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Abstract

This paper concerns the use thfeshold decision list$or classifying data into two
classes. The use of such methods has a natural geometrical interpretation and can be ap-
propriate for an iterative approach to data classification, in which some points of the data
set are given a particular classification, according to a linear threshold function (or hyper-
plane), are then removed from consideration, and the procedure iterated until all points are
classified. We analyse theoretically the generalization properties of data classification tech-
nigues that are based on the use of threshold decision lists and the subctadsilefel
threshold functionsWe obtain bounds on the generalization error that depend on the levels
of separation — omargins— achieved by the successive linear classifiers.



1 Introduction

This paper concerns the usetbfeshold decision listir classifying data into two classes. The

use of such methods has a natural geometrical interpretation and can be appropriate for an iter-
ative approach to data classification, in which some points of the data set are given a particular
classification, according to a linear threshold function (or hyperplane), are then removed from
consideration, and the procedure iterated until all points are classified. We analyse theoreti-
cally the generalization properties of data classification techniques that are based on the use of
threshold decision lists and the subclassitilevel threshold functiondVe obtain bounds on

the generalization error that depend on the levels of separation mamins— achieved by

the successive linear classifiers. The results we obtain are easily modified to give generalization
bounds forperceptron decision treg47, 6], improving upon previous such results.

1.1 Threshold decision lists

Suppose that’ is any set of functions fronR™ to {0, 1}, for some fixedn € N. A function

f:R* — {0, 1} is adecision listbased on¥' if it can be evaluated as follows, for sorhes N,

some functiond, fa, ..., fx € F, somecy, ca, ..., ¢ € {0,1}, and ally € R™: if f1(y) = 1,

then f(y) = c;; if not, we evaluatef,(y), and if fo(y) = 1, then f(y) = co; otherwise we
evaluatefs(y), and so on. Ify fails to satisfy anyf; then f(y) is given the default value. We

can regard a decision list based Bras a finite sequence

f: <f1,cl); (f27c2)7"'7 (f?“ucr)u

such thatf; € F andc; € {0,1} for 1 < i <r. The values off are defined by (y) = ¢; where
j =min{: | fi(y) = 1}, or 0 if there are ng such thatf;(y) = 1. We call eachf; atest and
the pair( f;, c¢;) atermof the decision list. Decision lists were introduced by Rivest [15], in the
context of learning Boolean functions (and where the tests were conjunctions of literals).

Afunctiont : R* — {0, 1} is athreshold functiorif there arew € R™ andf € R such that

where(w, z) is the standard inner product ofandz. Thus,t(x) = sgn({w, x) — ), where
sgn(z) = 1if z > 0 andsgn(z) = 0if z < 0. Given suchw andd, we say that is represented
by [w, 8] and we writet «— [«, §]. The vectorw is known as thaveight vectorandd is known



as thethreshold Geometrically, a threshold function is defined by a hyperplane: all points lying
to one side of the plane and on the plane are given the valaed all points on the other side
are given the value.

Threshold decision listare decision lists in which the tests are threshold functions. (These have
also been calledeuraldecision lists [12] andinear decision lists [20].) Formally, a threshold
decision list

f = (f1761)7 <f2702)a ey (fr‘acr)

has eacly; : R" — {0, 1} of the form f;(x) = sgn({w;, ) — ;) for somew; € R™ andd; € R.
The value off ony € R™is f(y) = ¢; if j = min{i | f;(y) = 1} exists, o10 otherwise (that is,
if there are ngj such thatf;(y) = 1).

There is a natural geometrical interpretation of the use of threshold decision lists. Suppose we
are given some data pointslitt’, each one of which is labelédor 1. Of course, since there are

very few threshold functions, it is unlikely that the positive and negative points can be separated
by a hyperplane. But we can use a hyperplane to separate off a set of points all having the same
classification (either all are positive points or all are negative points). These points can then be
removed from consideration and the procedure iterated until no points remain. This procedure
is similar in nature to one of Jeroslow [11], but at each stage in his procedure, only positive
examples may be ‘chopped off’ (not positiee negative). The classifier constructed by this
iterative procedure is a threshold decision list.

