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Abstract: The chromatic polynomials of certain families of graphs can be calcu-
lated by a transfer matrix method. The transfer matrix commutes with an action
of the symmetric group on the colours. Using representation theory, it is shown
that the matrix is equivalent to a block-diagonal matrix. The multiplicities and

the sizes of the blocks are obtained.

Using a repeated inclusion-exclusion argument the entries of the blocks can be
calculated. In particular, from one of the inclusion-exclusion arguments it follows
that the transfer matrix can be written as a linear combination of operators which,
in certain cases, form an algebra. The eigenvalues of the blocks can be inferred

from this structure.

The form of the chromatic polynomials permits the use of a theorem by Beraha,
Kahane and Weiss to determine the limiting behaviour of the roots. The theorem
says that, apart from some isolated points, the roots approach certain curves in the
complex plane. Some improvements have been made in the methods of calculating

these curves.

Many examples are discussed in detail. In particular the chromatic polynomials

of the family of the so-called generalized dodecahedra and four similar families of
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cubic graphs are obtained, and the limiting behaviour of their roots is discussed.
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Chapter 1

Introduction

1.1 Overview

A graph B consists of two sets; a vertex set and a edge set whose members are
unordered pairs of vertices. We say a pair of vertices are adjacent if they are an
edge. Given a set of k “colours”, usually the first k£ positive integers, a proper
vertex k-colouring of the graph B is a function from the vertex set into the set
of colours such that adjacent vertices take different “colours” under the colouring.
We omit the words “proper” and “vertex”, and just speak of a k-colouring of B.
The chromatic polynomial P(B, k) corresponding to a graph B is the polynomial
function which evaluated at a positive integer k£ equals the number of k-colourings

of B.

In theory, the standard method of deletion-and-contraction allows us to find the
chromatic polynomial for any given finite graph. However this method is not very
elegant in the sense that it requires exponentially many steps (in the number of

edges). In general there is no efficient method.

In this thesis we are studying the chromatic polynomials for families of graphs with
a cyclic symmetry using a transfer matrix method. These families of graphs consist
of n copies of a “base graph” arranged in a “ring”. Adjacent copies of the “base

graph” have extra edges between them according to a “linking set”.

11



1.1. OVERVIEW 12

Although the deletion-and-contraction method destroys the symmetry in the first
step, it has been used to obtain a transfer matrix via a recursion relation by D.A.
Sands (in an unpublished thesis, 1972), N.L. Biggs and G.H.J. Meredith in [1], J.
Salas and A.D. Sokal in [21], and by R. Shrock and co-workers in [25], [13] and a

series of other works.

Here, in this work we use and develop a slightly different transfer matrix method
which enables us to utilize the symmetry to a maximum. This method was intro-
duced by N.L. Biggs in [2], and recently used and developed in [5], [8], [7], [19],
and [9].

This transfer matrix commutes with an action of the symmetric group permuting
the colours. Using representation theory, it is shown that the matrix is equivalent
to a block-diagonal matrix. The multiplicities and the sizes of the blocks are
obtained. Using a repeated inclusion-exclusion argument the entries of the blocks

can be calculated (Chapters 2 and 3).

In particular, from one of the inclusion-exclusion arguments it follows that the
transfer matrix can be written as a linear combination of operators which, in certain
cases, form an algebra. In Chapter 6 parts of the structure of this algebra are

investigated.

In Chapter 4 many examples are discussed in detail. In particular the chromatic
polynomials of the family of the so-called generalized dodecahedra and four similar

families of cubic graphs are obtained.

The form of the chromatic polynomials permits the use of a theorem by Beraha,
Kahane and Weiss to determine the limiting behaviour of the roots as the number of
copies of the “base graph” goes to infinity. The theorem says that, apart from some
isolated points, the roots approach certain curves in the complex plane. Chapter 5
contains calculations based on [4] and [6] by N.L. Biggs. The results here are by no
means complete, and many phenomena observed in the limiting curves described

in the examples of Chapter 5 remain to be analyzed.

These limiting curves have also been studied by R. Shrock and co-workers in [24]
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and in a series of works, and by J. Salas and A.D. Sokal in, for example, [21] and

[15].

The chromatic polynomials for this type of graphs have also been the focus of
research in statistical mechanics. This is due to the fact that the zero-temperature
partition function of the k-state Potts antiferromagnet on the graph B is equal to
P(B,k); [13] and [22]. In particular the behaviour of the roots of P(B, k) as the

number of vertices goes to infinity is of paramount interest.

In future the theoretical framework introduced in Chapters 2 and 3 will hopefully be
used to obtain the chromatic polynomials for more families of graphs. In particular
the families of graphs with the cycle or the path on b vertices as “base graphs”, and
the “identity linking set” are obvious candidates for further research. In [23] A. D.
Sokal finds a upper bound for the radius of a disc in the complex plane containing
all the roots. This upper bound depends on the maximum degree of the graph.
The hope is to be able to find a connection between the limiting curves of the roots

and the type of “base graph” or the “linking set”.



Chapter 2

Modules and colourings

The first part of this chapter gives a brief outline of some basic results of represen-
tation theory, in particular of the symmetric group. This is based on the books by
G.D. James [16], W. Ledermann [17] and B.E. Sagan [20]. In the second part this
theory is applied to the modules obtained when the symmetric group Sym, acts

on the set of k-colourings of a graph.

2.1 Some representation theory

Let G be a (finite) group written multiplicatively. We denote the identity element
of G by e. Let V be a vector space over C of dimension n. A representation of G
on V is a group homomorphism p : G — Aut(V) where Aut(V) is the group of
automorphisms of V. By choosing a particular basis for V' it follows that p assigns
to every g € G a non-singular n x n matrix A(g) with coefficients in C. We say

that A(g), or A, is a matriz representation of G with degree n corresponding to p.

We denote by CG the group algebra consisting of all finite linear combinations

Zzgg (24 € C)

geG

14



2.1. SOME REPRESENTATION THEORY 15

with the componentwise addition, and multiplication given by

) ()55 )

9€G hea@ feG \gh=f

Denote by End(V) the algebra of homomorphisms on V. Then a representation of
G can be extended to a representation of CG. That is p : CG — End(V) is an
algebra homomorphism defined as:

p (Z 2 g) = 2z p(9)

geG geG

with z, € C. This makes V' into a CG-module. The two notions of a representation
of CG - CG-module V' and the algebra homomorphism p : CG — End(V) - are
equivalent and we use them interchangeably. We denote by Mat,, the algebra of all
n xn matrices with coefficients in C. Then, as before, by choosing a particular basis

for V' it follows that p : CG — Mat,, is the corresponding matrix representation.

A subspace U of V is a submodule of V if U is invariant under the action of
CGE. A module V is irreducible if its only submodules are V' itself and the zero
module, otherwise we call V' reducible. We say that two matrix representations
A(z) and B(z) are equivalent if there exists a non-singular matrix 7" such that
T tA(z) T = B(z). Let A(z) be the matrix representation corresponding to p.
Then, from the above definition of reducibility, it follows that A(z) is reducible if
it is equivalent to a representation of the form
D(z) O

where O is an all-zero matrix. Otherwise A(x) is irreducible.

We say that a matrix is the direct sum of the matrices Ay, A,,..., A;if A is the
diagonal block matrix diag(A;, As, ..., A;). We write:

!
A:Al@AQ@...@Alz@Ai.
=1

Maschke’s Theorem asserts that over the field C every matrix representation is

completely reducible, that is for some choice of the basis of V' it follows that

A(w) = diag(41(2), A>(@), .., 4(@)) = P Ai(w)
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where the A;(z) are irreducible representations. Equivalently, the corresponding

CG-module V is the direct sum of [ irreducible submodules.

Let A = (a;;) and B be matrices of degrees n and m respectively. Then the tensor
product, direct product or Kronecker product A® B is the nm x nm matrix obtained
by replacing the entry a;; in A by the matrix a;; B. With this notation we can write
every matrix representation A(x) as:
A(z) = D (I, ® Ai(w))
i
where the A;(x) are now inequivalent, irreducible representations of degree n; and

multiplicity m; in A(x), and I,,, is the identity matrix of size m;.

Let A be a matrix representation of CG. Then C(A) is the commutant algebra of
A. This is the subalgebra of Mat,, consisting of all T’ satisfying A(z)T = T A(x) for
all z € CG. If A is irreducible then Schur’s Lemma asserts that C(A) only consists

of scalar multiples of the identity matrix.

If A(z) = I,, ® B(z) where B is irreducible then T" € C(A) is of the form X ® I,
where X € Mat,, and n is the degree of B(z). By a change of basis, that is
reordering the basis vectors, it can be shown that 7" is equivalent to I, ® X. In

general the following lemma holds.

Lemma 2.1 Let A(z) be any matriz representation of CG of the form:

l
@ (I, ® Ai(z

where the A;(x) are inequivalent, irreducible representations of degree n; and mul-
tiplicity m; in A(x). Then every T € C(A) is equivalent to a matriz of the form:

l

@(Im ® Xi)a

=1

with X; € Mat,,,.

I
Proof: Let A= B;(z) where Bj(z) = (I,, ® Aij(z)). If T €C(A) then

i=1
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By Thw Ty --- Ty
By Ty Ty --- Ty
By ITn Ty --- 1y
Ty Tig Ty B
B Tor Ty Ty By
Iy T -+ Iy B,

implies that B;T;; = T;; B;. The matrices B; and B; are inequivalent by assumption.
Thus from Schur’s Lemma follows that 7T;; is the zero matrix if 7 # j. Again Schur’s
Lemma and the argument preceding this lemma imply that T;; = X; ® I, where
X; € Mat,,,. Rearranging the order of the basis vectors it follows that T; is
equivalent to I, ® Xj. O

2.2 The symmetric group

Let us now focus on the symmetric group and its representations. A permutation
of a set K is a bijection from K into itself. We can assume that K is the set of
numbers {1,2,...,k}. Then a permutation w can be expressed as a product of

disjoint cycles. For example:

123456738
9 2 438617

= (1587)(2)(34)(6),

where 1-cycles are often omitted. For any two functions g and f their composition
is defined as (g o f)(z) = gf(x) = g(f(x)). In particular, the composition of two
permutations is a sequence of instructions read from right to left. For example
(12)(23) = (123). The set of all permutations of the set {1,2,...,k} together
with the composition of functions is the symmetric group Sym, of degree k. The
identity element is denoted by e. In general, we denote by Symy the group of all

permutations of a set X.
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The sequence A = (Ag, Ay, ..., A\g) is a partition of k € N if Ay, Ay, ... Ay are

k

non-negative integers, with >  \; = k. For example (5,3,1,1,0,0,0,0,0,0) is a
i=1

partition of 10. We usually omit the zeros and order A;, Ag, ... A\; such that

A1 > Xy > ... > )\ For example we write (5,3,1%). If )\ is a partition of k& we
write A - k. For two partitions A and p of k£ we say that A dominates p and write

A = if for all 5

J
Z i 2 Z.U'i-
i=1

i=1
If A > pand X\ # u then we write A > pu.

Example 2.1: The partial ordering > of the eleven partitions of 6 is as follows:

(6)
|

(2,1%)

|
(1%)

The diagram [A] corresponding to A = (A1, Ag, ..., A;) F k where \; # 0 is the array
{G.4)i,jez, 1<i<l, 1<j<N}

If (¢,5) € [A] then (4,7) is called a node of [A]. The nth row (column) consists

of those nodes whose first (second) coordinate is n. We can draw diagrams by
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[43

replacing each node in [A] by a “ x ”. For example:

X X X X X

X X

is the diagram [)] for A = (5,22 1).
X X
X

Let A F k and let X be a set. A A-tableau is a function ¢ : [A] - X C NU{0}.
Unless stated otherwise we assume that X = {1,2,...,k}. If a A-tableau is a
bijection we denote it by a lowercase t, if it is not a bijection we denote it by a
capital 7. We can construct a A-tableau ¢ by replacing each node in [A] by an

integer with no repeats.

Example 2.2:
1 2 21 1 3 31 3 2 2 3
) ) 9 , and
3 3 2 2 1 1
are the (2, 1)-tableaux.
Example 2.3:
1 2 345 4 1 7 85
6 7 6 3
t = to =
8 9 2 9
10 10

are (5,22, 1)-tableaux.

Define the action of the symmetric group Sym, on the set of A-tableaux by:
(w, ) (6, 7) = w(t(i, 7)) forall (z,5) € [A]
for any w € Sym,, and A-tableau t. Writing wt instead of (w,t) we get for example:
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where t; and ¢, are as in Example 2.3. For a given ¢t we denote by C} the subgroup

of Sym,, which fixes setwise the elements in each column of ¢. That is
Cy, = {w € Symy | V(i,7) € [\] 3(p, ) € [A] such that wt(i,5) = t(p, )}

We call C; the column-stabilizer of t. Similarly we define the row-stabilizer R; of t

Ry = {w € Sym, | V(i,5) € [\] 3(:,p) € [A] such that wt(i, ) = t(i,p) }.

Define the equivalence relation ~ on the set of A-tableaux by ¢ ~ ¢’ if and only if
wt = t' for some w € R;. Therefore t ~ t' if and only if the set of entries in row
i is the same for ¢ and ¢ for all i. We denote by {t} the equivalence class of ¢
under this relation and call it a tabloid. Roughly speaking {¢} is obtained from ¢
by ignoring the order of the elements in each of the respective rows, i.e. the rows
in {t} are unordered sets. This means the A-tabloid {¢} is a partition of the set X
corresponding to A. The parts of {¢} are its rows. We indicate a tabloid {t} by

drawing lines between the rows of ¢.

Example 2.4: The (2,1)-tabloids are:

12 21 1 2 13 31 1 3
3 3 3 2 2 2
32 2 3 2 3

and , =—
1 1 1

Example 2.5: The tabloids corresponding to the tableaux ¢; and ¢, given in

Example 2.3 are:

1 2 3 45 4 1 7 8 5
6 7 6 3

{t:} = and {t2} =
8 9 2 9
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Let M* be the vector space over C spanned by the A-tabloids. The action of Sym,,
on the A-tableaux induces an action on the A-tabloids. For every choice of two
A-tableaux ¢ and ¢’ there exists a w € Sym, such that t = wt'. Tt follows that M?*
is generated by one M-tabloid under this action of CSym,. This makes M? into a

cyclic CSym,-module. Its dimension is

k!
dim(M) = —————.
(M) = S
For a given ¢ define the signed column sum k; € CSym, as k; = ». sign(w) w.
weCt
Then the polytabloid e; € M?* is defined as e; = ki{t}.
3 15
Example 2.6: Let A = (3,2) and t = then r; = e—(23)—(14)+(23)(14)
2 4
and
3 15 2 15 3 45 2 4 5
€ = —— - - +
2 4 3 4 2 1 3 1

The vector space spanned by the polytabloids e; for a given A is a submodule of
M?*. We call this submodule the Specht module S* corresponding to the partition
A

Example 2.7: Let A = (2,1) then:

1 2 3 2 2 1 3 1 1 3 2 3
€y, = - 3 €ty = - ) €ty = - )
3 1 3 2 2 1

3 1 2 1 2 3 1 3 3 2 1 2
€ty = - ) €ty = - ) €tg = - .
2 3 1 2 1 3

There are several linear relationships between these polytabloids. For example,
€, = —€iy, €1, = —€1,, €, = —€;, and e;; = e, — e;,. In fact, the Specht module
S is of dimension two and the polytabloids e;, and e, are a basis. Acting with

CSymg on this basis gives:

(]_ 2)€t1 = €4, (]_ 2)€t2 = €y (1 2 3)6151 = €, — €14 (1 2 3)6752 = —€-
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For a given partition A of k, a tableau t is called a standard tableau if the numbers
increase along the rows and down the columns of . A tabloid {t} is a standard
tabloid if there is a standard tableau in the equivalence class {t}. The polytabloid
e; is a standard polytabloid if t is standard.

The set of polytabloids e;, where ¢ is standard, forms a basis for S* (Theorem 2.5.2
[20]). The matrix representation corresponding to S* with respect to this basis is
called Young’s natural representation. In Example 2.7 the standard basis consists

of e;, and ey,, and Young’s natural representation is generated by:

1 0 1
R®V(12) = and R®Y(123) =
-1 -1 -1 -1
It can easily be checked that for example
0 1 1 0 -1 -1
R*V(13)=R>Y(123) R®V(12) = =
-1 -1 -1 -1 0 1
For a given partition A and a set X = {z1,29,...,2;} with 23 < 25 < ... < 7y

denote by T : [\] = X a tableau of shape A but with possible repeated entries.
Let p = (u1, po, - - -, ) F k be a second partition of k£ with p; = 0 if 4 > . Here
the parts are not necessarily arranged in descending order and zero parts are not
omitted. We say that 7" is a A-tableau of type p if the entry x; appears p; times in
T. Unless stated otherwise we assume that X = {1,2,... k}.

Example 2.8: Fork =9, A= (5,2,2) and u = (3,0, 2,4), two possible A\-tableaux
of type u are:

1331 4 11144
Th= 4 4 Tr=3 3
1 4 4 4

A tableau T is said to be semistandard if the entries are weakly increasing along
the rows and strictly increasing along the columns of 7". For example, the above

tableau T3 is semistandard whereas T} is not.
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Theorem 2.2 For any given u - k, the Specht modules S* with X\ = u are all the
irreducible submodules of M*. The dimension ny of S* is equal to the number of
standard \-tableaux and its multiplicity my as irreducible submodule of M* is equal

to the number of semistandard A-tableauzx of type p.

Proof: The statement is a combination of Theorem 4.13, Theorem 8.4 and Theo-

rem 14.1 (Young’s Rule) in [16]. O

Lemma 2.3 Let A be any partition of k. Then,

k
dim(8) =ny = k! [ z:()
i=1

where,
k . .
.Hl()\i_)\j+‘7_2) 1
_ J=1+ . _ _
zi(\) = B for i=1,2,...;k—1 and zr(N) N

Proof: Let A = (A, \o,...,\;) be a partition of & with [ non zero parts.

k—1 k ] ]
IT i—Aj+7—1)

i =1 j=it1
HIZ()‘) = - J_k
i=1

~.

~
|

—

~

M 11 -A+i-) I I 0eei=d T 116-0)

_ j=i+1 i=1 j=I+1 i=l+1 j=i+1
o l k

[T+ &= ] (k—19)!

i=1 i=l+1

i=1 =041
-1 1
[T (hi=Aj+5-1)
_i=l =it
o !
[T +1—=19)!
=1
From Theorem 20.1 [16] it follows that this is equal to %3 O
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2.3 The module of colourings Vi(B)

A graph B consists of a vertex set V.= {v1,v,...,vp} and a subset of unordered
pairs of vertices called the edge set of B. In the following, we exclude the possibility
that {v,v} is in the edge set. That is, we deal only with loop-less graphs. We say
that two vertices v and w of B are adjacent if {v,w} is in the edge set of B. We

usually assume that V = {1,2,...,b}.

The graph with edge set consisting of all possible unordered pairs of vertices (but
excluding the case {v,v}) is called a complete graph and we denote it by K. Its
vertex set is denoted by V.

Let B be a graph with vertex set V. Throughout this section we regard the natural
number % as fixed and we denote by K = {1,2,...k} the set of colours. A k-
colouring of B is a function a: V — {1,2,...k} satisfying a(v) # o(w) whenever
{v,w} is in the edge set of B. That is, adjacent vertices in B take different colours.
We denote the set of all colourings of B by I'y(B). In the case where B is the
complete graph on b vertices, I'y(b) = I'x(Kj,) is the set of injections from Vj into

K.

Every function 6 : V — K induces a partition R = {Ry, Rs, ..., R} of V, written

as f = R, by letting two vertices v and w be in the same part R; if and only if
O(v) = 6(w).

An independent set R is a subset of the vertex set V' such that no pair of vertices of
R are an edge of B. Note that all singletons are independent sets. A collection of
disjoint non-empty independent sets whose union is V' is called a colour-partition
of V. We write colour-partitions as sets and separate the independent sets by | ”.

For example, in case of the path on four vertices there are five colour-partitions:
Ry = {12)3]4}, R, ={132]4}, Rs = {1]243},
R, ={14]2]3} and Rs5= {13|24}.

|R| denotes the number of independent sets in R, and II(B) is the set of all colour-
partitions of V' for a given graph B. Note that « is a colouring of B if and only if
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a = R for some R € II(B).

The symmetric group Sym, acts on I';(B) in the obvious way. That is, for any

w € Sym,, and « € I'y(B),
(w, @) (v) = w(a(v)) forallv e V.

Two colourings v and f lie in the same orbit under Sym, if and only if they induce

the same colour-partition.

Denote by Vi(B) the vector space of complex-valued functions defined on I'y(B).
If B = K}, we write Vi (b). The standard basis for Vi (B) consists of the functions
[a] for every a € I'y(B) defined as follows
1 if a=p;
[a](B) =
0 otherwise.
The action of Sym, on I'y(B) induces an action on Vi (B). This makes Vi (B) into

a CSym-module.

For any colour-partition R the cyclic submodule of Vi(B) spanned by the set
{le] | @ =R} will be denoted by (R). Since for every [a] € Vj(B) we have that
[a] € (R) for exactly one R € TI(B), it follows that Vi (B) is the direct sum of the

For any R € TI(B), let A\, % be the partition (k — |R|, 1/*!) of k. Recall that M*+®
is the CSym;-module generated by the A, z-tabloids.

Theorem 2.4 The CSym,-modules (R) and M*® are isomorphic.

Proof: Let ¢ be any A, z-tableau. Then ¢’ is in the equivalence class {¢} if and
only if
t'(i,1) = (4, 1) foralli=2,3,...,|R|+ 1.

Let oy € (R) be such that ay(i—1) = ¢(4,1) for alli = 2,3, ..., |R|+1. This defines

a bijection between the set of A\, z-tabloids and the set of colourings o satisfying
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a = R. This bijection clearly respects the action of CSym,. Hence follows the

result. O

Since Vi (B) is the direct sum of the (R) it follows from Theorem 2.4 that:

Corollary 2.5  The CSym-modules Vy(B) and €@ M*® are isomorphic.
REII(B)
a

From Theorem 2.2 and Lemma 2.3 we know the decomposition of the M*% in

terms of irreducible submodules. This allows us to deduce the structure of Vi (B).

Denote by A, the partition (k—b, 1°) of k, where b = |V|. Then Ay z = A for all
R € II(B). From Theorem 2.2 and Corollary 2.5, it follows that every irreducible

composition factor of Vi (B) is isomorphic to some S* with A = A\ .

Let 0 < ¢ < b and 7 - £. Denote by 7% the partition (k — £, m,my,...,m,) of k.

Then 7* > Akp and every A = Ag is of the form 7% for some 0 < £ < b and 7 I £.

As a result of Lemma 2.3, the dimension n, of S* is given by

k
dim(8*) = ny = k! [[z:())
=1

where
k . .
Hl()\z‘—%'*-J—Z) )
_ =it . _ 1
z;i(\) = SV for t=1,2,...,k—1 and xk()\)—/\k!.
Assume b+ 2 < k and replace A by 7*. If £ =0 then n,« = 1. If £ > 1, it follows
that
¢ k
(k—€—mj+7) IT k—¢+5-1)
Ky _ J=1 j=t+2
n(m) = 2k —¢-1)!
Z .
[[(k—£—m;+j)

Jj=1

- k! ’

z(7%) = mi_y(w) for i=2,3,...,0+1

and x;(7F) = 1 for i > 0+ 2.
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The dimension of S™ can then be written as

k! Ny
ok :E s .’L'l()\) = ﬁ

¢
[] (k= hi(x))  where hy(r) =m+£—i.

i=1
To find the multiplicity m & in Vi (B) of the submodule isomorphic to S™ . we have
to add up the numbers of semistandard 7*-tableaux of type Az for all R € II(B).
If R is a given colour-partition, then any 7% = )\, % is of the form 7% = (k —
0,7y, g, ..., m) for some 0 < £ < |R| and 7 - £. Every w*-tableaux T of type \x»
has k — |R| times the entry 1 and each of the entries 2,3, ..., |R|+ 1 exactly once.
A necessary condition for T to be semistandard is that all the entries 1 are in the
first row and the first £ — |R| columns. The entries not equal to 1 in the first row
have to be in increasing order along the row. If T satisfies this necessary condition
then T is semistandard if and only if the restriction of 7" to [r] is a standard =
tableau (assuming that k > |R/|). Hence the multiplicity of S™ in M+ is ('?') M.
Now, summing over the set of colour-partitions gives the multiplicity in Vi(B) of

the submodule isomorphic to S

Theorem 2.6  Every irreducible submodule of Vi(B) is isomorphic to some S
with 0 < £ < bandmt L. If¢ =0 the dimension of S™ is one. If £ > 0 the
dimension of S™ is

¢
Nk = % H(k—hi(w)) where  hy(m) =m + £ —1
i=1

and n, is the dimension of S™. The number of submodules in Vi(B) isomorphic to

k

ST is

o=y ('?) N with, ('?') =0 if £>]|R]
)

ReTl(B

2.4 The irreducible submodules of Vi (B)

In this section we investigate the irreducible submodules of the CSym,-module

Vi(B). In particular we obtain a basis of the irreducible submodules.
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Recall that for every R € II(B) the submodule (R) of Vi (B) is generated by the
set {[a] | @ = R}. Since Vi(B) is equal to the direct sum of the (R) we can

decompose each of the (R) separately.

Let R be a colour-partition with b independent sets. That is R = {R;}’_,. For
every a = R we denote by @ : {1,2,...,b} — K the injection defined by @(i) =

a(R;) (see diagram).

Ll

proj.
{1,2,...,b} =V/R

The injection @ is a colouring of the complete graph K,. This induces a bijection
between the colourings in I';(B) that induce the colour-partition R € II(B) and
the colourings in I'y(b). This bijection respects the action of the symmetric group,

and we have:

Lemma 2.7 Let B be a graph. For each R € I1(B) the homomorphism
(RYy = Vk(IR)) given by |[a]—[@]

15 a CSymy-module isomorphism. a

It follows that finding the irreducible submodules of (R) is equivalent to finding
the irreducible submodules of Vi (|R]).

Note that the above isomorphism depends on the labelling of the independent sets
of R. In order to avoid confusion later, let us define the following: The independent
sets {R;}2_, are labelled such that

min (R;) < min (R;) if i < J.

That is, we order the independent sets according to the smallest element contained

and label them in this order consecutively.



2.4.1. THE COMPLETE GRAPH CASE 29

2.4.1 The complete graph case

We are now going to find the irreducible submodules of Vi (b). Let 0 < /¢ <b and

7+ £ be given. For the rest of this section let ¢ be a fixed 7*-tableau.

Let T :[7¥] — {0} UV, be a w*-tableau of type A, That is T is a surjection
with kernel of size k —b. Denote by T« ,,, the set of mk-tableaux of type .
We define the action of Sym, on Ty, , by

(w,T)(,7) =T(,5") where wt(,5") = t(i, ) for all (4, 4) € [7"]

for every w € Sym,. This agrees with the definition given in [20] Page 80, and

makes T« , , into a CSym,;-module.

We are going to show that T ., and Vi (b) are isomorphic as CSym,-modules.
Then we use results from [20] Section 2.9 to deduce the decomposition of V(b) in

terms of irreducible submodules.

For every T' € Tk 5, , define ar : Vs = K as ar(v) = t(4,j) where T'(i,j) = v

for all v € V4. This is an injection and hence a colouring of Kj.

Example 2.9: Let b=7,¢=5and 7 = (22,1). If

6 7 8 9 10 ... k 036 00...0 4
1 2 5 2
t= and T =
3 4 10
5 7

then ar = (3,2,7,k,1,8,5), that is a assigns the colour 3 to vertex 1, colour 2 to

vertex 2, and so on.

Lemma 2.8 Let 0</<b and wF L. Then T — ar defines a bijection between
the sets Tpx ,, and L'g(b).

Proof: Let o be any colouring in I'y(b). Define the 7*-tableau T" by T'(i,5) = v

if ¢(4,5) = a(v) for some v € V, and T'(i,j) = 0 otherwise. Since ¢ and « are
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injections it follows that 71" is well defined. Clearly, T is of type Az . It follows that

ar = a, and hence ar defines a surjection between the sets 7.« 5, , and k(D) .

