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Abstract

Wheel structures of the Orthogonal Latin Squares (OLS) polytope (Pr) are presented in [2].
The current work focuses on the families of valid inequalities arising from wheels and proves that
certain among them are facet-defining for P;. For two of these families we provide efficient separation
procedures. We also present results regarding odd-hole inequalities, which essentially form a larger
class encompassing that of wheel inequalities.

1 Introduction

The Orthogonal Latin Squares (OLS) problem is the second member of the family of planar assignment
problems, the first being the Latin Squares (LS) problem ([8]). As noted in [2], not many classes of facet-
defining inequalities are known for the polytopes of either problem. For the LS polytope two families of
odd-hole facets are described in [3] and [5], respectively. For the OLS polytope (Pr) all clique facets are
presented in [1]. The current work adds to our knowledge of the facial structure of planar assignment
polytopes by identifying wheel facets for P;. It is easy to see that there are no wheel-induced inequalities
for the LS polytope. Thus, P; is the “simplest” among planar assignment polytopes having facet-defining
inequalities of this type.

The families of the inequalities presented here are induced by some of the wheel classes presented
in [2]. In fact, much of the ground work for the current paper has been laid out in [2]. Although we
give some definitions, for the self-sufficiency of the current work, we refer to that paper for a complete
presentation of concepts and conventions to be used throughout.

The OLS problem is defined in terms of four disjoint n—sets, namely I,J, K, L (see [1, 2] for a
formulation). Let G4(C, E¢) denote the column intersection graph of the A matrix of the OLS problem.



Because C =1 x J x K x L ([1]), s € C, equivalently, denotes the tuple (is, js, ks, ls). For any s,t € C
there exists the edge (s,t) € E¢ if and only if nodes (s,t) have at least two indices in common. Hence,
if (s,t) € E¢ the sets of the common indices form the ground set of the edge. If s,t have two (three)
indices in common (|s Nt| = 2(3)) then the ground set is called a double (triple) set. The ground set of
the edge (s,t) also denoted as g((s,t)), is defined in terms of the ® operator. Thus, if is = i, js = Ji,
ks # ki, ls # 1; then g((s,t)) =I® J, where IQ@ J = (I x J)U (J x I). If ig =iy, Js = Jt, ks = ke, ls £ 1
then g((5,1)) =I®JQ K, where I JQ K = (I ®J)U(J®K)U (I ® K).

Few additional definitions are introduced in Section 2 where properties of the odd-hole and wheel
inequalities are examined. Section 3 discusses the relation between the inequalities induced by cliques
([1]) and wheels. In Section 4 families of wheel-induced facets are presented. For two of these families

polynomial time separation algorithms are given in Section 5.

2 0Odd-hole and wheel inequalities

Let H C C denote the node set of an induced odd hole (|JH| = 2p + 1,p > 2). Then, the odd-hole
inequality is

> {wg:qeHY <p (2.1)

A special case of odd-hole inequalities are the wheel inequalities. A wheel is an induced subgraph
consisting of an odd hole, called the rim, and a node connected to all nodes of the rim called the hub.
Let ¢ € C denote the hub of a wheel and H(c) the set of its rim nodes where |H(c)| = 2p+ 1, p > 2.
Then, the wheel inequality ([6]) is

P + Z(xq g€ H(c)<p (2.2)

Maximally lifted odd-hole (and consequently wheel) inequalities are known to be facet-inducing for
the set packing relaxation of Py ([9, 10]), denoted as P; (see [2]). An important issue is that of calculating
the largest coefficient for the variables belonging to such an inequality. In other words, let x5 be any
variable added to the left-hand side of (2.1) and let as denote its coefficient. We want to determine the

maximum value of as such that (2.1) is not violated. First we need to show the following auxiliary result:

Lemma 2.1 Let H,, C H such that |H,| = m. Then,

[%—‘ < maXZ{xq g€ Hp} <m (2.3)

Proof. For the upper bound consider H,, to consist only of non-adjacent nodes of H. Then all
variables indexed by the elements of H,, can simultaneously take the value 1, yielding > {z, : ¢ €

H,,} = m. One the other hand, if each node of H,, is adjacent to at most two other nodes of this set,



and since the elements of H,, do not induce a cycle (H,, C H), we have max) {z,:q € H,,} = 7, for
m even, and max > {z,:q € Hy} = [2], for m odd. m

Proposition 2.2 No odd-hole inequality valid for OLS can have a left-hand side integer coefficient greater
than min{5, p}.