If we consider threshold decision lists in which the hyperplanes are parallel, we obtain a special
subclass, known as thaultilevel threshold functionsThese have been considered in a num-
ber of papers, such as [8, 13, 19], for instancek-kevel threshold functioryf is one that is
representable by a threshold decision list of lerfigth which the test hyperplanes are parallel

to each other. Any such function is defined byarallel hyperplanes, which dividR” into

k + 1 regions. The function assigns points in the same region the same value,Oetthér
Without any loss, we may suppose that the classifications assigned to points in neighbouring
regions are different (for, otherwise, at least one of the planes is redundant); thus, the classifi-
cations alternate as we traverse the regions in the direction of the normal vector common to the
hyperplanes.



2 Generalization error and covering numbers

Following a form of the PAC model of computational learning theory (see [4, 21, 7]), we assume
that labelled data points:, b) (wherexz € R™ andb € {0, 1}) have been generated randomly
(perhaps from some larger corpus of data) according to a fixed probability distribdtam

Z = R" x {0,1}. (Note that this includes as a special case the situation in whistdrawn
according to a fixed distribution on R™ and the labeb is then given by = t(x) wheret is

some fixed function.) Thus, if there ane data points, we may regard the data set aaraple
s=((z1,01),...,(xm,bm)) € Z™, drawn randomly according to the product probability distri-
bution P™. Suppose thal/ is the set of threshold decision lists of some fixed lengttGiven

any functionf € H, we can measure how wellmatches the samplethrough itssample error

er(f) = i i) # i}

(the proportion of points in the sample incorrectly classifiedflhyAn appropriate measure of
how well f would perform on further examples is gsror,

erp(f) = P({(z,0) € Z: f(x) #b}),

the probability that a further randomly drawn labelled data point would be incorrectly classified
by f.

Much effort has gone into obtaining high-probability bounds:os( f) in terms of the sample
error. A typical result would state that, for dlle (0, 1), with probability at least — §, for

allh € H, erp(h) < erg(h) + ¢(m,d), wheree(m, 6) (known as ayeneralization error bound

is decreasing inn andé. Such results can be derived using uniform convergence theorems
from probability theory [22, 14, 10], in which cagém,¢) would typically involve the VC-
dimension; see [22, 7, 21, 2].

Recently, some emphasis has been placed in practical machine learning techniques (such as
Support Vector Machines; see [9], for instance) on ‘learning with a large margin’; see [18, 2,

3, 16], for example. This paper obtains results of this type for the class of threshold decision
lists. Precise formulations will be given shortly, but, broadly speaking, the rationale behind
margin-based generalization error bounds is that if a classifier has managed to achieve a ‘wide’
separation between (most of) the points of different classification, then this indicates that it is

a good classifier, and it is possible that a better (that is, smaller) generalization error bound
can be obtained. The classical example of this is linear separation, where the classifier is a
linear threshold function. If we have found a linear threshold function that classifies the points
of a sample correctlyand, moreover, the points of opposite classifications are separated by
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a wide margin (so that the hyperplane achieves not just a correct, but a ‘definitely’ correct
classification), then this function might be a better classifier of future, unseen, points than one
which ‘merely’ separates the points correctly, but with a small margin.

A key tool in the derivation of margin-based generalization error bounds trexing number

of a class of real functions. Suppose tiiat X — R is a set of real-valued functions with
domainX, and thatr = (xy,zs,...,2,,) iS an unlabelled sample of. points of X. Then,

fore > 0, C C F'is ane-cover of F' with respect to thelZ -metricif for all f € F there is

f € Csuch thatl”_(f, f) < e, whered®,(f,g) = maxy<i<m | f(2;) — g(x;)|. (Coverings with
respect to other metrics derived francan also be defined, but this paper needs only the present
definition.) The clasg’ is said to be totally bounded if it has a finideover with respect to the

d metric, for alle > 0 and allx € X™ (for all m). In this case, givemr € X™, we define

the d*.-covering numbersV,, (F' ¢, x) to be the minimum cardinality of astcover of F* with
respect to thé”_-metric. We then define thé, -covering numberd/.(F, e, m) by

Noo(F,e,m) = sup{N(F,e,x) : x € X"},

Many bounds on covering numbers for specific classes have been obtained (see [2] for an
overview), and general bounds on covering numbers in terms of a generalization of the VC-
dimension, known as that-shattering dimensigrhave been given [1].

