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Abstract

This paper concerns the use ofthreshold decision listsfor classifying data into two
classes. The use of such methods has a natural geometrical interpretation and can be ap-
propriate for an iterative approach to data classification, in which some points of the data
set are given a particular classification, according to a linear threshold function (or hyper-
plane), are then removed from consideration, and the procedure iterated until all points are
classified. We analyse theoretically the generalization properties of data classification tech-
niques that are based on the use of threshold decision lists and the subclass ofmultilevel
threshold functions. We obtain bounds on the generalization error that depend on the levels
of separation — ormargins— achieved by the successive linear classifiers.
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1 Introduction

This paper concerns the use ofthreshold decision listsfor classifying data into two classes. The
use of such methods has a natural geometrical interpretation and can be appropriate for an iter-
ative approach to data classification, in which some points of the data set are given a particular
classification, according to a linear threshold function (or hyperplane), are then removed from
consideration, and the procedure iterated until all points are classified. We analyse theoreti-
cally the generalization properties of data classification techniques that are based on the use of
threshold decision lists and the subclass ofmultilevel threshold functions. We obtain bounds on
the generalization error that depend on the levels of separation — ormargins— achieved by
the successive linear classifiers. The results we obtain are easily modified to give generalization
bounds forperceptron decision trees[17, 6], improving upon previous such results.

1.1 Threshold decision lists

Suppose thatF is any set of functions fromRn to {0, 1}, for some fixedn ∈ N. A function
f : Rn → {0, 1} is adecision listbased onF if it can be evaluated as follows, for somek ∈ N,
some functionsf1, f2, . . . , fk ∈ F , somec1, c2, . . . , ck ∈ {0, 1}, and ally ∈ Rn: if f1(y) = 1,
thenf(y) = c1; if not, we evaluatef2(y), and if f2(y) = 1, thenf(y) = c2; otherwise we
evaluatef3(y), and so on. Ify fails to satisfy anyfi thenf(y) is given the default value0. We
can regard a decision list based onF as a finite sequence

f = (f1, c1), (f2, c2), . . . , (fr, cr),

such thatfi ∈ F andci ∈ {0, 1} for 1 ≤ i ≤ r. The values off are defined byf(y) = cj where
j = min{i | fi(y) = 1}, or 0 if there are noj such thatfj(y) = 1. We call eachfj a test, and
the pair(fj, cj) a termof the decision list. Decision lists were introduced by Rivest [15], in the
context of learning Boolean functions (and where the tests were conjunctions of literals).

A function t : Rn → {0, 1} is athreshold functionif there arew ∈ Rn andθ ∈ R such that

t(x) =

{
1 if 〈w, x〉 ≥ θ
0 if 〈w, x〉 < θ,

where〈w, x〉 is the standard inner product ofw andx. Thus,t(x) = sgn(〈w, x〉 − θ), where
sgn(z) = 1 if z ≥ 0 andsgn(z) = 0 if z < 0. Given suchw andθ, we say thatt is represented
by [w, θ] and we writet ← [α, θ]. The vectorw is known as theweight vector, andθ is known
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as thethreshold. Geometrically, a threshold function is defined by a hyperplane: all points lying
to one side of the plane and on the plane are given the value1, and all points on the other side
are given the value0.

Threshold decision listsare decision lists in which the tests are threshold functions. (These have
also been calledneuraldecision lists [12] andlinear decision lists [20].) Formally, a threshold
decision list

f = (f1, c1), (f2, c2), . . . , (fr, cr)

has eachfi : Rn → {0, 1} of the formfi(x) = sgn(〈wi, x〉 − θi) for somewi ∈ Rn andθi ∈ R.
The value off ony ∈ Rn is f(y) = cj if j = min{i | fi(y) = 1} exists, or0 otherwise (that is,
if there are noj such thatfj(y) = 1).

There is a natural geometrical interpretation of the use of threshold decision lists. Suppose we
are given some data points inRn, each one of which is labeled0 or 1. Of course, since there are
very few threshold functions, it is unlikely that the positive and negative points can be separated
by a hyperplane. But we can use a hyperplane to separate off a set of points all having the same
classification (either all are positive points or all are negative points). These points can then be
removed from consideration and the procedure iterated until no points remain. This procedure
is similar in nature to one of Jeroslow [11], but at each stage in his procedure, only positive
examples may be ‘chopped off’ (not positiveor negative). The classifier constructed by this
iterative procedure is a threshold decision list.