Proof. Consider that (2.1) is augmented (lifted) by introducing the variable x, with a coefficient as:

asxs+2{xq:q6H}§p

Let Hy C H be such that H;, = {g € H : |gNs| > 2}. Therefore, if variable x4 is set to one the above

inequality becomes
as+ Y {rg:q€ H\H} <p (2.4)

We observe that as is maximized when max ) {z,: ¢ € H \ H,} is minimized. To achieve this, |H \ H|
must be as small as possible. Thus, |H;| must be as large as possible. For each pair of indices of s there
can be at most two nodes of H, having the same pair of index values. There are six distinct double sets,
therefore |Hs| < min{12,2p + 1}. If 2p+1 > 12 then |[H\ Hs| > 2p+1 — 12 = 2(p — 6) + 1. So the
minimum number of variables participating in the summand is |H \ Hy| = 2(p — 6) + 1. By inequality
(2.3)

p—6+1 §max2{xq:q€H\Hs}

Hence by (2.4), we have
p—5+a<p

yielding as < 5.
If 2p + 1 < 12 then there might be a node ¢ € C such that (¢,q) € F¢ Vq € H. In this case, node ¢ is
the hub of a wheel while H is the set of nodes of the rim. The wheel inequality states as =p. ®

Specifically for the lifted inequalities generated by wheels, we have the following proposition.

Proposition 2.3
as = p, if s=c,
as <2, if 3>lecns|>2

Proof. The maximum value for a, is achieved only if s is connected to all nodes of the wheel. In this
case s = ¢ and as = p (Prop. 2.2).
Assume that ¢ = (n,n,n,n). If s € C'\ (H(c) U{c}) there are two cases.

Case 2.3.1 |cNs| =3.
Without loss of generality assume that s = (ig,n,n,n), ig € I\ {n}. First consider wheels with

double-set spokes only. Observe that there can be none, one, or two rim nodes having iy as one of their
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Figure 1: A wheel having a triple-set spoke and six nodes connected to (ig,n,n,n)

6

indices. In all cases, node s is connected to all nodes of the rim whose spokes are based on one of the
double sets J® K, J® L, K ® L. There can be at most six such nodes, two for each double set ([2, prop.
3.2]). Setting x5 = 1, implies that the variables indexed by the hub and these six nodes will be set to
0. This leaves the 2p +1—6 = 2- (p — 2) — 1 variables, indexed by the remaining rim nodes, free. At
least p — 2 of these variables can be set to one simultaneously. Hence, the lifted wheel inequality yields
as+p—2<poras; <2. Observe that if among the six nodes there exist nodes having iy among their
indices, then the edge connecting each such node to s is based on a triple set formed by set I and two of
J, K, L.

The situation is the same in the case of wheels having one triple-set spoke. In this case observe that
the maximum number of pairs of spokes, each spoke of the pair being based on the same double set, is
three ([2, Table 3]). This occurs for wheels belonging to classes nums. 27, 28 (column [WZ(K3)|). In
both classes the three pairs are consecutive (column seq(K3)). However, there is no sequence of three
such spoke pairs with the property that the three double sets of the pairs are formed by three single sets
(column K31 — K} — K1, subcolumn 3). Therefore, one of the six spokes of the sequence must be based on
a triple set having as a component one of J® K, J® L, K ® L. One such wheel is illustrated in Figure 1.
s is connected to at most six such nodes implying a, < 2.