In this paper, we use a recent bound of Zhang [23] fordhecovering numbers of bounded
linear mappings. FoR > 0, let Bg = {x € R" : ||z|| < R} be the closed ball iiR™ of radius
R, centred on the origin. Far € R", let f,, : B — R be given byf,(z) = (w, z), and let

Ly ={fu:weR" |jw] =1}

Zhang [23] has shown that

2

logy Now (L, €,m) < 36 f—Q log, (2 [AR /e + 2] m + 1). (1)

One thing of note is that this bound is dimension-independent: it does not dependTds
bound differs from previous bounds [5, 2, 16] for the logarithm of dgecovering numbers
in that it involves a factor of orddn m rather than(lnm)?. (Previous approaches to bounding
the d.,-covering numbers first bounded tfa-shattering dimensioand then used a result of
Alon et al.[1] relating the covering numbers to the fat-shattering dimension. An addifional
factor appears when this route is taken.)



3 Error bounds for threshold decision lists

Suppose that is a threshold decision list, with terms, and suppose that the tests iare the
threshold functiong,, ., . .., ¢, and that; is represented by weight vectes and threshold
0;. We say that: classifies the labelled example, b) (correctly, and) with marginy > 0 if
h(z) = band, foralll < i < k, [(w;,z) — 0;] > ~. In other words, classifiesz with
margin-~ if, overall, the classification of given by the threshold decision listis correct and,
additionally,x is distance at least from all of the k hyperplanes defining. Note that we do
not simply stipulate that is distance at least from the single hyperplane involved in the first
test thatr passes: rather, we requirgo be distance at leastfrom all of the hyperplanes. (In
this sense, the classification giveruty £/ is not just correct, but ‘definitely’ correct.) Given a
labelled sample = ((z1,b1), ..., (zm, bn)), the error ofh on s at margirry, denotec:r? (h), is
the proportion of labelled examplesadrthat arenot classified by: with margin~y. Thus,er) (h)

is the fraction of the sample points that are either misclassified by are classified correctly
but are distance less tharfrom one of the planes.

Shawe-Taylor and Cristianini [17] and Bennettal. [6] consideredpberceptron decision trees
decision trees in which the nodes compute threshold functions. Following their approach, rather
than considering one margin paramefewe could have margin parameters ., .. .,y for

each of the: terms of the decision list. Givan= (1,72, . . ., 1), we can modify the definition

just given by saying that classifies the labelled example, b) correctly with marginl" if

h(z) = band, for alll < i <k, [{(w;,z) — 6;] > ~;. We defineer! (k) to be the proportion

of labelled examples in the sampi¢hat are not classified with margih Following a method
usedin[17, 6], together with the covering number bound from [23], we can obtain the following
two results. (In these results, it simplifies matters to assumeihatl and~; < 1. But it will

be clear how to modify them otherwise.)

Theorem 3.1 Suppose? > 1 andZ = Bg x {0,1}, whereBgr = {z € R" : ||z|| < R}. Fix
k € N and letH be the set of all threshold decision lists witherms, defined on domaiiz.
Letvyi,79,...,7 € (0,1] be given. Then, with probability at least— 4§, the following holds
forse Z™:if h € Handl' = (y1,7,...,7), then

m

erp(h) < erl (k) + \/i (576 R2D(T)log, (8m) + In (%)),
whereD(I') = 31, (1/77).
Proof: The proof follows a technique from [17, 6] (where the case of zero margin error was the
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focus), and is a modification of proofs in [2, 3, 5, 16], which in turn are based on [22]. For those
not familiar with these proofs, and for the sake of completeness, some details are included that
the cognoscenti will recognise as standard.