If we consider threshold decision lists in which the hyperplanes are parallel, we obtain a special
subclass, known as themultilevel threshold functions. These have been considered in a num-
ber of papers, such as [8, 13, 19], for instance. Ak-level threshold functionf is one that is
representable by a threshold decision list of lengthk in which the test hyperplanes are parallel
to each other. Any such function is defined byk parallel hyperplanes, which divideRn into
k + 1 regions. The function assigns points in the same region the same value, either0 or 1.
Without any loss, we may suppose that the classifications assigned to points in neighbouring
regions are different (for, otherwise, at least one of the planes is redundant); thus, the classifi-
cations alternate as we traverse the regions in the direction of the normal vector common to the
hyperplanes.
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2 Generalization error and covering numbers

Following a form of the PAC model of computational learning theory (see [4, 21, 7]), we assume
that labelled data points(x, b) (wherex ∈ Rn andb ∈ {0, 1}) have been generated randomly
(perhaps from some larger corpus of data) according to a fixed probability distributionP on
Z = Rn × {0, 1}. (Note that this includes as a special case the situation in whichx is drawn
according to a fixed distributionµ on Rn and the labelb is then given byb = t(x) wheret is
some fixed function.) Thus, if there arem data points, we may regard the data set as asample
s = ((x1, b1), . . . , (xm, bm)) ∈ Zm, drawn randomly according to the product probability distri-
butionPm. Suppose thatH is the set of threshold decision lists of some fixed length,k. Given
any functionf ∈ H, we can measure how wellf matches the samples through itssample error

ers(f) =
1

m
|{i : f(xi) 6= bi}|

(the proportion of points in the sample incorrectly classified byf ). An appropriate measure of
how wellf would perform on further examples is itserror,

erP (f) = P ({(x, b) ∈ Z : f(x) 6= b}) ,

the probability that a further randomly drawn labelled data point would be incorrectly classified
by f .

Much effort has gone into obtaining high-probability bounds onerP (f) in terms of the sample
error. A typical result would state that, for allδ ∈ (0, 1), with probability at least1 − δ, for
all h ∈ H, erP (h) < ers(h) + ε(m, δ), whereε(m, δ) (known as ageneralization error bound)
is decreasing inm and δ. Such results can be derived using uniform convergence theorems
from probability theory [22, 14, 10], in which caseε(m, δ) would typically involve the VC-
dimension; see [22, 7, 21, 2].

Recently, some emphasis has been placed in practical machine learning techniques (such as
Support Vector Machines; see [9], for instance) on ‘learning with a large margin’; see [18, 2,
3, 16], for example. This paper obtains results of this type for the class of threshold decision
lists. Precise formulations will be given shortly, but, broadly speaking, the rationale behind
margin-based generalization error bounds is that if a classifier has managed to achieve a ‘wide’
separation between (most of) the points of different classification, then this indicates that it is
a good classifier, and it is possible that a better (that is, smaller) generalization error bound
can be obtained. The classical example of this is linear separation, where the classifier is a
linear threshold function. If we have found a linear threshold function that classifies the points
of a sample correctlyand, moreover, the points of opposite classifications are separated by
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a wide margin (so that the hyperplane achieves not just a correct, but a ‘definitely’ correct
classification), then this function might be a better classifier of future, unseen, points than one
which ‘merely’ separates the points correctly, but with a small margin.

A key tool in the derivation of margin-based generalization error bounds is thecovering number
of a class of real functions. Suppose thatF : X → R is a set of real-valued functions with
domainX, and thatx = (x1, x2, . . . , xm) is an unlabelled sample ofm points ofX. Then,
for ε > 0, C ⊆ F is anε-cover ofF with respect to thedx

∞-metric if for all f ∈ F there is
f̂ ∈ C such thatdx

∞(f, f̂) < ε, wheredx
∞(f, g) = max1≤i≤m |f(xi) − g(xi)|. (Coverings with

respect to other metrics derived fromx can also be defined, but this paper needs only the present
definition.) The classF is said to be totally bounded if it has a finiteε-cover with respect to the
dx
∞ metric, for allε > 0 and allx ∈ Xm (for all m). In this case, givenx ∈ Xm, we define

thedx
∞-covering numbersN∞(F, ε, x) to be the minimum cardinality of anε-cover ofF with

respect to thedx
∞-metric. We then define thed∞-covering numbersN∞(F, ε, m) by

N∞(F, ε, m) = sup{N∞(F, ε, x) : x ∈ Xm}.

Many bounds on covering numbers for specific classes have been obtained (see [2] for an
overview), and general bounds on covering numbers in terms of a generalization of the VC-
dimension, known as thefat-shattering dimension, have been given [1].

In this paper, we use a recent bound of Zhang [23] for thed∞-covering numbers of bounded
linear mappings. ForR > 0, let BR = {x ∈ Rn : ‖x‖ ≤ R} be the closed ball inRn of radius
R, centred on the origin. Forw ∈ Rn, let fw : BR → R be given byfw(x) = 〈w, x〉, and let

LR = {fw : w ∈ Rn, ‖w‖ = 1}.