Finally, if the wheel has two triple-set spokes we can only have p = 2 (]2, Table 3]), implying that
as < 1.



Case 2.3.2 [cNs| =2.
Without loss of generality assume s = (g, jo, 7, 1), 50 € I\ {n}, jo € J\ {n}. In the case of wheels

having only double-set spokes, node s can be connected to at most six nodes, i.e.

(a) two nodes incident to spokes based on K ® L,
(b) two nodes having ig and n for one of the indices of the sets K, L,

(c) two nodes having jy and n for one of the indices of the sets K, L.

The nodes of (b), (¢) will have one more index equal to n such that the double sets of their incident

spokes are different from K ® L. One such collection of six nodes is:

{('7 '7”7”)7 ('7 ',TL,TL), (iOana n, ')7 (’L'o,nﬂl, ')a (naj()a '7”)7 (najOa an)}

Observe that it is not necessary for the nodes of (b) to have the same pair of indices equal to n.The same
is true for the nodes of (c). In all cases, we cannot have another node connected to s because then we

would have a chord between this node and one of the six nodes of the collection. Hence a, < 2.

For wheels with a triple-set spoke, it is also easy to see that we cannot have more than six nodes

connected to s.

The wheel classes presented in ([2, Table 3]) give rise to families of valid inequalities for P;. Each
such inequality is produced by lifting an inequality of the type (2.2) obtained from a wheel belonging to
a particular class. The lifted inequality depends on the lifting sequence; it is easy to see that a wheel
class can give rise to more than one family of lifted inequalities. For example, the wheel illustrated in

Figure 2a, belonging to class num. 1, induces the inequalities

ieI\{n] jeJ\{n} leL\{n}
+ Z Tnjonl + Z Tnjgnlg
leL\{lo,n} J€JI\{jo,n}
+ Z Tignnl + Z Tinnlg
leL\{lo,n} i€I\{i0,n}
Lignnly + xnjonlo + xigjonn § 2 (25)



Figure 2a: A wheel of class num. 1 Figure 2b: A wheel of class num. 22

i€I\{n] jeJ\{n} leL\{n}
+ Z Lignnl + Z Linnlg
leL\{lo,n} i€\ {io,n}
+ Z Tnjonl + Z Lijonn
leL\{lo,n} i€I\{io,n}
Tignnlg + ‘/'E’nj(]nl() + xiojonn + xnjlnlg S 2 (26)

On the other hand, the same family of lifted inequalities can be obtained from wheels belonging to two
distinct classes. For example, the above inequalities can also be obtained from the wheel illustrated in
Figure 2b which belongs to the wheel class num. 22.

Another important observation is that the number of triple-set rim edges of a wheel is related to the
induced lifted wheel inequality. The bigger this number is, the larger the set of the common indices of the
nodes of the wheel. This implies a larger set of variables to be considered for the lifted wheel inequality.
Therefore, for a given wheel class, the wheels having the maximum number of rim edges based on triple
sets are likely to produce more families of valid inequalities than wheels without this property. Results

regarding triple-set rim edges are presented in [2].

3 Wheel and clique inequalities

The definition of a wheel assumes p > 2 If we extend it to include wheels having p = 1, we can derive all
classes of clique-induced inequalities ([1]) as wheel inequalities. This is illustrated in Figures 3a, 3b, 3c.

For each of these wheels, the resulting lifted inequality belongs to a distinct class of clique inequalities,



Figure 3a Figure 3b Figure 3c

Table 1: Clique inequalities induced by wheels
’ Figure \ Clique class \ Inequality

3a I Z Z Tnnkl S 1
keK leL
ieI\{n} jeJ\{n} keK\{n} leL\{n}
3c 111 Tnnnn + Tnnkolo + Tnjokon + Tnjonly < 1

as illustrated in Table 1.