Suppose that «, 3 € Tx(b) with o # (. Then there exists v € V; such that
a(v) # B(v) From the definition of a it follows that a(v) = ¢(4, j) with T'(i,5) = v
and B(v) = t(i,j") with T'(i',j') = v. Since t is an injection it follows that
(1,7) # (i, '), and since v # 0 it follows that T # T". It follows that aq defines

an injection between the sets I'y(b) and T, ,, and hence a bijection. O

Lemma 2.9 Let 0 <{<b and mt L. For anyT € Tpx y,,

W oar =y for all w € Symy,.

Proof: For every v € V, we have

a,7(v) = t(i,7) where  (w,T)(3,7) = v
= wt(i,j) where T(i,j) = (w,T)(i,j) =v

= war(v).

Corollary 2.10 Let 0 < ¢ <b and w+ L. Then T — [ar| defines an isomorphism
between the CSymy-modules Trx x, , and Vi(b). O

Following [20] Section 2.9, we define for every given T' € Ty , , the homomorphism

o M™ V() by or({th) = D fas]

Se{T}

and cyclic extension using cyclicity of M ™ That is, for every m*-tableau t' there

exists a w € Sym,, such that ¢’ = wt. Then

br({t'}) = br({wt}) =wbr({t) =w ) [as].

Se{T}



2.4.1. THE COMPLETE GRAPH CASE 31

The 7*-tabloid {T'} is defined in the obvious way. Note that in [20] Section 2.9 the
homomorphism @7 is into Tz, ,, but with Corollary 2.10 we can extend it into
Vi (b). From the cyclic extension it follows that 61 respects the action of Sym,. In

particular

Or(e)) = Or(k{t}) = kibr{t} =k, Y las].

Se{T}

Denote by 0 : S™ Vi (b) the restriction of 61 to S™

We say that a tableau 7' € 7T, , is almost semistandard if none of its columns
has a repeated entry. In particular every semistandard tableau is also almost
semistandard. From [20] Proposition 2.9.4 it follows that @7 is non-zero, i.e. is not
the zero map, if and only if 7" is almost semistandard. Thus, the image Im(f7)
is an irreducible submodule of Vj(b) isomorphic to S™. Denote this irreducible

submodule by Uy (m, T, b).

Let 7;% e be the set of semistandard m*-tableaux of type Ajs. In [20] Theorem
2.10.1 it has been shown that

{ET T ¢ mm}

is a basis of Hom(S™,Vy(b)). It follows that the Uy (m, T, b) are non-identical for
different T € T4 "

Lemma 2.11 Let 0 < £ <b, n+Land T € T ay- Then Uy(m,T,b) is an

irreducible submodule of Vi(b) isomorphic to 8™ with basis

{w/{t z [as] | w € Symy, such that wt is a standard 7" -tableau }
Se{T}

Moreover, the Uy(m,T,b) are non-identical for different T € 7;0k s and
{U(m,T,b) | T € 7;0,6,%17}
is the complete set of submodules of Vi(b) isomorphic to S,

Proof: Recall that the set {e, | wt is standard } is the standard basis for S™".

From e,; = we; ([20] Lemma 2.3.3) using fr it follows that the

WKy Z [as]

Se{T}
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with wt being standard form a basis of Uy (m, T, b).

Further, since {07 | T € 7;%’)%,()} is a basis of Hom(S™ , Vy(b)) it follows that:

o U(m,T,b) # Uy (m,T',b) for T, T' € 7;0;@7)\“ with T # T".

o {U(m,T,b) | T € TS )\kb} is the complete set of submodules of Vj(b)

isomorphic to ST,

|
For every T' € Tix ., let Epy = k; ) [ag]. Then, by [20] Lemma 2.3.3:
’ Se{T}
wBry=wky Y [os] =k Y [wos] = Bru
Se{T} Se{T}
for all w € Sym,, as required, and
U (m,T,b) = {wET,t | wt is a standard 7*-tableau for some w € Symk}.
Lemma 2.12 Let b € N. Then
Vi) = @ U@ T
07%—% TET:k’)‘k,b
a

2.4.2 A change of basis

Let X C Vj and let g : X — K be an injection. We define the function [X | ¢] €
Vi(b) by
1 ifax=gy

(X | gl(e) =
0  otherwise

for every « € T'x(b) where ax is the restriction of o to X. Equivalently

X 1gl=) [0

dx=g
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Let us proceed by expressing the irreducible submodules Uy (7, T,b) of Vi (b) in
terms of linear combinations of [X | g]. Let 0 < £ < b and 7 - £ be given. For
the rest of this section let ¢t be a fixed n*-tableau. For every tableau
T € Trn,, denote by T : [r] — V3 U {0} the restriction of T' to [r]. That i,
T.(i,j) = T(i+ 1,7) for all (i,5) € [n]. Denote by Xt the image of T,. If T is
semistandard of type A, then X7 C V; and T} is a standard tableau. Denote by
g1 : X7 — K the restriction of ar to Xr. That is, gr(z) = t(4, j) where T'(i,j) = x
for all x € Xpr. Similarly, define ¢, to be the restriction of ¢ to [r]. Observe that

the image of gr as a set is independent of 7" and depends only on the choice of ¢.

Lemma 2.13 Let T € TS, . Then
»\k,b

Y lasl= D (X7 | worl,

Se{T} WERy,

where Ry;_ s the row-stabilizer corresponding to the tableau t,.

Proof: First observe that Xg = Xy for all S € {T'}. Partition {T} into r =
mlmo! ... parts By, By ..., B, each of size (k —{)(k—£¢—1)...(k—b+1) by
letting

S, S"eB ifand onlyif S,=S5..

Let B be any of these parts. Then ag = ag on Xp for all S', S € B. Denote by

gs : X7 — K the restriction of ag to Xrp.

For every o with @ = ag on X7 for some S € B there exists a S’ € B such that

a = ag on Vj. Thus

> las] = [Xr | gs)-

seB

Let S’, S € {T'}. Let x be any element of X7. Then ag(x) = t(4,j) and ag(z) =
t(i', 7') where S(i,j) = x and S'(¢', j') = x. Since the rows of S and S’ are equal as
sets it follows that ¢ = i'. Hence ag(z) and «ag/(x) are in the same row i of ¢, and
thus wags(r) = ag () for some w € R;_. This holds for all x € Xt and the result

follows. u
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For every T € TJ, A, it follows that Ery = k¢ > [X7 | wgr] and by [20] Lemma
o wERy

2.3.3 it follows that, as required,

YEry =k Y (X1 [qwgr] = ky Y [Xr | wor]

WERy, weEYRy

=Koyt Z (X7 [ wygr] = Er 0.

WER (yt)r

2.4.3 The general case

Let us now return to the general case, i.e. B is not necessarily a complete graph

with b vertices.

Denote by Uy (7, T, R) the irreducible submodule of (R) isomorphic to Uy(m, T, |R|)

obtained via the isomorphism in Lemma 2.7.

Since Vi (B) is the direct sum the (R) with R € II(B) it follows that:

Theorem 2.14 Let B be any graph. Then

Vi(B) = @ Wi(r, B)

0<£<b

£
where
Wk(ﬂ-aB) = @ @ Z/{k(ﬂ-aTaR)'
REN(B) TeTO
|R|>£ A IR
Each submodule Uy (m, T, R) is isomorphic to S™  and Wh(m, B) is the direct sum
of all irreducible submodules of Vi(B) isomorphic to 8™ . O

We say that Wy (m, B) is the submodule of Vi (B) at level £ and partition = - £. If
B is the complete graph K, then we write Wy(7,b).

2.5 Examples

Example 2.10: Let B be the complete graph with 3 vertices K3. Then Vi(3)

splits up into three levels £ = 0,1, 2, 3.
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At level £ = 0 there is only the empty-partition 7 = (). We assume that

t=1 2 ... k.

There is only one semistandard tableau 7= (0 0 ... 0 1 2 3 in 72,2)

’Ak,S '

The tabloid {T'} contains all (k)-tableaux of type Ay3. Then k; = e and

Uy ((), T, 3) consists of one element

Ery= Y lasl= Y [o],

Se{T} a€T(3)

that is the all-one function. The submodule Wj/((),3) is equal to Uy((), T, 3).

At level £ =1, again there is only one partition 7 = (1). We assume that

2 3 ... k
t= .
1
There are three semistandard tableaux in 7?271,1)7/\&3:
00 ... 023 00 ... 01 3
T1: ) T2:
1 2
and
0 0 01 2
T3:
3

Then x; = € — (12), and

Ere= Y lo]=) [o, Epne= Y lo]=) ld]

a(l)=1 a(l)=2 a(2)=1 a(2)=2

and

Ere= Y lo]=) o]

a(3)=1 a(3)=2
where «(i) = j means that « assigns the colour j to vertex i¢. The submodule

Uy ((1),T1,3) is generated by the polytabloids wEr, ; = Ey ¢+ with wt being

1 3 4 ... k 1 24 ... k 1 23 ... k-1
) ; . .
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Similarly Uy ((1),T%,3) and Uk ((1),T5,3). From Theorem 2.6 it follows that each
of them is of dimension n¢_;,1y = k — 1 respectively. The submodule W;((1),3) is

the direct sum of these three irreducible submodules.

At level £ = 2 there are two partitions, 7 = (2) and 7 = (12). For 7 = (2) we
4 5 ... k

assume that ¢ = . There are (3)1 = 3 semistandard tableaux in
1 2
TO .
(k7272)7)‘k,3'
000 ... 03 0 0O 0 2
1= y T2 =
1 2 1 3
and
000 ... 01
3= .
2 3

Then &, = (e — (13))(e — (24)) = ¢ — (13) — (24) + (13)(24), and

Ery = (X ld+ Y lel) - ( Xlal+ Y o)

a(l)=1 a(2)=1 a(1)=3 a(2)=3
a(2)=2 a(1)=2 a(2)=2 a(1)=2
(Xl + Ylal) + ( X+ Y [al).
a(l)=1 a(2)=1 a(1)=3 a(2)=3
a(2)=4 a(l)=4 a(2)=4 a(l)=4
Bry = (Y lol+ Y ll) = (X [+ Y lal)
a(l)=1 a(3)=1 a(1)=3 a(3)=3
a(3)=2 a(l)=2 a(3)=2 a(l)=2
(Xt X))+ (X led+ X o)
a(l)=1 a(3)=1 a(1)=3 a(3)=3
a(3)=4 a(l)=4 a(3)=4 a(l)=4

and similarly for E7, ;. The irreducible submodule U ((2), T3, 3) is generated by
the polytabloids wEr, + with wt being a standard tableau. Similarly U ((2), 73, 3)
and Uk ((2),T3,3). From Theorem 2.6 it follows that each of them is of dimension
N(k—2,2) = 5(k — 3)k respectively. The submodule Wj((2), 3) is the direct sum of

these three irreducible submodules.
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34 ...k
For m = (1?) we assume that t = 1 . There are (3)1 = 3 semistandard
2
tableaux in 7',c 21%) A
000 ... 03 000 ... 02
=1 ) Ih=1
2 3
and
000 ... 01
T3= 2
3

Then k; =€ — (12) — (13) — (23) + (123) + (132) and for example

Ene= Y [l = > o= Y [l = >+ > [+ ) [al
a(1)=1 a(1)=2 o(1)=3 a(1)=1 a(1)=2 o(1)=3
o(2)=2 a(2)=1 a(2)=2 a(2)=3 a(2)=3 o(2)=1

Similarly Er,; and Er,;. Each of the irreducible submodules U ((1?),T7,3),

Uy ((1?), T», 3) and Uy((1%), T3, 3) is of dimension n(_s12) = 3(k — 2)(k — 1). The

submodule Wj((1?), 3) is the direct sum of these three irreducible submodules.

At level £ = 3 there are three partitions 7 = (3), 7 = (2,1) and 7 = (1*). For

4567 ...k , .
m = (3) we assume that ¢t = . There is only one semistandrd
1 2 3
0000 ...0 _ _
tableau T = L9 s in T 33) 5., Lhe tabloid {T} contains all
tableaux with 1, 2 and 3 in the second row in any order, and ) [ag] is the sum

Se{T}
over all clourings using the colours 1, 2 and 3. It follows that

ET,t = Rt Z [a]

a(V)={1,2,3}
with k; = € — (14) — (25) — (36) + (14)(25) + (14)(36) + (25)(36) — (14)(25)(36).
The irreducible submodule Uy((3), T, 3) is of dimension n_s3 = §(k—5)(k — 1)k,
and the submodule Wj/((3), 3) is equal to Uy((3), T}, 3).
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4 56 ... k
For m = (2,1) we assume that t = 1 2 . There are two semistandrd
3
tableaux in 712—3,2,1),/\:@,3:
0000 ...0 000O0...0
T'=1 2 and T =1 3
3 2

Writing colourings of K3 as three-tuples, that is (h, 7, j) is the colouring that assigns
colour A to vertex 1, colour i to vertex 2 and colour j to vertex 3 it follows that:

> lasl=(1,2,3)+(2,1,3) and ) Jas] =(1,3,2)+(2,3,1)
}

SE{Tl SE{TQ}
and Er,; = £:((1,2,3) + (2,1,3)) and Ep,, = k:((1,3,2) + (2,3,1)) where
ke = (e — (13) — (14) — (34) + (134) + (143)) (e — (25)).
The irreducible submodules Uy ((2, 1), 7}, 3) and U, ((2, 1), T», 3) both are of dimen-

sion ng_321) = 2(k — 4)(k — 2)k. The submodule W;((2,1),3) is the direct sum

of these two irreducible submodules.

4 5 ... k
For m = (1) we assume that ¢t = . There is one semistandard tableau
2
3
000 ...0
1 :
T = ) in T 3130, ,- Then {T} =T and Er; = (1, 2,3) where
3

k¢ is the alternating sum of the elements of the group of permutations of the set
{1,2,3,4}. The dimension of Uy((1%),T,3) is ng_313) = §(k — 3)(k — 2)(k — 1).
The submodule Wj,((12), 3) is equal to U ((13), T, 3).

The Table 2.1 summarizes this example. The module V(3) is the direct sum of
14 irreducible submodules Uy (7, T, 3). Adding their dimensions up gives k(k — 1)
(k —2) = dim(Vi(3)).
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¢ T ‘7;0’2)\1@,3‘ Torck

0 0 1 1

1 (1) 3 k—1

2 (2) 3 sk(k —3)

2 (12) 3 s(k—=1)(k-2)

3 (3) 1 sk(k —1)(k —5)

3 (2,1) 2 2k(k —2)(k —4)

3 (13) 1 s(k—1)(k—2)(k—3)

Table 2.1: Summary of Example 2.10

Example 2.11: Let B be the path of length three, i.e. with three vertices and
two edges. There are two colour-partitions R = {1/2|3} and P = {1,3|2}. The
submodule (R) is equal to Vi (3) and (P) is isomorphic to Vi (2). The decomposition
of (R) in terms of irreducible submodules has been obtained in Example 2.10. A

decomposition of (P) can be obtained similarly and thus:

At level £ = 0 there is only the empty partition 7 = (). For P there is only
one semistandard tableau T € 722)’/\]0,2 and Uk ((),T,P) contains only one element
up = Y [o, that is the all-one function in (P) (Similarly ugx = »_ [a]). Then
the sug;i)dule Wi((), B) is the direct sum of Uy ((),7, R) and Z/{k((o;,_;’, P) where

the second has been obtained in the previous example. They are spanned by the

two functions ug and up respectively.

At level £ = 1 again there is only one partition 7 = (1). For P there are two

semistandard (k — 1, 1)-tableaux of type Ak

00 ... 02 00 ... 01
T1: and TQZ .
1 2

Then Wj((1), B) is the direct sum of five irreducible submodules:
Z/{k((l): T, P)’ Uk((l)’ 13, P)’ Uk((1)7 Tll7 R)’ uk((1)7 T2I’ R) and Uk((l)a T?:a R)a

where the last three have been obtained in the previous example. Each of them is

of dimension ng_1,1) = (K — 1).
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At level £ = 2 there are two partitions 7 = (2) and 7 = (12). For P there is only

one semistandard (k — 2, 2)-tableau and one semistandard (k — 2, 1?)-tableau both

of type Ay 2:
00 ...0
000 ...0
and 1
1 2
2

Then Wj((2), B) is the direct sum of four irreducible submodules:
uk((Q)aT: P), Uk((Q)aTllaR): Z’{k((Q)aTZIaR) and uk((Q)’T{;’R)’

where the last three have been obtained in the previous example. Each of them is
of dimension ng,_29) = $k(k — 3). Similarly, Wy((1%), B) is the direct sum of four

irreducible submodules:

u/‘&((lz)aT: P)a Uk((12)aTllaR): uk((12)aT21aR) and Z/{k((12)’TZ’:aR)a
where the last three have been obtained in the previous example. Each of them is
of dimension ng,_o,12) = £(k — 1)(k — 2).

At level £ = 3 there are three partitions 7 = (3), 7 = (2,1) and 7 = (1%). For P
all submodules Uy (7, T, P) are zero-modules. Thus the Wy (m, B) are the same as
in Example 2.10.

Adding up the dimensions of all the Wy(m, B) gives k(k — 1)(k — 2) + k(k — 1) =
dim(Vi(B))

2.6 A new module

In the previous sections we considered the CSym -modules Uy (7, T, |R|) which are

generated by the set
{Er,; | t is a standard 7*-tableau}

and 7 is a fixed almost semistandard 7*-tableau of type Ak,jr|- In this section we
shall consider the modules generated by the set of Er; where we keep ¢ fixed and

vary T (with some restrictions).
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Let X = {x1,%9,...,2¢} be such that 1 < 25 < ... < xp. We let Sym, act on X
by
(v, %)) =z, forallz; € X and every v € Sym,.

We write yx; instead of (7, ;). This induces an action of Sym, on the set
{T € 7;rka/\k,b ‘ T[?T] = X} .
That is, for every v € Sym,

(v, T)(p, q) = v where x; =T(p,q) forall (p,q) € [n].

Thus Sym, acts on the indices of 7. We write 77 instead of (v, 7). Let T' € Trx 5, ,
with T'[w] = X. Then T induces a 7 tableaux ¢ by replacing the entry x; in T by

1. For example

0 Xy - 0 xIs 0
1 3 5
r1 X3 Iy
t= 2 6 corresponds to T=
To g
4
Ty

For fixed X, this incuces a bijection between the set of tabloids {7} with T € T 5,
and T[r] = X, and the set of 7 tabloids {¢t}. This Bijection commutes with the
action of Sym,. It follows that the CSym ,module generated by the set
{38 | TeTwy, with T[r=x]
Se{T}

together with the action

(3 5)= 3 s

Se{T} Se{T}
is isomorphic to M™.
Now, let ¢ be any 7% tableau. Recall the action of Sym, on Tz n, defined on
Page 29, we get that the column stabilizer C; permutes the positions rather than
the entries of the elements of Ty« 5, ,. It follows that C} is the column stabilizer for
every elements in Ty« 5, ,. Thus

{mtﬂ NS | T€Tw,, with Tl zx}

Se{T}
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generates a CSym ,-module isomorphic to §™. With the CSym, isomorphism from

Corollary 2.10 it follows that

{nt,, Y fas] | TETm,, wih T[w]:X}
Se{T}

generates a CSym,module isomorphic to S7.
Lemma 2.15 There exists some @ € CSym,, such that ky = Qky, O

Proof: The column stabilizer Cy_ is a subgroup of C; Let D, be a (left) transversal

of C;_ in C; (i.e a complete set of (left) coset representatives). Then

Q= Z sign(d)é

0€ED:

Corollary 2.16 For every T' € Tpn y,, with Xo C'Vy the set

{E'yT,t 7€ S?/me}

together with the action (v, Er 3+ E s generates a CSym,-module isomorphic to

ST. O

Example 2.12: Let b = 3. As in Example 2.10, for 7 = (2,1) we assume that
4 5 6 ... k

t=1 2 . There are two semistandrd tableaux in 7?,273,2,1),)% %
3
0 00O0...0 00 0O0...0
T'=1 2 and T,= 1 3
3 2

Writing colourings of K3 as three-tuples, that is (h, 7, j) is the colouring that assigns

colour A to vertex 1, colour 7 to vertex 2 and colour j to vertex 3 it follows that:

> las]=(1,2,3)+(2,1,3) and Y [as]=(1,3,2) +(2,3,1)
}

Se{T1} Se{T
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and Er,; = £:((1,2,3) + (2,1,3)) and Ep,; = k:((1,3,2) + (2,3,1)) where
ke = (e — (13)) (e — (14) — (34)) (e — (25)).

Let Q; = (e — (14) — (34)) (e — (25)) and &, = (e — (13)). Then:

((12), Bryy) = Qu((2,1,3) — (2,3,1) + (1,2,3) — (3,2,1)) = Eny 4,

((12), Bryy) = Qu((3,1,2) — (1,3,2) + (3,2,1) — (1,2,3)) = —En ;. — Enyy,

((123), Bryy) = Qi((3,1,2) — (1,3,2) + (3,2,1) — (1,2,3)) = —Ep . — By
and ((123), Br,.) = Qi((2,1,3) — (2,3,1) + (1,2,3) — (3,2,1)) = Epy .

1 -1 -1 1
The corresponding matrices are R(12) = and R(123) =

0 -1 -1 0
It can easily be checked that they indeed generate a matrix representation for

Syms corresponding to m = (2,1). Hence Er, ; and Ey, , together with the action

(7, Ers3+ Eyry generate an irreducible submodule isomorphic to S (2.1)



Chapter 3

The compatibility matrix method

In this chapter we shall describe the compatibility matrix method, introduced by
N.L. Biggs in [2], and recently used and developed in [5], [8], [7], and [9]. We
show how it can be used to obtain the chromatic polynomials for certain families

of graphs.

The compatibility matrix commutes with the action of the symmetric group. Using
the results from Representation Theory, introduced in the previous chapter, we
show that the matrix is equivalent to a block-diagonal matrix, and the multiplicities
and the sizes of the blocks are obtained. Using a repeated inclusion-exclusion

argument the entries of the blocks can be calculated.

This method has previously been used by Biggs and co-workers in [7] and [9] in the
case where the “base graph” is the complete graph K. Here this approach will be

extended for general “base graphs”.

3.1 Bracelets

Given a graph B, aset L CV x V and an integer n > 3 the bracelet L,(B) is the
graph constructed as follows. Take n disjoint copies of B and link them by extra

edges according to the rule: For every i = 1,2,...,n and each pair (v, w) € L join

44
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the vertex v in the i® copy of B, to the vertex w in the (i + 1)™ copy of B, with
the convention that n+1 = 1. We obtain a “ring” of n copies of B linked by edges
in the manner prescribed. The graph B is called base graph and the set L is called
a linking set. The edges corresponding to L, that is the edges not part of a base

graph, are also called linking edges.

Example 3.1: Let B be the complete graph K3, n =5 and

L= {(la 1)? (2, 2)? (3’3)}

be the “identity” linking set. The graph Ls(3) is shown in Figure 3.1. The edges
of the five copies of the complete graph are drawn as thick lines, the edges cor-

responding to the linking set are drawn as thin lines. In general, let B be the

Figure 3.1: L;(3)

complete graph K, and

L=1{(1,1),(22),..., (b}
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be the “identity” linking set. The resulting graph is denoted by B, (b). For b = 2
the resulting bracelet is also called the ladder graph [5]. The case b = 3 has been
covered in [10]. The chromatic polynomial in the case b = 4 has been obtained in

[7] and [11], and the cases b = 5,6 have been treated by this method in [12].

Example 3.2: Let B be the complete graph K3 and

L={(1,2),(1,3),(2,1),(23),(3,1),(3,2)}-

The resulting graph is a cyclic octahedron denoted by H,,. Its chromatic polynomial
has been obtained in [9]. Figure 3.2 shows two adjacent copies of K3 (thick lines)

with the corresponding linking edges (thin lines).

1 3

Figure 3.2: Two copies of K3 and the linking set of the cyclic octahedron

Example 3.3: Let B be the cyclic graph C, on b vertices and

L={1,1),(22),...,(50b)}

be the “identity” linking set. The resulting graph is denoted by C,,(b).

Example 3.4: Let B be a path with vertex set V = {1,2,3,4} (1 and 4 being
the end-vertices). For L = {(1,1), (3,2), (4,4)} the resulting cubic graph with 4n
vertices is a generalised dodecahedron and is denoted by D,,. In particular Dj is

the graph of the regular dodecahedron. Two adjacent copies of B (thick lines) and
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Figure 3.3: Two copies of path of length four and the linking set of the generalised

dodecahedron

the linking edges (thin lines) are shown in Figure 3.3. To calculate the chromatic
polynomial of D,, was a longstanding problem motivated by the question of whether
chromatic roots can have a negative real part. D.A. Sands (in an unpublished
thesis, 1972), Haggard (1976) obtained the chromatic polynomial of Ds. In 2001
S.C. Chang [11] calculated the chromatic polynomial for the general D,, and showed

the existence of roots with negative real part for D,, for n > 6.

The n-fold symmetry of the bracelets allows us to use the compatibility matrix

method, described in the next section, to calculate their chromatic polynomials.

3.2 The compatibility matrix method

Recall that T'y(B) is the set of proper k-colourings of a graph B. Vi(B) is the
vector space of complex-valued functions defined on I'y(B). We say that a pair

(c, B) of members of T'y(B) is compatible with L if:

(v,w)e L = av)# B(w).

This means that if one copy of B is coloured according to «, a second copy of B
according to 3, and they are linked according to L, the resulting graph is properly
k-coloured by a and .
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The compatibility operator Ty, = T, (k) is defined by the matrix whose entries are

1 if (o, B) is compatible with L;
(TL)aﬁ =
0 otherwise.

It is convenient to use the same symbol 77, for the linear operator represented
by the matrix 77, with respect to the standard basis of Vi(B). The connection
between 77, and the chromatic polynomial P(L,(B);k) arises from the following
theorem [5].

Theorem 3.1 The number of k-colourings of L, (B) is equal to the trace of Tr,(k)™.

Proof: Let «, 3,7, ..., 7 be n colourings in I'y(B). Colour the first copy of B with
«, the second copy with 3 and so on up to the n'™® copy coloured with 7. The
resulting colouring of L, (B) is a proper k-colouring if and only if

(Tt)ap(Tr)py - - - (TL)ra = 1.

The number of proper k-colourings of L, (B) is equal to the sum of this product

over all possible combinations of «, 3,7, ..., 7 in ['y(B):
Y. Tas(Te)gy - (Ti)ra = D (T7)aa = tr(T7).
a,B,YseensT @

|

Observe, that for the moment £ is still a fixed integer. Only later we will be able
to show that the trace of T (k)" is indeed of the form of a polynomial in k£ and

hence we can replace k& with the complex variable z.

Since the trace of a matrix is equal to the sum of the eigenvalues multiplied by the

corresponding algebraic multiplicities it follows [5]:

Corollary 3.2 Suppose that \1(k), Aa(k), ..., As(k) are the eigenvalues of Ty, (k)
and
m1(k), mo(k),...,ms(k) are the corresponding algebraic multiplicities. Then the

number of proper k-colourings of L,(B) is equal to

S

S mi(k) AR,

=1
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3.3 Decomposition of the compatibility matrix

Recall from the previous chapter that we defined the action of the symmetric group

Sym,, on I'y(B) by
(w, @)(v) = w(a(v)) for every v € V

for all w € Sym,, and a € T'y. Clearly, for every w € Sym,, if («, ) is compatible
with L then so is (wa,wf3). Let A(w) be the matrix representation corresponding
to the CSym,-module Vi (B) with respect to the canonical basis. That is

1 if wh=a«a

(A(w))ap =
0 otherwise.

It can easily be checked that T (k) A(w) = A(w) Tr(k) for all w € Sym, . This
means that 77, (k) belongs to the commutant algebra C(A) of A(w). Moreover, this
holds for any linking set L. Let b = |V|. From Lemma 2.1 and Theorem 2.6 it
follows that T}, (k) is equivalent to a matrix of the form

P (1. & NY),

0<£<b
£

where I is the identity matrix of size n,x and NJ is a m x X m,» matrix with

entries depending on k.