Zhang [23] has shown that

log2N∞(LR, ε, m) ≤ 36
R2

ε2
log2 (2 d4R/ε + 2em + 1) . (1)

One thing of note is that this bound is dimension-independent: it does not depend onn. This
bound differs from previous bounds [5, 2, 16] for the logarithm of thed∞-covering numbers
in that it involves a factor of orderln m rather than(ln m)2. (Previous approaches to bounding
thed∞-covering numbers first bounded thefat-shattering dimensionand then used a result of
Alon et al.[1] relating the covering numbers to the fat-shattering dimension. An additionalln m
factor appears when this route is taken.)
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3 Error bounds for threshold decision lists

Suppose thath is a threshold decision list, withk terms, and suppose that the tests inh are the
threshold functionst1, t2, . . . , tk, and thatti is represented by weight vectorwi and threshold
θi. We say thath classifies the labelled example(x, b) (correctly, and) with marginγ > 0 if
h(x) = b and, for all1 ≤ i ≤ k, |〈wi, x〉 − θi| ≥ γ. In other words,h classifiesx with
marginγ if, overall, the classification ofx given by the threshold decision listh is correct and,
additionally,x is distance at leastγ from all of thek hyperplanes definingh. Note that we do
not simply stipulate thatx is distance at leastγ from the single hyperplane involved in the first
test thatx passes: rather, we requirex to be distance at leastγ from all of the hyperplanes. (In
this sense, the classification given tox by h is not just correct, but ‘definitely’ correct.) Given a
labelled samples = ((x1, b1), . . . , (xm, bm)), the error ofh ons at marginγ, denotederγ

s (h), is
the proportion of labelled examples ins that arenotclassified byh with marginγ. Thus,erγ

s (h)
is the fraction of the sample points that are either misclassified byh, or are classified correctly
but are distance less thanγ from one of the planes.

Shawe-Taylor and Cristianini [17] and Bennettet al. [6] consideredperceptron decision trees,
decision trees in which the nodes compute threshold functions. Following their approach, rather
than considering one margin parameterγ, we could have margin parametersγ1, γ2, . . . , γk for
each of thek terms of the decision list. GivenΓ = (γ1, γ2, . . . , γk), we can modify the definition
just given by saying thath classifies the labelled example(x, b) correctly with marginΓ if
h(x) = b and, for all1 ≤ i ≤ k, |〈wi, x〉 − θi| ≥ γi. We defineerΓ

s (h) to be the proportion
of labelled examples in the samples that are not classified with marginΓ. Following a method
used in [17, 6], together with the covering number bound from [23], we can obtain the following
two results. (In these results, it simplifies matters to assume thatR ≥ 1 andγi ≤ 1. But it will
be clear how to modify them otherwise.)

Theorem 3.1 SupposeR ≥ 1 andZ = BR × {0, 1}, whereBR = {x ∈ Rn : ‖x‖ ≤ R}. Fix
k ∈ N and letH be the set of all threshold decision lists withk terms, defined on domainBR.
Let γ1, γ2, . . . , γk ∈ (0, 1] be given. Then, with probability at least1 − δ, the following holds
for s ∈ Zm: if h ∈ H andΓ = (γ1, γ2, . . . , γk), then

erP (h) < erΓ
s (h) +

√
8

m

(
576 R2D(Γ) log2 (8m) + ln

(
2

δ

))
,

whereD(Γ) =
∑k

i=1(1/γ
2
i ).

Proof: The proof follows a technique from [17, 6] (where the case of zero margin error was the
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focus), and is a modification of proofs in [2, 3, 5, 16], which in turn are based on [22]. For those
not familiar with these proofs, and for the sake of completeness, some details are included that
the cognoscenti will recognise as standard.

GivenΓ = (γ1, γ2, . . . , γn), it can fairly easily be shown that if

Q = {s ∈ Zm : ∃h ∈ H with erP (h) ≥ erΓ
s (h) + ε}

and
R = {(s, s′) ∈ Zm × Zm : ∃h ∈ H with ers′(h) ≥ erΓ

s (h) + ε/2},

thenPm(Q) ≤ 2 P 2m(R). Let G be the permutation group (the ‘swapping group’) on the set
{1, 2, . . . , 2m} generated by the transpositions(i, m + i) for i = 1, 2, . . . ,m. ThenG acts on
Z2m by permuting the coordinates: forσ ∈ G, σ(z1, z2, . . . , z2m) = (zσ(1), . . . , zσ(m)). Now,
by invariance ofP 2m under the action ofG, P 2m(R) ≤ max{Pr(σz ∈ R) : z ∈ Z2m},
wherePr denotes the probability over uniform choice ofσ from G. (See [22, 2], for instance.)
Given a threshold decision list onRn, each test is of the formfi ← [wi, θi]; that is, the test
is passed if and only if〈wi, x〉 ≥ θi. An equivalent functionality is obtained by using inputs
in Rn augmented by−1, and usinghomogeneousthreshold functions ofn + 1 variables; that
is, ones with zero threshold. So any threshold decision list of lengthk on Rn can be realised
as one onRn+1, defined on the subsetRn × {−1}, and with homogeneous threshold functions
as its tests. Fixz ∈ Z2m and letx = (x1, x2, . . . , x2m) ∈ X2m be the corresponding vector
of xi, wherezi = (xi, bi). For i between1 andk, let Ci be aγi/2-cover ofL with respect to
thedx