Obviously, all the wheels of size three are in fact K4 graphs. However, considering the specific
structures illustrated in Figures 3a, 3b, 3¢ as wheels allows as to derive three additional wheel classes to
be added to the ones described in [2, Table 3|. For the wheel of Figure 3a, we have two spokes based on
triple sets (‘H 2(c)| = 2). This is the second wheel class with this property. The wheel of Figure 3b has
the unique property that it has three spokes based on triple sets, i.e. |H 2(0)’ = 3. This cannot happen
for p > 2 (]2]). Finally, the wheel of Figure 3c does not include two spokes based on the same double set
although it consists exclusively of double-set spokes. Again this property is unique ([2]). Observe that
the inequality induced by the last class of wheels is facet-defining for Pr as is (no lifting is required).

4 Wheel facets
The general form of the inequalities considered hereafter is
pre+ Y {wg:q€Q}<p (4.1)

where ¢ € C, Q C C such that there exists H(c¢) C Q with |cNh| > 2, for all h € H(c) and |H(c)| = 2p+1.

Hence, (4.1) describes a different family of lifted wheel inequalities for each distinct set Q). Consequently,



each family of inequalities of the type (4.1) is induced by a wheel class described in [2]. For each such
family presented in one of the following subsections, we show that the face P;(Q) = {z € Pr : pro+) {zq4:
q € Q} = p} is a facet of P;. For every family examined, the associated set @ is defined with respect to
two elements of C, namely c, s, such that |¢N s| = 0. It follows easily that the cardinality of each family
is of O(n®), since for any given c there are exactly (n — 1)* elements of C' available for the the role of s.

The procedure for showing that P;(Q) is a facet of P; includes the following steps. We give specific
values to p, ¢, s and, if necessary, to other parameters, so as to define a particular inequality belonging to
the family examined. We show that this inequality is maximal with respect to set inclusion. This proves
that the inequality is facet-defining for Py, and because P; C Py, the inequality is valid for P;. Then we
show that Pr(Q) # 0 and P;(Q) # Pr. Finally, let (4.1) be written as dz < dy. We show that if any
other inequality ax < ag is satisfied as equality by all points of P;(Q), then there exist A € R™ and = > 0
such that a = AA + 7d and ag = Ae + 7wdy (see also [11]). For showing this last step we use exclusively
points of P;(@Q). An observation used throughout the facet proofs is that for any two points z,y € Pr(Q)
the equation ax = ay is valid.

Another relation mostly exploited in the proofs is the 1 —1 correspondence between Orthogonal Latin
squares and integer points of P;. This relation is more evident if we consider two of the sets I, J, K, L as
the row and column set of the OLS structure, and the remaining two sets as the sets of values included
in the cells of the first and the second Latin square,respectively. Conventionally, I is considered to be the
row set, J the column set and K (L) the set of elements of the first (second) Latin square. As in ([1]),
we denote k(i,j) (respectively 1(i,7)) the value of the cell in row ¢, column j of the first (second) Latin
square. Thus, k(4,j) € K and [(¢,j) € L. Occasionally, in order to emphasize the value of k(4, ) (1(4, 7))
at a given point x of Py, we use the notation k(x;4,j) (I(xz;4,7)). For the rest of the paper we illustrate a
pair of OLS as a Latin square containing in each cell a pair of indices, each belonging to a different set.
The above convention implies that this pair belongs to K x L. In the case that a different convention is
used with respect to the sets I, J, K, L and the rows, columns and elements of the cells of the two squares,
the above notation as well as the illustration of the OLS structure are adjusted accordingly.

The inherent symmetry of the integer points of P is exploited through the notion of interchange.
Given a pair of OLS and mq,mg € M where M is any of the disjoint sets I, J, K, L (inter)changing all m4
values mgy and all my values to m; yields another pair of OLS ([1, rem. 13]). The two OLS structures are
called equivalent ([4, p. 168]) and the corresponding points of Py isotopic. The interchange operator (<),
introduced in [1], is used to denote such an operation. Thus, setting x* = x(iy < i2); implies that at a
given integer point x, we set T; (i, j)i(i1,5) = Tisjk(in,j)l(iz,5) = 0 AN Tj jk(in, ))i(ia,5) = Tisjk(ir,5)l(i1,5) = Ls
for all j € J, obtaining point x*. The expression is subscripted by a number denoting the set to which
the elements participating in the interchange belong (1 for the set I, 2 for J, 3 for K, 4 for L). The
conditional interchange is defined as the interchange to be executed only if a certain condition is met.
Thus, z* = z(i; = n?n < iy); implies that the interchange is carried out only if i1 = n. Otherwise

T* = x.