Givenl = (1,72, - - -, 7a), it can fairly easily be shown that if
Q= {s € Z™:3h € H with erp(h) > erl (h) + ¢}

and
R=1{(s,8)€ Z™x Z™:3h € H with ery(h) > erl (h) +¢/2},

then P™(Q) < 2 P*™(R). Let G be the permutation group (the ‘swapping group’) on the set
{1,2,...,2m} generated by the transpositiofism + i) fori = 1,2,..., m. ThenG acts on
Z*™ by permuting the coordinates: fore G, o(z1, 22, ..., 20m) = (Zo(1), - - - Zo(m)). NOW,

by invariance ofP?™ under the action of7, P?"(R) < max{Pr(cz € R) : z € Z*"},
wherePr denotes the probability over uniform choicemfrom G. (See [22, 2], for instance.)
Given a threshold decision list dR", each test is of the fornf; — [w;, 6;]; that is, the test

is passed if and only ifw;, ) > ;. An equivalent functionality is obtained by using inputs
in R™ augmented by-1, and usinghomogeneoushreshold functions of. + 1 variables; that

is, ones with zero threshold. So any threshold decision list of lehgthR™ can be realised
as one orR" !, defined on the subs&" x {—1}, and with homogeneous threshold functions
as its tests. Fix € Z?™ and letz = (xy,9,...,22,) € X*™ be the corresponding vector
of z;, wherez; = (z;,b;). Fori betweenl andk, let C; be a~;/2-cover of L with respect to
the dZ_ metric, whereL is the set of linear functions — (w, z) for ||w| = 1, defined on the
domainD = {(z,—1) : « € R", ||z|| < R}. Note that ifx € R" <
correspondingz, —1) has length at mosy' R? + 1. So, by the covering number bound (1),

144(R? +1 32V R?+1 288 R? 60
log, |Cs| < (T—i_)log2 <<—+ + 14) m) < log, ( m> N3]

. 2 .
7 3 )

i 7

Suppose thak is a threshold decision list with homogeneous threshold tests, definedon
Denote the tests of the list b, f», . .., fr, wheref; corresponds to weight vector; € R+,
For each:, let fz € C; satisfyd?, (fz,fl) < 7:/2, letw; be the corresponding weight vector,
and leth be the threshold decision list obtained frdnby replacing eacty; by f;. The set
H of possible sucth is of cardinality[]"_, |Ci|. Suppose thatz = (s,s') € R and that
erg(h) > erl(h) +¢/2. LetT'/2 = (11/2,...,7%/2). Then, because for all < j < 2m
and alll < i < k, [(w;,z;) — (i, x;)| < 7:/2, it can be seen thatrt/*(h) > ery(h) and
ert,(h) > erm( h). Explicitly (denoting any given; by z), er/ ?(h) > er,(h) follows from the
observation that ifw;, z) < 0, then(w;, x) < ~;/2 and if (w;, ) > 0, then(w;, z) > —~,;/2;
anderl, (h) > erm(h) follows from the facts that ifw;, z) < ~;/2 then(w;,z) < ~;, and if
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(i, 7) > —7;/2 then(w;, z) > —v;. So,ers’*(h) > ert/*(h) + /2, and therefore, for any

zc ZQm’
Pr(cz e R) < Pr (az € U R(ﬁ)) ,
heH
where . . .
R(h) = {(s,8) € 2™ : er"/*(h) > ex?/2(h) + ¢/2}.

Fix h € H and letw; = 0 if h classifies:; with margin at least’/2, and1 otherwise. Then
. 1 & 1 &
Pr (UZE R(h)) = Pr E;(wm-‘ri_wi) >e/2| =Pr E;5i|wi_wm+i| >€/2],

where thes; are independent (Rademachgf1, 1} random variables, each taking valuwith
probability1/2, and where the last probability is over the joint distribution of¢théHoeffding’s
inequality bounds this probability byp(—e*m/8). (See [2], for instance, for details.)