∞ metric, whereL is the set of linear functionsx 7→ 〈w, x〉 for ‖w‖ = 1, defined on the
domainD = {(x,−1) : x ∈ Rn, ‖x‖ ≤ R}. Note that ifx ∈ Rn satisfies‖x‖ ≤ R, then the
corresponding(x,−1) has length at most

√
R2 + 1. So, by the covering number bound (1),

log2 |Ci| ≤
144(R2 + 1)

γ2
i

log2

((
32
√

R2 + 1

γi

+ 14

)
m

)
≤ 288R2

γ2
i

log2

(
60Rm

γi

)
. (2)

Suppose thath is a threshold decision list withk homogeneous threshold tests, defined onD.
Denote the tests of the list byf1, f2, . . . , fk, wherefi corresponds to weight vectorwi ∈ Rn+1.
For eachi, let f̂i ∈ Ci satisfydx

∞(fi, f̂i) < γi/2, let ŵi be the corresponding weight vector,
and letĥ be the threshold decision list obtained fromh by replacing eachfi by f̂i. The set
Ĥ of possible sucĥh is of cardinality

∏k
i=1 |Ci|. Suppose thatσz = (s, s′) ∈ R and that

ers′(h) ≥ erΓ
s (h) + ε/2. Let Γ/2 = (γ1/2, . . . , γk/2). Then, because for all1 ≤ j ≤ 2m

and all1 ≤ i ≤ k, |〈wi, xj〉 − 〈ŵi, xj〉| < γi/2, it can be seen thaterΓ/2
s (ĥ) ≥ ers(h) and

erΓ
s′(h) ≥ er

Γ/2
s′ (ĥ). Explicitly (denoting any givenxi by x), er

Γ/2
s (ĥ) ≥ ers(h) follows from the

observation that if〈wi, x〉 < 0, then〈ŵi, x〉 < γi/2 and if 〈wi, x〉 > 0, then〈ŵi, x〉 > −γi/2;
anderΓ

s′(h) ≥ er
Γ/2
s′ (ĥ) follows from the facts that if〈ŵi, x〉 < γi/2 then〈wi, x〉 < γi, and if
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〈ŵi, x〉 > −γi/2 then〈wi, x〉 > −γi. So,erΓ/2
s (ĥ) ≥ er

Γ/2
s (ĥ) + ε/2, and therefore, for any

z ∈ Z2m,

Pr (σz ∈ R) ≤ Pr

σz ∈
⋃
ĥ∈Ĥ

R(ĥ)

 ,

where
R(ĥ) = {(s, s′) ∈ Z2m : er

Γ/2
s′ (ĥ) ≥ erΓ/2

s (ĥ) + ε/2}.

Fix ĥ ∈ Ĥ and letwi = 0 if ĥ classifieszi with margin at leastΓ/2, and1 otherwise. Then

Pr
(
σz ∈ R(ĥ)

)
= Pr

(
1

m

m∑
i=1

(wm+i − wi) ≥ ε/2

)
= Pr

(
1

m

m∑
i=1

εi|wi − wm+i| ≥ ε/2

)
,

where theεi are independent (Rademacher){−1, 1} random variables, each taking value1 with
probability1/2, and where the last probability is over the joint distribution of theεi. Hoeffding’s
inequality bounds this probability byexp(−ε2m/8). (See [2], for instance, for details.)

We therefore have

Pr (σz ∈ R) ≤ Pr

σz ∈
⋃
ĥ∈Ĥ

R(ĥ)

 ≤ |Ĥ| exp(−ε2m/8),

which gives

Pm(Q) ≤ 2 P 2m(R) ≤ 2
k∏

i=1

|Ci| exp(−ε2m/8).

Using the bound (2), we see that, provided

ε ≥ ε0 =

√√√√ 8

m

(
k∑

i=1

288R2

γ2
i

log2

(
60Rm

γi

)
+ ln

(
2

δ

))
,

then the probability ofQ is at mostδ. So, with probability at most1 − δ, for all h ∈ H,
erP (h) < erΓ

s (h) + ε0. If, for eachi, m ≥ R2/γ2
i , thenlog2(60Rm/γi) ≤ 2 log2(8m) and so,

with probability at least1− δ, for all h ∈ H,

erP (h) < erΓ
s (h) +

√√√√ 8

m

(
k∑

i=1

576R2

γ2
i

log2 (8m) + ln

(
2

δ

))
. (3)

If, however, for somei, m < R2/γ2
i , then the bound (3) is trivially true (since the term under

the square root is greater than1). The result follows. ut

8



Theorem 3.2 SupposeR ≥ 1 and Z = BR × {0, 1}, whereBR = {x ∈ Rn : ‖x‖ ≤ R}.
Fix k ∈ N and letH be the set of all threshold decision lists withk terms, defined on domain
BR. Let γ1, γ2, . . . , γk ∈ (0, 1] be given. Then, with probability at least1 − δ, the following
holds fors ∈ Zm: if h is any threshold decision list withk terms, andh classifiess with margin
Γ = (γ1, . . . , γk), then

erP (h) <
2

m

(
576 R2D(Γ) log2(8m) + log2

(
2

δ

))
whereD(Γ) =

∑k
i=1(1/γ

2
i ).