Theorem 3.3 For any given base graph B and any linking set L the number of
k-colourings of L,(B) is equal to

where  n(k)=1 i £=0 and
¢
ne(k) =" II (k—hi(n)) with hi(m)=m+L—1 if £>0,

NT is a matriz of size Y ("?‘) n, with entries depending on k, and
RETI(B)

ny 1S the dimension of the Specht module 8™ given in Lemma 2.35.
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Proof: From the argument preceding this theorem and from Theorem 3.1 it follows
that for any given k£ € N the number of k-colourings of L, (B) is equal to

b

@ U (N =D Y k) te(ND)"
Ofrﬁ% =0 wke

where 1, (k) = n,x is the size of I, independent of B, given in Theorem 2.6. Also

from Theorem 2.6 follows the size of N7. a

Recall from Theorem 2.14 that Vi (B) is the direct sum of the submodules Wy (r, B)

where

Wi(r,B) = B &y Uy (7, T, R)
eTo

ReI(B) T T
|R|>¢ AR

for all partitions 7 - £ with 0 < £ < b.

It follows that each NT corresponds to the submodule Wy(m, B). The rows and
columns of NT correspond to the Uy(m, T, |R|).

Observe that the 7, (k) are independent of L and they are given by an explicit
formula. The matrix N] is dependent on L and our main task is to explain how

to calculate it.

Example 3.5: Let B be the complete graph K3 and L any linking set. In Ex-
ample 2.10 we expressed the module Vi (3) as a direct sum of seven submodules
Wi (m,3). Each of them is the direct sum of irreducible submodules. The number
and the dimension of these irreducible submodules for each of the Wi/(w, 3) has
been given in Table 2.1. It follows that the sizes of the matrices N] are as shown

in the following table:

m 0O | 1@ 0] 6 [y a0

sizeof N [1x1|3x3|3x3|3x3|1x1|2x2|1x1

For any n € N and every k € N the number of proper k-colourings of L, (Kj3) is
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equal to

tr(NO)™ + (k= 1) tr(N)

+ %k(/ﬂ —3) tr(N)" + %(k —1)(k = 2) tr(NI))n
+ Sh(k = 1)(k = 5) tr(N)"

+ 2k (k= 2)(k — 4) (NP

+ S (k= 1)(k = 2)(k 3) tr(N{ )y

Later (Theorem 3.13), we will show that the entries of the matrices N] are poly-
nomials in k over C. It follows that tr(NJ)™ is a polynomial in £ and hence

b

P(Ly(B);k) =Y > na(k) tr(N])" € Clk]

=0 =t¢
Replacing k& with the complex variable z we can make P(L,(B);z) € C[z] into a
polynomial with complex variable z such that that P(L,(B);z) is the number of
proper z-colourings for all z € N. Hence P(L,(B); z) is the chromatic polynomial

of L,(B). In order to find tr(/N])" it is convenient if we can find the eigenvalues
)\I(Lv 5 k)a )‘Z(L: 5 k)7 R )\S(L7 U k)

and the corresponding algebraic multiplicities my (L, ), mo(L, 7),...,ms(L, ) of

N7T. Then

S

tr(Nf)" = my(L,m) AN}(L, 7 k).

i=1
However, the eigenvalues of N7 might not always be polynomials (but the sum of

the their n'" powers is).

We refer to the n,(k) as the global multiplicities and to the m;(L,n) as the local
multiplicities. As mentioned earlier, the global multiplicities do not depend on L

whereas the local multiplicities do.
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3.4 Reduction to the complete base graph

Let b and d be two positive integers and let L be a subset of V, x V,;, where V}, is the
vertex set of K and Vj; the vertex set of K;. We consider the graph consisting of K,
and K, with extra edges according to L. As before, we say that a pair of colourings
(a, ) € Vi(b) X Vi(d) is compatible with L if (v, w) € L implies a(v) # S(w). We
define the compatibility operator (and use the same symbol) 77,(k), as before, as
the matrix whose entry in position («, ) is one if (o, ) is compatible with L and

zero otherwise.

Let the graph B and the linking set L be given. Suppose that P and R are
two colour-partitions of the vertex set of B consisting of b and d independent
sets respectively. That is R = {R;}?_; and P = {P}¢, where we assume that
min (R;) < min (R;) if ¢ < j, and min (P;) < min (#;) if ¢ < j. We define Lgp C
Vi x Vy by

(¢,7) € Lrp  implies that there exists (v,w) € L such that v € R; and w € P;.

Recall that (R) is the submodule of Vi (B) generated by the set {[a] | a = R}.
By Lemma 2.7 each of the (R) is isomorphic to Vi(b) if b = [R/.

Lemma 3.4 Let B be a base graph and L be a linking set. For any two colour-

partitions R and P of B with |R| = b and |P| = d the diagram

1L
(P) (R)
Vi(d) o Vi (b)

18 commutative.

Proof: Recall from Lemma 2.7 the CSym,-module isomorphism (R) — Vi(|R|)
given by [a] — [a]. Let [a] € (R) and [3] € (P).
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If (T1)ap = 1 then a(v) # f(w) for all (v,w) € L. From the definition of Lgp
follows that @ (i) # 3(j) for all (4,5) € Lrp. Hence (Torp)as = 1-

If (T1)ap = 0 then a(v) = B(w) for some (v,w) € L. Let (i,7) be such that
v € R; and w € P;. Then (i,j) € Lzp and it follows that @(i) = 3(j). Hence

(TLRP)EB = 0. O

As in the previous section 17, : Vi(d) — Vi(b) commutes with the action of Sym,,

and hence is equivalent to

T
@ (IW ® NLR’P)’
0<£<min(b,d)
fiiad 4

d

15) N, matrix.

where I, is the identity matrix of size n.» and NT__ is a (J)n. x (
Since Vi(B) is equal to the direct sum of the (R) it follows from Theorem 2.14

that:

Lemma 3.5 Let B be a base graph and L be a linking set. For any 0 < £ < |V|

and any m = £ the matriz N consists of submatrices equivalent to N7 __ with

R, P € II(B). Its rows correspond to the Uy(m,T,R) with T € T5, Mo and the
columns correspond to the Uy(m, T',P) with T' € TS, Mol O

From this lemma it follows that in order to obtain the entries of NJ we may find
the entries of each of the matrices N individually and then use them to obtain
the original matrix N7. Hence we are interested in finding N for the case where
we have two complete base graphs of not necessarily the same size and a linking
set L. We write ,(L)4 for the graph consisting of one copy of K, and one of K,

with extra edges according to L. Then g (Lzp)p| gives rise to T}, and to NI -

Each of the vertices in Kz corresponds to an independent set in R. That is

i € Vig| corresponds to R; with respect to the labelling of the independent sets
satisfying that min (R;) < min (R;) if i < j.

Before further investigating N7 for general ,(L), in the next section we give an

example.
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Example 3.6: Let B be the path on three vertices. Let
L={(1,1),(2,2),(,3)}

be the “identity” linking set. There are two colour-partitions R = {1]2|3} and
P = {1, 3|2} and thus there are four induced graphs

5(11,22,33)3,  3(11,22,31)s,  o(11,22,13)3 and o(11,22),

where we write for example (11, 22), rather than »({(1,1), (2,2)})2. These four
graphs are shown in Figure 3.4 on Page 55. The edges of the base graphs are drawn

as thick lines, the linking edges are drawn as thin lines.

For any £ =0,1,2,3 and any 7 I~ £ the matrix N] consists of four blocks:

o (M | VEL)
L - -
\M, | N,

The sizes of these blocks and of N7 have been obtained in Example 2.11, and are

as shown in the following table:

m 0O | W] @ | 0] @ &y 0
sizeof N [1X1]3x3[3x3|3x3|1x1|2x2]1x1
sizeof Nj_ | 1x1|3x2[3%x2/3x2|1x0[{2x0[1x0

sizeof N [1x1]2x3[2x3|2x3|0x1]0x2|0x1

size of NT
PP

I1x1|2%x212%x2[12%x2|0x0]0x0|0x0

sizeof NT | 2x2|5x5|5x5|Hx5|1x1]2x2|1x1

Observe that the “structure” of N7, that is the sizes of the NI, > is independent

of the linking set L.

3.5 The Sy operators

Let b and d be two positive integers, and as before let V}, be the vertex set of Kj

and V, the vertex set of Ky. A matching M is a triple (My, My, p) with M; C 'V,
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1 1 1 1
M M
2 2 2 2

3(11,22,33), 3(11,22,31),
1 1 1 1
2 2 2 2
2(11,22,13), 2(11,22),

Figure 3.4: The four induced graphs

and M, C V; and p: My — M, being a bijection. Equivalently, the matching M
is the subset of V, x V; consisting of the pairs (v, u(v)) for all v € M.

Let L C V, x Vy be a linking set. Denote by M (b,d, L) the set of matchings
M that are subsets of L. For a given M € M(b,d, L) we define the operator
S (k) : Vi(d) — Vi(b) by the matrix (with respect to the canonical basis)

1 if o, = B,
(Saa(k))as = "

0 otherwise

where ay, is the restriction of « to M;. Alternatively we can write Syp(k) a linear

operator:

Sutbigl= 3 1l

O, =Bu

The following theorem is a generalization of the result proved in [9].

Theorem 3.6 Let the integers b and d, and the linking set L be given. Then

Tk = 3 ()M Sy(k).

MeM(b,d,L)
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Proof: For any a € I'y(b) and § € I'y(d) we shall show that

Tas = 3o (D™ (Sar)as.

MeM(b,d,L)
Let M, be the subset of L such that a(v) = B(w) for every (v, w) € M,g. Since
« and (3 are injections it follows that M,z € M(b,d, L). Then, (Sp)ap = 1 if and
only if M C M,g.
Y DM (Sy)as= D (=DM
MEM(byd,L) MCM,p

If (o, ) is compatible with L then M,z is the empty matching and the sum is
equal to one. If (o, ) is not compatible with L then M,z is not empty and

S ()M =14 (-1))Mesl = 0.

|

It is easily verified that each of the Sy/(k) commutes with the action of Sym, on

the colourings. By a similar argument as in Section 3.3 it follows that:

Corollary 3.7 Let the integers b and d, and the linking set L be given. Then there
exist matrices Uf; each of size (2) Ny X (‘z) n, such that

Nr= > (=)™ up.
MeM(b,d,L)

The matrix (I, ® U%;) represents the induced linear operator
Su (k) : We(m,d) — Wy(m, b)

where I; is the identity matrix of size n,x. The columns of UjJ; corresponding
to the irreducible submodules Uy (7, T, d) with T' € 7;0,0,)%,(1 and rows corresponding
to the irreducible submodules Uy (m, S, b) with S € 7;T0k7>\k,b' Later it will be shown
that UY, is the all-zero matrix if £ > |M/|. The next aim is to find the entries of

Uz,
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3.6 Change of basis

Recall from Section 2.4.2 the following: Let X C V, and let ¢ : X — K be an
injection. We define the function [X | g] € Vi(b) by

1 ifax=gy
[X | gl(e) =
0 otherwise.

for every a € T'x(b) where ax is the restriction of a to X. Equivalently

(X g =) [0

dx=g

For every matching M = (M7, My, i) we can write

Su(B)d= Y [6]=[M | au).

Oy =ap

Lemma 3.8 Let [X | g] € Vi(d) and M € M(b,d, L) be given. Then
Sub)X [g]= ¢ ) (-)YIExMEL N Y | g4
pmH(XNM3)CY CM;y #EGMm(Y,X)

where G (Y, X) is the set of injections ¢ : Y — X such that ¢p~" is the identity

map on X N Ms, and c is a non-zero constant.

Proof: From definitions follows on the left hand side that

S =SulXgl=Su Y ll=3Y 3 (6= Z[m(z 1).

ax=g ax=g9 Bum=op BETk(b) azxﬂg
=B,

Denote by ), the map
Y. e(=pMEEmEl N Y g4
=1 (XNM)CY CM; $EG (Y,X)

Let v € I'y(b). We are going to compare Y, (y) to >_,(7). We may assume that
yp~t = g on X N My, because otherwise both sides are zero. Indeed, for 3, it
follows immediately from o = g and @ = yu~' on X N M,. For )~ by definition
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[Y | g6](7) =1 only if g¢ = v on Y. Since p (X N M,) CY C M, it follows from
the definition of G/(Y, X) that gou ' = g =yu~' on X N M.

If yu=t(v) ¢ g(X) for all v € My \ (X N M) then there exists a a such that
ap = vy, and ax = g. It follows that >, () is non-zero. On the right hand
side, since Y C M; and g¢(Y) C g¢(X) it follows that [Y | gé](y) # 0 only if
Y = p (X N Ms). And thus >~ ,(7) =c.

If yu=(v) € g(X) for some v € My \ (X N M,). Then, since ax = g it follows that
there exists z € X such that a(z) = y(v). On the other hand 7, = au implies
that o(v) = a(z). Since v # z it follows that ), () = 0. For the right hand side
let

Q={ve M\ (XM) |37 (v) € 9(X) .

Then [Y | g8](7) # 0 only if p=(X N M) CY C p~'((X N M) UQ) and the
injection ¢ is such that g¢ = ~y. Since we assumed that g = yu=! on X N M, it
follows that such a ¢ exists in G/(Y, X). And thus

> (= > ¢ ()XY |y ](y)
R p= 1 (XNM3)CY Cu—1 (XNM2)UQ
= Z ¢ (=1)lYI=xnMse|

= HXNM2)CY Cu=H(XNM2)UQ

= ¢ XQ:(—UT(K;?D =c(1-1)%.

r=0

Lemma 3.9 Let Y C V, and X CV,. Let g : X — K be an injection. Then the
coefficient of [Y | g@] in Sy (k)[X | g] with (My, Ms, u) € M(b,d, L) and injection

¢ :Y — X is non-zero if and only if

(i) p (X NMy) CY C M, and

(ii) ou~t is the identity map on X N M.
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Let  fo(d,k) = (k— 8)a—s = (k—s)(k—s—1)...(k—d+1) be the falling
factorial. If the conditions (i) and (ii) are satisfied the coefficient is

(_1)‘Y‘_|X0Mz| fIXUM2|(d> k)

Proof: The first part of the lemma follows directly from Lemma 3.8. More-
over it follows that when the conditions (i) and (ii) are satisfied the coefficient is
c (—1)YI=IX0M2 = From the proof of Lemma 3.8 it follows that c is equal to the
number of « € T'y(d) satisfying ap = ¢’ and ax = g. That is, « is fixed on X
and on My, and there are k — | X U My| colours left to be assigned to d — | X U M|

vertices to complete . O

3.7 Action of Sy (k) on the irreducible submod-
ules of Vy(b)

Let 0 < ¢ < b and 7  ¢. For the rest of this section let ¢ be a fixed 7*-
tableau. Recall from Section 2.4.2 the following. For every tableau T € Trx y,
we denote by T : [1] — V, U {0} the restriction of 7" to [x]. The image of T
is denoted by Xp. If T is semistandard of type Axp then Xy C V, and T is a
standard tableau. Denote by gr : X7 — K the restriction of ar to Xp. That is,
gr(z) = t(i,j) where T'(i,j) = x for all x € Xr. Similarly, define ¢; to be the

restriction of ¢ to [r].

In Section 2.4.1 it has been shown that for every semistandard tableau 7" € 7;0k e
the set
{ETM | v € Sym,, such that vt is a standard Wk-tableau}

where

Ery =k Z [as] = ke Z (X1 | wgr]

Se{T} WER,
is the standard basis of the submodule Uy (7, T, b).

Since the Sy, (k) commute with the action of Sym,, it follows that we only have to

consider the effect of Sy/(k) on Er.



3.7. AcTION OF Sj/(k) ON THE IRREDUCIBLE SUBMODULES OF Vj(b) 60

Lemma 3.10 Let M € M(b,d,L) and T € Trx x, ,- Then Sy(k) Ery is a linear

combination of

ke SV | word)

wERtﬂ-

where p~ (XN Mo) CY C My with |Y| =10 and ¢ € G); "

Proof: From Lemma 3.8 and since Sy, commutes with Sym, it follows that

Su(k) (ke Y (X | worl)

wER,

= Z ¢ (—1)/YI-IXNMz| Z Kt Z Y | wgrd).

pmH(XTNM2)CY C M,y $eGum (Y, XT) WwER:y,

Choose any 1 (Xr N M) CY C M; with |[Y]| < £ and any ¢ € GﬁXT. We can

write

Ky Z Y | wgre] = Z Z sign(6) [Y | dwgrd]

WER, WERy, 0eCy

Choose any w € R;_. Let g : Y — K be such that g = wgr¢. Partition C} into parts
Bi, Bs, ..., B, according to the rule that § and §’ are in the same part if and only
if [Y |dg] =1[Y |dg]. Since |Y| < £ it follows that each of the parts contains more
than one element. For every j = 1,2,...,m denote by D; the set of colours that
are in the j*! column of ¢ but not in g(Y). Let H = Sym, X Symp, X...Xx Symp,_ .
Then for every B it holds that B = d H for some § € B. That is, B is a left coset
of H. Thus

Z sign(d) [V |dg] = sign(9) Z sign(r) [V | 67g]

0eB T€H
— sign(d) [V |dg] D sign(7)
TeEH

1

= sign(6) [V |dg] D (1-1)".

J=1

This holds for all B and hence follows the result. O
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Let us recall Section 2.6 and study its implications. Let X = {z1,z5,...,2¢} be a

subset of Vj; such that z; < zy < ... < zp. We let Sym, act on X by
(v, %)) =z, forallz; € X and every v € Sym,.
We write yz; instead of (7, ;). This induces an action of Sym, on the set
{T € Tor sy, | Tlm] = X}
That is, for every v € Sym,

(v, T)(p,q) = v where z; =T(p,q) forall (p,q) € [n].

We write vT instead of (v,7). We can assume that the 7* tableau ¢ is such that
tir] = {1,2,...,£}. Let Y ={y1,y2,...,ye} be a subset of V, with y; <o < ... <
Ye. Choose Tx € Trx 5, , and Ty € Trx , , such that Tx[r] = X and Ty[r] =Y,
and

91y (@) = gry () =1 forall =1,2,... ¢

For any matching M = (M;, My, u) € M(b,d, L) with [M| < ¢ denote by Fy/X the

subset of Sym, satisfying
Fyf ={peSymy | (yi,z;) € (Y x X)N M =i =p(j)}
There is a one to one relationship between the elements of Fy,X and G}/* such that
gryp ' = grxd  onY.
Lemma 3.11 Let T € T »,, with Tn] = X. Then

gyt = gy for all v € Sym,

Proof: By definition of g, for every z; € X:

gyr(zi) = t(p, q) if ~T(p,q) = ;.

It follows T'(p, q) = v~ 'z; and thus gry~'(z;) = t(p, q)- 0
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It follows that

Kt Z [X | ngX¢] = Kt Z [Y ‘ ngyp—l] = EPTY,t

wERt,r wERtW
and for every v € Sym, it follows that
Kt Z (X | wgyrx 8] = Epyry -
WERy
Assume that yTy is semistandard then the restriction of v7y to [r] is a standard

7 tableau. From Corollary 2.16 it follows that

Epry= 3. (F'())  Bory.

oy
oeSyml

o1y is semistandard

where R™ is Young’s natural representation corresponding to S™. Observe that the
rows and columns of R™ correspond to the standard 7 tableaux, but we label them
(for brevity) by the elements v € Sym, such that the restriction of 47y to [x] is a

standard 7 tableau.

From Lemma 3.10 it follows that

SwByrey = Cu(X) > > ke Y Y | wgyr dl,
p—l(XNMy)CYCM; ¢egﬁx wWERy,

Y |=¢

where
Cur(X) = (=1)XM0f o (b, K).

From the argument above it follows that

SuEyryy = Cu(X) Z z Kt Z Y | wgpyry ]

p=H(XNMy)CY CMy pEFJ\};’X wERt,

= Cu(X) Z Z Epyry -

-1 Y, X
w1 (XNMy)CY My pEFY;
|V|=¢ M

Corollary 3.12 Let M € M(b,d,L), T € Trx 5, , and T' € Trx », ,-
If pw'(XrNMy))C X CM, and ¢T. =T, for some ¢ € Gf/IT"XT, then
Sy (k) : U (m, T, b) — Uy (m,T", b) is the isomorphism given by

Er+ Cu(X7) Eqg, where  Cp(X) = (_1)£7|X0M2|f|XUM2I(d’ k).
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Otherwise Syr(k) : Uy (1, T, b) — Uy (m, T, b) is the zero-map. O

This result is no surprise since Uy (m, T, d) and Uy(m, T, b) are irreducible and from
Schur’s Lemma follows that Sy (k) : Uy (m,T,b) — U (m,T",b) is either the zero-

map or a multiplication by a scalar.

Since YTy is semistandard if and only if v7Tx is semistandard, it follows if v7Tx is

semistandard that:

SuEyre s = Cu(X) Z Z Z <R7r (,0)) Eory

oy
p=1(XNMy)CYC My pepg2x oceSym,
Y|=¢ oTyis semistandard

It follows that:

Theorem 3.13 Let 0 < ¢ < min(b,d), 7 = £ and M € M(b,d,L). Then the
matriz UY, consists of square submatrices (UT)Y* where X C Vy and Y C 'V, with
\X|=|Y|=¢£. Each of the (Uj;)¥™ is of the form
Cu(X) X R(p) ifp ' (XNM)CY CM
(7)™ = periy

O otherwise.

where
Cu(X) = (=1)7XMIf i (d, k)

and R™(p) is Young’s natural representation, that is the n, X n, matriz represen-

tation corresponding to S™ and O 1is the all-zero matriz of size ny X n,. a
Observe that FYX depends on £ but not on 7 - £.

Theorem 3.14 Let B be any base graph with vertex set V and L any linking set.

Then
\4
P(L,(B),k)=>_ > (k) tr(N])",

=0 e
is the chromatic polynomial of L,(B) in k where n,(k) =1 if £=0,

¢
N . .
(k) = i 11 (k—hi(m))  with hi(m)=m+L—1 if £>0,
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NT s a square-matriz of size - %:(B)(“;l) ng with polynomials in k over C as entries,
€
and n, 1s the dimension of the Specht module S™.

Proof: From Theorem 3.13 and Lemma 3.5 it follows that the entries of the
matrices NJ in Theorem 3.3 are polynomials in £ over C. It follows that tr(N])"
is a polynomial in k£ and thus P(L,(B);k) is a polynomial in k. Extending k& to
a complex variable it follows that P(L,(B);k) is a polynomial such that its value
at k£ € N is equal to the number of proper k-colourings. Hence P(L,(B);k) is the

chromatic polynomial of L, (B). O

Before concluding this chapter with a summary we give some examples.

3.8 Examples

Example 3.7: Let b = d = 3. In this example we shall determine all the matrices
Uj; for all levels £ = 0,1,2,3 and all 7 - £, and all possible matchings M C V3 x V5.
This work is also published in [9] Section 6.

There are 1, 9, 18, 6 matchings M with |M| = 0,1,2,3 respectively. We use
Theorem 3.13 to evaluate the Uj;.

At level £ = 0 and w = () the matrices U ]9[ are of size 1 x 1 and for every matching

M C V3 x V5 it follows that UJ(\BI = fim|(3,k). That is U](J[ is
k(k_l)(k_Q)a (k_l)(k_Q)a (k_Q)a 1
for [M| = 0,1, 2,3 respectively.

At level £ = 1 and w = (1) all the matrices U](Vl[) are of size 3 x 3. If M is the
empty matching then U ](\,1[) is the all-zero matrix. Assume that M is not the empty
matching. Let X = {2} and Y = {y} be two subsets of {1,2,3} of size one. The
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set FyX = Sym; and

/

(k= |M|)s—m if y e My and (y,z) € M;

U)"™ ={ =(k—|M| =1)y p ifye M and z ¢ My;

0 ifyd¢ M, or z € M, and (y,z) ¢ M.
\
For example
((k—1)(k—2) —(k—2) —(k—2)) (k-2 o 1)
\ 0 0 0 ) \ 0 0 0
(k=2 (k=1)(k-2) —(k—2)) 10 k—2)
Ul(é) = 0 0 0 ) U1(31,,)22 =|-1 k-2 0 ,
\ 0 0 0 ) \0 0 0 )
1 00 0 01 010
U1(B22,33 =101 0], U1(§,)22,31 =101 0], U1%323,31 =10 01
0 0 1 1 00 1 00

At level £ = 2 there are two partitions m = (2) and w = (12). In both cases the
matrices UJ; are of size 3 x 3. If |[M| < 1 then U}, is the all-zero matrix. Assume
that |M| > 2. Let X = {z1,29} and Y = {y1, y2} be two subsets of {1, 2,3} of size
two with z; < xo and y; < yo. Then g, (v1) = gry (21) and g1y, (y2) = gy (x2) Tt
follows that the subset FyX of Sym, is of the form

FYX _ {e} if (y1,21) € M or (y,x0) € M
¥X =

{(12)} if (y1,29) € M or (yo,x1) € M.

For w# = (2) since R®(p) = 1 for all p € Sym, it follows that the submatrix
U)X is of the form
Un

/

(k= |M|)s—jpr ifY C M, and X C M, and p(Y) = X

U =1 1 if Y C M, and X ¢ M,

0 if Y & My or X C My and u(Y) # X.
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For example

k—2 —1 —1) 1 k-2 -1
U= 0 o0 of., U2:=l0 o o],
0 0 o) 0 0 0
10 0\ 100
Ug?22,33: 01 01, U1(§,)21,33: 0 01
0 0 1) 010

For m = (12) since R'”)(¢) = 1 and R(")(12) = —1 it follows that the submatrix
(UJ(Vl[z))YX is of the form

(

(k — |M|)3—ja sign(py/*) Y C M; and X C M, and p(Y) =X
UG =10 sign(o¥¥) itY C M, and X ¢ M,
0 if Y & My or X C Myand pu(Y)# X
\

where Fy* = {p};*}. Then for example

k-2 —1 1) 1 k-2 -1
U= 0 o of, Uih=]0 o o],
0 0 0/ 0 0 0
1 0 0\ -1 0 0
1(%,22)2,33 =101 0], 1(;,22)1,33 =10 01
0 0 1) 0 1 0

At level £ = 3 there are three partitions # = (3), # = (2,1) and # = (13).
The matrix Uj, consists of a single submatrix with X =Y = {1,2,3}. Then, U},
is the all zero matrix unless |M| = 3. In this case y € Sym; and Fy* = {u™'}.

— : (3) _ — (13} %) _ -1
For 7 = (3) it follows that U, = 1. For 7 = (1?) it follows that U, ’ = sign(p™").
For m = (2, 1) it follows that U](;’l) = R (u~') where the R (1) are given in
Example 2.7.

Example 3.8: Let b=d =3 and L = {(1,1),(2,2),(3,3)} be the identity linking
set. We obtain the graphs B, (3) described in Example 3.1. From Corollary 3.7 it
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follows that:
Np =Ug — (Ufy + Uz, + Usz) + Ufy 95 + Ul 53 + Uzp 53 — Uf1 92,33
where U7, is the all-zero matrix if £ > |M|. Using Example 3.7 we obtain the UJ;:
At level £ = 0 the 1 x 1 matrix
NV =k(k—1)(k—2)—3(k—1)(k—2)+3(k—-2)—1
has the eigenvalue k* — 6k? + 14k — 13.

At level £ = 1 the 3 x 3 matrix

k2 4+5k—7 k—3 k—3
NI = k—3 K245k —T k—3
k—3 k—3 K245k —7

has eigenvalues —k? + Tk — 13 and —k? + 4k — 4 (twice).

At level £ = 2 the 3 x 3 matrices

NY=| -1 k-3 -1 and N=| 1 k-3 1

have respective eigenvalues k — 5 and k — 2 (twice), and k£ — 1 and k£ — 4 (twice).

At level £ = 3 we have Fy,X = {¢} and hence for each of the three partitions
7 = (3), 7 = (2,1) and 7 = (13) the matrix N7 has the eigenvalue —1 with

respective multiplicity 1, 2 and 1. From Theorem 3.14 follows that the chromatic
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polynomial of By(3) is
P(B,(3),k) = (k* — 6k + 14k — 13)"
+ (k=1) ((—Kk* + 7k — 13)" + 2(—k* + 4k — 4)")
%k(k 3) ((k — 5)" + 2(k —2)")
o= 1)(k—2) (k= 1" +2(k — 4)")
+ Sk(k—1)(k —5) (-1)"
+ 2h(k = 2)(k - ) 2(-1)"
1
6

o (k—=1)(k—2)(k - 3) (=1)™

Compare this to the “structure” of P(B,(3), k) obtained in Example 3.5. In Fig-
ure 3.5 the roots of Bs(3) are plotted.