We therefore have
Pr(cze R) < Pr (02 € U R(/Al)) < |H|exp(—€>m/8),
heH
which gives

k
P™(Q) < 2P*™(R) <2 H |C;| exp(—€*m/8).

Using the bound (2), we see that, provided

k
8 288 R? 60Rm 2
o Jm (Z 7 OgQ( % )* (5))
then the probability of) is at mostd. So, with probability at most — 6, for all h € H,

erp(h) < erl (h) + €. If, for eachi, m > R? /2, thenlog,(60Rm/v;) < 2log,(8m) and so,
with probability at least — ¢, forall h € H,

k
8 576 R? 2
erp(h) < erl(h) + J - (; v log, (8m) + In (5)) (3)
If, however, for some, m < R?/~2, then the bound (3) is trivially true (since the term under
the square root is greater than The result follows. O
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Theorem 3.2 Supposek > 1 andZ = Bg x {0,1}, whereBr = {z € R" : ||z| < R}.
Fix £ € N and letH be the set of all threshold decision lists witlterms, defined on domain
Bgr. Letyy,79,...,7 € (0,1] be given. Then, with probability at least— ¢, the following
holds fors € Z™: if his any threshold decision list withterms, andh classifiess with margin
I'=(m,...,7) then

erp(h) < % (576 R*D(T) log,(8m) + log, @))

whereD(I') = S5 (1/42).

Proof: This proof is similar to that of Theorem 3.1. It uses, first, the fact (see [22, 2]) that if
Q={s€Z™:3h e H wither](h) =0, erp(h) > €}

and
R={(s,s') € Z™ x Z™ : 3h € H with er](h) =0, erg(h) > €/2},
thenP™(Q) < 2 P*™(R). As before, P> (R) < max.¢z2m Pr(cz € R), wherePr denotes the

probability over uniform choice af from the ‘swapping group(. It can be shown that for any
z ez

Pr(cz € R) <Pr (0‘2 € U R(ﬁ)) )
heH
where X
R(h) = {(s,s") € Z*™ : 3h € H with er?(h) = 0, ery(h) > €/2}.
It can then be seen that, for each fixed H,

2m(1—5/2)

Pr (UZ € R(ﬁ)) < I = 27m/2,

The result then proceeds as does the proof of Theorem 3.1, using the bound (2). O

One difficulty with Theorems 3.1 and 3.2 is that the numbepf terms, and the marging

are specifiedh priori. A more useful generalization error bound would enable us to choose or
tune (or observe) these parameters after learning. We now derive such a result. The approach
we take to obtaining a result of this type differs from that taken in [17, 6], and gives a slightly
better bound.

We first need a generalization of a result from [5], where the following is shown. Sujiese
any probability measure and thig (o, an,0) : 0 < ay, an, 0 < 1} is a set of events such that:
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e forall o, P(E(a, a,9)) <9,

e if0<a <a<ay<landd<d << 1,thenE(ay, as,01) C E(a,a,d).

Then

IP’( U E(a/2,a,5a/2)) <6

a€(0,1]

for0 < & < 1. We extend this result as follows.

Theorem 3.3 Supposé is any probability measurd; € N, and that
{E(T},Ty,0):Ty,Ty € (0,1]%,6 < 1}

is a set of events such that:

o forall T € (0, 1]%, P(E(T,T,5)) < 6,

o [y <TI' <T,(component-wise) andl< 6; < < Limply E(I'y,'y,0,) C E(I',T,9).

Then

IP( U E((l/z)l“,l“,éﬁ%)) <5

r'e(0,1]k

for0 < 6 < 1.

Proof: To prove this, we note that

Pl E<(1/2)F,r,5 : ;—k>>

Ie(0,1]* i=1

| [‘j {E ((1/2)r,r,5ili%> forj =1, e ((;) (;)]})
O () ()7 ) (6) ()7

01,862,000

IN
=

IA
=
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00 k 1 ij+1
< ¥ oll(y)
11,02,...,0,=0  j=1
koo 1 i5+1
-1 ()
j=1i;=0
k

= 5 ]J1=0
j=1

We now have the following result.

