1992) study duopolies with price setting and capacity constraints. Pal (1996)
considers symmetric quantity competition over two time periods with different production
costs per period, and allows for mixed strategies, so that the leader can be determined by
chance. Amir and Grilo (1999) and Amir, Grilo, and Jin (1999) allow for multiple Nash
equilibria in the simultaneous game and use the theory of supermodular games (see also
Vives (1999)). Matsumura (1999; 2002) considers models with several players, and more
than two time periods. Tasnádi (2003) considers price setting with homogeneous goods.

Leadership in mixed extensions of finite games is analyzed by von Stengel and Zamir
(2004), with an example of a symmetric game where the follower payoff can be arbitrary
relative to leader payoff and simultaneous payoff. In this example, each player’s strategy
set is not an interval but a two-dimensional mixed strategy simplex. When considering
mixed strategies, best replies are not unique. To keep the present study short, we do
not consider best reply correspondences instead of functions. The main point of von
Stengel and Zamir (2004) is that in a two-player game, the leader in the leadership game
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does always at least as well as in the simultaneous game, even when the game is not
generic. In the present context with unique best replies, this is trivial since the leader can
always choose his strategy from a simultaneous Nash equilibrium. A leader may have a
disadvantage in games with more than two players.

In Section 2, we state and discuss our assumptions in detail, and state and prove the
main Theorem 1. We assume monotonicity only along the own best reply function, a
property also used by Hamilton and Slutsky (1990, p. 41). Best reply functions do not
have to be monotonic.

However, as discussed in Section 3, monotonic best replies determine the follower
payoff. If the best reply function increases, then the follower profits from sequential play,
and if it decreases, she suffers. For increasing best reply functions, this has been observed
by Gal-Or (1985) and van Damme and Hurkens (2004, p. 405). For decreasing best reply
functions, Gal-Or compares only follower and leader payoff, and does not consider the
simultaneous game. Games with increasing or decreasing best reply functions are often
called games withstrategic complementsor substitutes, respectively.

In Section 4, we give examples showing that the main assumptions of symmetry and
monotonicity cannot be weakened.

2 Assumptions and theorem

The duopoly games considered here are assumed to fulfill the following conditions.

(a) The players’ strategy sets are (not necessarily compact) real intervalsX andY, with
payoff a(x,y) to player I andb(x,y) to player II for player I’s strategyx in X and II’s
strategyy in Y.

(b) The best replyr(y) to y is always unique,a(r(y),y) = maxx∈X a(x,y), and so is the
best replys(x) to x, with b(x,s(x)) = maxy∈Y b(x,y).

(c) The payoffsa(r(y),y) andb(x,s(x)) are (not necessarily strictly) monotonic iny re-
spectivelyx.

(d) For somexL in X andyL in Y, the payoffsaL = a(xL,s(xL)) = maxx∈X a(x,s(x)) and
bL = b(r(yL),yL) = maxy∈Y b(r(y),y) exist, which are the payoffs to player I and II
when the respective player is a leader. Moreover,xL andyL are unique. The follower
payoffs are denotedbF = b(xL,s(xL)) andaF = a(r(yL),yL).

(e) The game is symmetric, that is,X = Y anda(x,y) = b(y,x), and for someyN in Y,

> <
r(y) = y for y = yN.

< >
(1)

Condition (a) is, for example, fulfilled forX = Y = [0,∞). The payoff functions
are typically continuous, but we do not require this. Condition (b) is strong but often
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made. Condition (c) states that a player always prefers a higher or lower choice of the
opponent along the own best reply function. Hamilton and Slutsky (1990, p. 41) assume
condition (c) for their Theorem VI.

Condition (d) holds when payoffs are continuous and strategy sets are compact. With-
out compactness, it may fail, for example in the symmetric game wherex,y≥ 0 and

a(x,y) = b(y,x) = 4y− (y+3)2

4(x+1)
−x (2)

wherer(y) = s(y) = (y+ 1)/2, condition (c) holds sincea(r(y),y) = 3y−2, and which
has a unique Nash equilibrium atx= y= 1, but where the leader payoffa(x,s(x)) exceeds
15x/16−2 and is therefore unbounded.

Generically, player I as leader has a unique payoff-maximizing strategyxL. If the
leader’s strategy is not unique, the follower payoff depends on which leader strategy is
chosen. We assume uniqueness ofxL andyL for simplicity. Otherwise, Theorem 1 below
would still apply, but then the follower payoffs have to be defined depending on the choice
of the leader strategy.

When the game is symmetric as stated in (e), then obviouslys(x) = r(x), and the
game has a unique symmetric Nash equilibrium(xN,yN) wherexN = yN. Conversely, if
payoff functions are continuous and the strategy sets are compact intervals, then (1) holds
when the game has only one symmetric Nash equilibrium (to see this, consider the best
reply function at the endpoints of the interval). Note that non-symmetric Nash equilibria
(x,y) with x = r(y) and y = s(x) and x 6= y may exist. One may consider uniqueness
of the Nash equilibrium as a weaker alternative to (e) when the game is not symmetric.
However, example (7) below shows that our theorem fails in this case.