-1

-2

Figure 3.5: The roots of Bsy(3)

Example 3.9: Let b = d = 3 and H = {12,13,21, 23,31, 32} be the linking set.
The resulting graph H,(3) is a cyclic octahedron obtained in Example 3.2. From
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Corollary 3.7 follows that:

NZ‘TI = Ug - (Ufz + U{rs + Ugl + U§3 + U:z,rl + U?E)
+(Uf2,21 + U?2,23 + Uf3,21 + U17r3,31 + U17r2,31 + U{r3,32 + U§3,32 + U§3,31 + U§3,31)

—(Ulz23,31 + U3 21,32)
At level £ = 0 the 1 x 1 matrix
NY=k(k—1)(k—2)—6(k—1)(k—2)+9(k—2) -2,
has the eigenvalue k% — 9k2 + 29k — 32.

At level £ = 1 the 3 x 3 matrix

2k — 6 —k2+7k—-13 —k>+7k—-13
NP = | g2 476 -13 2% — 6 k2 4Tk —13
K24 Th—13 —K2+4 Tk —13 2% — 6

has eigenvalues —2(k — 4)? and k% — 5k + 7 (twice).

At level £ = 2 the 3 x 3 matrices

k—4 k-5 k—5 k—4 —(k-3) k-3
NP = k-5 k=4 k—5| and Ny = | —(k—=3) k-4 —(k—3)
k—5 k-5 k—4 k-3 —(k—3) k—4

have respective eigenvalues 3k — 14 and 1 (twice), and k — 2 and —2k — 7 (twice).
At level £ = 3, the matrices N] = —(R"(123) + R"(132)) with 7 = (3), 7 = (2, 1)
and m = (13) are of size 1 x 1, 2 x 2 and 1 x 1 respectively. For 7 = (3) and 7 = (13)

the eigenvalue is —2. For m = (2, 1) the eigenvalue is 1 (twice).

The global multiplicities do not depend on the linking set so they are the same as

in Example 3.8. From Theorem 3.14 it follows that the chromatic polynomial of
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H,(3) is
P(H,(3);k) = (k* — 9k* + 29k — 32)"
+(k—1) ((—Q(k — 4)2)" 4 2k — 5k + 7)")
+ %k(k _3) (3k 14" 4 2)
+ %(k 1)k —2) ((k — )4 9(—2% + 7)n)
+2h(k = 1)(k = 5)(=2)" + = (k = 1)(k = 2)(k — 3)(~2)"
+ %k(k —9)(k — 4)(2).

Example 3.10: Let b = 3 and d = 2. In this example we shall determine all
the matrices U], for all levels £ = 0,1,2 and all 7 - ¢, and all possible matchings

M C V3 x V.

There are 1, 6, 6 matchings M with [M| = 0, 1, 2 respectively. We use Theorem 3.13

to evaluate the UJ,. At level £ = 0 and w = () the matrices UJ(J[ are
k(k—1), (k—-1), 1 for [M|=0,1,2 respectively.

At level £ = 1 and w = (1) the matrices U,(V‘l,) are of size 3 X 2. Suppose that
M is not the empty matching. Let {z} C {1,2} and {y} C {1,2,3}. The set

FyX = Sym, and
)

(k — |M|)2_‘M| lfy € M1 and (y,iE) € M,
Un)*=q -1 if y € My and z ¢ Mp;

0 if y¢ My or z € My and (y,z) ¢ M.

Then for example

E—1 —1 0 0 0 0
vh=1 o o, U9=|-1 k=1, U= 0o o],
0 0 0 0 E—1 —1
10 00
U1(%,)22 =10 1}, U2%,)31 =10 171,
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At level £ = 2 there are two partitions # = (2) and w# = (12). In both cases
the matrices U}, are of size 3 x 1. Suppose that |M| > 2. Let X = {1,2} and
Y = {y1, 5} C {1,2,3} with y; < yo. The subset Fy* of Sym, is of the form

X _ {e} if (y1,1) € M or (y2,2) € M
YX =

{(12)} if (y1,2) € M or (y,1) € M.

Since R®(p) = 1 and R")(p) = sign(p) for all p € Sym, it follows that the

submatrix (U)X is of the form

U )YX B R“(pLX) if Y C M,
o —
0 otherwise

where pl/X is the element in F,X. Then for example

1 0 1 0

2 2
U1($?22 =101, U2(2331 =101, U1(i,2)2 =101, UZ(;,?,)I =10
0 1 0 -1

Example 3.11: Let b = 2 and d = 3. In this example we shall determine all
the matrices Uj, for all levels £ = 0,1,2 and all 7 - ¢, and all possible matchings
M C V4 x V3. Although this case is very similar to the previous example we shall
repeat all the calculations to avoid difficulties when referring to the results in later

examples.

Again, there are 1, 6, 6 matchings M with |M| = 0,1,2 respectively. We use
Theorem 3.13 to evaluate the UJ,. At level £ = 0 and w = () the matrices U ]9[ are

k(k—-1)(k—-2), (k—1)(k—2), k-2 for [M| =0,1,2 respectively.
At level £ = 1 and @ = (1) the matrices U](\}) are of size 2 x 3. Suppose that

M is not the empty matching. Let {z} C {1,2,3} and {y} C {1,2}. The set

FY* =Sym, and
(

(k= |M|)s—m| if y € My and (y,z) € M;

U)"™ =9 —(k—=|M|=1)y_ppy ifye M andz ¢ My;

0 if y¢ My or z € My and (y,z) ¢ M.
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Then for example

U _ k=Dk=-2) (k-2 —(k-2)

—(k-2) —=(k-2) (k-1(k-2)
0 0 0

) _ 0 0 0
T\t k-Dk-2) -(k-2))

and  Upyjy =

1
U2(2,)31:
-1 k-2 0 0 k—2 —1

At level £ = 2 there are two partitions # = (2) and w = (12). In both cases
the matrices U7, are of size 1 x 3. Suppose that |M| > 2. Let Y = {1,2} and
X = {x1,22} C {1,2,3} with z; < 5. The subset F}* of Sym, is of the form

X _ {e} if (1,z1) € M or (2,29) € M
YX =

{(12)} if (1,29) € M or (2,z,) € M.

Since R®(p) = 1 and R®)(p) = sign(p) for all p € Sym, it follows that the

submatrix (U?)YX is of the form

Ur)YF = (k—2)R™(pY) if X C M,
WYX =
—R™(p¥?) otherwise

where pY/* is the element in F},*. Then for example
Ul(i)22 = (k -2 -1 —1) ) UQ(S’)?,I = (_1 -1 k- 2) ,

U= (k-2 -1 1), Uhh=(-11 --2).
Example 3.12: Let B be the path on three vertices and let

L={(1,1),(2,2),(3,3)}
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be the identity linking set. R = {1|2|3} and P = {13|2} are the two colour-
partitions of the vertex set of B. As we saw in Example 3.6 the matrix 77, and

every matrix NJ consist of four sub matrices

(Vi | M)
-
\M,. | M,/

one for each induced graph
5(11,22,33)s,  3(11,22,31)y,  o(11,22,13); and o(11,22)s.

Hence, for every N7 we have to consider four cases:

(I) The case (R,R) corresponds to b = d = 3 and Lrr = {(1,1),(2,2),(3,3)}.
This case has been dealt with in Examples 3.7 and 3.8, and all the matrices N7

have been obtained.

(IT) The case (R,P) corresponds to b =3,d =2 and Lrp= {(1,1),(3,1),(2,2)}.
From Corollary 3.7 follows that: N7 =Ug — (U} + U3y + Ug,) + Uf, 55 + Us) 5.
The Uy, have been obtained in Example 3.10.

(III) The case (P, R) corresponds to b =2,d = 3 and Lp = {(1,1), (1, 3),(2,2)}.
From Corollary 3.7 follows that: N7 = Uz — (U} + Uy + Ug,) + U, 55 + Ul 5.
The U}, have been obtained in Example 3.11.

(IV) The case (P,P) corresponds to b = 2 and d = 2 with L = {(1,1),(2,2)}.
This case is very similar to the one described in Example 3.7 and it can be easily

checked that:

—(k —2 1
N —gosegs N0 o [0 |
1 —(k—2)
2 12
NP =1, and N{)=1.

It follows that:

k® —6k* +14k — 13 k?* —4k+5

NO —
L
(k—2)(k* — 4k +5) k2 —3k+3
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with characteristic equation
N+ (—k® 4+ 5k* — 11k + 10)\ + k* — 7k + 19k* — 24k + 11 = 0.
[~k 45k—7 k-3 k-3  —k+2 1
k—3 —k? +5k—17 k—3 1 —k+3
N = k-3 k—3  —k2+45k—7 —k+2 1
—k*+5k—7 2k — 4 —k*+5k—7 —k+2 1
\ k-3 —k2+5k—6 k-3 1 —k+2)
with characteristic equation
(T+A) A +4 =4k + E*) (X + a2 (k)N + a1 (k)X + ao(k)) =0
where  ao(k) = 2k* — 9k + 12, a1 (k) = k* — 10k3 + 36k* — 56k + 31 and
ao(k) = —k5 + 10k* — 38k + 69k? — 62k + 22.
k—3 -1 -1 1 k—3 -1 1 1
1 k-3 -1 2 1 k-3 -1 0
NP = and N{') =
-1 -1 k-3 1 1 -1 k-3 -1
k-3 -2 k-3 1 k-3 0 —-k+3 1

both have the same characteristic equation
I+MNk—=1=-XN(k—-2=-XN)(k—4—-)X)=0.

At level £ = 3 the matrix N7 is equal to Nf__ for 7 = (3), 7 = (2,1) and 7 = (1°)

respectively.

In principale, from here it easy to obtain the chromatic polynomial of L, (B), but
only that some of the eigenvalues of NV 9 are not polynomials in k. Although, in
this case an explicit expression for this eigenvalues exists it is more convenient to
use the so called “Newton’s formula”, described in Appendix A, to obtain the sum

of their n'® powers recursively in n.
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Then from Theorem 3.14 it follows that the chromatic polynomial of L, (B) can be

written as
P(Ln(B);z) = Au(2)
+ (z-1) (Bn(z) (=22 44z —4) (—1)")
+ (22=3z+1) ((—1)" F(z—1)"+(z—-2)"+ (2 — 4)")
+ (2* =622+ 82— 1)(=1)"
where A, (z) is the sum of the n'™™ power of the roots of
N4 (=22 +522 =1z +10)A + 2" = 72° +192> =242+ 11 =0
and B,(z) is the sum of the n'™ power of the roots of
A+ ay(2)A? 4+ a1(2)A — ag(z) = 0
where
az(z) =(22° — 92+ 12),

a1(z) = (2* —102° 4+ 362 — 562 + 31)  and

ag(z) = 2° +102* — 382° + 692% — 622 + 22

In Figure 3.6 the roots of L3y(B) are plotted (the complex variable has been shifted
to z = ¢+ 2). Clearly visible are two roots (and their conjugates) on the left of the
line ¢ = —2 (dotted). It follows that L,(B) for certain n has roots with negative

real part.

3.9 Summary

Let b and d be integers, and let L C V}, x V; be a linking set. The compatibility
matrix 77, corresponding to the graph ,(L)4 is equivalent to

P @enNy,

0<£< min(b,d)
e
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Figure 3.6: The roots of L3y(B) where B is the path of length three and L is the
identity linking set

where I is the identity matrix of size 1 if £ = 0 and

3

l
= 1] (k= hi(r))  with  hi(r) =m+£—i if £>0.
Toi=1

[

From Corollary 3.7 it follows that N can be written as an alternating sum of

matrices

NE= ) ()M UR
MeM(b,d,L)

If [M| < ¢ then U}, is the all zero matrix. For |[M| > £ each matrix consists of
() (9) sub matrices (U,)¥* one for each pair (Y, X) where Y is a subset of Vj,
X is a subset of V; and both are of size £. Each of the (UJ,)YX is of the form
(Theorem 3.13)

Cu(X) > R(p) ifp'(XNM)CYCM,

U3 = reF

0] otherwise.
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where Cu(X) = (—1)Z_|XQM2|f|XUM2|(da k),
FYX = {p € Symy | (yiz)) € (Y x X)N M = i = p(j)}

assuming that ; < xo < ... < xpand y; < Yo < ... < yg, and R™(p) is Young’s
natural representation corresponding to 8™ and O is the all zero matrix of size

Nx X Ny

Now, let B be any base graph with vertex set V' and L any linking set. The
corresponding compatibility matrix 77, is equivalent to
P LeN,
0<£<min(b,d)

il

where, as before, I is the identity matrix of size 1 if / = 0 and

3

[

0
= 1] k=hi(m))  with  hi(m) =mi+£—i if  £>0.
Toi=1

From Lemma 3.5 it follows that each of the matrices NT consists of I1(B)? subma-
trices N7 one for each pair (R,P) € II(B) x II(B). The matrix N7 is of size
('f')mr X (‘f')mr and is equivalent to the matrix N7, described above, corresponding

to the graph z|(Lzp)p|, where Lgp C Vj x Vj is defined by
(i,7) € Lrp  implies that there exists (v,w) € L such that v € R; and w € P;.
If [R| < ¢ then (™) = 0, and similarly (%) =0 if [P| < .

If
AI(Laﬂ-; k)a /\Q(L: N k)’ T /\S(L’ﬂ-; k)

are the eigenvalues of N and
m1(L, ), mo(L,7),...,ms(L,m)

the corresponding local multiplicities in N7 it follows that

tr(N7)" = Z mi(L,m) A}MNL,m; k)

=1
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And (Theorem 3.14) the chromatic polynomial of L,(B) in £k is

,
P(Ln(B),m:le > malk) (N,
=0 £
where 7,(k) =1 if £=0 and
0
1 (k) = 72—, I1 (k= him) with hi(m)=m+t—i if £>0.

=1

78



Chapter 4

Explicit calculations of chromatic

polynomials

In this chapter the theory developed in the previous chapters will be used to cal-
culate the chromatic polynomials for various families of graphs. In particular we
calculate the chromatic polynomials for the generalized dodecahedra described in

Example 3.4, and four other families of cubic graphs.
In the following we assume that:
e We order the subsets X and X’ of a vertex set V' C N according to the

dictionary ordering, that is according to their smallest non-common elements.

For example we order the four subsets of size three of V} as follows:
{1, 2,3} {1,2,4} {1, 3,4} {2,3,4}.
This fixes the order of the rows and columns in the submatrices N and Uj;.

e We also use the dictionary odering for the independent sets of a colour-

partition.

e In the following figures, the edges of the base graphs are represented by thick

lines and the linking edges are represented by thin lines.

79
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4.1 A catalogue of Uj,

Recall, for given integers b and d, and any linking set L C V}, x V; the graph
»(L)q4 consists of K}, and K, with extra edges according to L. The corresponding

compatibility matrix 77, is equivalent to

P UenNy,
0< < min(b,d)
£

where I is the identity matrix of size 1 if £ = 0 and

0
I (k= hi(z)) with  hi(m)=m+€—i if £>0.

=1

nﬂ'
0
From Corollary 3.7 it follows that N can be written as an alternating sum of

matrices

Np= Y )M

MeM(b,d,L)
If [M| < ¢ then U}, is the all zero matrix. For |[M| > ¢ each matrix consists of
(5) (%) sub matrices (Uf;)*™ one for each pair (Y, X) where Y is a subset of Vj,
X is a subset of V; and both are of size . Each of the (UF,)¥¥ is of the form
(Theorem 3.13)
Cu(X) S R7(p) ifpu (XNM)CYCM,
(7)™ = e

O otherwise.

where CM(X) = (—1)£7|XQM2|f|XuM2|(d, k),

FYX ={peSym,| (y,z;) € (Y x X)N M = i=p(j)}

assuming that ; < xo < ... < xgand y; < Yo < ... < y;, and R™(p) is Young’s
natural representation corresponding to 8™ and O is the all zero matrix of size

Ny X Ny

In this section we describe all the U7, for the cases where min(b,d) = 3. Recall
that the case b = d = 3 has been done in Example 3.7 in the previous chapter.
There are 1, 3m, 6m(m—1), m(m—1)(m—2) matchings M CV, xV,

of size 0, 1, 2, 3 respectively where m = max(b,d). We consider two cases:
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4.1.1 The case b >3 and d =3

At level £ = 0 the 1 x 1 matrices U 1(\2[ are
k(k—1)(k —2), (k—1)(k—2), (k—2) and 1
for the matchings of size 0, 1, 2 and 3 respectively.

At level £ = 1 the matrices UI(\}) are of size b x 3. Assume that |[M| > 1. Let
X c{1,2,3} and Y C {1,2,...,b} both be of size one. Then Fy;* = Sym; and

the submatrix (UF, )Y is

(

Um)™ =S —(k— M| =1))3 1 ify €M and & ¢ M,

0 ify ¢ M, or z € M, but (y,z) ¢ M.

\
For example for b = 4 and d = 3 the matrices U ](\/11) are of size 4 x 3. Let fo =

(k—1)(k—2) and f; = (k—2) then Uﬁ), &)22, U1(343 and Ul(}?22,33 are respectively

fo —f —h fi 0 -1 fi =1 0 100

0 0 0 0 fi -1 0O 0 O 010
7 ) and

0 0 0 0O 0 O 0O 0 O 0 01

0 0 0 0O 0 O 0 -1 f; 0 0 0

At level £ = 2 there are two partitions # = (2) and w = (12). In both cases

the matrices UF, are of size (g) x 3. Let X = {z1,20} C {1,2,3} with z; < z,

and Y = {y, 9} C {1,2,...,b} with y; < yo. If [M| > 2 and Y C M; then

FYX C Sym, contains one element:

€ if (y1,21) € M or (ya,x2) € M,
YX _
P =

(12) if (y1,22) € M or (ys, 1) € M.

The submatrix (U7,)¥* is

/

(k= |M|)s—jm R™(p}) Y C My and X C M, and p(Y) = X;

Ui)"™ =S =R (p¥7) if Y C My and X & Moy;

0 if Y € My or X C M, but u(Y) # X.

\
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For example for b = 4 and d = 3 the matrices UJ; are of size 6 x 3. Let f; = (k—2);

™ ™ ™ m I
then U11,22a U11,43, U11’22’33 and U12,12,43 are respectively

(fR7() —R*(e) —R"(12)\ [ o 0 0
0 0 0 0 0 0
0 0 0 —R"(¢) fiR™(e) —R"(e)
0 0 0 ’ 0 0 o |’
0 0 0 0 0 0
\ 0 0 0 \ 0 0 0
(B o 0 ) (Rr12) o 0 )
0 R'(e) 0 0 0 0
0 0 0 o 0 0 R(e)
0 0 R(e) 0 0 0
0 0 0 0 R 0
\ 0 0 0 ) \ 0 0 0 )

At level £ = 3 there are three partitions w = (3), w = (2,1) and w = (13). The
matrices U are of size (3)n, x n, where n, is equal to 1, 2 and 1 respectively. Let
X ={1,2,3}and Y C {1,2,...,b}. The matrix is non zero only if [M| = 3 and
Y = M. Let p € Syms be such that u(y;) = 2,-1(; for i = 1,2,3. Then p is the
only element p¥/X in FYX so

R™(ppf) Y =M,

U)X =

0] otherwise.

If b =4 and d = 3 the matrices U}, are of size 4n, X n,. For example

(0] (0]

R™(132)
o) o)
(0] (0]

™ _ ™ —
U12,21,43 = ) 12,2341 —
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4.1.2 The case b=3 and d > 3

At level £ = 0 the matrices U 1(\/)1 are of size 1 X 1. For every matching M C V3 x V,
it follows that UI(J[ = fim|(d, k). That is U](\Z, is equal to

(k)d, (k — 1),1_1, (k - 2),1_2 and (]C — 3)d—3

for the matchings of size 0, 1, 2 and 3 respectively. For example for b = 3 and

d = 4 the matrices U ]9[ are
k(k—=1)(k=2)(k=3), (*k-DE=-2)(k=3), (k-2)(k-3), (k-3)
for [M| =0, 1, 2, 3 respectively.

At level £ = 1 the matrices Uz(vp are of size 3 x d. Assume that |[M| > 1. Let
Y C {1,2,3} and X C {1,2,...,d} both be of size one. Then F};* = Sym,; and

e

(k= |M|)a—m if ye My and (y,z) € M

(U)X = =k — |M| = 1))a_jua—1  if y € M, and z ¢ M,

0 if y ¢ My or z € M, but (y,z) ¢ M.

\

For example for b = 3 and d = 4 the matrices U ](\/1[) are of size 3 x 4. Let

fs=k-1k=-2)(k=3), fo=(k=-2)(k=3) and fi=(k-3);

then
fs —fo —fo —fo fo 0 —fi —f1
uY=10 0o o o, Uln=|0 f -n -£l,
0 0 0 0 0 O 0 0
fo =fi =fi O fi 0 0 -1
U1(%,)34: 0 O 0 O and Ul(i,)22,33: 0 fi 0 -1
0 —fi —fi fo 0 0 fi —1

At level £ = 2 there are two partitions m = (2) and = = (12). In both cases the

matrices U}, are of size 3 x (g) Assume that |M| > 2. Let X C {1,2,...,d} and
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Y C {1,2,3} both be of size two. The submatrix (UF,)¥¥ is of the form

Cu(X) ¥ R(p) ifp(XNM) CY C My

U3 = peryt

0 otherwise,

where

Cu(X) = (1)l (k — | X U Ma)ajxuns,

and R®(p) = 1 and R(**)(p) = sign(p) for all p € Sym,. For example for b = 3 and
d = 4 the matrices U}, are of size 3 X 6. Let fo = (k—2)(k —3) and f; = (k — 3);

then UT| 59, UT} 34 and UT| 5, 35 are respectively

f:R™(€) —fiR™(e) —fiR™(e) —fiR™(12) —fiR™(12) R"(e)+ R™(12)

0 0 0 0 0 0 )
0 0 0 0 0 0
0 0 0 0 0 0
—fiR™(e) —fiR™(e) foR™(e) R™(e)+R"(12) —fiR"(e) —fiR"(e) |>
0 0 0 0 0 0
LR 0 —R'(& 0 —R(12) 0
0 LR —B(e) 0 0 —R'(12)
0 0 0 fiR*() —R™(e) —R7(12)

At level £ = 3 there are three partitions # = (3), w = (2,1) and w = (13). The
matrices Uj; are of size n, X (g) n, where n, is equal to 1, 2 and 1 respectively. Let
X c{1,2,...,d} and Y = {1,2,3}. The submatrices (U};)¥* is non zero only if
|M| = 3 and then
U)X = ()Xl (K — | X U Ma|)a— xun Z R™(p).
peFYX

If b = 3 and d = 4 the matrices U}, are of size n, x 4n,. For example

Ui = (k= 3)R"(e) —R7(e) —R7(23) —(R*(123)).
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1 1 4 2
3 4 1 1

Figure 4.1: The graph Figure 4.2: The graph
3(11,22,34), 1(11,32,42),

4.2 Two Examples

Example 4.1: Let us find the matrices Uy, for all levels and all matchings for
the graph 3(11, 22, 34), shown in Figure 4.1. There are 1, 3, 3 and 1 matchings of

size 0, 1, 2 and 3 respectively:

{h

{1, D)}, {(2,2)}, {3,4)},
{(1,1),(2,2)}, {(1,1), 3,4} {(2,2),3,4)},
{(1,1),(2,2), 3,4)}-

From Corollary 3.7 it follows that
N =Ug — (Ufy + Uzy + Ugy) + (Ui 22 + Uty sa + Usy 34) — Ul 2034
At level £ = 0 the matrices U ](\BI are
k(k—1)(k—2)(k—3), (k—1)(k—2)(k—3), (k—2)(k—-3), (k—3)
for the matchings of size 0, 1, 2 respectively. Thus
NY =k(k—1)(k—2)(k—3)—3(k—1)(k—2)(k —3) + 3(k — 2)(k — 3) — (k — 3).
Let fy=(k—-1)(k—2)(k—-3), fo=(k—-2)(k—3) and fi=(k—3).

At level £ = 1 the matrices U ](V}) are

vV=10 o o o, US=|=f fs —f -fol>
0 0 0 0 0 0 0 0
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0 0 0 0\ /fz 0 —h —fl\
U?Ei)= 0 0 0o 0], U1(i,)22: 0 fo =fi —fi]>
—fo =fo —fo f3) \0 0 O 0)
f2 =i —h 0 /0 0 0 0)
U1q334= 0 0 0o 01, Uz(;,)34: —fi fa =i 0],
0 —fi =fi f2) \—fl 0 —fi fo)
0 —1 0
and U1(i,)22,34: 0 fi -1 0
00 -1 fi)
Then
—fzs+2fa— f1 fo—fi fo—2f1+1 fo—h
NY= R-h Rkt h f-2h+1 fo-h

Jo—f1 fo—fi fo=2fi+1 —fz+2fa— N

At level £ = 2 the matrices UT) 99, UT} 34, UJs 34 and U7} 55 54 are respectively

LR —fiR™(e) —fiR (&) —fiRT(12) —fiR7(12) (R7(12)+ (o)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
—hE(Q) —fR() LE() (RF(12)+R()) —fiR(e) —fiR(e) |,
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

~hRT12) (RF(12)+R7(9) —AR() —fiB () LR —fiR(e)

fiR™(e) —R™(e) 0 —R"(12) 0 0
and 0 —R™(e) fiR"(e) 0 0 —R"(e) |,
0 0 0 —R™(e) fiR™(e) —R"(e)
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where R®(e) = R®(12) = R1")(¢) = 1 and R®)(12) = —1. Then

(fo—fi ~h+1 —fh R+l —f 2

Nf): -fi =fA+1 fo—fi 2 -fi —fi+1 and
\ -fi 2 -fi —-fA+1 fo—fi —fi+1
(fZ_fl -fi+1 —=fi fi—1 fi 0

N = —fi —h+1 f—f 0 R
\ £ 0  —f —f+1 +h—fH —fi+1

At level £ = 3 the matrix U}, is
Nf = Ul = (~B°(6) fiR™(e) —R™(e) —R"(12)),

where R® (w) =1, R"*)(w) = sign(w) and R®Y(w) is Young’s natural represen-

tation corresponding to S (See Example 2.7). In particular:

1 0
-1 -1

R®Y(12) =

Example 4.2: Let us find the matrices U}, for all levels and all matchings for
the graph 4(11, 32,42)3 shown in Figure 4.2. There are 1, 3 and 2 matchings of size
0, 1 and 2 respectively:

{}
{(1, D}, {3.2)}, {(4,2)},
{(1,1),(3,2)}, {(1,1),(4,2)}.

From Corollary 3.7 it follows that
N™=Uz— (U + Uz + U) + Uf1,32 + Uf1,42-
At level £ = 0 the matrices U ](\Z, are
k(k—1)(k —2), (k—1)(k—2) and (k—2)
for the matchings of size 0, 1 and 2 respectively. Thus

NY =k(k —1)(k —2) — 3(k — 1)(k — 2) + 2(k — 2).
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Let fo = (k—1)(k —2) and f; = (k — 2). At level £ = 1 the matrices U](Vlf) are

fo —fi —fi 0 0 O 0O 0 O
0 O 0 0O 0 O 0O 0 O
Ul(i) = :U{S) = :Uzg) = )
0 0 0 -fi fo —fi 0o 0 O
0o 0 0 0o 0 0 -h fo —N
fi 0 —=1 fi 0 -1
0 0 O 0 0
U1q,)32 = ) U1q,)42 =
0 fi —1 0 0 O
0 0 O 0 fi —1

Then
—fo+2f1 bil fi—2

0 0 0
i —fot+fi i—1
i —fot+fi i—1

At level £ = 2 the matrices UT, 3, and U7, 4, are respectively

[ o 0 0 ) ( 0 0 0

N =

fLR™(€) —R™(e) —R7(12) 0 0 0
0 0 0 fIR™(€) —R™(e) —R7(12)
0 0 0 ’ 0 0 0 ’
0 0 0 0 0 0

\ 0 0 0 ) \ 0 0 0

where R®(e) = R®(12) = R®)(¢e) =1 and R")(12) = —1. Then

[0 0 o0 [0 0 o)

fi -1 -1 fi -1 1

N® = L N = -t
0 0 0 0 0 0

0 0 0 0 0 0

\0 0 0 \0 0 0

At level £ = 3 the matrices N] are the 4 x 1 all-zero matrix for 7 = (3) and

7 = (13) respectively, and the 8 x 2 all-zero matrix for T = (2,1).
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4.3 Permutations of the vertex sets

Let Sym,; and Sym, act on V, and Vj respectively in the obvious way. Let M C
Vs x Vg be any matching. For every w € Sym, and 7 € Sym, we denote by w |[M

the matching
{(w(),7(x)) € Vi x Va | (y,2) € M}.