Theorem 3.4 Suppose&k > 1 andZ = By x {0,1}, whereBg = {z € R" : |z|| < R}. Let
H be the set of all threshold decision lists (with any number of terms) defined on déinain
With probability at least — ¢, the following statements hold ferc Z™:

1. for all k € N andfor all v,72,...,v € (0, 1], if h € H hask terms, and
I'=(v,%,---,7%), then

erp(h) < erg(h)—i—J % (2304 R2D(T") log, (8m) + In (%) +2kIn2 + iln (l>>’

i=1 i

whereD(I') = S2F (1/42).

2. forall £ € N, andfor all 71,72, ...,7% € (0,1], if h € H hask terms, andh classifiess
with marginT" = (71,72, ..., 7), then

k
2 2 1
erp(h) < . (2304 R?>D(T) log, (8m) + log, <5) + 2k + ;1 log, (—)) ,

i

whereD(T) = 3% (1/42).

Proof: Now, to prove the Theorem, fixe N. If [, = (", ... 4"y andly, = (%, ... 4P,
let E(I';,T'9, 6) be the event that there exists a threshold decision Ngith £ terms such that

m

erp(h) > ert2(h) + \/ 5 (576 R2D(T})log, (8m) + In (%))
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whereD(T';) = 2%, (1/7")2. Then, by Theorem 3.1P™(E(T',T,§)) < 4, and it is easily
seenthal’; <T' <Tyand0 < d; <6 < 1limply E(I'1,T'5,0,) C E(T,T,9). It follows that

k
P ( U E<(1/2)F,F,5 H?)) <9
re(o,11k i=1

So, with probability at least — ¢, for all vy, 7, ...,y € (0, 1], if 4 is any threshold decision
list with £ terms, and™ = (71,7, ..., %), then

erp(h) <er, (h) + J % (2304 R2D(T') log, (8m) + In (%) +kIn2+ Zln <71 >>>

=1

whereD(T") = Zle(l/%?). This holds for anyiixedk. Replacing’ by /2%, we see that, with
probability at least — 4 /2, for anyh with k terms and any’,

erp(h) <erl(h) + J % (2304 R2D(T") log, (8m) + In (27%) +kIn2+ Z In (71 >>,

=1

and so, with probability at leagt— >, ,(§/2%) = 1 — ¢, for all &, for all . of length%, and
forall I,

erp(h) < erk (h) + J % <2304R2D(F) log, (8m) + In (%) +2kln2+ Zln (71 ))

=1

(Note that we could have replacédhy 6o, where(ay) is any sequence such that” | a; = 1.)
The second part of the Theorem is proved similarly, using Theorem 3.2. O

Shawe-Taylor and Cristianini [17] and Bennettal. [6] proved a margin-based generalization
result for the more general class of perceptron decision trees, in the case where there is zero

I'-margin error on the sample. The special case of their result that applies to threshold decision
lists gives a bound (with probability at ledst- §) of the form

erp(h) < O (% (R?D(r) (Inm)? + kInm + In (%))) . (4)

(The O-notation indicates that constants have been suppressed.)
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By comparison, the bound given in Theorem 3.2 is of order

erp(h) <O (% <R2D(F) Inm +k+ iln (%) +1In (%))) : (5)

The first term of bound (5) is lm m factor better than the corresponding term of (4). That this

is so is because we have used Zhang’s covering number bound, (1), and have not bounded the
covering number by using results on fat-shattering dimension, coupled with the bound of Alon
et al.[1] that gives a general bound on covering numbers in terms of fat-shattering dimension.
Additionally, since all these probability bounds are trivial (greater thamlessm > (R/~;)*

for all 4, the remaining terms of the bound (5) are of order no more th@nnm), and are
potentially much smaller. This improvement results from our development and use of Theo-
rem 3.3. Theorem 3.4 is therefore an improvement over the results implied by [17, 6].