Theorem 1. Under conditions(a)–(e), consider the leader payoffaL = a(xL,s(xL)) = bL,
follower payoffbF = b(xL,s(xL)), and Nash payoffbN = b(xN,yN), wherexN = yN. Then
bF > bL or bF ≤ bN.

Proof. If bL = bN, the claim is trivial. So we can assumebL > bN (a leader can always
get at least the Nash payoff by choosingyN) and thusyL 6= yN.

We can assume thata(r(y),y) is increasing iny, since ifa(r(y),y) is decreasing iny
we can reverse the order onX andY (by replacingy by−y andx by−x, say), so that (1)
continues to hold. By (e), the follower payoffb(x,s(x)) is also increasing inx because
s(x) = r(x).

If yL < yN, then

bF = b(xL,s(xL)) = b(yL,s(yL))≤ b(yN,s(yN)) = bN .

If yL > yN, thenr(yL) < yL by (1). Thus,

bL = b(r(yL),yL) < b(r(yL),s(r(yL)))≤ b(yL,s(yL)) = b(xL,s(xL)) = bF .
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The first inequality holds sinces(r(yL)) is the unique best reply tor(yL), which is different
from yL, since otherwises(r(yL)) = yL > r(yL) and thusr(yL) < yN by (1) applied tos,
giving

bL = b(r(yL),yL)≤ b(r(yL),s(r(yL)))≤ b(yN,s(yN)) = bN (3)

which we have excluded; sos(r(yL)) 6= yL and the inequality is strict.

The proof shows that if condition (c) is strengthened so thata(r(y),y) is strictly mono-
tonic in y, then the follower payoffbF is strictly less than the Nash payoffbN if it is not
greater than the leader payoff (unless all these payoffs coincide).

The preceding general reasoning is simpler than using specific forms of the payoff
function. For example, consider the symmetric game wherex,y≥ 0 and

a(x,y) = b(y,x) = x · (1+αy−x) (4)

for some parameterα in [−1,1). Forα < 0, one may think ofx andy as quantities; then
it is still relatively easy to show thatbF < bN. For α > 0, one may think ofx andy as
prices. In that case, showingbF > bL by means of the functional form ofa(x,y) requires
a number of algebraic manipulations. In contrast, assumptions (a)–(e) are easily verified
for (4).

3 Strategic complements and substitutes

Players’ strategies are calledstrategic substitutesif the best reply to “more aggressive”
behavior is “less aggressive” behavior, andstrategic complementsif the best reply to
“more aggressive” behavior is “more aggressive” behavior. We use this terminology, in
terms of best replies, following Mas-Collel, Whinston, and Green (1995, p. 415); it was
originally introduced by Bulow, Geneakoplos, and Klemperer (1985) for firms that can
act in different markets.

Assume that “aggressive behavior” is an order on the strategy set (here an interval)
representing the negative preference of the other player. For example, in quantity compe-
tition, player I typically prefers a lower quantityy of the other firm, as “less aggressive”
behavior, becausea(x,y) is decreasing iny. In price competition, players typically prefer
a higher price of the opponent as “less aggressive”. Then strategic substitutes correspond
to decreasing best reply functions, and strategic complements to increasing best reply
functions. This does not depend on the chosen order on the interval as long as it is the
same for both players.

If a(x,y) is monotonic iny, the same monotonicity iny holds for a(r(y),y), as in
assumption (c):

Lemma 2. Given(a)and(b), if a(x,y) is (strictly or non-strictly) increasing or decreasing
in y, then so isa(r(y),y).
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Proof. For y,y′ ∈Y andy < y′, anda(x,y) strictly increasing iny, we have

a(r(y),y) < a(r(y),y′)≤ a(r(y′),y′). (5)

If a(x,y) is strictly decreasing iny, we conclude (5) fromy > y′. For non-strict mono-
tonicity, replace< by≤ in (5).

As mentioned, Hamilton and Slutsky (1990, p. 41) assume condition (c) for their
Theorem VI. Amir (1995) notes that this condition is also necessary for their Theorem V,
although he uses the stronger assumption thata(x,y) is monotonic iny.

Monotonicity ofa(r(y),y) in y is strictly weaker than monotonicity ofa(x,y) in y. In
the following example withx,y≥ 0 and

a(x,y) = (2x− (y+1)) · (y+1−x), (6)

wherea(x,y) ≥ 0 for 2x−1≥ y≥ x−1, we haver(y) = 3(y+1)/4, which is a linearly
increasing best reply function. Here,a(r(y),y) = (y+1)2/8, which is strictly increasing
in y, but a(x,y) is not monotonic iny. If (6) defines a symmetric game witha(x,y) =
b(y,x), then Theorem 1 applies withxN = 3, xL = 4.2, s(xL) = 3.9, andbN = 2, bL = 2.45,
bF = 3.38.