Another type of interchange involves the permutation of the roles of the four sets. This form of
symmetry is known as conjugacy or parastrophy ([4, Section 2.1]). Hence, z* = x(I < J) denotes the
swap of values of the indices 4, j applied to point x resulting in point «*(z* € P;). The points x,z* are
called conjugates.

The following proposition, introduced in [1, prop. 16], establishes an equation involving elements of

the vector a defined previously.

Proposition 4.1 [1, Prop. 16]For n >3 and n # 6

@iy jrke(in 1)l 1) T Qingak(in,g2)l(in,g2) T Qinjik(io,ji)l(in,g1) T Qiojok(iz,jz)l(iz,j2)
+ai1j1k(i27j2)l(i2>j2) + iy jok(iz,j1)1(32,51) + Qg g1k (i1,52)1(31,52) + Qg jak(i1,51)0(31,51)
= Qiyjik(iz,51)1(i2,51) + iy jok(iz,j2)l(iz,52) + Qinj1k(i1,51)1(i1,51) + Qinjok(it,g2)l(i1,52)

F iy jik(ir,j2)l(i1,52) T Qivgok(in,gi)l(ing1) T Gingik(in,jo)l(in,ga) T Qingak(iz,gn)l(iz.g1)
foriy, iz € 1,1y # i2, j1,J2 € J,J1 # J2-

To derive this equation we use an integer point € P; and points z’,Z,z’ derived from z as z’ =
x(iy < i2)1, T = z(j1 < J2)2, T’ = Z(i1 < i2);. Subtracting aZ = aZ’ from ax = az’ and cancelling
out equivalent terms yields the equation. Hence, the point = and the two pairs of indices, each pair
belonging to one of the sets I,J, K, L, are enough for defining such an equation. Consequently, the
equation is referred to as x((i1,42)1; (J1,J2)2) and the collection (z,z’,Z,Z’) as X ((i1,i2)1; (j1,42)2). As
usual, the set to which the indices of the pair belong is indicated by the subscript of the pair. Observe
that x((i1,42)1; (j1,72)2) can be used in the proofs that follow, only if z,2’,Z, 7" € P;(Q), in which case
we use the notation X € Pr(Q).

To facilitate our presentation, we introduce some additional definitions and conventions. Hence, for
ceC, Q™) ={qe C:|gnc|l =m}. Werefer to a point x illustrated in Table numbered by (#) as
z™#) As in [1], an equation which is numbered by (#) and whose terms are indexed by i, j, k, 1, is
referred to as (#)[a, b, ¢, d] implying that the indices 4, j, k, [, take the specific values a, b, ¢, d, respectively.

Z denotes a point of P; induced by the OLS structure which has the elements of the first columns
of the two squares in standard order as well as the first row of the first square. A pair of OLS of this
form is called standardised or reduced ([4, p. 159]) and can be derived, provided that P; # @. Thus,
Tmimm = L, T1mk,my,m) = 1, ¥m € {1,...,n}. The following Lemma establishes another point to be

used in the proofs that follow.