Proof: This proof is similar to that of Theorem 3.1. It uses, first, the fact (see [22, 2]) that if

Q = {s ∈ Zm : ∃h ∈ H with erγ
s (h) = 0, erP (h) ≥ ε}

and
R = {(s, s′) ∈ Zm × Zm : ∃h ∈ H with erγ

s (h) = 0, ers′(h) ≥ ε/2},
thenPm(Q) ≤ 2 P 2m(R). As before,P 2m(R) ≤ maxz∈Z2m Pr(σz ∈ R), wherePr denotes the
probability over uniform choice ofσ from the ‘swapping group’G. It can be shown that for any
z ∈ Z2m,

Pr (σz ∈ R) ≤ Pr

σz ∈
⋃
ĥ∈Ĥ

R(ĥ)

 ,

where
R(ĥ) = {(s, s′) ∈ Z2m : ∃h ∈ H with erγ

s (h) = 0, ers′(h) ≥ ε/2}.
It can then be seen that, for each fixedĥ ∈ Ĥ,

Pr
(
σz ∈ R(ĥ)

)
≤ 2m(1−ε/2)

|Γ|
= 2−εm/2.

The result then proceeds as does the proof of Theorem 3.1, using the bound (2). ut

One difficulty with Theorems 3.1 and 3.2 is that the number,k, of terms, and the marginsγi

are specifieda priori. A more useful generalization error bound would enable us to choose or
tune (or observe) these parameters after learning. We now derive such a result. The approach
we take to obtaining a result of this type differs from that taken in [17, 6], and gives a slightly
better bound.

We first need a generalization of a result from [5], where the following is shown. SupposeP is
any probability measure and that{E(α1, α2, δ) : 0 < α1, α2, δ ≤ 1} is a set of events such that:
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• for all α, P(E(α, α, δ)) ≤ δ,

• if 0 < α1 ≤ α ≤ α2 < 1 and0 < δ1 ≤ δ ≤ 1, thenE(α1, α2, δ1) ⊆ E(α, α, δ).

Then

P

 ⋃
α∈(0,1]

E(α/2, α, δα/2)

 ≤ δ

for 0 < δ < 1. We extend this result as follows.

Theorem 3.3 SupposeP is any probability measure,k ∈ N, and that

{E(Γ1, Γ2, δ) : Γ1, Γ2 ∈ (0, 1]k, δ ≤ 1}

is a set of events such that:

• for all Γ ∈ (0, 1]k, P(E(Γ, Γ, δ)) ≤ δ,

• Γ1 ≤ Γ ≤ Γ2 (component-wise) and0 < δ1 ≤ δ ≤ 1 implyE(Γ1, Γ2, δ1) ⊆ E(Γ, Γ, δ).

Then

P

 ⋃
Γ∈(0,1]k

E

(
(1/2)Γ, Γ, δ

k∏
i=1

γi

2k

) ≤ δ

for 0 < δ < 1.

Proof: To prove this, we note that

P

 ⋃
Γ∈(0,1]k

E

(
(1/2)Γ, Γ, δ

k∏
i=1

γi

2k

)
≤ P

(
∞⋃

i1,i2,...,ik=0

{
E

(
(1/2)Γ, Γ, δ

k∏
i=1

γi

2k

)
: for j = 1, . . . , k, γj ∈

((
1

2

)ij+1

,

(
1

2

)ij
]})

≤ P

(
∞⋃

i1,i2,...,ik=0

E

(((
1

2

)i1+1

, . . . ,

(
1

2

)ik+1
)

,

((
1

2

)i1+1

, . . . ,

(
1

2

)ik+1
)

, δ

k∏
j=1

(
1

2

)ij 1

2k

))
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≤
∞∑

i1,i2,...,ik=0

δ
k∏

j=1

(
1

2

)ij+1

= δ

k∏
j=1

∞∑
ij=0

(
1

2

)ij+1

= δ
k∏

j=1

1 = δ.

ut

We now have the following result.

Theorem 3.4 SupposeR ≥ 1 andZ = BR × {0, 1}, whereBR = {x ∈ Rn : ‖x‖ ≤ R}. Let
H be the set of all threshold decision lists (with any number of terms) defined on domainBR.
With probability at least1− δ, the following statements hold fors ∈ Zm:

1. for all k ∈ N andfor all γ1, γ2, . . . , γk ∈ (0, 1], if h ∈ H hask terms, and
Γ = (γ1, γ2, . . . , γk), then

erP (h) < erΓ
s (h)+

√√√√ 8

m

(
2304 R2D(Γ) log2 (8m) + ln

(
2

δ

)
+ 2k ln 2 +

k∑
i=1

ln

(
1

γi

))
,

whereD(Γ) =
∑k

i=1(1/γ
2
i ).