T

Similarly define » |[L. For example, consider the graph 4(11,32,42); shown in
Figure 4.3. Then the graph 4(L); shown in Figure 4.4 satisfies

(132)
L=quy[{(1,1),(3,2),(4,2)}={(1,1),(3,3), (4, 1)}

T T

We define w |,(L)g= »(L')q where L' = w |L. For example, denoting the graph

4 2 4 1
2 3 2 2
1 1 3 3
Figure 4.3: The graph Figure 4.4: The graph
+(11,32,42), 3(11,33,41),

(132)
4(11,32,42)3 by H we may write 3(11,33,41), = (13) |H .

Since M € M(b,d,w|L) if and only if w[Me M(b,d,L), and |o|[M ‘ — |M| for

all matchings it follows that

T

Ng = 9, if ' = w|L for some w € Sym, and T € Sym,.
Define w \U—(N}) to be the matrix obtained by replacing (U](Vl,))y“” in U](VII) by
(U ](Vl[))“’(y)T(w) . Recall

/

(k= |M|)a—m if y € My and (y,z) € M

(U™ =S (k= |M| - D)1 ify € My and z ¢ M,

0 if y¢ My or x € My but (y,z) ¢ M.

\
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T

It can easily be checked that w|U z(vp is the equal to U ,(\/112 where M’ = | M.

The matrix w| N7 is defined analogously to w|UF,.

Lemma 4.1 Let the graph y(L)4, w € Sym, and T € Symy be given.

Then Ng = NIE), and w|NV= NS), where L' = w|L. 0

The above results can be generalized for 7 - ¢ with ¢ > 2, but things are getting
quite a bit more complicated since the F}* are not trivial anymore. In the ex-
amples considered in the following sections it turns out to be more convenient to

calculate the N] “by hand” rather than using a generalization of the above.

4.4 Reduction of base graphs

We are now going to discuss another case where the matrices N] corresponding to
one graph can be obtained from the matrix N;™ corresponding to another graph.

Let us begin with an example.

Example 4.3: Let us consider the graphs 3(11,22,34), and 4(11, 32,44), shown
in Figures 4.5 and 4.6. Denote by NTj 5534 and N 55 4, the respective matrices

corresponding to these graphs. Let M € M(b,d,L), 0 < £ < 3 and 7 F /.

1 1 1 1

3 4 4 4

Figure 4.5: The graph Figure 4.6: The graph 4(11,32,44),
3<11:22734>4

From Theorem 3.13 it follows that (UF,)¥* corresponding to graph 4(11,32,44),
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is the all-zero submatrix if Y contains 2. Otherwise, if Y does not contain 2, the
submatrix (UF,)¥* depends only on Y being such that p (X N M,) CY C M,

and the order of the elements in Y, but not on the size of Vj,.

At level 0, since the matrices U 19[ depend only on the size of the matching M, it

follows that Nl(%,32,44 = qu,gz,34-

At level 1, by removing the row indexed by Y = {2}, that is row two, in N1(232,44

. 1
we obtain N1(1322,34.

At level 2 the matrix N 55 3, can be obtained by removing rows one, four and five

1 ™
m N11,32,44-

At level 3, if 7 = (3) or 7 = (1%) we obtain NTj 5y 5, from NT, 3,4, by removing
rows one, two and four. If 7 = (2,1) we have to remove all rows except rows five

and six.

The graph 3(11, 22, 34)4 can be obtained from graph 4(11, 32,44), by removing the
vertex 2 and all incident edges, and relabelling the vertices such that their order is
preserved. That is, the vertices 3 and 4 in the obtained copy of K3 become 2 and

3 respectively.

Let b and d be integers, and let L. C V}, x V; be any linking set. Let Z C V} be
such that (Z x V;) N L = @. That is, none of the vertices in Z is incident with a
linking edge. Delete all vertices in Z and all the adjacent edges, and relabel the
vertices in Vj, \ Z such that their order is preserved. The resulting graph is of the
form y (L')4 where b’ = b —|Z]| and L' is the induced linking set of the same size as

L. We say that (L"), has been obtained from ,(L), by deleting Z.

Lemma 4.2 Let b and d be integers, and let L C V, X V; be any linking set. Let
Z C By be such that (Z x V3)NL = @. Assume that y(L')q has been obtained from
v(L)a by deleting Z. Then for all £ and m & £ the matrices N}, corresponding to

w(L')q can be obtained from NT corresponding to y(L)4 by deleting all rows indezed

by Y withY N7 + @.
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Proof: From Theorem 3.13 it follows that all submatrices (UF;)¥* corresponding
to graph ,(L)4 is the all-zero submatrix if Y N Z # @. Otherwise, if YNZ = @&, the
submatrix (UF,)¥* depends only on Y being such that p~}(X N M,) CY C M,
and the order of the elements in Y, but not on the size of V,. Removing all vertices
in Z and all the adjacent edges does not change the order of the remaining vertices
in V3, hence does not change the submatrix (UT;)¥*. The result follows from

Corollary 3.7. O

4.5 Generalised dodecahedra

Let B be the path on four vertices and let L = {(1,1), (3,2), (4,4)} be the linking
set. The resulting graph D, is the generalised dodecahedron introduced in Example

3.4. There are five colour-partitions of B:
R1 ={1]2]3|4}, R.={13|2|4}, Rs = {1|24/|3},

R, ={14]2|3} and Rs={13]24}.
From Lemma 3.5 follows that the matrices N consist of 25 submatrices N = =

K .

™ ™ ™ ™ ™
/NR1'R1 N'R1R2 NR1'R3 NR1R4 NRIRS\
K T K T K
NRQRl NRQ Rz NRz Ra NR2 R4 NR? RS
™ ™ ™ ™ ™
NRg'Rl N'R3R2 NRg Rs N'R3R4 NRg Rs

T m T m T
Nzori Nrars Nrars Nrars Nigrs

™ s ™ s ™
KNR5R1 NR5R2 NRsRs NR5R4 NR5R5)

Each N% ». corresponds to a graph |r,/(Lg,,r;)r; which depends on the colour-
partitions R; and R;. The Table 4.1 shows the graphs corresponding to all pairs

of colour-partitions.
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1 1 1 3 2 1 1

SP PP DS D

3 4 2 1 1 4 2

2 4 2 3 2 2 2 1 2 2

Table 4.1: The induced graphs |z, /(Lr,r;) %, in case of the family D,

Let
H44 - 4<11, 32, 44)4 H43a == 4<11,32,43>3 H43b == 4<11,32,42>3
H42 = 4<11, 32, 42)2 H34 = 3(11, 12, 34)4 H33a == 3<11, 12, 33>3
Hsgy = 5(11,12,32)3 Hsz. = 3(11,22)3 Hzyo = 5(11,12,32)9

43

These nine graphs are shown in Table 4.2, and we call them the “ H-series ”. For
all m we denote the matrices N corresponding to these graphs by Nf,, Nf, , Nis;,

™ ™ ™ ™ ™ ™ 3
N§, N3y, N35,., N3, Nis. and by NI, respectively.

In Appendix B the non-trivial matrices N for the all levels and all the graphs in

the H-series are given. Trivial means all-zero, like for example the level 4 of Hy,.

Observe that in none of the graphs in the H-series is the linking set incident with
vertex 2 on the left hand side. We indicate by a superscript “ *” the graph obtained
by removing vertex 2 and all incident edges. The resulting graphs are shown in

Table 4.3, and we call them the “ H*-series ”.
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Hyy Hys, Hyzp
1 1 1 1 1 1
p
@ <Eﬁ 2 2
]
4 2 3 4 3 3
Hy Hsy His,
1 1 1 1 1 1
2 3 2 3 2
3 2 3 2 3 2
Hsgy, Hss, Hsy,

Table 4.2: The graphs of the H-series

Then, using the notation introduced in Section 4.3, we can rewrite Table 4.1 as:

12

Hyy Hys, Hyzyp, (13) | Hazp Hy
(12)

Hsy Hss, Hsgy, ¢|Hssp Hsy,

e . (12)
(23) | Hjy (23) | Hj3, His, (13) | H {3, Hj,
(24 (23)

¢|Hsq ¢|H33q Hsg, Hss, Hsy,
(12)

H, H3,, Hi, e|Hz, H3,,

For all m we denote the matrices NJ corresponding to the graphs in the H*-series
by Nif, Nif . Nif, N, NI, Nif.. Nij, Nig and by Nj, respectively.
From Lemma 4.2 it follows that for 7 = () and 7 = (1) all these matrices can be
obtained from the matrices corresponding to the H-series by removing the all-zero
rows corresponding to Y containing 2. It follows that for levels zero and one we
only need to obtain the matrices NJ for the graphs in the H-series. For levels two
and three it is easier to calculate the matrices N}Qﬂaj directly. Level four is the

all-zero matrix.
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3 " 4 3 « 3 3 « 2
H44 H43a, H43b
1 1 1 1 1 1
[
2 @ 2
[
3 " 2 2 « 4 2 « 3
H42 H34 H33a
1 1 1 1 1 1
3 3
2 N 2 2 N 2 2 " 2
H33b H33€ H32a

Table 4.3: The graphs of the H*-series

Level 0: From Lemma 4.1 it follows that the matrix N 9 corresponding to the
graph D, can be written as

(NL NQ. N, N, N
Nji Nssa Ng Niy Nk
Ng = NASL Néga Nng Nii)%b Ng
N Niga Ny Nige Nk
\Nsi Naza Mgy Ngy Niga)

/(c—l)(c3+2c—1) A+2c—1 c(+1) e(+1) @ 4+1)

clc—1)(c2+1) c(c?+1) c c c?
=l (c=1)(c*+2c=1) +2c—1 c(®+1) ¢c(*+1) A+1]{,
clc—1)(c*+1) c(c® +1) c c(F+c+1)
\ clc—1)(c®+1) c(c? +1) o o ¢ )

where ¢ = k — 2. The characteristic equation is

(X + af (@2 + (A + af(e)) =0



4.5. GENERALISED DODECAHEDRA 96
with

al) () =(=c"—2c —4c* - 1)

Q

2
Oc) = (5 +2¢° + 3¢* + 2¢% + 2¢% + 2¢)

a(())(c) = —ct-28 -

Level 1: From Lemma 4.1 it follows that the 15 x 15 matrix V. 9 corresponding to

the graph D,, can be written as

( (12) \

NiY Ns N (19)| N, Ny
(12)

Ny N N |Ng) N
¢ ¢ (12)

eoIND  eNE)  ONEY NG N

() ©3)

| NS ¢|Nisn N Nz N

(12)
\ Ve NS Ny | Nysy Ni%) )

Then the characteristic equation of N S) is

AS(A—1) </\6 +a@ ()N + aP (N + 4P ()N + P ()N + alP ()N + alV (c)) ~0

with
aél) c) =2¢ +4c—2
ail)c = -2 +2¢* — 4 + 267 —2c— 1

—28 —2¢" =6 —4® — P+ 66 —4de+ 1

(¢)
(c)
(¢)
agl)(c) =c 426" +3c% +4c¢" + 7 4+ 6¢° + 3¢t — 2¢® — 52+ 1
(¢) =2c—6¢" —8c* — 2¢® — 8¢® — 4c® + 2¢® — 8cP

(c)

where, as before, c =k — 2.
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Level 2: There are m = (2) and 7 = (1?). In both cases the matrix N7 correspond-
ing to Dy is of size 16 x 16. We calculate all the submatrices Nz~ directly, as
shown in the beginning of the chapter and then use them to obtain NJ. Omitting
all the rows and columns corresponding to a sets Y and X containing 2 respec-
tively we can reduce N7 to 9 X 9 matrices. This reduced matrices are shown in
Appendix C. It turns out that the characteristic equation corresponding to m = (2)

and 7 = (1?) are both equal to

A(A— 1)(/\4 + al(ON + a5 ()N + aT ()X + ag(c)) ~0

with ai(c) = =2 +2c—2 af(c) = =2+ —2c—1

af(c) = —c* +1 aj(c) = &+ 2¢c+1,

where ¢ = k — 2.

Level 3: Here there are three partitions 7 = (3), 7 = (13) and 7 = (2,1). The
matrix N7 corresponding to D,, is of size 7x 7 for 7 = (3) and 7 = (1), and 14 x 14
for m = (2,1). The set M(b,d, L) contains a matching of size three only in the
case of the graphs Hyy and Hy3, (and the corresponding reduced graphs Hj, and
H},,). Since all the rows in NT corresponding to a Y containing 2 are zero it follows
that Ny3, and Nj5, are the zero matrices. In Ny only the rows corresponding to
Y = {1,3,4} are non-zero. Since F'%, 44, = {€} where Y = X = {1, 3,4}, it follows
that NT can be reduced to R™(¢), Young’s natural representation of e. It follows

that the characteristic equations for 7 = (3), 7 = (1*) and 7 = (2, 1) are

MNA=1)=0, MA=1)=0 and M2 (A—=1)2=0 respectively.

Level 4: Here N] corresponding to D, is equal to N, which is the all-zero matrix,

and hence does not contribute to the chromatic polynomial.

The Chromatic Polynomial of D;5: The global multiplicities are given in fol-

lowing table
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14 T N (k)

0 () 1

1 (1) c+1

2 (2) s(c+2)(c—1)

2 (12) s(c+1)c

3 (3) | tc+2)(c+1)(c—3)
3 (2,1) s(c+2)c(c—2)

3 (13) s(c+1)c(c—1)

As in Example 3.12 some of the eigenvalues are not polynomials. We use Newton’s
formula, given in Appendix A, to evaluate the sum A, , of the n'™ powers of the
non-polynomial eigenvalues of the matrices NJ. For example for n = 5 we get,

with k = ¢+ 2:

Aps =c® +10c" + 55¢'® + 200¢'
+ 535¢1% + 1082¢™® + 1705¢' + 20603
+1920¢'? + 1230¢'t 4 5296 — 110¢°

—80c® — 290¢” + 110c¢® — 180¢® + 125¢* — 80¢® + 35¢% — 10¢ + 1

Apys = — 2¢® — 10c™ — 40c™ — 80c™ — 170c" — 115¢™
—350¢° + 260¢® — 870¢” + 1255¢° — 1674¢°

+1825¢* — 1470¢® + 810¢% — 280¢ + 47

Ay s =c'% 4+ 10c® — 10¢” 4 55¢% — 82¢° 4 185¢*
(2),

—230¢® 4+ 255¢? — 150¢ + 47
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Hence the chromatic polynomial of Dy is:
P(Ds;c) =Aps+ (c+ D(Agys+1) + (@ +c—1)(Ags+ 1)+ —de—1
=c(c+1)(c+2)(c"" + 7c"® + 32¢" + 90c™ + 199¢'? + 293¢"
+ 378¢" 4 220¢' + 255¢” — 259¢% + 340¢” — 702¢5

+ 771c¢° — 831c* + 690c® — 400¢® + 140c — 24)

For general n € N, the chromatic polynomial of D, is:
P(Dn;c) = Agn+ e+ D)(Ama+ 1)+ (¢ +c=1)(Agn+1) +¢’ —4c— 1.

In Figure 4.7 the roots of P(Djs;c) are plotted. It appears that they are clustering
along curves. These curves will be the concern of the next chapter. Also clearly

visible are the roots with negative real part.
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Figure 4.7: The roots of Dj
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4.6 Four more families of cubic graphs

In the previous section we used the compatibility matrix method to calculate the
chromatic polynomials of the generalized dodecahedra. There are four more families
of cubic graphs all with the path on four vertices as base graph. In this section we

obtain their chromatic polynomials.

Let B be the the path on four vertices. Then these families are L, (B) where L is
{(1,4),(3,2), (4, 1)}, {(1,4),(3,1),(4,2)},
{(1,2),(3,1),(4,4)} and {(1,2),(3,4),(4,1)}

respectively. The graphs consisting of two adjacent copies of B linked by the
respective L are shown in Figure 4.8. Each of them contains three cycles. The
lengths of these cycles is characteristic for these graphs, and hence we denote
them accordingly. That is, we denote them as 468, 477, 567 and 666. The graph
consisting of two adjacent copies of B and the linking set corresponding to the

generalized dodecahedron, shown in Figure 3.3, is 558.

We denote these five families of cubic graphs by
(558)4, (468), (477),, (567), and (666),

respectively, where D,, = (558),,.

We denote the matrices 717, corresponding to these five families by
T5ss, Ties, Tyr7, Tse7r, and  Tgee

respectively. Similarly we define the five matrices Nisg, Nigs, Ni77, Nig; and Nigg.
Note that all these five families have a trivial level 4. That is, for each of them the
matrix N7 with 7 - 4 is the all-zero matrix. Hence the level 4 does not contribute
to the chromatic polynomial in any of the cases, and we are going to omit it in the
following. For every 7 the matrices NZg, Nigs, Nizz, Nig; and N are of equal

size as shown in the following table:
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1 1 1 1
2 @ 2 2 @ 2
3 Q3 3 @3
4 4 4 4
468 AT7
1 1 1 1
2 @ 2 2 @ 2
3 @ 3 3 @ 3
41 @—@ 4 4 4
567 666

Figure 4.8: The graphs consisting of two adjacent copies of B linked by the respec-

tive linking set

Size of the matrices
T Nigss, Nigs, Nizr,
Ngsr and Negg
() 5x5
(1) 15 x 15
(2) 16 x 16
(12) 16 x 16
(3) TxT
(2,1) 14 x 14
(13) TxT

Since all these families have the path of length four as base graph it follows that

we have for each of them the five colour-partitions:
R1={1]2]3|4}, R.={13|2|4}, Rs = {1|24/|3},

R, = {14]2]3} and Rs = {13|24}.
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As before, from Lemma 3.5 follows that for all of them the matrices /N consists of

. v — T .
25 submatrices Nz = N Lrr,*

s s T s s
(NRI Ri1 NRl Ra NRl Rs NRl R4 NRl 725\
s T s T 0
NRle N'RQ Ro NRQ Rs N'RQ Ra NRQ Rs
s s s s s
N'Rg'Rl N'R3'R2 N’Rg R3 N'R3'R4 N’Rg Rs

K T K 71' K
NR4'R1 N'R4R2 NR4 Rs N'R4R4 NR4 Rs

\N%E»Rl N77£5R2 N77£5723 N 7755724 N77£5725/
Each N7 r, corresponds to a graph |z, (Lr;r;)R;|-

For the rest of this chapter we let k£ = ¢ + 2.

4.6.1 The family (468),

The Table 4.4 shows all the graphs z,(Lg;x;)r; With i = 1,2,3,4,5 and j =
1,2,3,4, 5.

Denote by Hsop the graph 3(12,31),, and by Hj,, the graph 5(12,21), (See Fig-
ure 4.9). The matrices N, can be found in Appendix B. Including these graphs
into the H-series and the H*-series respectively we can use the catalogue of graphs
in Appendix B to evaluate levels zero and one. For levels two and three the ma-

trices Njgg are being calculated directly using the fact that many rows are zero.

Figure 4.9: The graphs H3zg, and Hszops
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1 4 1 3 4 1 3 2 4 1
p p
2 3 2 2 3 3 2 4 3 2 3
4 )
4 1 4 1 1 2 1 1 1 2
1 4 1 3 1 2 1 2 1 2
<Eﬁ 2 B & &
4 ——— 4 p— @
3 1 3 1 3 1 3 1 3 1
1 4 1 3 2 1 3 2 2 1
[
3 3 2 3 3 2 3 3
[
2 1 2 1 1 2 1 1 1 2
1 1 1 1 1 1 1 1 1 1
3 2 3 2 3 2 3 2 3 2
1 4 1 3 1 2 1 2 1 2
[
Eﬁ | 3 3
[
2 1 2 1 2 1 2 1 2 1

Table 4.4: The induced graphs |, |(Lr,r;)|%, in case of the family (468),

Level 0: The matrix N 9 corresponding to the graph (468),, can be written as

Niza NG )
Nk
Niza
N3,
N33,

(N,
N}
N
N}

\ Vsl

Nizy
Nz
Nz
N,
Nz

Niz
N
Nz
Nz
Nse

Ngs =

(e D@ +2-1) F+2-1 o +1)
cc—1)(c*+1) c(*+1)
=l(c=1)(E+2c—-1) E+2c-1
clc—1)(c*+1)
K cc—1)(c>+1)

co(+c+1)
c(c®+1)

c(*+1) o

c(c?+1)

c(+c+1)

The characteristic equation is

c(+1)  +1 \
o A+ce+1
c(+1)  +1

c(d+c+1)

c3 cz+c+1/

A2 </\3 + ad ()N + al(o)N + a(())(c)) —0



4.6.1. THE FAMILY (468),
where

ag)(c) =—c =27 -4 —c—2
((c) =(*+2¢°+3c" +3 + 2% + 2c+ 1

1
aé)(c) =428+t - -2 —c

Level 1: The matrix Nié% can be written as

. € € (12)

( N an|Ni, (a4 [Nz (1) |Nf)
(14) (13) (12) (12)

| N§y | Ngs. | N§g) | Nggy
. . . (12)

(123) |NZ§1) (123) |NZ§}1) (123) |NZ§;) (13) \Ng;)

(24) (23)
| N} | NG N N
(14) (13) (12) (12)
\ el [Nz | N5y e|Nssy

Then the characteristic equation of Nié% is

(14| N
1
N

€

(2)| Njs»

1
Ng)

a

Ny )

AS(A—1) ()\6 4N + PN + ()N + 0 ()22 + D () + o) (c)) —0

with
aél) () = —2c -3
ail)(c) = —c® -2 —4c* —2¢* - 3c* + 3c+1
agl)(c) =2 +4c¢" + 85 +6¢° + Tct +6¢3 +? + 2
agl)(c) = —c'0-2¢" -3 —5¢" — 5% —4c® — ¢t + 52 + 2¢% — 2¢
aV(c) = +3+5c" +35 -3 —6c' — 3B+ —1
agl)(c) = — =3 —2¢" +3c% +6¢° +3c* —2¢° — 32 —c.

Level 2: There are 7 = (2) and 7 = (1?). We calculate all the submatrices Nzir,

directly, as shown in the beginning of the chapter and then use them to obtain .
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Omitting all the rows and columns corresponding to a sets ¥ and X containing
2 respectively we can reduce N to 9 x 9 matrices. These reduced matrices are
shown in Appendix C. The characteristic equations of Nj,, with 7 = (2) and

7 = (12) are respectively

AL — 1) (/\4 + as()N + as ()N + a1 ()X + ao(c)> ~0

AL —1) (x* — a3() N + az()N? — ar () + ao(c)) =0
with az(c) = —c* — 2, as(c) = —c2 +2c — 1,
ai(c)=c*—c+c+1 and ao(c) = - - +c+1.

Level 3: Here there are three partitions 7 = (3), 7 = (1%) and 7 = (2, 1). Omitting
all the zero rows and the corresponding columns, following a similar argument as in
the case of the generalized dodecahedra, we can reduce these matrices to R™(13),

Young’s natural representation of (13). It follows that the characteristic equations

for 7 = (3), 7 = (13) and 7 = (2, 1) are
NN —1)=0, MNA+1)=0 and AZA—=1)A+1)=0
respectively.

As in the case of the generalized dodecahedron, Newton’s formula, given in Ap-
pendix A, can be used to evaluate the sum A,, of the n'" powers of the non-
polynomial eigenvalues of the matrices NJ. Then, for general n € N, the chromatic

polynomial of (468),, is:

P((468)n;¢) = Agm + (c+ 1)(Aq)n +1)

1
+ (62 +c— 2)(14(2),” + 1) + 5(02 + C)(A(12),n + 1)

N | —

+ =(c* = 3¢)(-1)" + %(03 —5c—2)

DN | =

In Figure 4.10 the roots of (468)3¢ are plotted. Again, clearly visible are the roots

with negative real part.
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Figure 4.10: The roots of (468)sg

4.6.2 The family (477),

The Table 4.5 shows all this graphs z;(Lz;r,)®; With i = 1,2,3,4,5 and j =
1,2,3.4,5.

All induced subgraphs are part of the catalogue of graphs in Appendix B which we
will use to evaluate levels zero and one. For levels two and three we calculate the

matrices directly.
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Table 4.5: The induced graphs z,[(Lr; r,)r; in case of the family (477),,

Level 0: The matrix N 9 corresponding to the graph (477), can be written as

b NG, N, ND)
Nji Ny Ngy Ngle Nk
Nip=| NS N3, N N§ NG
Nyt Ny Nie Nyyo N
\ Nl N Ngh Nae Nig)

—~~
=
2 2

—~ B~

—~

((c—l)(c3+20—1) A+2c—1 c¢(+1) c(®+1) A+1

c(c—1)(2+1) c(c®+1) A (P +c+1) c?
=l (c—1)(E+2c—=1) +2c—1 c(2+1) c(*+1) A+1
c(c—=1)(c*+1) c(+1) e(d+c+1) c c+c+1
\ c(c—1)(c2+1) c(c®+1) c c(+c+1) ¢

The characteristic equation is

A2 </\3 + af ()N + al(o)N + a(())(c)) —0
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where
ag)(c) =—ct=-2-3%+c-1
a?(c) = —2¢° — 5¢* — 5c — 26
ag)(c) = - -2 -+ +27+ec

Level 1: The matrix Ng)? can be written as

(142) 132 € (12) €
(N0 N whE el )
(24) (23)

NS ¢ING, N4 N) N
(14) (13) € (12) €
AN;D Ny (13) | Njsy) (12) [Nty 19)| N3V

(14) (13) (12) (12)
NG N |G |NS) Ng)
(24) (23)
\ D gD Ny Ny NP

Then the characteristic equation of N, g% is

28 (A7+ag”(c)A6+ag” @M+ ()N +al? ()N +a () A2 +al? () A +all) (c)) —0

with
al’(c) =4c—1
agl)(c) =2¢° +3c* +7¢® + 4% + 2¢ — 2
a’(c) = = =27+ +9° +10¢* + 56 +¢— 3
az(),l)(C) = —2¢" —5¢% —3c" + P+ —2¢" — 8% —2¢° —2c— 2
agl)(c) =c® +2¢" + 3¢+ 2¢° — 5¢* — 9¢® — 6¢° — 3c— 1
agl)(c) =4c® +7¢° 4+ 2¢* — 4c® — 6% — 3¢
a(()l)(c) = - =3 -2¢" +3° +6¢° +3c* —2¢° - 3> —¢.

Level 2: There are 7 = (2) and 7 = (1%). We calculate all the submatrices

N;gmj directly, as shown in the beginning of the chapter, and then use them to
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obtain Nj;;. Omitting all the rows and columns corresponding to a sets ¥ and
X containing 2 respectively we can reduce N, to 9 x 9 matrices. These reduced
matrices are shown in Appendix C. The characteristic equations of N, for 7 = (2)

and 7 = (1?) are

AL ()\5 + aT ()X + aZ ()N® + aZ () A2 + aT(c)A + ag(c)) =0

with a?(c) = 2¢ — 1, a?(c) =c-2, a?(c) = —c* -3,
@)=+ -2 -2, )=+ —c—1,
or aS?)(c) =—2c+1, aélQ)(c) = —3c, aélQ)(c) =—c' -3,
a(c) = —c* - &, a(()12)(c) =-c—-c?+c+1

Level 3: Here there are three partitions 7 = (3), 7 = (1®) and 7 = (2,1). Omitting
all the zero rows and the corresponding columns, following a similar argument as in
the case of the generalized dodecahedra, we can reduce these matrices to R™(123),
Young’s natural representation of (123) . It follows that the characteristic equations

for 7 = (3), 7 = (1%) and 7 = (2, 1) are
MA=1)=0, XXA=-1)=0 and AN +A+1)=0
respectively.

As before, Newton’s formula, given in Appendix A, can be used to evaluate the
sum A, of the n® powers of the non-polynomial eigenvalues of the matrices N7T.