It is a simple matter to modify the above results so that they apply to perceptron decision trees.
As in [17, 6], one only additionally has to take into account the different number of decision
tree architectures on a given number of nodes. In this way, the techniques here can be used to
improve the results in [17, 6], shavingam factor from the leading term of the error bound,

and replacing: In m by a term of ordek + Zle In(1/~;). The details are omitted here, but are
easily worked out.

4 Error bounds for multilevel threshold functions

Suppose that is a k-level threshold function, represented by weight veetaand threshold
vectorf = (6,,0s,...,0;) (Whered; < 6,--- < 6;). Regarded as a threshold decision list,
the tests are the threshold functianswheret;(y) = sgn((w, z) — 6;). Recall that we say
classifies the labelled example, b) with marginy > 0 if A(z) = b and, foralll < i < k,
|{(w,z) — 6;] > ~. (In other words . classifiesr correctly, andr is distance at least from
any of the hyperplanes defining the multilevel threshold functignAs above, for a labelled
samples, er] (h), the sample error at margiy is the proportion of labelled examplesadnhat
arenotcorrectly classified with margin.

To bound generalization error in this special case, we take a slightly different approach to the

one used above for general threshold decision lists. Rather than take a cover for each term of
the decision list, a more ‘global’ approach can be taken, exploiting the fact that the planes are

parallel. In taking this approach, however, the analysis allows only one margin parameter,
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rather thark possibly different margin parameters, one for each plane. (As before, for the sake
of simplicity, we assume that > 1 andy < 1.)

Theorem 4.1 Supposek > 1 andZ = Bg x {0,1}, whereBr = {z € R" : ||z| < R}.
Fix £ € N and let H be the set of alk-level threshold functions defined on domaip. Let
P be any probability distribution or¥Z, and suppose € (0,1] andd € (0,1). Then, with
P™-probability at leastl — §, a samples is such that i, € H, then

8 [1152R? 10R 2
erp(h) <erl(h)+ \/E ( v log, (9m) + kIn (T) +1In (5))

Proof: Fix v € (0, 1]. As earlier, withH the set oft-level threshold functions oBg, if

Q={se€ Z™:3h e H with erp(h) > erl(h) + €}

and
R={(s,s') € Z™ x Z™ : 3h € H with ery(h) > erl(h) + ¢/2},

then P™(Q) < 2 P>™(R). Also as before P*(R) < max{Pr(cz € R) : 2 € Z*™}, where
Pr denotes the probability over uniform choicecofrom the ‘swapping group. Let Ly be
the set of all functions of the form — (w, z), wherew € R" satisfieg|w|| = 1, and where
the domains of the functions afe;. Now fix = € Z>™, letz € X*™ be the corresponding
x;-vector, and let be ay/4-cover of L with respect to thegZ metric. By (1),

logy [C] < logy Noo(Lr,v/4,2m)
576 R?
- log, (2 [16R/v + 2] 2m + 1)

576 R 80Rm
—logy | — ]
v v

<

IN

Each function irC'is represented by a weight vector, and we shall denote the set of these weight
vectors byll. For eachw € R”", denote byw a member ofl such that fori = 1,2,...,2m,
(w, z;) — (W, x;)| < /4. Let

D={0eR:3Inc€ZN[—(4R/v) —1,(4R/v) + 1] s.t. 0 = n(v/4)},

k k
0] < <%+2> < (@) .
Y Y

14

and let® = DF. Then



Now, supposé is ak-level threshold function defined dBi. Then, of course), is represented
by a weight vectors € R™ and a threshold vectore R*. Without loss of generalityjw|| = 1,

in which case, since, for alt € Bpg, |(w,z)| < R, we can assume that eaghsatisfies

0;| < R. Then, denote byamemberoB suchthat for = 1,2,.. ..k, |0; — 0;] < ~/4. (Such

ad exists by the way in whicl® is defined.) Letl] be the set of alk: level threshold functions
representable by weight vectafse W and threshold vectos= (01,...,0) € ©. Then

k
|]§[‘ < 9(576R?/7?)log,(80Rm/7) <1OR) .
. v

For eachh € H, let h be thek-level threshold vector with weight vectar € W and threshold
vectorfd € 6, wherew and@ satisfy the properties indicated above. For eaehl,2,...,2m,
foreachj =1,2,... k,