2. for all k ∈ N, andfor all γ1, γ2, . . . , γk ∈ (0, 1], if h ∈ H hask terms, andh classifiess
with marginΓ = (γ1, γ2, . . . , γk), then

erP (h) <
2

m

(
2304 R2D(Γ) log2 (8m) + log2

(
2

δ

)
+ 2k +

k∑
i=1

log2

(
1

γi

))
,

whereD(Γ) =
∑k

i=1(1/γ
2
i ).

Proof: Now, to prove the Theorem, fixk ∈ N. If Γ1 = (γ
(1)
1 , . . . , γ

(1)
k ) andΓ2 = (γ

(2)
1 , . . . , γ

(2)
k ),

let E(Γ1, Γ2, δ) be the event that there exists a threshold decision listh with k terms such that

erP (h) ≥ erΓ2
s (h) +

√
8

m

(
576 R2D(Γ1) log2 (8m) + ln

(
2

δ

))
,

11



whereD(Γ1) =
∑k

i=1(1/γ
(1)
i )2. Then, by Theorem 3.1,Pm(E(Γ, Γ, δ)) ≤ δ, and it is easily

seen thatΓ1 ≤ Γ ≤ Γ2 and0 < δ1 ≤ δ ≤ 1 imply E(Γ1, Γ2, δ1) ⊆ E(Γ, Γ, δ). It follows that

Pm

 ⋃
Γ∈(0,1]k

E

(
(1/2)Γ, Γ, δ

k∏
i=1

γi

2k

) ≤ δ.

So, with probability at least1 − δ, for all γ1, γ2, . . . , γk ∈ (0, 1], if h is any threshold decision
list with k terms, andΓ = (γ1, γ2, . . . , γk), then

erP (h) < erΓ
s (h) +

√√√√ 8

m

(
2304 R2D(Γ) log2 (8m) + ln

(
2

δ

)
+ k ln 2 +

k∑
i=1

ln

(
1

γi

))
,

whereD(Γ) =
∑k

i=1(1/γ
2
i ). This holds for anyfixedk. Replacingδ by δ/2k, we see that, with

probability at least1− δ/2k, for anyh with k terms and anyΓ,

erP (h) < erΓ
s (h) +

√√√√ 8

m

(
2304 R2D(Γ) log2 (8m) + ln

(
2 2k

δ

)
+ k ln 2 +

k∑
i=1

ln

(
1

γi

))
,

and so, with probability at least1 −
∑∞

k=1(δ/2
k) = 1 − δ, for all k, for all h of lengthk, and

for all Γ,

erP (h) < erΓ
s (h) +

√√√√ 8

m

(
2304R2D(Γ) log2 (8m) + ln

(
2

δ

)
+ 2k ln 2 +

k∑
i=1

ln

(
1

γi

))
.

(Note that we could have replacedδ by δαk where(αk) is any sequence such that
∑∞

i=1 αk = 1.)
The second part of the Theorem is proved similarly, using Theorem 3.2. ut

Shawe-Taylor and Cristianini [17] and Bennettet al. [6] proved a margin-based generalization
result for the more general class of perceptron decision trees, in the case where there is zero
Γ-margin error on the sample. The special case of their result that applies to threshold decision
lists gives a bound (with probability at least1− δ) of the form

erP (h) < O

(
1

m

(
R2D(Γ) (ln m)2 + k ln m + ln

(
1

δ

)))
. (4)

(TheO-notation indicates that constants have been suppressed.)
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By comparison, the bound given in Theorem 3.2 is of order

erP (h) < O

(
1

m

(
R2D(Γ) ln m + k +

k∑
i=1

ln

(
1

γi

)
+ ln

(
1

δ

)))
. (5)

The first term of bound (5) is aln m factor better than the corresponding term of (4). That this
is so is because we have used Zhang’s covering number bound, (1), and have not bounded the
covering number by using results on fat-shattering dimension, coupled with the bound of Alon
et al. [1] that gives a general bound on covering numbers in terms of fat-shattering dimension.
Additionally, since all these probability bounds are trivial (greater than1) unlessm > (R/γi)

2

for all i, the remaining terms of the bound (5) are of order no more thanO(k ln m), and are
potentially much smaller. This improvement results from our development and use of Theo-
rem 3.3. Theorem 3.4 is therefore an improvement over the results implied by [17, 6].

It is a simple matter to modify the above results so that they apply to perceptron decision trees.
As in [17, 6], one only additionally has to take into account the different number of decision
tree architectures on a given number of nodes. In this way, the techniques here can be used to
improve the results in [17, 6], shaving aln m factor from the leading term of the error bound,
and replacingk ln m by a term of orderk +

∑k
i=1 ln(1/γi). The details are omitted here, but are

easily worked out.