Then, for general n € N, the chromatic polynomial of (477),, is:

P((477)n; C) = A(),n —+ (C —+ 1)14(1),”
1 2 1 2
+ E(C +c— Q)A(z),n =+ 5(0 + C)A(12)’n
1 3 1 3
—+ g(C — 4C)A(2,1),n =+ g(c —4c — 3)

In Figure 4.11 the roots of (477)3¢ are plotted. Again, clearly visible are the roots

with negative real part.
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Figure 4.11: The roots of (477)s0

4.6.3 The family (567),

The Table 4.6 shows all this graphs z;(Lz;r,)®; With i = 1,2,3,4,5 and j =

1,2,3,4,5.

All induced subgraphs are part of the catalogue of graphs in Appendix B which we

will use to evaluate levels zero and one. For levels two and three we calculate the

matrices directly.
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1 2 1 2 3 1 1 2 3 1
p p
2 3 2 2 1 3 2 3 3 2 4
) )
4 4 4 3 4 2 4 1 1 2
1 1 1 1 1 1 1 2 1 1
<@ 2 2 2 3 2 3 2
) )
3 4 3 3 3 2 3 1 3 2
1 2 1 2 3 1 1 2 3 1
[
% 3 1 1 3 3 3 2
[
2 4 2 3 2 2 2 1 1 2
1 4 1 3 1 2 1 2 1 2
<@ 2 2 2 3 2 3 2
3 1 3 1 3 1 3 1 3 1
1 1 1 1 1 1 1 2 1 1
[
% 2 3 3
[
2 4 2 3 2 2 2 1 2 2

Table 4.6: The induced graphs z,[(Lr; r,)r; in case of the family (567),,

Level 0: The matrix N 9 corresponding to the graph (567),, can be written as

(NG NO NG, N, N
N3 Ny Ny Niy Nk
Nigr=| N§ Nb. N N&, NG
Ngi Ny Nie Niy N
\ Nt Nz Ngy Ngy Vi)

((c—l)(c3—|—20—1) A+2c—1 c¢(P+1) e(+1) A+1 \
c(c—1)(2+1) c(*+1) o A c?
(c=1)(E+2c—1) A4+2c—1 c(*+1) c(F+1) A+1
c(c—1)(2+1) c+1) ce(+c+1) A A+c+1
\ c(c—1)(c2+1) c(c?+1) c c )

The characteristic equation is

A2 </\3 + ad ()N + al(o)N + a(())(c)) —0
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where

ag)(c) =—c=-2-3%+c—1
a?(c) =-c-3"-2+c+c

ag) (c) = c* +2c% + 2

Level 1: The matrix Néé)? can be written as

(

(12) (12) € (12) € \
NG NG 1) |N ) |NG) (1) [Ny
(12)
Ny N N | NGz N
124) (123) € (12) €
N | NpD (13) | N3y ¢|N;) 13) | N
(14) (13) (12) (12)
NG NG e|Ngs» |NG) Ng»
(12)
Ny Nis) N3y | N33y Ny )

)

Then the characteristic equation of N§é7 is

28 (A7+ag”(c)A6+ag” @M+ ()N +al? ()N +a () A2 +al? () A +al) (c)) —0

with

c) =2+ +27 —c—2

¢) = +2¢" +4f + 28 + ¢ — 2682 — 262 — 6c+ 2
= +3+3c" -2 -3 -+ 3¢

= —4c" -85 -9 —8c* —3c* +4c* +2c— 1

=—¢c=3%=-32+2+52+%—¢

W~
—
N2
—_ — — — — —_ —
o
~ ~ ~ ~ ~ ~ ~

Level 2: There are 7 = (2) and 7 = (1?). We calculate all the submatrices

N;gmj directly, as shown in the beginning of the chapter, and then use them to
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obtain NZ;,. Omitting all the rows and columns corresponding to a sets ¥ and
X containing 2 respectively we can reduce N[, to 9 X 9 matrices. These reduced
matrices are shown in Appendix C. The characteristic equations of NZ,, for 7 = (2)

and 7 = (12) are

AL ()\5 + aT ()X + aZ ()N + aZ(€) A2 + aT () + ag(c)) =0

with a{?(c) = 2¢ — 2, @)=+ -c—2, dP)=c"—c+2
a?(c) = -3 — 222 — a?(c) = - — 2c— 1,

or  ai(e) = -2, a§12)(c) =c -2+ 3, a$(¢) = —c* — 3¢+ 2,
o' (e) = —c* —c—2, a(()12)(c) =c?+2c+1.

Level 3: Here there are three partitions 7 = (3), 7 = (1®) and 7 = (2,1). Omitting
all the zero rows and the corresponding columns, following a similar argument as in
the case of the generalized dodecahedra, we can reduce these matrices to R™(12),
Young’s natural representation of (12). It follows that the characteristic equations

for 7 = (3), 7 = (1%) and 7 = (2, 1) are
MA-1)=0, XOX+1)=0 and AEA=1)(A+1)=0
respectively.

As before, Newton’s formula, given in Appendix A, can be used to evaluate the
sum A, , of the n™ powers of the non-polynomial eigenvalues of the matrices N7T.

Then, for general n € N, the chromatic polynomial of (567),, is:

P((567)n; C) = A(),n —+ (C —+ 1)14(1),”
]‘ 2 ]‘ 2
+ E(C +c— Q)A(z),n + 5(0 + C)A(p)’n
1 3 n 1 3
+§(C —30)(—1) +§(C —56—2)

In Figure 4.12 the roots of (567)3¢ are plotted. Again, clearly visible are the roots

with negative real part.
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Figure 4.12: The roots of (567)39

4.6.4 The family (666),

The Table 4.7 shows all this graphs z;(Lg;r,)®; With i = 1,2,3,4,5 and j =

1,2,3,4,5.

All induced subgraphs are part of the catalogue of graphs in Appendix B which we

will use to evaluate levels zero and one. For levels two and three we calculate the

matrices directly.
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1 2 1 2 4 1 1 2 4 1

p p

2 3 2 2 3 3 2 3 3 2 1

4 b
4 1 4 1 1 2 4 1 3 2
1 2 1 2 1 2 1 2 1 2

4 ~SEEE— ————©
3 1 3 1 3 1 3 1 3 1
1 2 1 2 2 1 1 2 2 1
[

1 1 1 1 1 1 1 2 1 1
<@ 2 2 2 3 2 3 2
3 4 3 3 3 2 3 1 3 2

e
-
o

1 2 1 2 1 2 1

Table 4.7: The induced graphs |, |(Lr,r;)|%; in case of the family (666),

Level 0: The matrix N 9 corresponding to the graph (666),, can be written as

(NG NO NG, N, N
Ny Ny Nie Niy Ny
Nigo = | N Nb. N Nb NG
Ngi Ny Ngy Ngy Nk
\ N5 Nga N Ny Ni)

(- D(E+2-1) E42c-1 o(E+1) oE+1) A+1 )
c(c—1)(2+1) c(+1) ce(+c+1) A c+c+1
(c=1D(+2c—-1) E+2c—1 ¢(*+1) c(*+1) A+1
c(c—1)(2+1) c(c?+1) o A c?
\ c(c—1)(c2+1) c(2+1) ce(t+c+1) o tect+1)

The characteristic equation is

A2 </\3 + af ()N + al(o)N + a(())(c)) —0
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where
ag)(c) =—ct'—2c -3¢ -2
ag)(c) =—-c'+1
a(())(c) = —c -2 -

Level 1: The matrix Nééé can be written as

( (124) (123) € (12) € \
NG NG 19 |Ng) |NG) (14) [Ny
(14) (13) (12) (12)

NG <IN | NG | NG N
(12) (12) € (12) €
N | NpD (12) | N3y ¢|N;) (12) | N

(12)
N§Y N Ng) |G N
(14) (13) (12) (12)
\ e[V N | Nz [Nz Ny )

Then the characteristic equation of NG%% is

28 (A7+ag”(c)A6+ag” @M+ ()N +al? ()N +a () A2 +al? () A +al) (c)) —0
with
= —2¢* -4

= —c—2%+4c+4

= -3 —2" -5 -4 -+ 63+ 2 =2

= —2¢" =58 —66° —5ct — 263 + 42 — 4

()
(0)
()
a§’(c) = ¢ +6¢7 +10¢% +8¢® + 3¢* +2¢° — 2% — dc + 4
()
(c) =25 +6¢° + 7c* + 26 —2¢* + 1

(0)

= — b —4¢® —6¢* — 42 - A

Level 2: There are 7 = (2) and 7 = (1?). We calculate all the submatrices

N;gmj directly, as shown in the beginning of the chapter, and then use them to
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obtain Nf;,. Omitting all the rows and columns corresponding to a sets Y and
X containing 2 respectively we can reduce Njy, to 9 x 9 matrices. These reduced
matrices are shown in Appendix C. The characteristic equations of N, for m = (2)

and 7 = (1?) are

AL ()\5 +al(©)M + aZ ()N + aZ () A% + aT )\ + ag(c)) ~0

with a{’(c) = —3, a’(c) = -2 +2c+1, aP(c)=—ct -2 1,
al?(c) = 263 + 32 + 4c + 3, ()= -2 —2c—1,

o ae) =1, V) =2 —2c+1, al(c)=—ct —2¢% 1,
agm(c) =-2c - -1, a(()lz)(c) =—c—-2c—1.

Level 3: Here there are three partitions 7 = (3), 7 = (13) and 7 = (2,1). Omitting
all the zero rows and the corresponding columns, following a similar argument as in
the case of the generalized dodecahedra, we can reduce these matrices to R™(132),
Young’s natural representation of (132). It follows that the characteristic equations

for 7 = (3), 7 = (1®) and 7w = (2, 1) are
MNA-1)=0 AA-1)=0 and APOZ+A+1)=0
respectively.

As before, Newton’s formula, given in Appendix A, can be used to evaluate the
sum A, of the n™ powers of the non-polynomial eigenvalues of the matrices NT.

Then, for general n € N, the chromatic polynomial of (666),, is:

P((666),;c) = A(),n + (c+ 1)14(1),”

1 1

+ 5(62 +c— Q)A(Z),n + 5(02 + C)A(12),n
1 3 1 3

+ §(C —4c)Apyn + §(C —4c—-3)

In Figure 4.13 the roots of (666)3¢ are plotted. Again, clearly visible are the roots

with negative real part.
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Chapter 5

Equimodular curves

In this chapter we discuss the behaviour of the roots of the chromatic polynomial
as the number of copies of the base graph goes to infinity. We shall refer to them

as chromatic roots. The framework for the following is taken from [4] and [6].

Recall that for any given base graph B, any linking set L and k£ € N the compati-
bility matrix 77,(k) corresponding to the family L, (B) is equivalent to a matrix of

the form

P - ® N,
0<6<b
w4
where I is the identity matrix of size n,(k) given in Theorem 3.3, and NT is a
matrix of size ('f') n. with entries depending on k (n, is the dimension of
REII(B)
the Specht module 8™).
By Theorems 3.3 and 3.13 it follows that for every n € N the chromatic polynomial

of L,(B) is of the form

b
P(L,(B),k) = (k) tr(NF)"

=0 =kt

Further, recall that for every =, if AT(k), A5(k),...,AT(k) are the eigenvalues of

NT with respective algebraic multiplicities m{, m3,...,nh NJ then

= mr(xh)’

119
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This particular structure of the chromatic polynomials allows us to use a theorem
by Beraha, Kahane and Weiss to investigate the limiting behaviour of the chromatic

roots as n goes to infinity.

5.1 A theorem of Beraha, Kahane and Weiss

The Figures 3.5, 4.7, 4.10, 4.11, 4.12 and 4.13 suggest that the roots approach some
set of curves as n grows (plus some isolated points). This behaviour of the roots
can be understood using a theorem of Beraha, Kahane and Weiss [18]: Suppose

that we have a family of polynomials { P,(z)} of the form

P,(z) = Zmi(z) (Ni(2)".

A complex number ( is defined to be a limit point of roots of this family if there
exists a sequence {z;} tending to (, such that z; is a root of P;(z) for every j. We

say that a root dominates the other roots if it has the largest modulus.

Theorem 5.1 [Beraha, Kahane, Weiss 1980] Under the non-degeneracy conditions
that {P,(2)} does not satisfy a lower order recurrence, and \;(z)/A;(z) is not iden-
tically a constant of unit modulus for any i # j, the complex number C is a limit
point of zeros of { P,(2)} if and only if, at z = (, one of the following two conditions
holds:

e One of the roots \i(z) dominates all the other roots , and the corresponding

m;(z) = 0. Or,

e Two or more of the roots \;(z) are of equal modulus and dominate the others.

The chromatic polynomials obtained by the compatibility matrix method are ex-
actly of the form required for the above theorem. The limit points of the first type
are isolated points and easy to determine. We shall concentrate on finding limit

points of the second type.
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We first consider all points where two or more of the roots A;(z) are of equal
modulus, and then check their dominance. The \;(z) in Theorem 5.1 are the

eigenvalues of the matrices NJ.

Example 5.1: Recall the family B(3),, with complete base graph K3 and identity
linking set. Its chromatic polynomial has been obtained in Example 3.8. This
example is particularly “nice” since all the characteristic equations of all the the
NT factorize into linear factors in A. That is all the eigenvalues are all polynomials

in k. There are eight distinct eigenvalues:

A =k —6k?+ 14k — 13, Ao =—-k*+Tk—13, A3=—-k®+4k—4
)\4:k—2, A5:k—5, )\6:k—1,
AM=k—4 and Mg = 1.

Then |\;| = || is equivalent to

where R(A) denotes the real and I(\) the imaginary part of a complex function
A. Using the “implicitplot” function in Maple 7 we obtain a a collection of
“equimodular curves”. There are 28 |\;| = |\;| with ¢ # j, but only a few of
them contain points where the eigenvalues of equal modulus also dominate the
other eigenvalues. We call them “dominant points”. In Figure 5.1 the curves
corresponding to |A1| = [Xa|, |A1| = |Xs| and |Xe| = |X5| are shown. It turns
out that these are the only curves containing dominant points. All three curves
intersect in what will be called “triple points”. In the following sections we will
show that all points of a segment of an “equimodular curve” containing at most
two “triple points” as endpoints are either all dominant or all are not. In Figure 5.1
the roots of Bj (circles) are also shown. Clearly, they cluster along segments of

these curves, and the “dominance” property changes at the triple points.
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Figure 5.1: The curves || = |Aa], [A1] = |As], [A2| = |A5] and the roots of By

5.2 Equimodular points

Before exploring these curves further, let us first introduce some more general
notation. Let f(A, z) be a polynomial of degree m in the complex variable A of the

form
F2) =A™+ fLi()A™ 4+ Lo ()N 2+ o+ f () + f(2)

where the coefficients f;(2) of f(], z) are polynomials in the complex variable z with

integer coefficients. We assume that f()\, z) does not contain repeated factors.

An equimodular point is a point zy in C where two roots of f(\, z9) = 0 are of equal
modulus. Denote by E(f) the subset of C consisting of all equimodular points of

f. This includes roots of algebraic multiplicity two or more.

If f(A,2) and g(\, z) are two such polynomials, possibly of different degrees, we
say that a point zy in C is an equimodular point of f and ¢ if one of the roots of

f(A, 20) = 0 and one of the roots of g(}A, zp) = 0 are of equal modulus. Denote by
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E(f,g) the subset of C containing all the equimodular points of f and g.

Suppose that f factors as f(A, z) = u(X, z2)w(A, z), where u(A, z) and w(), z) are

polynomials of the same form as f(), z) with degrees | and d respectively. Then

E(f) = E(u) U E(w) U E(u,w).

Recall that for all = the matrices NJ corresponding to a graph L, (B) are such that
every component is a polynomial in k£ with integer coefficients. The coefficients of its
characteristic polynomial are sums of principal minors of NJ and thus polynomials
in k£ with integer coefficients. Thus we can replace k£ by a complex variable z and

it follows that the characteristic polynomial of N7 is of the form f(, z).

5.3 The resultant

If f(A, z) factorizes into linear factors in A then all the roots are polynomial func-
tions in z, and we can equate their moduli one by one, as done in Example 5.1.
From algebraic geometry it follows that the F(f) are collections of continuous and
almost everywhere differentiable curves on the Riemann Sphere. Unfortunately the
polynomials f(), z) do not always factorize completely as we saw in the previous
chapter. That is the roots are not all polynomial functions. More powerful tools

are needed. Assume that m =1+ d and let
u(A) = N+ AN+ AT+ A+

and

w(A) = A+ w A we A 4 wg A+ wy

be two polynomials in C[A]. The key idea is that if A, is a root of u(A) and A,
is a root of w(A) with |A,| = |A,| then there exists s € C with |s| = 1 such that

Aw = 8Ay. It follows that A, is a common root of the polynomials u(A) and

wy(A) = w(sA) = s9A 4w s AT £ wys?2NTE 4wy 18\ 4wy
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It is a standard result [14] that u(\) and wy(A) have a common root if and only if
the resultant detR,,, vanishes for some s € C with |s| = 1, where R, ,, is the

ld x ld matrix:

(1 U1 U9 Ui—1 Uup \
1 U1 U Ui—1 Uy
1 Uy Ug U1 Uy
st sl s9 2, SWe_1 Wy
s sy s9 2w, SWy—1 Wy
\ 5@ sd_lwl Wo ce. SWg—1 wd)

The blank spaces are supposed to be filled with zeros. Many properties of the
resultant have been discussed in [4] and [6]. If u(\) = w(A) then R, ,, is a 2] x 2I
matrix and detR,,, vanishes if u(A) has two roots of equal modulus. Returning
to our polynomials f(A, z) and g(), z) it follows that detRy, , is a polynomial in s

and z with integer coefficients, and
E(f,g9) ={z € C|detRy, 4(s,2) = 0 for some s € S'},

where S = {z € C | |z| = 1} is the unit circle in C.

In particular, if f = g then from the explicit form of the determinant it can be
seen that detRy s, has a factor of (s — 1)™. Let (s, z) be the polynomial in s and
z such that

detRyy, = (s —1)" (s, 2).

Thus, provided there are no factors of r; that are independent of z,

E(f)={z2€C|rs(s,z) =0 for some s € S'}.

From the property [14]: detRy, 4, = detR,, detR, 4, for any polynomials u(), 2),
w(A, z) and g(A, 2), it follows that:
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Lemma 5.2 If f(\, z) = u(A, 2)w(A, 2), where u(A, z) and w(A, z) are polynomials
of degrees | and d in \ respectively, then

(s — 1) s(s,2) = detRyp, = (s — 1)y (8, 2) T (s, 2) detRy, , detR, ..

Note that in [4] and [6] using the substitution ¢ = s + s~' + 2 the polynomial
v;:]0,4] x C — C is obtained where s € S* implies that ¢ € [0,4]. This has the

advantage that ¢ is a real variable. In this case

E(f) = {2z € C| vs(t,z) = 0 for some ¢ € [0,4]}.

5.4 Equimodular curves

Let detRy,, : S' x C — C and suppose that (so,2) € S' x C is such that
detRy, 4(s0,20) = 0. From the Implicit Function Theorem it follows that if the
Jacobian of the mapping #+ detRy, ,(s, ) is not zero at (so, zp) then there exists
a unique continuous and differentiable map ¢ : 2 — C defined on some open
neighborhood Q C S* such that ¢(sq) = 2o and det Ry, 4(s, #(s)) = 0 for all s € Q.
Since there is only a finite number of points (s, z9) € S* x C with detRy, 4(so, 20) =
0 and a vanishing Jacobian, it follows that E(f, g) is the union of homeomorphic
images of the open intervals 2. We refer to E(f,g) (or E(f) if f = g) as the sets

of the equimodular curves corresponding to f(A, z) and g(A, 2).

Denote by E(Tr,) the set of equimodular curves corresponding to the characteristic
polynomial of Tj, for some given L,(B). Denote by f™(),z) the characteristic

polynomial of N7. From Lemma 5.2 it follows that:

Corollary 5.3 The set of equimodular points E(Ty) consists, except for some iso-

lated points (“degenerate curves”), of the union of piecewise differentiable curves.
Moreover, it is the union of all the E(f™) and E(f™, f™) for distinct = and .
O
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Note that the “degenerate curves” in the previous corollary correspond to factors

of the resultant that are independent of s.

Lemma 5.4 Let the polynomial f(A,z) be given. Then rs(s,z) = r4(5,2), where

s denotes the conjugate of s.

Proof: Recall that 7(so, z9) = 0 for some (s, z9) € S* x C if and only if
f(soA,20) =0 and f(A 20) =0 for some A € C.
Let M = spA then
flsg™ X, z) = f(A,20) =0 and f(\,2) = f(s0A, 20) = 0.

Hence r4(sg ", 20) = 0. This holds for all (sq, z9) € S* x C with (s, z) = 0. Since

571 =3, the result follows. O

Let ST={2e€85"3(2) >0} and S~ ={z¢€ S'|3(z) <0}. From the

previous lemmas we have the following:

Corollary 5.5 Ezcept for some isolated points (“degenerate curves”), E(f) is the
union of piecewise differentiable curves where the points corresponding to rs(1,z) =

0 and to r;(—1,2) = 0 are endpoints. Further:

E(f) ={z € C|rs(s,2) =0 for some s € ST}

={z€C|rs(s,z) =0 for some s e S™}.

In [4] Section 5 it has been shown that every point corresponding to r(—1,2) =0
is a double root. Hence, the above curves occur in pairs that coincide in the points

corresponding to rf(—1,z) = 0.
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5.4.1 Examples

Let B be the path on three vertices and let L = {(1,1), (2,2), (3, 3)} be the identity
linking set. The resulting graph L,(B) has been considered in Example 3.12 and

the matrices N for all 7 have been obtained. The polynomials
fOL2) =22+ (22 =22 =3 A+ 2+ 22+ 22 -1

and g(\, z) = A — ¢+ 2 are irreducible factors in the characteristic polynomials at
levels zero and two respectively. In the following two examples we shall study the
sets F(f) and E(f,g) in detail. In Section 5.6.1 all levels corresponding to this

example are analyzed numerically.

Example 5.2: Let us analyze the set E(f). Here

ri(s,2) = (2 + 1)(2* + 2 — 1)g(s, 2) where
q(s,2) = —52° = 252" + (s =55+ 1)2* + (s? —4s +1)2°
+(s*=Ts+1)2> — s> — 25— 1.

In Figure 5.2 the equimodular curves E(f) are shown. The points z satisfying
rs(s,2) =0 for s =1 and s = —1 are indicated by ¢ and O respectively. One can
see very nicely that F(f) consists of a union of curves with endpoints <& and O.
The points O (—0.5+1.6583i and 0) are double roots where pairs of curves coincide.
Further there are four points (“degenerate curves”) at —1, —0.3412 + 1.16157 and
0.6823 corresponding to the equation (z 4+ 1)(2*> + z — 1) = 0. Here and in the

following, points are represented by approximations to four decimal places.
Example 5.3: Let us analyze the set E(f,g). Here

detRy, ,(5,2) = (=s+ 1)z + (s + 1)2° + (s — s +1)2° + (=45 + 65)z + 45” — 1.

The coefficient for z* vanishes for s = 1. This implies that one of the points in
E(f, g) corresponding to s = 1 is at infinity. For all other s € S* there are four solu-

tions of detRy, 4(s, z) = 0. Hence there are four segments in E(f, g). In Figure 5.3
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Figure 5.2: E(f)

the equimodular curves E(f,g) are shown. The points z satisfying detRy, , = 0
for s =1 and s = —1 are indicated by & and O respectively. The closed curve on
the left hand side contains three points 0.2500 4+ 1.19907 and —1 corresponding to
s = 1, and three points —0.7906 4 10.71937 and 0.3365 corresponding to s = —1.
In this case, as s runs over the values in S* in an anti-clockwise direction we move

along the curve in an anti-clockwise direction (as indicated).

The curve has two cusps at w and w® where w is a primitive sixth root of unity.

They are represented by circles. These points can be obtained as follows:
D(z) = (22 — 2+ 1)(z" +32° + 52" + 42 + 4) (2 — 2)*

is the discriminant of detRy, ,(s,z) with respect to s. For each z where D(z)

vanishes there exists a root s of detRy, (s, z) of multiplicity at least two. Only the

5

two roots (22 — z + 1) correspond to s € S'. In fact z = w corresponds to s = w®,

5

and z = w” corresponds to s = w.

The curve on the right hand side has one point corresponding to s = —1 at 1.2446.

Its point corresponding to s = 1 is at infinity. Its points in the half-plane with



5.5. DOMINANCE

sest

-3

1

05

Figure 5.3: E(f,g)
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negative imaginary values correspond to s € ST and the points in the half-plane

with positive imaginary values correspond to s € 5.

5.5 Dominance

Once we have obtained E(T},) for some T}, we can can concentrate on finding the

subset D(Ty) of E(T},) containing the dominant points, i.e. the points where the

two (or more) eigenvalues of equal modulus also dominate the other eigenvalues in

modulus. This is equivalent to saying that the dominant equimodular eigenvalues

are equal to the spectral radius of 77, [6]. A point that is not dominant we refer to

as a sub-dominant point.

Lemma 5.6 Let ' be a segment of an equimodular curve not intersecting with

other equimodular curves.

sub-dominant.

Then the points of I' are either all dominant or all
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Proof: Suppose that I' is a segment of an equimodular curve containing dominant
and sub-dominant points. The moduli of the eigenvalues are continuous functions
in z. Going along I' from dominant to sub-dominant points there has to be at least
one point where three or more non-equal eigenvalues are of equal modulus. Such a

point is a point of intersection of at least three equimodular curves. a

It follows that a equimodular curve can only change its dominance property at an
intersection point of equimodular curves. We refer to those as triple points [6]. At
a triple point three equimodular curves, one for each pair of eigenvalues, intersect
as shown in Figure 5.4 for the three eigenvalues A;, A2 and A3. Then either there
is a fourth eigenvalue bigger in modulus and there is no change in dominance, or
each of the curves changes from being dominant to sub-dominant or vice versa, as
shown in Figure 5.5. The sub-dominant parts are represented by thin lines, the

dominant parts are represented by thick lines.

[A1] = [As] [A1] = |As|

[Az| = |As] 1] = Az [Az| = |As] [A1] = A2

[A1] = [A2] A1l = [Az]

[A1] = [As] [A1] = |As]

Figure 5.4: A triple point Figure 5.5: A triple point with

change of dominance

Thus, in theory, once E(T}) has been obtained one just has to check the segments
between triple points of the equimodular curves for dominance. In practice however

there are too many equimodular curves.

We need some procedure to generate the equimodular curves and check for domi-
nance. Assume that u()\, z) and w(\, z) are two distinct, irreducible factors of the
characteristic polynomial of T7,. Consider E(u), E(w) and E(u,w) separately and

check their “equimodular segments” for dominance with respect to u(\, z), w(A, z)
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and u(A, 2)w(A, z) respectively. We obtain D(u), D(w) and D(u,w). Then D(17)
is a subset of the union of D(u) and D(u,w) taken over all distinct factors u(A, z)
and w(A, z) of the characteristic polynomial of 77,. By Lemma 5.6 it follows that
we just have to check each segment I' in this union for dominance with respect
to the characteristic polynomial of 77,. In all the examples considered here this
reduces the number of equimodular curves under consideration at each step to a

manageable size.

5.6 Numerical computations

The numerical computations in the following examples are done in Maple 7 us-
ing the program EquiDominantPoints (and some sub-programs) shown in Ap-
pendix D.1. For two given polynomials u(A, z) and w(A, z), with possibly v = w,
the program returns a list R of equimodular points of v and w which are dominant

with respect to uw. The points in R belong to D(u,w) (or D(u) if u = w).

The program DomTest, given in Appendix D.2, tests the points in a list R for
dominance with respect to a given polynomial. Taking this polynomial to be the
minimum characteristic polynomial of Ty, DomTest returns the points of R belong-
ing to D(T},). That is, DomTest returns the intersection of D(7},) and D(u,w) (or
D(u) if u = w).

In the program EquiDominantPoints, s is of course a discrete variable with a finite
number of points, and there is no guarantee that the program does not miss out
parts of the equimodular curves corresponding to values of s not checked for by the
program. One way to avoid this would be to calculate the triple points in F(77) and
check them for dominance. Unfortunately the author is not aware of any feasible
way of calculating these triple points. Programs similar to Slices, given in the
Appendix D.3, can be used to check the results given by EquiDominantPoints:
Let Z be a list of points on a line in C. Slices evaluates the absolute values of

the roots of a given polynomial at the points z € Z, and plots them against Z.
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In the following we are using these programs to obtain approximations of dominant
points of the equimodular curves for various examples. This is not a full analysis of
these curves, and in fact there appear to be many unexplained phenomena leaving

space for future research. We assume that:

e The output of EquiDominantPoints with respect to u(\, z) and w(],z) is

denoted by R(u,w) (or R(u) if u = w).
e We use 100 < n < 200 and ¢ = 10 °® in EquiDominantPoints.

e In the following plots the intersection of the sets R(u) or R(u,w) with D(T})

is represented by solid lines.

e Since the sets R(u), R(u,w) and D(T}) are symmetric with respect to the

real axis we only show the positive half plane in the following plots.
e Points are represented by approximations to four decimal places.

e The complex variable z has been shifted by —2.