Strategic complements and substitutes mean thatr(y) increases or decreases, respec-
tively. Even when onlya(r(y),y) increases iny (but not generallya(x,y) in y), this can be
reasonably interpreted as a unique preference of player I for larger values ofy as “less ag-
gressive behavior”. Then strategic complements and substitutes give rise to the two cases
bF > bL andbF ≤ bN, respectively, in Theorem 1. We exclude the trivial casebL = bN,
which arises, for example, when there is no strategic interaction.

Proposition 3. Assume conditions(a)–(e)and the notation in Theorem 1, and letbL > bN.
If r(y) is increasing iny, thenbF > bL, so that in a game with strategic complements the
follower is better off than the leader. Ifr(y) is decreasing iny, thenbF ≤ bN, so that in a
game with strategic substitutes the follower is worse off than in the simultaneous game.

Proof. As in the proof Theorem 1, we can assume thata(r(y),y), which is equal to
b(y, r(y)), is increasing iny, if necessary by reversing the order on bothX andY. This
does not affect whetherr:X →Y is increasing or decreasing.

Suppose thatr(y) is increasing iny. ThenyL ≤ yN implies r(yL) ≤ r(yN) = yN and
therefore (3) which contradictsbL > bN. This excludes the first case in the proof of
Theorem 1, so the second caseyL > yN applies, wherebF > bL.

If r(y) is decreasing iny, thenyL ≥ yN implies r(yL) ≤ r(yN) = yN, which gives the
same contradiction, so that the first caseyL < yN in the proof of Theorem 1 applies, that
is, bF ≤ bN.
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4 Symmetry and monotonicity are necessary

Theorem 1 is stated in such a way that it still makes sense for non-symmetric games,
namely that player II prefers being follower to being leader (or is worse off than in the
Nash equilibrium), rather than just stating “the follower is better off than the leader”.

The following example shows that the symmetry condition (e) is necessary. Consider
the game withx,y≥ 0 and payoff functions

a(x,y) = x · (4
3

+
2
3

y−x),

b(x,y) = y· (4
3

+
2
3

x−y)+4x
(7)

which has the (symmetric and linear) best reply functionsr(y) = (2+ y)/3 ands(x) =
(2+ x)/3. Moreover,a(x,y) is increasing iny andb(x,y) is increasing inx. The unique
Nash equilibrium is(1,1) with payoffsaN = 1 to player I andbN = 5 to player II.

When player I in (7) is a leader, the functiona(x,s(x)) is maximized forxL = 8/7 with
payoff aL = a(xL,s(xL)) = 1+1/63 to player I as leader and payoffbF = b(xL,s(xL)) =
5+ 65/147 to player II as follower. However, when player II is the leader, her function
b(r(y),y) is maximized foryL = 2 with payoff bL = b(r(yL),yL) = 5+ 7/9, and payoff
aF = a(r(yL),yL) = 1+ 7/9 to player I as follower. Note thatbL > bF > bN, so the
conclusion of Theorem 1 does not apply. Here, player II prefers being a leader to being a
follower, whereas player I prefers following to leading. This agrees with Dowrick (1986,
p. 255, Proposition 2): “If both firms have upward-sloping reaction functions, then if one
prefers to lead, the other must prefer to be the von Stackelberg follower.” All assumptions
by Dowrick are met in (7), writing (fory > 0) b(x,y) = y· (4/3+2x/3+4x/y−y) where
the second factor has negative derivative with respect toy and positive derivative with
respect tox. Dowrick (1986, p. 257, Proposition 3) notes that both firms prefer to be
followers when they “face similar cost and demand structures”, which however is not
made precise. Boyer and Moreaux (1987) quantify this distinction in terms of the “cost
differential” between the firms, for a specific payoff function.

Without the monotonicity condition (c), it may happen thatbL > bF > bN, even when
the game is symmetric. Consider the symmetric game withx,y≥ 0 and payoff

a(x,y) = b(y,x) = (0.72x−0.125y−0.785)(6.16−y−0.72x) (8)

which has the (linear) best reply function

r(y) = max(
1389−175y

288
, 0)≈max(4.823−0.608y, 0).

The unique Nash equilibrium is(xN,yN) = (3,3) and has payoffbN = b(3,3) = 1. The
leader payoff isbL = aL = a(xL,s(xL))≈ a(6.822,0.678)≈ 2.306and the follower payoff
is bF = b(xL,s(xL)) ≈ 1.322, with bL > bF > bN. Here,a(r(y),y) = ((43−9y)/16)2 as
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long asr(y) > 0, that is,y < 7.937. This function is not monotonic, but has a minimum
for y = 43/9≈ 4.778.

The function in the example (8) does not make too much sense from an economic
viewpoint since the follower payoffbF is obtained as a product of two negative terms (un-
like the payoff in the Nash equilibrium), which is crucial for this particular construction.
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