4 Error bounds for multilevel threshold functions

Suppose thath is a k-level threshold function, represented by weight vectorw and threshold
vectorθ = (θ1, θ2, . . . , θk) (whereθ1 ≤ θ2 · · · ≤ θk). Regarded as a threshold decision list,
the tests are the threshold functionsti, whereti(y) = sgn(〈w, x〉 − θi). Recall that we sayh
classifies the labelled example(x, b) with marginγ > 0 if h(x) = b and, for all1 ≤ i ≤ k,
|〈w, x〉 − θi| ≥ γ. (In other words,h classifiesx correctly, andx is distance at leastγ from
any of the hyperplanes defining the multilevel threshold functionh.) As above, for a labelled
samples, erγ

s (h), the sample error at marginγ, is the proportion of labelled examples ins that
arenotcorrectly classified with marginγ.

To bound generalization error in this special case, we take a slightly different approach to the
one used above for general threshold decision lists. Rather than take a cover for each term of
the decision list, a more ‘global’ approach can be taken, exploiting the fact that the planes are
parallel. In taking this approach, however, the analysis allows only one margin parameter,γ,

13



rather thank possibly different margin parameters, one for each plane. (As before, for the sake
of simplicity, we assume thatR ≥ 1 andγ ≤ 1.)

Theorem 4.1 SupposeR ≥ 1 and Z = BR × {0, 1}, whereBR = {x ∈ Rn : ‖x‖ ≤ R}.
Fix k ∈ N and letH be the set of allk-level threshold functions defined on domainBR. Let
P be any probability distribution onZ, and supposeγ ∈ (0, 1] and δ ∈ (0, 1). Then, with
Pm-probability at least1− δ, a samples is such that ifh ∈ H, then

erP (h) < erγ
s (h) +

√
8

m

(
1152R2

γ2
log2 (9m) + k ln

(
10R

γ

)
+ ln

(
2

δ

))
.

Proof: Fix γ ∈ (0, 1]. As earlier, withH the set ofk-level threshold functions onBR, if

Q = {s ∈ Zm : ∃h ∈ H with erP (h) ≥ erγ
s (h) + ε}

and
R = {(s, s′) ∈ Zm × Zm : ∃h ∈ H with ers′(h) ≥ erγ

s (h) + ε/2},

thenPm(Q) ≤ 2 P 2m(R). Also as before,P 2m(R) ≤ max{Pr(σz ∈ R) : z ∈ Z2m}, where
Pr denotes the probability over uniform choice ofσ from the ‘swapping group’G. Let LR be
the set of all functions of the formx 7→ 〈w, x〉, wherew ∈ Rn satisfies‖w‖ = 1, and where
the domains of the functions areBR. Now fix z ∈ Z2m, let x ∈ X2m be the corresponding
xi-vector, and letC be aγ/4-cover ofL with respect to thedx

∞ metric. By (1),

log2 |C| ≤ log2N∞(LR, γ/4, 2m)

≤ 576R2

γ2
log2 (2 d16R/γ + 2e 2m + 1)

≤ 576R2

γ2
log2

(
80Rm

γ

)
.

Each function inC is represented by a weight vector, and we shall denote the set of these weight
vectors byŴ . For eachw ∈ Rn, denote byŵ a member ofŴ such that fori = 1, 2, . . . , 2m,
|〈w, xi〉 − 〈ŵ, xi〉| < γ/4. Let

D = {θ ∈ R : ∃n ∈ Z ∩ [−(4R/γ)− 1, (4R/γ) + 1] s.t. θ = n(γ/4)} ,

and letΘ̂ = Dk. Then

|Θ̂| ≤
(

8R

γ
+ 2

)k

≤
(

10R

γ

)k

.
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Now, supposeh is ak-level threshold function defined onBR. Then, of course,h is represented
by a weight vectorw ∈ Rn and a threshold vectorθ ∈ Rk. Without loss of generality,‖w‖ = 1,
in which case, since, for allx ∈ BR, |〈w, x〉| ≤ R, we can assume that eachθi satisfies
|θi| ≤ R. Then, denote bŷθ a member of̂Θ such that fori = 1, 2, . . . , k, |θi− θ̂i| ≤ γ/4. (Such
a θ̂ exists by the way in whicĥΘ is defined.) LetĤ be the set of allk-level threshold functions
representable by weight vectorŝw ∈ Ŵ and threshold vectorŝθ = (θ1, . . . , θk) ∈ Θ̂. Then

|Ĥ| ≤ 2(576R2/γ2) log2(80Rm/γ)

(
10R

γ

)k

.

For eachh ∈ H, let ĥ be thek-level threshold vector with weight vector̂w ∈ Ŵ and threshold
vectorθ̂ ∈ θ, whereŵ andθ̂ satisfy the properties indicated above. For eachi = 1, 2, . . . , 2m,
for eachj = 1, 2, . . . , k,

|(〈w, xi〉 − θj)− (〈ŵ, xi〉 − θ̂j)| ≤ |〈w, xi〉 − 〈ŵ, xi〉|+ |θi − θ̂i| ≤ γ/4 + γ/4 = γ/2.