5.6.1 The path of length three with the identity linking set

Let B be the path on three vertices and let L = {(1,1), (2,2), (3, 3)} be the identity
linking set. The resulting graph L,(B) has been considered in Example 3.12 and

the matrices N for all 7 have been obtained. The characteristic polynomials are:

fON2) =N+ (=22 =22 = 32) A+ 24 + 28 + 22 — 1,

FON2) = 1+ X)X+ 22 (X + az(2) A2 + a1(2) A + ao(2)),

FON2) = fIN2) =1+ NN —2—-1D)(z—A)(z—2— ),

fON2) = fP(N2)=A+1 and pBY(\2) = (A +1)%
where ag(2) =222 —2+4+2, ai(z)=2*—2:—1 and

ap(2) = —2° +22° + 22 — 22 — 2.
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There are seven different irreducible polynomials, and hence in total there are 49
sets R(u) and R(u,w) to be considered in this example. Most of them have an
empty intersection with D(77). We discuss only those contributing to D(T7). Let
u(A, z) be the irreducible cubic factor of f)(),2). The set R(f0,u) is shown in
Figure 5.6. Figure 5.7 is a detail of R(f0, u) showing that E(f0,u) crosses the line

0.8

0.6

0.5
0.2

Figure 5.6: R(f0,u) Figure 5.7: A detail of R(f0,u)

R(z) = —2. It follows that L, (B) with n large enough has roots with negative real
part.

Figure 5.8 shows parts (one of the “branches” goes off to infinity) of the set R(u).
Note that E(u) has a singularity at z = 0.2889 corresponding to s = 0.9878 +
0.15574, that is the partial derivative of 7,(s, z) with respect to z is zero. There are
two conjugate roots of u(A, z) for all points z along the real axis between 0.2256
and 0.3519. Figure 5.9 shows the triple point with change of dominance in R(u).
Let v()\, 2) = z — 2 — A. Figure 5.10 shows (parts) of R(f0,v). The corresponding

25

= 162

15
16
1 _ 1.58

0.5

Figure 5.8: R(u) Figure 5.9: The triple point in R(u)

curve E(f0,v) has been analyzed in detail in Example 5.3. Figure 5.11 shows



5.6.1. THE PATH OF LENGTH THREE WITH THE IDENTITY LINKING SET 134

R(u,v). Figure 5.12 shows the union of of R(f0,u), R(f0,v), R(u) and R(u,v).

0.8

0.6

04 B i 02

Figure 5.10: R(f0,v) Figure 5.11: R(u,v)

Figure 5.13 shows a detail of the union of R(f0,u) and R(u). And Figure 5.14

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Figure 5.12: The union of R(f0,u), R(f0,v), R(u) and R(u,v)

shows D(T7},) and the roots of Lzy(B) represented by circles.
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19

18

17 T . 1

e \ 06

15706 ~ 05 04 03 ~0.2 0.1 0 01 02 0

Figure 5.13: A detail of the union of  Figure 5.14: D(77) and the roots of
R(f0,u) and R(u) L3o(B) (circles)
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5.6.2 Generalised dodecahedra

Let us now consider the family of generalised dodecahedra D,, with the path on four
vertices as base graph and the linking set L = {(1,1),(3,2), (4,4)}. Its chromatic
polynomial has been obtained in Section 4.5. The characteristic polynomials of
the NJ are given on pages following Page 95. Again, we will only consider the
irreducible factors of the characteristic polynomials that contribute to D(T}). Let

u(A, z), w(A, z) and v(A, z) be such that:
Mu(M,2)=0, XA -=1Dw\2)=0 and A'A-1v()\2)=0

are the characteristic equations corresponding to 7 = (), # = (1) and 7 = (2)

respectively.

The sets R(u,w), R(u,v), R(w,v) and R(v) shown in the Figures 5.15, 5.16, 5.17
and 5.18 respectively have been obtained using the program EquiDominantPoints.
The respective intersections with D(77,) indicated by solid lines have been calcu-

lated using DomTest. Figure 5.19 shows the union of the sets R(u,w), R(u,v),

16

12

0.8

0.6

0.2

05 o -1 08 06 -04 02 0 02 0.4 06

Figure 5.15: R(u,w) Figure 5.16: R(u,v)

R(w,v) and R(v). And the Figure 5.20 shows the set D(77) and the roots of Djs

represented by circles.
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0.6

05

0.3

0.2

0.5
0.1-

Figure 5.17: R(w,v) Figure 5.18: R(v)

15

05

Figure 5.19: The Union of R(u,w),  Figure 5.20: D(7T;) and the roots of
R(u,v), R(w,v) and R(v). D3y (circles)
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5.6.3 The family (468),

Recall the family of graphs (468),, with the path on four vertices as base graph and
linking set L = {(1,4),(3,2),(4,1)}. Its chromatic polynomial has been obtained
in Section 4.6.1. The characteristic polynomials of the matrices N for all 7 have
been obtained on the pages following Page 103. Denote by u(A, z), w(A, z) and
v(A, z) the three polynomials such that

Mu(A2) =0, X¥A-Dw\z)=0 and A'(A=1)v(A2)=0

are the characteristic equations corresponding to 7 = (), 7 = (1) and © = (2)

respectively.

Only the sets R(u,w), R(u,v), R(w) and R(w,v) have non-empty intersections
with D(Ty). They are shown in Figures 5.21, 5.22, 5.23 and 5.24 respectively.

The respective intersections with D(77) are shown as solid lines.  Figure 5.25

16
12

0.8

0.6

o -1 ~08 06 -04 02 0 02 0.4 0.6

Figure 5.21: R(u,w) Figure 5.22: R(u,v)

show a detail of the union of the sets R(u,w) and R(w). The dotted line is the
sub-dominant part of R(w). According to our previous discussion of triple points,
there should be two more sub-dominant parts at each of the triple points shown
here. These sub-dominant parts belong to E(u,w) but they are not in R(u,w)

since there is a level 0 eigenvalue of bigger modulus.
Figure 5.26 shows a detail of the union of R(u,w), R(u,v), R(w) and R(w,v).

And the Figure 5.27 shows the set D(7},) and the roots of (468)3 represented by

circles.
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0.4

0.2

0.1-

Figure 5.23: R(w)

Figure 5.24: R(w,v)
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0.8
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0.2 0 0.1 0.2 0.3 0.4 05

Figure 5.25: A detail of the union of  Figure 5.26: A detail of the union of

R(u,w) and R(w)

R(u,w), R(u,v), R(w) and R(w,v).
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Figure 5.27: D(Tp) and the roots of (468)3 (circles)
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5.6.4 The family (477),

Take the path on four vertices as base graph B, and let L = {(1,4),(3,1), (4,2)}
be the linking set. The family of graphs L,(B) obtained is (477),. Its chromatic
polynomial has been obtained in Section 4.6.2. The characteristic polynomials of
the matrices N, for all m have been obtained on the pages following Page 107.

Denote by u(\, z), w(\, z) and v(\, z) the three polynomials such that
ANu(\2) =0, Mw(\z)=0 and M'v()\z)=0

are the characteristic equations corresponding to 7 = (), # = (1) and 7 = (2)

respectively.

Only the sets R(u,w), R(u,v), R(w) and R(w,v) have non empty intersections
with D(T7p). They are shown in Figures 5.28, 5.29, 5.30 and 5.31 respectively. The

respective intersections with D(77) are shown as solid lines.

16
14

12

. .
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08 :
08 3
06 A - ’
04 B 04 .
02 02 .

Figure 5.28: R(u,w) Figure 5.29: R(u,v)

0.8

g

0.4

0.5
0.2

Figure 5.30: R(w) Figure 5.31: R(w,v)
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Figure 5.32 show a detail of the union of the sets R(u,w) and R(w). Figure 5.33
shows a detail of the union of R(u,w), R(u,v), R(w) and R(w,v).

- 1.
v ’ 11 \
1-

) N

13 0.3 0.2 0.1 047 01 02 03 04 0.5

Figure 5.32: A detail of the union of  Figure 5.33: A detail of the union of
R(u,w) and R(w) R(u,w), R(u,v) and R(w,v).

And the Figure 5.34 shows the set D(T7) and the roots of (477)3p represented by

circles.
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Figure 5.34: D(T}) and the roots of (477)3 (circles)
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5.6.5 The family (567),

Take the path on four vertices as base graph B, and let L = {(1,4),(3,1), (4,2)}
be the linking set. The family of graphs L, (B) obtained is (567),. Its chromatic
polynomial has been obtained in Section 4.6.3. The characteristic polynomials of
the matrices N7, for all m have been obtained on the pages following Page 111.

Denote by u(), z), w(, z) and v(\, z) the three polynomials such that
ANu(\2) =0, Mw(\z)=0 and M'v()\z2)=0

are the characteristic equations corresponding to 7 = (), # = (1) and 7 = (2)

respectively.

Only the sets R(u,w), R(u,v) and R(w,v) have non empty intersections with
D(Tp). They are shown in Figures 5.35, 5.36 and 5.37 respectively. The respective

intersections with D(77,) are shown as solid lines.
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0.8
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0 -2 -15 -1 -0.5 0 0.5 0 -15 -1 -05 0 0.5

Figure 5.35: R(u,w) Figure 5.36: R(u,v)

Figure 5.38 shows a detail of the union of R(u,w), R(u,v) and R(w,v). Figure 5.39
shows the union of R(u,w), R(u,v) and R(w,v). And the Figure 5.40 shows the
set D(T7) and the roots of (567)3p represented by circles.
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08
Figure 5.37: R(w,v) Figure 5.38: A detail of the union of

R(u,w), R(u,v) and R(w,v).
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Figure 5.39: The union of R(u,w), Figure 5.40: D(Tp) and the roots of
R(u,v) and R(w,v). (567)30 (circles)
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5.6.6 The family (666),

Take the path on four vertices as base graph B, and let L = {(1,4),(3,1), (4,2)}
be the linking set. The family of graphs L, (B) obtained is (666),. Its chromatic
polynomial has been obtained in Section 4.6.4. The characteristic polynomials of
the matrices N for all m have been obtained on the pages following Page 115.

Denote by u(), z), w(\, z) and v(A, z) the three polynomials such that
ANu(\2) =0, Mw(\z)=0 and M'v(\z2)=0

are the characteristic equations corresponding to 7 = (), # = (1) and 7 = (2)

respectively.

Only the sets R(u,w), R(u,v), R(w) and R(w,v) have non empty intersections
with D(T7). They are shown in Figures 5.41, 5.42, 5.43 and 5.44 respectively. The

respective intersections with D(77) are shown as solid lines.

0.8

0.6

0.4

0.2

Figure 5.41: R(u,w) Figure 5.42: R(u,v)
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Figure 5.43: R(w) Figure 5.44: R(w,v)
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Figure 5.45 shows a detail of the union of R(u,w), R(u,v), R(w) and R(w,v).
Figure 5.46 shows the union of R(u,w), R(u,v), R(w) and R(w,v). And the
Figure 5.47 shows the set D(77) and the roots of (666)so represented by circles

Figure 5.45: A detail of the union of Figure 5.46: D(1})
R(u,w), R(u,v), R(w) and R(w,v).

1.87

1.6

144

1.2

0.8

0.6

0.4

0.2

Figure 5.47: D(T7) and the roots of (666)3y (circles)



Chapter 6

The operator algebras A;(k) and
Axr(k)

Let k£ be an integer. Recall from Chapter 3 for a given base graph B and a linking
set L CV x V the compatibility operator 77, = Ty (k) is defined by the following
matrix. The rows and columns correspond to the colourings of B and the entry
(T1,)ap is one if the pair (o, §) is compatible with L, and zero otherwise. For a pair

(cr, B) to be compatible with L means that:

(v,w)e L = «av)# B(w).

In this chapter we consider the case where B is the complete base graph K, with
vertex set Vj,. Recall that for a given matching M C Vj, x V, the operator Sy, =
S (k) is given by the matrix

Sl T @=00) Ve eM

0 otherwise

In Theorem 3.6 it has been shown that the compatibility operator 77, can be written
as a linear combination of operators Sj;. In the following we show that that the
operators Sy, form an algebra. A minimal generating set is found. In case of the
identity linking set some properties of the spectrum are proved and the full set of

eigenvalues conjectured.

146
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6.1 A binary operation for matchings

Recall, a matching M in V, X V, is a triple (M;, Ms, 1) where M; and M, are
subsets of Vj, and pu : M; — M, is a bijection. Equivalently, M is the subset of
Vi x V,, consisting of all (z, u(x)) with = € M;.

A matching can be represented by a diagram in the obvious way: Take two disjoint
copies of the vertex set and arrange the vertices in each of them as columns. The
vertex z in the first copy is linked to the vertex y in the second copy if (z,y) € M.
For example, for b = 4, the respective diagrams corresponding to the matchings

M ={(1,3),(2,1)} and M’ ={(2,1),(3,2), (4,4)} are:

1>< 1 le 1
2 L 2 2
and .
30 3 3-/: 3
Ae o4 Jeo—o 4

We arrange the vertices in the diagrams in increasing order from top to bottom.

We usually omit the numbering of the vertices. For given M and M’ we define the

binary operation o on the set of matchings by:

Mo M' = {(z,y') | there exists z € V; with (z,2z) € M and (z,y') € M'}.

In the case of our previous example this is M o M’ = {(1,2)}. And in terms of the
diagram representation:

[ ] L ]
>< ) / - /' - .\'
° /: ° ° ° °

*r— *r—

6.2 The operator algebra A,(k)

We are going to investigate the structure obtained by multiplying and adding the
matrices Sys. Let M = (My, My, i) and M' = (M;, My, ii') be two matchings. For
given o, B € T'y(b), where T'x(b) is the the set of colourings of Kj:

(SmSmr)ap = Z (Srr)ay (Sar)yp = H’Y €Lk | (SM)ay = (Smr)yp = 1}‘

YET ()
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Observe that:  (Sy)ay=1 if y=au™ on M,
and (Swr)yp=1 if ~y=py on M.
It follows that necessary conditions for (Sp S )as # 0 are:
e au =0y on Myn M,
and since <y is an injection:
o o (My\ (My 0 M) 0 A (MY (My 0 MY)) = o
Suppose that o and [ are such that above conditions are satisfied. Then 7 is
completely determined on M, U M . For v on V; \ (M3 U M]) there are
(k—|MyUM{|)(k—|MyUM{|—1)...(k—=b+1)

choices. Recall that we denoted the falling factorial by  fi(d, k) = (k — s)a—s =
(k—s)(k—s—1)...(k—d+1). Hence the above conditions are also sufficient for
(SmSur)ap # 0, and in this case (SyrSur)as = fiamuny| (b, k). Then: (SySwr)ap =
fiassunsz| (b, k) if for all (z,y) € M and (2',y') € M' it holds that

alz) = B(y") ifand only if y =2,
and (SySwm)es = 0 otherwise.

Using the binary operation o on the matchings the first of the above necessary

conditions can be formulated as:

(SMSM’)aﬂ # 0 only if (SMOM’)aﬁ =1

Define the set of matchings Ny = {M | Mo M' C M C M, x M}}. For
example for M = {(1,3),(2,1)} and M’ = {(2,1), (3,2), (4,4)}

SRR
BRI

Lemma 6.1 Let M = (My, My, ) and M' = (M7, M}, u') be two matchings. Then

Numr =

SnSur = (=1)MM fiar0n (b, k) Z (1) Sy,

MENMMI
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Proof: Let o, 5 € ['y(b) be given. We are comparing (SpSur)as to
(DM S (0, 8) D5 (1M (Sp)as
MENMM/
denoted by >_ 5. Let W(q,8) = {(z,9') € My x My | a(z) = B(y')}. Then
(Syr)ap = 1 for any M € Ny only if M C W (a, 8), and (Sy)as = 0 otherwise.

We have to consider three cases:
(i) If Mo M' & W(a, B) clearly both (SpSwm)as and 5 are equal to zero.

(ii) If M o M" = W(a, ) from the argument preceding the lemma it follows that
(SmSmr)ap = fimunrg (b, k). In the sum »_ 5 we have (Sy;)as = 1 only if M =
M o M'. Hence follows equality.

(iii) If M o M' C W (e, B) then (SpSwmr)as = 0. And in the sum ), it holds that
(Syr)as =1 only if M C W (e, ). Tt follows that:

> O Sidas = D ()M

MEeN MoM'CMCW (a,3)

= (_1)\M0M'|(1 _ 1)(|W(a,ﬁ)\—|M°M’D_

This completes the proof. O

Corollary 6.2 For every integer k the operators Sy with M C Vi, X Vi, a matching

form an algebra Ay(k) over C. O

6.3 A minimal generating set

In this section we find a minimal generating set for 4,(k). Clearly there is a one-
to-one relationship between the matchings of size b and the elements of Sym,. For
any w € Sym, the corresponding matching is defined as M, = {(w(y),y) | v =
1,2,...,b}. Observe that if we write M,, as a triple (My, My, 1) then p = w™L.

Lemma 6.3 For any w and T in Symy, the following holds: M, o M, = M, .
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Proof: Recall
M,o M, = {(x,y) | there exists z € V}, with (z,z) € M, and (2,y) € MT}

where (z,z) € M, if x = w(z), and (z,y) € M, if z = 7(y). Thus (z,y) € M, o M,
if . = w(7(y))- O

Let 0 =(123...b) and ¢ = (12). The corresponding matchings are:
M, ={(2,1),(3,2),...,(b,b—1),(1,0)}
and M, =1{(1,2),(2,1),(3,3), (4,4),...,(b,b)}.

Then, for example My o M, = My, = {(3,1),(2,2), (4,3),(5,4),...,(1,b)}. From
Lemma 6.1 it follows that Sy Sy, = Smyom, = Sum,,. Since o and ¢ generate
Sym,, it follows that M, and M, generate all matchings of size b. And thus, Sy,
and Sy, generate every Sy with |M| = b.

For any X C V, denote by Mx the following matching

Mx ={(y,y) |y € Vo \ X}.

Then My, is the empty matching and My = M, the “identity matching”. If
X = {z} we write M,.

Choose any two z and y in V}, and any w € Sym, such that w(y) = z. Then
My, 0 M,oM,=M,.

From Lemma 6.1 it follows that Sy, = Sa_, Sa, Sa,- Then, for some given z € V,
every matching M with |[M| =b — 1 can be written in the form M, o M, o M, for
some v, 7 € Sym,. And Sy = Snr, Sn, S, -

Lemma 6.4 The set {Su,, Su,, Sm, } for any given x € V4 is a generating set for

the algebra Ay(k)

Proof: We will use a proof by induction on the size s of the matchings. The base

step is given by the argument preceding the lemma for s = b. Suppose now that
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for some 0 < s < b all Sy with |M| > s are generated a by finite product of
the elements in {Sy,, Su,, Su,}- Let M’ be any matching with |M'| = s — 1.
Let M be a matching of size s containing M'. That is, M = M’ U {(%, )} for
some (2,7) ¢ M! x M,. Then Mz o M = M’ and by Lemma 6.1 it follows that
Sm, Sy = Smr + >, where Y is a linear combination of Sy, with |[M| > s. This

completes the proof. O

This implies that for every integer £ and every matching M there exists a poly-
nomial Fj; over C in three non commutative variables (,, (4 and (; such that
Fr(Sw,, Sy Sm,) = Sy For example Fu,, = (:Cp- Then Theorem 3.6 can be
written as

T = Z (=)™ Fas(Swt, s Sar, Su,)-
MeM(L)

Example 6.1: Let b = 3. We write for example F 95 rather than Fy 1y 2,2} or

FMm- Then F11’22’33 = C(i and F11,22 = 43. It is convenient to use the diagrams in

*——0 *—=0
order to obtain the F),. For example if M3 = e—— and M; =e e then
[ ] [} *r—-

*—0
M(TOMUOME;OMJZW:. ..
*—0

From Lemma 6.1 it follows that Fi; 33 = C§F11,22<a = <3<3<0 and similarly Fy 33 =
Cagsfi-

*——0 *r— *r—2 o——

FOI‘MQZ ° ° andM3: *—e theSGtNM2M3— ° e, o
./:

*r— [ J [ J [ ] [ J

*—
With o = WzMgon)oMgoMgoMs
/: o
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and from Lemma 6.1 it follows that:

Fii = Fii33F1 90 + Ca<¢C3C3 = C§<3<0<3 + CJC¢C3C3,
Fy = CaFuCg, F33 = C3F11Ca and
Fo =Fi1Fy/(k—2)4+ Fio = FiiFn/(k—2)+ Fi1(s

For L ={(1,1),(2,2),(3,3)}, the identity linking set, we obtain the graphs B, (3)
(see Example 3.1). The chromatic polynomial has been obtained in Example 3.8.

With the above, the matrix 77, is equal to
Fy — (Fi1 + Fog + Fs3) + Fii92 + Fi133 + Foo 33 — Fl1,22.33

evaluated at Sy, Sy, and Spy.

Observe that if ¢Sy = SprSyr then |M| < min (|M|,|M']), where ¢ € C. Tt follows
that for every 0 < £ < b the set of Sy with |[M| < /£ generates a subalgebra of
Ay (k).

6.4 The operator algebra A, (k)

Recall that each S), is equivalent to a matrix of the form

P e Uy,

0<£<b
=L

where I, is the identity matrix of size equal to the dimension of the Specht module
S”k, and U, is a matrix of size (Z) n, with entries depending on k. From Lemma 6.1

it follows that:

Lemma 6.5 Let @ = £ for some 0 < £ < b. For any integer k and any two

matchings M and M' in Vi, x V, we have

Un ULy = (=)Mo (b,k) > (=1 Uz,

MENMMI

The set of the Uy, (k) forms an algebra A (k) over C. O



6.4. THE OPERATOR ALGEBRA A, (k) 153

Lemma 6.6 Let w+ £ for some 0 < £ < b. For any integer k the algebra A (k) is
isomorphic to the quotient algebra Ab(k)/ <SM ‘ |M| < £>, where <SM ‘ |M| < €>
is the subalgebra generated by all Sy with |M| < £.

Proof: The result follows from the observation that Uy, is the zero matrix if

M| < <. O

From Lemma 6.4 follows that:

Corollary 6.7 Let 7 ¢ for some 0 < ¢ <b. The set {Uf; , Uf; ., Ujy, } for some

x €V, is a generating set for the algebra A, (k) a

Clearly the polynomials F; over C in three non commutative variables (,, (, and

(, introduced in the previous section satisfy the condition that

FM(SMU: SM¢a SM;C) - SM

then
Far(Uzy, s Uht,» Up,) = Uy
with the extra property that Fy (Uy, , U}%, Uyy,) is the zero matrix if (M| < £.
Further it is the case that
Ni= Y (-)MFPu(U,, Us,, Ur)-
MeM(L)
The problem of calculating all the Uj, for a given b and 7 is thus equivalent to

finding the relevant Fi; and the three matrices Uy , Uf, and Uf,, .

Example 6.2: In Example 6.1 we obtained the polynomials for b = 3 and the
identity linking set. The matrices Uy, , Up, and Ujy, for all 7 shown in Table 6.1

on Page 154 have been obtained in Example 3.7. Then N7 is equal to
Fo — (Fi1 + Foo + Fs3) + Fiigo + Fiiss + Faoszs — Fli033

evaluated at Uf,_, Uy, 5 and Uy, . It can easily be checked that the matrices obtained

here agree with the ones in Example 3.8.
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Ut Ul, Uit
=) 1 1 k-2
0 01 010 k—2 0 —1
T = (1) 100 100 0 k-2 -1
010 0 01 0 0 0
010 1 00 k-2 -1 -1
T =(2) 0 01 0 01 0 0 0
100 010 0 0 0
0 -1 0 -1 00 k—2 -1 1
7= (12) 0 0 -1 0 01 0 0 0
1 0 0 0 10 0 0 0
m=(3) 1 1 0
0 1 01 00
T = (21)
-1 -1 10 00
7= (1) 1 -1 0
Table 6.1: The matrices Uf; , Uy, and Ufy, in the case b =3
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6.5 The level b — 1 for the identity linking set

Let 7 = b — 1. Then Uj, is the all zero matrix if |[M| < b — 1. For L =
{(1,1),(2,2),...,(b,b)} it follows that

N = (-1 (S UR, - UR,)

eV,

where M, is the identity matching of size b, and Uy, is the identity matrix.

Every matching M of size b — 1 can be written as M = M, M, for some w € Sym,
and some z € Vj. Then for any y € V}, we have to consider two cases: If y =«
then M o My, = M and Ny, = {M}. Otherwise M o M, = M,, o My, which is
of size b — 2, and Nyn, = {M,, 0 My, M, 0 Mz, 0 My}. From Lemma 6.5 it

follows that:
(k—b+1)U;, ifzx=y

UMUMy =
_UMw(m)oMy otherwise.

Example 6.3: Let b=3 and 7 - 2:

——eo o—o —o —o
(Z) —o OC¢—o — &——o, NM3M3= *———o

° e o ) ° ° ° °
and  UR,Uf, = (k — 2)Uf,.

—eo o— o —o ——9o o—o
(ZZ) o—eo Co e — e o, NM3M2: ° o, °

° ° ——eo ° ° ° ° o\'
and  UTLUR, = =Uly,om,

— o o—+o —+o — o
(i41) e0e o= . Ntiagy0M500, = .

:\' *——e ° :\0
and U]7\r4(23)0M2U17\r42 = (k - 2)U]7\T4(23)OM2'

*r— o6—o o—° r— o—°

(iv) \: Ceo——o = o o, NM(23)0M2M2 = ° e ,0—o
°
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T T T
and Ubtiagyort, Uty = —Ulyy-
*— L ] [ ] [ ] [ ] [ ] [ ] .\:
(U) .\: e T \: ’ NM(23)OM2M1 - .\: ,\.
[ ] *r—° [ ] [ ] [ ]
KO ™ — KO — ™
and UM(23)0M2 UM1 - UM(23)(12) oMi — UM(132)OM1 .

(U’i) § Ceo—eo — o . y NM(132)0M1M3 = :\: ,:><:

T T _JJ7 = -UT
and UM(132)0M1UM3_ UM(132)(13)°M3_ UM(12)°M3'

Example 6.4: (The case b = 3 continued.) In the previous example we saw that
the product Uj,U7, is independent of the choice of 7 = 2 and hence we write Uy,

instead Ug,. Let Hy = Uy, 4+ Upp, + Upg,. Then:

HH, = (k—2)H, — Hy, where

Hy = Unypyomty + Untgypyorty, + Untyayonty + Untygyonts + Untigsyonss + Unigygyonts;
H)H, = (k—2)Hy — H; —2H; where

H; = UM(123)0M1 + UM(123)0M2 + UM(123)0M3 + UM(132)0M1 + UM(132)0M2 + UM(132)0M3;
H;H, = (k—2)H3; — Hy —2H,;  where

Hy 1 = Unmypyoms + Ungysyoms + Untygyomys

and Hg,lHl = (k‘ - 2)H2,1 - H3.

This can be written as

k—2 -2 0 0 0 2 0 O
-1 k—2 —1 0 1 0 1 0

= (k—2)]— ,
0 —1 k—2 -1 0 1 0 1
0 0 -2 k—2 0O 0 2 0

where [ is the 4 x4 identity matrix. The second matrix on the right has eigenvalues
2,1, —1 and —2. It follows that H; has eigenvalues k, k — 1, £k — 3 and k£ — 4 and
thus the eigenvalues of Ng) and Ngz) arek—1,k—2,k—4and k—5.



6.5. THE LEVEL b — 1 FOR THE IDENTITY LINKING SET 157

Let us now generalize these results for general b € N. Define the following two

operations on the set of partitions A of b:

e For any two distinct nonzero parts \; and ); denote by A\V% the partition

obtained by joining the part A; and );. For example (5,3,2% 1)*V? = (5%,2,1).

e TForany )\; and 1 < ¢ < \; denote by A%}~ the partition obtained by splitting
the part )\; into a parts of size \; — g and ¢. For example (5, 3,22, 1)*" = (5,23,1?).