Lemma 4.2 Forn > 7, 44,41 € IN{1,n}, jq, 71 € J\{1,n}, ka, k3 € K\ {1, ko,n} where kg € K\ {1,n},
Iy € L\{1,lo,n}, la € L\ {1,lo},l3 € L\ {1} where lp € L\ {1,n}, there exists the point = illustrated in
Table 2



Table 2: Point z (Lemma 4.2)

| 1 o NS o
T (L) (. 12)
;q . 1) (s 15)
;1 T n)
n (n,n)

Proof. At point &, let iy € I'\ {1,n}, j1 € J\ {1} be such that k(i1,j1) = 1, l(41,71) = n. There
also exist i9,4, such that i, € I\ {1,41,n} with k(iy,1) = k1 and iz € I\ {i1,n} with Z;,j,6,n = 1,
where jo € I\ {j1,n}. For n > 5, it is safe to assume that i, # i1 because if 4, = i; then there exist
ko € K\{1,k1,n} and (another) i, (this time different from 4, ) such that k(i¢,1) = ks. By denoting i3, js
the row and column at which the pair (ko,n) appears (Zi,j,kon = 1,93 € I\ {i1,42,n},73 € I\ {j1, j2,n})
and by performing the interchanges (ko < k1)3(is < i2)1(js < ja2)2, we derive point & with i, # 4;.

We denote [(i4, 1) as I;. Therefore, &; 1x,1, = Ti,jy1n = Tiyjokinl. Let T = 2(ky < n)3(iz < n)1(j2 <=
n)s. As shown in Table 3, for n > 7 there exists j, € J \ {1,n} such that k(iq, jq), (1, jq) € K\ {1,n},
U(ig,dq),1(1,jq) € L\ {1}. Observe that we can safely assume that k(iq,jq), k(1,754) # ko. To show

Table 3: Point # (Lemma 4.2 )

|1 e T T T U o
1 (1,1) (ka,l2) (n,-)
i [ (s, Is) ) (-1
;1 (1,n)
n (n,n)

that this is so, consider k(iq,j,) = ko. Then there exists k, € K \ {1, ko,n} such that the interchange

(ke — ko)s will set k(iq,jq) = ki # ko. By the same argument, (44, jq), (1, jq), 11 # lo. By denoting

k(1,5,) as ko, k(ig, jq) as ks, I(1,5,) as la and I(iq, j,) as I3, we obtain the point TP(2) of Table 2. m
Each of the following subsections is entitled with respect to the wheel class from which the inequality

at hand is induced (see [2]).

10



Figure 4: A wheel of class num. 29

4.1 Wheel class num. 29

Let p=2 and Q = (Q*(c) N Q?(s)) UQ3(c). For ¢ = (n,n,n,n) and s = (io, jo, ko, lo), (4.1) becomes

ie\{n} jen{n} keK\{n} 1€\ {n}
+xi0j0nn + Tignkon + Tnjokon + Tignnly + Tnjonly + Tnnkolo S 2 (42)

This inequality is induced by the wheel illustrated in Figure 4, which belongs to wheel class num. 29.
Lemma 4.3 (4.2) is maximal.

Proof. Suppose that there exists a variable x4 (¢ = (iq,7]q,kq,lq) € C) which can be added to the
left-hand side of (4.2) without increasing its right-hand side. Clearly x, must have either three or two
indices in common with (n,n,n,n), since otherwise it can be set to one together with z,,n,. In the
former case, x4 is already included in (4.2), i.e. x4 is one of Tinnn, Tnjnn, Tnnkns Tnnnt,© € I\ {n},j €
J\{n},k e K\ {n},l € L\ {n}. In the latter case, assume i, = n, j; = n. Then we can simultaneously
set Tnnk,1, and Tpjonls Tignnn to one. Observe that this is valid even if k; = ko, Iy # lo or Iy = lo,
kg #ko. m

Theorem 4.4 Forn > 7, (4.2) defines a facet of Pr.

11



Proof. Let x = &(1 <> n)s. Then z € Pr(Q) since Tppnn = 1. Hence, Pr(Q) # 0.