This means that, whenx is any one of thexi, and1 ≤ j ≤ k,

〈w, x〉 < θj =⇒ 〈ŵ, x〉 < θ̂j + γ/2,

〈w, x〉 > θj =⇒ 〈ŵ, x〉 > θ̂j − γ/2,

〈ŵ, x〉 ≤ θ̂j + γ/2 =⇒ 〈w, x〉 < θj + γ,

〈ŵ, x〉 ≥ θ̂j − γ/2 =⇒ 〈w, x〉 > θj − γ.

It follows that, if σz = (s, s′) ∈ R anders′(h) ≥ erγ
s (h) + ε/2, thener

γ/2
s (ĥ) ≥ ers(h) and

erγ
s′(h) ≥ er

γ/2
s′ (ĥ), and so

er
γ/2
s′ (ĥ) ≥ erγ/2

s (ĥ) + ε/2.

The proof now proceeds as the proof of Theorem 3.1. For anyz ∈ Z2m,

Pr (σz ∈ R) ≤ Pr

σz ∈
⋃
ĥ∈Ĥ

R(ĥ)

 ,

where
R(ĥ) = {(s, s′) ∈ Z2m : er

γ/2
s′ (ĥ) ≥ erγ/2

s (ĥ) + ε/2}.

Fixing ĥ ∈ Ĥ, we find that

Pr
(
σz ∈ R(ĥ)

)
≤ exp(−ε2m/8).
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Therefore,

Pm(Q) < 2 |Ĥ| exp(−ε2m/8) ≤ 2 2576R2/γ2 log2(80Rm/γ)

(
10R

γ

)k

exp(−ε2m/8).

So, with probability at least1− δ, for all h ∈ H,

erP (h) < ers(h) +

√
8

m

((
576R2

γ2

)
log2

(
80Rm

γ

)
+ k ln

(
10R

γ

)
+ ln

(
2

δ

))
.

The result follows on noting that the bound stated in the Theorem is trivially true ifm < R2/γ2,
and is implied by the bound just derived ifm ≥ R2/γ2. ut

Theorem 4.2 SupposeR > 0 and Z = BR × {0, 1}, whereBR = {x ∈ Rn : ‖x‖ ≤ R}.
Fix k ∈ N and letH be the set of allk-level threshold functions defined on domainBR. Let
P be any probability distribution onZ, and supposeγ ∈ (0, 1] and δ ∈ (0, 1). Then, with
Pm-probability at least1− δ, a samples is such that ifh ∈ H anderγ

s (h) = 0, then

erP (h) <
2

m

(
1152R2

γ2
log2(9m) + k log2

(
10R

γ

)
+ log2

(
2

δ

))
.

Proof: This result is obatined by modifying the proof of Theorem 4.1, just in the same way
as Theorem 3.2 is obtained by modifying the proof of Theorem 3.1. One can show that the
probability that there existsh ∈ H such thaterγ

s (h) = 0 anderP (h) ≥ ε is at most

2 2(576R2/γ2) log2(80Rm/γ)

(
10R

γ

)k

2−εm/2,

from which the result follows. ut

The generalization error bound implied by Theorem 3.1 in the case in whichγi = γ for all i is,
suppressing constants,

erP (h) < erγ
s (h) + O

(√
1

m

(
R2k

γ2
ln m + ln

(
1

δ

)))
(with probability at least1− δ), whereas that of Theorem 4.1 is

erP (h) < erγ
s (h) + O

(√
1

m

(
R2

γ2
ln m + k ln

(
R

γ

)
+ ln

(
1

δ

)))
,

16



so there is some advantage in the more particular analysis that has been carried out for multi-
level threshold functions.

It is straightforward to remove thea priori specification ofγ andk, using the result from [5]
mentioned before Theorem 3.3. The following bounds are obtained.

Theorem 4.3 SupposeR > 0 andZ = BR × {0, 1}, whereBR = {x ∈ Rn : ‖x‖ ≤ R}. Fix
k ∈ N and letH be the set of all multilevel threshold functions defined on domainBR. LetP be
any probability distribution onZ. Then, withPm-probability at least1− δ, the following hold:

1. for all k ∈ N andfor all γ ∈ (0, 1], if h ∈ H is ak-level threshold function, then

erP (h) < erγ
s (h) +

√
8

m

(
4608R2

γ2
log2 (9m) + k ln 2 + k ln

(
20R

γ

)
+ ln

(
4

δγ

))
.

2. for all k ∈ N, and for all γ ∈ (0, 1], if h ∈ H is a k-level threshold function andh
classifiess with marginγ, then

erP (h) <
2

m

(
4608R2

γ2
log2(9m) + k + k log2

(
20R

γ

)
+ log2

(
4

δγ

))
.
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