For the rest of this section we assume that all permutations are written as the
product of disjoint cycles. Let w € Sym, and let z, y € V,. We consider the

product w(zy). There are two cases:

e If z and y are in the same orbit under w we can write

w=w(xaiay...0a;—1Yaq41 - - - a;) for some @ € Sym,. Then
w(zy) = W(zaras .. .a41Yagt1 - - - a;)(TY) = W(Tag110g+2 - - - ;) (Ya1ay . . . ag—1).

e If x and y are in different orbits under w we can write w = W(ajay ... a;—17)

(b1by . ..b,_;y) for some @ € Sym,. Then
w(zy) = w(aiay ... ag—12)(biby ... by_iy)(zy) = W(xbiby . ..by_1yaias .. . az—1).
A conjugacy class of Sym, is a subset of Sym, containing all permutations with a
certain cycle type. Hence there is a natural bijection between the conjugacy classes

of Sym, and the partitions A of b. Denote by C, the conjugacy class corresponding

to A. For any w € Cy and any z,y € V} it follows by the above arguments that:

e w(xy) € Cyanri—q if x and y are in the same orbit of size A\; and w?(z) =y or

Wit (z) = y.

e w(zy) € Cyxwy; if o and y are in different orbits of respective size A; and A;.

Since Uj,U7, is independent of the choice of 7 - b — 1 we write Uy, instead of Uj;.

For any w € Sym, and 1 <7 <b let

X(w,i) = {z € V} | z is in an orbit of length i under w}.
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Define the operators

HXND) =Y > Uwmon,.

weC)  TEX(w,i)

For example in Example 6.4 we can write: H; = H((1%),1), Hy = H((2,1),2),
H; = H((3),3) and Hoy = H((2,1),1).

Lemma 6.8 Let w € Cy for some partition X\ of b. Let x € V, be in an w-orbit

under w of size i, and let y be any vertex in Vy. Then Uy, on, U, 5 either:

e cqual to (k—b+ 1) Upn,om, if x =1y, or

o aterm in H(M\VX N+ );) if y is in an orbit under w of size \; not containing

x, or

o a term in H(A""4 q) where wi(x) = y.

Proof: Recall from the beginning of this section:

(k—=b+1)UF, ifzx=y
UunUry =
’ -U Mo (o.0y0My otherwise.

The first two cases follow directly from the argument preceding the lemma. For

the case when = and y are in the same orbit of w, recall that

w(zy) =w(za1ay . .. Gg_1Yagi1 - - - a;)(2Y) = D(Tagi10ps2 . .. a;)(yaras . . . ag—1).

Hence, y is in a orbit of size ¢ if w?(z) = y. O

Lemma 6.9 Let A\ be a partition of b. Let \; and \; be two non-zero parts with
i # j, but possibly \; = \;. Then every term in H(AV X, + );) can be written
as Unom,Unm, where w € Cy, z € Vj, 1s in an orbit under w of size \; and y € V,

is in an orbit under w of size \; not containing x.
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Proof: By definition every term in H (A%, \; + ;) is of the form Unm,om, for
some 7 € Cy»va; and y in an orbit of 7 of size A; + A;. Let z be the element in the

orbit containing y such that 7% (z) = y. Then
T = ?(alag SR 75 W /110 WS, R a)\ﬁ,\j,ly)
=T7(a1ag - .- ax17)(@r 41 - - - Anr; 1Y) (TY)

for some T € Sym,. Let w = T(a1as...ax,-1Z)(ax41--.0x42,-19). Then w € Cy

and the result follows. O

Lemma 6.10 Let X be a partition of b, and \; be a non-zero part. For any 1 <
g < \i—1 every term in H(A"~9 q) can be written as Upr,on,Un, where w € Cy,

x,y € Vi are in an orbit under w of size \; and wi(x) = y.

Proof: By definition every term in H(A?*~4, q) is of the form Uy, on, for some
T € Cyanr;—e and y is in an orbit under 7 of size q. Choose any of the orbits under
T of size \; — ¢ not containing y, and denote one of the vertices in this orbit by z.
Then
T =T(a10z . .. ax—q—1Z)(Ax,—g41 - - - Ax;—1Y)
=T(a103 - .. Qx—q 1A —gt1 - - - Ox—1Y) (2Y)

for some 7 € Sym,. Let w = T(a1as...0)5_¢—120x—g+1---0x—1Yy). Then w € C,

and the result follows. O

Theorem 6.11 Let A be any partition of b, and \; be any non-zero part. Then

HON) H((19),1) = (k—b+1) H((1°),1) = > HOMY, A+ )

A 'dist.inct
in size
Ai—1
- Z T(/\q/\/\iiqa AZ - Q) ()\’L - Q) H()‘q/\)\iiqa Q)
g=1

where r(ANi~9.\; — q) is equal to the number of parts of size \; — q in N\~ if
\i —q # q, and is equal to the number of parts of size \; — q in \"*~9 minus one if
Ai —q = q. The first sum in the above equation is over all parts \; in \ of distinct

size. This includes the possibility that \; = \; with j # 1.
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Proof: This result follows from Lemma 6.8, Lemma 6.9 and Lemma 6.10. The
factors in the second sum follow from counting in the proof of Lemma 6.10 the
number of ways to choose an orbit under 7 of size A\; — ¢, and the number of ways

to choose z in this orbit. O

For any given integer b denote by M (b) the operator on the space spanned by the
operators H (A, \;) such that (kK — b+ 1)I — M(b) is the operator corresponding
to the multiplication on the right by H((1%),1) as given in the previous theorem.
Here I is the identity operator.

Example 6.5: Let b = 4. There are five partitions of 4: (1%), (2,1?), (22), (3,1)

and (4), and thus there are seven operators:

H((1%),1), H((2%),2), H((3,1),3),
H((2,1%),2), H((2,12),1) and

H((3,1),1),
H((4),4).
Then

H((1%),1) H((1%),1) = (k = 3)H((1*),1) — H((2,1%),2);

H((2%),2) H((1),1) = (k = 3)H((2%),2) — H((4),4) — H((2,1%),1);

H((3,1),3) H((1"),1) = (k — 3)H((3,1),3) — H((4),4) — 2H((2,1?),2)
—2H((2,1%),1);

H((3,1),1) H((1"),1) = (k — 3)H((3,1),1) — H((4),4);
H((2,1%),2) H(1"),1) = (k = 3)H((2,1%),2) — H((3,1),3) — 3H((1%),1);
H((2,1%),1) H((1"),1) = (k = 3)H((2,1%),1) — H((3,1),3) — H((2*),2);

H((4),4) H((1"),1) = (k — 3)H((4),4) — H((3,1),3) — 3H((3,1),1)
—2H((2%),2).
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Then M (4) is equivalent to the following matrix:

[0 0 0 0 3 0 0)
00 0 0 0 1 2
00 0 0 1 1 1
00 0 0 0 0 3
1 0 2 0 0 0 0
01 2 0 0 0 0

\0 1 1 1 0 0 0)

Its eigenvalues are £3, £2, +1 and 0. Thus B,(4) has eigenvalues k, k — 1, k — 2,
k—3,k—4,k—>5and k — 6 at level 3.

In general, N.L. Biggs conjectures the following.

Conjecture 1 Let b be an integer. Then the level b — 1 eigenvalues of B, (b) are

k, k—1, k—2 ..., k—(b—1).

The rest of this section is joint work with Jan van den Heuvel. Observe that M (4)

is equivalent to a matrix of the form:

where O are a all-zero submatrices and * are submatrices with integer entries.
In general, if X\ is a partition of b with an odd number of non-zero parts then
H (X X)H((1%),1) is a linear combination of H (i, i1;) where p has an even number

of non-zero parts, and vice versa. It follows that:

Lemma 6.12 Let b be an integer. Then M (b) is equivalent to a matriz of the

form:

O | A
B | O
where A and B are submatrices with integer entries of sizes m X n and n X m

respectively, and O are all-zero submatrices. O
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Corollary 6.13 Let b be an integer. If X is an eigenvalue of M(b) then —\ is also

an eigenvalue of M(b).

Proof: With Lemma 6.12 we can assume that M (b) is of the form:

0O A
B 0O

where O are all-zero submatrices and A and B are submatrices with integer entries

of sizes m x n and n X m respectively. Suppose that A\ is a non-zero eigenvalue of

v
M (b) and is the corresponding eigenvector where v and u are the subblocks
u

in sizes m and n respectively. From

0O A v Au )\v
B O U Bv U

it follows that Au = Av and Bv = Au. Since A is non-zero it follows that v and u

are non-zero. And thus

O A v —Au —\v 5 v
B O —u Bv Au —u
v
That is is an eigenvector of M (b) with eigenalue —\. O

Lemma 6.14 Let b be an integer. Then a matriz corresponding to M (b) has con-

stant row sums equal to b — 1.

Proof: Let A be any partition of b and A, be any part in A. Let p be an other
partition of b. Then
H(p"%5 s+ ) = H(A, Ap)

if and only if A is p#V# for some parts y; and p; with p; + p; = Ap. The number
of pairs (y;, pt;) such that p; + p; = A, is equal to A, — 1.

Further:
H(p™™1, q) = H(\,\p)
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VAp

if and only if ¢ = |\,| and p is equal to AV*» for some part A;. For each such p

there is an operator H (), \,) with coefficient r(u*»"%, ;) (A;). The sum of all this

coefficients over all such p is equal to

Z)‘j =b— [X]
A
J#i

It follows that the row sum of the row corresponding to H(A, \,) is equal to
b— ||+ M| —1=0-1.

Since this holds for all choices of A and A, the result follows. O
Corollary 6.15 Let b be an integer. Then M (b) has eigenvalues +(b — 1).

Proof: From Lemma 6.14 follows that the all-one vector v is an eigenvector with

eigenvalue b—1. From Corollary 6.13 follows that 1 —b is also an eigenvalue. a



Appendix A

Newton’s formula

Suppose that p(x) is a polynomial of degree d with coefficients a; € R:
d
p(z) = Z ag; "
i=0

The sum of the n'™ powers of the roots of p(x) is A, where A, satisfies

n—1
Ap=-na,— > a; Ap (1<n<d)
i=1
d
and A, == a;An—; (n > d).
i=1
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Appendix B

The H-series catalogue

In this section all the matrices N™ for all levels corresponding to the graphs Hj,,
HE, , HYy, HY, HY, HE,, HY,, His., H3,, and HI,, are given. In all the graphs
rows corresponding to sets Y containing 2 are all-zero. These rows are omitted in

the following.

1) The graph Hy,

Let
fa=k(k—1)(k—2)(k-3), f3=(k—1)(k—2)(k-3),

fo=((k=2)(k-=3), fi=(k-3).

Level 0: NL)L = f4 - 3f3 + 3f2 - fl-

Level 1:
—fs+2fo—f fo— N1 fo—2f1+1 fo—f
Nﬁ)z 0 0 0 0
Jfo—fi —fs+2fo—fi fo—2f1+1 fo—f
Jfo—fi fo— i fo=2fi+1 —f3+2fo—f

165



APPENDIX B. THE H-SERIES CATALOGUE 166

Level 2: The transpose of Nfj is

(0 (= f)R"(9  —fR(E™ 00 —fiR7(12)
0 (=fi+DR"(e) (fi+1)R"(e) 0 0 R"(e) + R™(12)
0 —f1R"(e) (f2 = fi)R™(e) 0 0 —f1R"(¢)

0 (=fi +1)R™(12) R"(e)+R™(12) 0 0 (=fi+1)R"(e) |
0 —fAR(12) —fiR"(e) 0 0 (f2— fi)R"(e)
\0 R7(e)+R"(12) (=fi+1)R"() 0 0 (—fi+1)R"(e))

where R®(¢) = R19(e) = R?(12) = 1 and R1V(12) = -1,

Level 3:
0 O O 0]
. 0 O O 0]
N44 = )
R™(e) —fiR™(e) R™(e) R™(12)
O O O O

where R® (e) = R®(12) = R*)(e) = 1, R0*)(12) = —1 and O is equal to 0. Or,

if m=(2,1) then
e =), e = (]
01 10

and O is the 2 x 2 all-zero matrix.

2) The graph Hy3,

Let
fa=k(k—1)k—-2), fo=((k-1)(k-2), fi=(k-2).

Level 0: NY. =f;—3fo+3fi—1.
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Level 1:

—fo+2fi—1

0
fi—1
fi—1

1
N4£331 =

Level 2:

[ 0
(f1 = 1)R"(¢)
—R"(e)
0
0

\ —R"(12)

o __
N43a -

where R® (¢) = R1)(¢) = 1.

Level 3:

and O is the 2 x 2 all-zero matrix.

3) The graph H,3,

Let

fi—1
0

—fo+2fi—1

fi—1

0
—R"(e)
(fi = )R (e)
0
0
—R"(e)

fo=(k—=1)(k-2),

167

fi—1
0
fi-1
—f+2fi—1

o)
—R"(12)
—R"(e)

0

0

(fi =1)R"(e)

fi=(k—-2).
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Level O: Ngb = f3 —3fa +2f1.

Level 1:
_f2+2f1 f1 f1—2
0 0 0
N =
fi —fo+fi fi—1
fi —fo+fi fi—1
Level 2:

Np, = | O —FQ —R2)

0 0 0 ’
0 0 0
\ 0 0 0 )

where R®)(e) = R")(e) = 1 and RO)(12) = ~1.

4) The graph Hy,

Let
fo=k(k=1), fi=(k-1).

Level 0: Ng = fo—3f1 +2.

Level 1:
—fi+2 1
0 0
1
NL) =
1 —fi+1
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Level 2:
[0 )
R™ ()

. R"(e)
N42 = )

where R®(e) = R0 (e) = 1.

5) The graph Hj,

<P

3 4

Let
fa=k(k—1)(k-2)(k-3), f3=(k—1)(k—2)(k-3),

fo=(k—-2)(k=3), fi=(k-23).
Level 0: N = f; — 3f; + 2fa.
Level 1:

—fs+2fo—fi —fat+2fe—fi 2fo—2f1 2fs
NiY = 0 0 0 0

fo— fi fo—f1 fa=2f1 —f3+2f

Level 2: The transpose of Vg, is

—
)

—f1(R™(e) + R™(12)))
(=fi + 1)R™(¢) + R™(12)
(f2 = f1)R™(e)
(—fi+1)R™(e) + R™(12)
(fo = f1)R"(e)

\0 2 R7(e) 0)

o o o O
o o o o o
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where R®) () = R*)(e) = R¥(12) =1 and R*)(12) = ~1.

6) The graph Hs;,

Let
fa=k(k—1)k—-2), fo=((k-1)(k-2), fi=(k-2).

Level 0: N = fs —3f, + 2.

Level 1:
—fo+2fi—-1 —fo+2fi—1 2f1
N§) = 0 0 0
Ji—1 fi—1 —fo+2f1
Level 2:
0 0 0
Ny = [ —R™(e) — R"(12) (fi —1)R"(e) (fr —1)R"(e) |-
0 0 0

where R®)(e) = R*)(e) = R?(12) =1 and RM)(12) = ~1.

7) The graph Hss,

Let
fa=k(k—1)k—-2), fo=((k-1)(k-2), fi=(k-2).

Level 0: Né;b = f3s—3fs+ fi.

Level 1:
—fo+2fi —fo+fi 2fi—-1
N = 0 0 0
fi —fo+fi fi—1
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Level 2:
0 0 0
N3y, = | fiR™(e) —R"(e) —R"(12) |,
0 0 0

where R®)(e) = R0?(e) = R?(12) = 1 and ROV(12) = ~1.

8) The graph Hs;,

Let
fs=k(k—1)(k=-2), fo=(k-1(k-2), fi=(k-2).

Level 0: N = fi—2f+ fi.

Level 1:
—fo+ fi fi fi—1
Ngl=1 0 0 0
fi —fo+fi i—1
Level 2:
0 0 0
Ngs. = | fiR"(e) —R"(¢) —R"(12) |,
0 0 0

where R® (¢) = R4 (e) = RP(12) =1 and R*)(12) = —1.

9) The graph Hs,,

Let
fo=k(k-1), fi=(k-1).
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Level 0: N = fo—3fi +1.

Level 1:
-fi+2 —fi+1
Nim=| o0 0
1 —-fi+1
Level 2:
0
N?ZTZa = RW(G) )
0

where R®(e) = R0 (e) = 1.

10) The graph Hjy,

Let

fo=k(k—=1), fi=(k-1).

Level 0: N, = fo—2fi+1.

Level 1:
—-fi+1 1
Na=1| o 0
1 —fi+1
Level 2:
0
Ny = | R™(12) |
0

where R®(12) =1 and R (12) = —1.
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The reduced matrices for level 2

In this section the reduced matrices N, for level two with 7 = (2) and 7 = (1?)

for the graphs
(558),, (468),, (477),, (567), and (666),
are given. The rows and columns correspond to the pairs of independent sets:
{1,3}, {1,4}, {3,4}, {13,4}, {1,24}, {1,3}, {24,3}, {14,3} and {13,24}.

As before ¢ = k — 2. The graph (558),:

(—c+2  —c+1 2 -1 -1 ¢ -1 -1 1

—c+2 c¢(c—1)—c+1 —c+2 ¢—1 -1 ¢ -1 0 1

2 —c+1 —-c+2 -1 0 0 0 -1 0

—c+3 ¢lc=1)—c+1 -2¢+2 ¢—-1 -1 ¢ -1 -1 1
Ngw=|-ct2  —c+1 2 -1 —1¢ -1 -1 1

—c+2 ¢lc—1)—c+1 —c+2 ¢—1 -1 ¢ -1 0 1

2 —c+1 -c+2 -1 0 0 0 -1 0
—c+3 —2c+2 —-c+3 -2 -1 ¢ -1 =11
\—c+3 clc-1)—c+1 —2c+2 c—1 -1 ¢ —1 —1 1)
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(—c+2 —c+1 2 1 -1 ¢ -1 -1 1
—c+2 ¢lc—=1)—c+1 —c+2 ¢c—1 -1 ¢ =1 0 1

2 —c+1 —¢+2 -1 0 0 0 -10
—c+3 ¢lce=1)—c+1 =2¢+2 ¢—1 -1 ¢ -1 -1 1

Mg = | —cx2 —c+1 2 1 -1 ¢ -1 -1 1
—c+2 ¢lc—=1)—c+1 —c+2 ¢c—1 -1 ¢ =1 0 1

2 —c+1 —¢+2 -1 0 0 0 -10

—c+3 —2c+2 —c+3 -2 -1 ¢ -1 —-11

\—c+3 clc—1)—c+1 —2c+2 c~1 -1 ¢ -1 -1 1

The graph (468),:

[ 2 —c+1 —c+2 -1 0 0 0 -1 0)
—c+2 (¢c—1)?2 —c+2 ¢c-1 -1 ¢ -1 0 1
c42 —e+1 2 1 -1 ¢ -1 -1 1
—2+2 (c—1)2 —c+3 ¢c—1 -1 ¢ —1 -1 1
Nigs = 9  —c+1 —c+2 -1 0 0 0 -1 0
—c+2 (¢c—1)2 —c+2 ¢c-1 -1 ¢ -1 0 1
—c+2 —c+1 2 -1 -1 c¢c -1 -1 1
—c+3 —-2¢+2 —(¢c+3 -2 -1 ¢ -1 -1 1

(0 ¢-1 c¢-2 1 0 0 0 -1 0)
c—2 —(¢c-12 ¢c—2 —¢c+1 1 —¢ 1 0 -1
c—2 c—1 0 1 1 —c 1 1 -1
2c—2 —(c—=1)?% ¢—=1 —c+1 1 —¢ 1 1 -1
Ned=1 o c-1 e¢-2 1 0 0 0 -1 0
c—2 —(c—1)?2 ¢-2 —¢c+1 1 —c 1 0 -1
c—2 c—1 0 1 1 —c 1 1 -1
—c+1 0 c—1 0 -1 ¢ -1 -1 1
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The graph (477),,:

(—c+2 (c—=1? —c+2 ¢c—1 -1 ¢ -1 0 1

9 —¢+1 —c+2 -1 0 0 0 -1 0
—e4+2 —c4+1 2 -1 -1 ¢ -1 -1 1

—c+3 —2¢+2 —(c+3 -2 -1 ¢ -1 —-11

N2 =| —c+2 (=12 —c+2 ¢c—1 -1 ¢ -1 0 1
9 —¢+1 —c+2 -1 0 0 0 -1 0

42 —c4+1 2 -1 -1 ¢ -1 -1 1

—2+2 (c—1)2 —c+3 c—1 -1 ¢ —1 -1 1

\—c+3 ~2c+2 —c+3 -2 -1 ¢ -1 -1 1)

c—2 —(c—=1? ¢-2 —c+1 1 —¢ 1 0 -1
0 c—1 c—2 1 0 0 0 -1 0
—c+2 —c+1 0 —1 -1 ¢ -1 -1 1
—c+1 0 c—1 0 -1 ¢ -1 -1 1
NS;) =l c-2 —(¢c—-1? ¢-2 —¢+1 1 —-¢ 1 0 -1
0 c—1 c—2 1 o 0 0 -1 0
—c+2 —c+1 0 -1 -1 ¢ -1 -1 1
2c—=2 —(¢c—=1? ¢-1 —c+1 1 —¢ 1 1 -1
\—c+1 0 c=1 0 -1 ¢ -1 -1 1)

The graph (567),:

[ct2 —c+1 2 1 -1 e -1 -1 1)

2 —c+1 —c+2 -1 0 0 0 -1 0

—c+2 (¢c=1)? —¢c+2 ¢-1 -1 ¢ -1 0 1

—c+3 (c—1)? —2¢+2 ¢c-1 -1 ¢ -1 -1 1
Ng=|-c+2 —e+1 2 -1 -1 ¢ -1 -1 1
2 —c+1 —c+2 -1 0 0 0 -1 0

—c+2 (¢c—1? —¢+2 ¢—1 -1 ¢ =1 0 1

—2c+2 (c—1? —c+3 c—1 -1 ¢ -1 -1 1

\—c+3 (=12 -2+2 ¢c—1 -1 ¢ -1 -1 1
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(0—2 c—1 0 1 1 —c 1
0 —c+1 —c+2 -1 0 0 O
—c+2 (¢—1)?%* —¢+2 ¢-1 -1 ¢ -1
—c+1 (¢—1)?% —-2¢+2 ¢-1 -1 ¢ -1
=1 c—-2 c—1 0 1 1 —c 1
0 —c+1 —c+2 -1 0 0 O
—c+2 (¢c—1)?%* —c+2 c¢c—-1 -1 ¢ -1
2c—2 —(c—1? ¢—-1 —c+1 1 —c 1
\-c+1 (c—1)? -2+2 c—-1 -1 ¢ -1

e T S G S G S e e
—_

The graph (666),:

—2c+2 (c—1)? —c+3 c—1 -1 ¢ -1 -1 1
~32
Negg = 2 —c+1 —c+2 —1 0O 0 0 -120
—c+2 —c+1 2 -1 -1 ¢ -1 -1 1
—c+2 (¢c—1)? —¢+2 ¢—1 -1 ¢ -1 0 1

( 0 —-c+1 —c+2 -1 0 0 0 1 0\
c—2 c—1 0 1 1 — 1 1 -1
c—2 —(c-1? ¢-2 ——c+1 1 - 1 0 -1
2c—2 —(c—-1? ¢—-1 —c¢+1 1 —¢ 1 1 -1
Ns=| 0 —c+1 —c+2 -1 0 0 0 1 0
c—2 c—1 0 1 1 —¢ 1 1 —1
c—2 —(c=1? ¢—2 —c+1 1 —¢ 1 0 -1
e+l (=12 —242 c¢—1 -1 ¢ -1 1 1
\2c—2 —(c-1)? c¢—1 —c+1 1 —c 1 1 -1



Appendix D

Maple programs

D.1 The program EquiDominantPoints

The program EquiDominantPoints has as input a natural number n, two polyno-

mials f(A, z) and g(A, z) and a real number £ > 0.

It first calculates the resultant det R( fs, g) with respect to A\. This is a polynomial in
s and z with integer coefficients. For each point s; in a given sequence {s;}", C S*

the program evaluates the roots of the resultant and saves them as a list R.

For each of these roots R; the sub-program EquidomOne if f = g or EquidomTwo
if f # g is called. In case of EquidomOne the roots of f(\, R;) are calculated, the
absolute values found and the biggest two compared. If their difference is less than

€ the value R; is saved as P, and k increases by one.

In case of EquidomTwo the roots of f(\, R;) and f(\, R;) are calculated, the absolute
values found and the respective biggest ones are compared. If their difference
is less than & the value R; is saved as P, and k increases by one. In the end

EquiDominantPoints returns the list P lying on the dominant equimodular curves

D(f,g) (or D(f) if f = g).
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EquiDominantPoints:=proc(n,Polyl,Poly2,epsilon)

local Rab,R,S,P,k,i,s;

k:=1;

Rab:=(s,z)->factor(resultant (Polyl(lambda*s,z),

Poly2(lambda,z) ,lambda)) :

if Polyl(lambda,z)=Poly2(lambda,z) then

else

end if;

for S from 1 to n do
R:=[fsolve (Rab(exp(I*S*Pi/n) ,z),z,complex)];
for i from 1 to nops(R) do
P[k]:=R[i];
k:=k+EquidomOne (Poly1,R[i],epsilon);
end do;

end do;

for S from 1 to n do
R:=[fsolve(Rab(exp(I*S*2*Pi/n),z) ,z,complex)];
for i from 1 to nops(R) do
P[k]:=R[i];
k:=k+EquidomTwo (Poly1,Poly2,R[i] ,,epsilon);
end do;

end do;

return([seq(P[i],i=1..k-1)1);

end:

EquidomOne:=proc(Poly,z_0,epsilon)

local r,R,i;

R:=[fsolve(Poly(lambda,z_0),lambda,complex)]; r:=nops(R);

R:=[seq(abs(R[i]),i=1..r)]; R:=sort(R);

if abs(R[r]-R[r-1])<epsilon then return(l) end if;

return(0) ;
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end:

EquidomTwo:=proc (Poly1l,Poly2,z_0,epsilon)
local r1,r2,R1,R2,i;
Ri:=[fsolve(Polyl(lambda,z_0),lambda,complex)];
ri1:=nops(R1);
R2:=[fsolve(Poly2(lambda,z_0),lambda,complex)];
r2:=nops(R2) ;
if abs(max(seq(abs(R1[i]),i=1..r1))
-max (seq(abs(R2[i]),i=1..r2)))<epsilon

then return(1l) end if;

return(0) ;

end:

D.2 The program DomTest

The program DomTest has as input a polynomial f(\, z), a list of points R in C
and a real number € > 0. For each of the points R; the sub-program EquidomOne
is called and the “biggest” two eigenvalues (in modulus) are compared. If their
difference is less than ¢ the point is saved. The program returns a sub-list of R of

dominant points with respect to the polynomial.

DomTest :=proc(PolyAll,R,epsilon)
local i,k,P;
k:=1;
for i from 1 to nops(R) do
P[k]:=R[i];
k:=k+EquidomOne (PolyAll,R[2],epsilon);
end do;
return([seq(P[i],i=1..k-1)1);

end:
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D.3 The program Slices

The program Slices has as input a polynomial f(A, z), two real numbers z,;, and

Tmax With Zyin < ZTnax, a natural number n and a real number y

It evaluates the absolute values of the roots of f(\, z) at the points z = [z; + iy]
where Z; = Tmin + j(Tmax — Tmin)/n for j = 0,1,...,n. It returns the plot of these
absolute values against the values x;. The program can easily adapted to “slice”

along a different line than J(z) = v.

Slice:=proc(Poly,xmin,xmax,n,y)

local x,i,j,R1,R2,P;

for j from 0 to n do
x:=xmin+j* (xmax-xmin) /n;
R1:=[fsolve(Poly(lambda,x+y*I),lambda,complex)]:
for i from 1 to nops(R1) do R2[i,j]:=x+I*abs(R1[i]);
end do;

end do;

for j from 1 to nops(R1) do
P[j]:=complexplot([seq(R2[j,i],j=0..n)],

axes=boxed, color=black):
end do;
print(display(seq(P[j],j=1..nops(R1))));

end:
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