[((w,25) = 6;) = (0, 25) = 0)] < [(w, ) — (@, 23)| + |6 = 6i] < /4 +~/4=7/2

This means that, whenis any one of the;;, and1l < j < k,

(w,z) = (d,7) <0;+7/2,

(w,x) > 0; = (W,2) >6;—/2,
(i, ) < 6 +7/2 = (w,z) <b;+7,
(0,2) 20, —7/2 = (wa)>6;—~

It follows that, if oz = (s,s") € R andery(h) > erl(h) + €/2, thener?’?(h) > er,(h) and
er’,(h) > er?/*(h), and so
er?/?(h) > er?/?(h) + €/2.

The proof now proceeds as the proof of Theorem 3.1. Forany*™,

Pr(cz e R) < Pr OZEURUAZ) ;

heH

where

R(h) = {(s,8") € Z*™ : ex?/*(h) > er??(h) + ¢/2}.
Fixing 2 € H, we find that

Pr <UZ € R(ﬁ)) < exp(—€>m/8).

15



Therefore,
: 22 10R\"
P™Q) < 2|H| exp(—e*m/8) < 22°70F" /7" logx(80Rm/) (—) exp(—e*m/8).
f)/

So, with probability at least — o, forall h € H,

rn <o) [ ( (T2 oy (22 (12 410 (2)

The result follows on noting that the bound stated in the Theorem is trivially true<f R? /2,
and is implied by the bound just derivediif > R?/~2. 0

Theorem 4.2 Supposek? > 0 and Z = Br x {0,1}, whereBr = {z € R" : ||z|| < R}.
Fix £ € N and let H be the set of alk-level threshold functions defined on domaip. Let
P be any probability distribution or¥Z, and suppose € (0,1 andd € (0,1). Then, with
P™-probability at leastl — ¢, a samples is such that i, € H ander?(h) = 0, then

2 (1152R? 10R 2
erp(h) < — (Tlogz(Qm) + klog, <T) + log, (5)) .

m

Proof: This result is obatined by modifying the proof of Theorem 4.1, just in the same way
as Theorem 3.2 is obtained by modifying the proof of Theorem 3.1. One can show that the
probability that there exists € H such thaer) (h) = 0 anderp(h) > € is at most

k
92 2(576R2/72)10g2(80Rm/'y) (10R> 2—em/27
Y

from which the result follows. O

The generalization error bound implied by Theorem 3.1 in the case in whiehy for all i is,
suppressing constants,

erp(h) < erl(h) + O <\/% <R7—22k lnm +In (%)))

(with probability at least — ¢), whereas that of Theorem 4.1 is

erp(h) < er?(h) + O <\/% (%2 Inm+ kn (%) +1n (%))) :

16




so there is some advantage in the more particular analysis that has been carried out for multi-
level threshold functions.

It is straightforward to remove the priori specification ofy andk, using the result from [5]
mentioned before Theorem 3.3. The following bounds are obtained.

Theorem 4.3 Suppose? > 0 andZ = Bp x {0,1}, whereBgr = {x € R" : ||z|| < R}. Fix
k € N and letH be the set of all multilevel threshold functions defined on dorBginLet P be
any probability distribution orZ. Then, withP™-probability at leastl — ¢, the following hold:

1. for all k € Nandfor all v € (0, 1], if h € H is ak-level threshold function, then

4 2 2 4
erp(h) <erl(h) + \/ﬁ ( 6082R log, (9m) + kIn2 + kln (O—R) +1In <—>>
Y

m y oy

2. for all £ € N, andfor all v € (0,1}, if h € H is a k-level threshold function and
classifiess with margin~, then

2 (4608 R? 20R 4
h — 1 9 k+kl —_— 1 — .
erp(t) < 2 (05 togy(om) + &+ klogy (227 10w, () )
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