At point & either Tpnkgi, = 1 OF Tnnkol, 7 1. In the former case, there exists j; € J\ {1,n} such that
(k(i0, j1),1(i0,51)) # (ko,n), (n,lp). We need n > 5, because we might have &;,j,kon = Tigjsnl, = 1. Let
x = &(j1 < n)2. Clearly x € Py \ Pr(Q). In the latter case, if Z;,nkon = 0 and & nni, = 0 we are done,
ie. & € Pr\ Pr(Q). Otherwise, assume without loss of generality that &; nk,n = 1. Then there exists
J1 € J\{1,n} such that (k(Zo, j1), (0, 71)) # (n,lo) and (k(n, j1),l(n,j1)) # (ko,lo). Let x = Z(j1 < n)2.
Clearly € Pr \ Pr(Q). Again we need n > 5.

Suppose that there exist a € ]R"4, ag € R such that axz = ag, for every x € P;(Q). We will show that
(a,ap) is a linear combination of the rows of A and inequality (4.2). Equivalently, we will exhibit scalars
Nets Al Ad Ay, Ny Ay, mER, Vi€ 1,5 € J k € K, 1 € L, satisfying

gl Nigs
A = A AN AL AL A T V6,4, k ) € Q, (4.4)
A = A+ AN A A AL +2m, (6,4, 0) = (n,n,n,n) (4.5)

a = Z At + Z N+ Z X

keEK,leL i€l lel jeJlel
2 4 2 5 2 6
icl,jeJ jeJkeK i€l ke K

We denote (4.4) and (4.5) as (4.3), and (4.3)2, respectively. We define:

1 4 ) .

Apl = G11ki, Vke K,l €L, Aij = Giji1 — @111 — a1l + e, Viel,jeJ,
2 . 5 ‘

X =anuy —any, Viellel, Ajp = a1jk1 — aiji1 — a1kl +ann, Vi€ JJ k€K,
3 - 6 -

Aj = aju —anu, Vi€ JlE€L, A = Gilk1l — @111 — G11k1 + @1111, Vi€ ke K

If we substitute As in (4.3), we obtain

Qijkl = Q4511 t Qi1k1 + G110 + G15k1 + Q1511 + Q11K

—2ai111 — 2a1511 — 2a1161 — 201117 + 3a1111 (4.7)

Observe that (4.7) is true for all cases where at least two of the indices are equal to one. All other cases
of (4,4, k,1) € C\ (QU{(n,n,n,n)}) are grouped with respect to the number of indices equal to n. There
are three such groups defined when none, one, or two of the indices are equal to n, respectively. For the

first two we show (4.3) by proving (4.7), whereas for the third one (4.3) is proven directly.

Case 4.4.1 None of 1, j, k, [ is equal to n.

12



Consider (i,j,k,1) = (ig,jqg, kg, lq) Where iy # n,j, # n,ky # n,ly # n. Let o' = 2™ and
2? = 21(1 & k,)3 where k, € K \ {1, k2, k3,n}. Further, for n > 6, there exists I, € L\ {1,11,ls,13,n}
such that 3 = 22(1 < l)s, 2 = 21 (1 < 1y)4. Then, X™((1,44)1; (1, jq)2) € Pr(Q) since Tppny = 1, for
all z € X™, for all m = 1,...,4. 2 ((1,49)1;(1,44)2) — 22((1,49)1; (1, Jg)2) vields (4.7)[iq, jqs kg, 1]. By
symmetry, we obtain (4.7)[iq, jg, 1, 1], (4.7)[ig, 1, kg, lg], (471, dg. kg, lg)-

23((1,dq)15 (1, 5g)2) — 2*((1,4g)15 (1, 74)2) yields

Qi jokgly = (Qigj11, + Qigikyl, + Q1j,kgl,) — Gig111, — G1j,11, — O11k,l, + Q1111

Substituting terms in brackets from (4.7)[iq, 4q, 1,lg], (4.7)[ig, 1, kg, lq], (4.7)[1, 4q, kq,l4] and cancelling
out identical terms, we obtain (4.7)[iq, jq, kq. L4

Case 4.4.2 One of i, j, k,[ is equal to n.

Consider (i, j,k,1) = (i, jq, 1, lg) Where iq # n,j, # n,lqg # n. Let l; € L\ {1,l1,l2,13,n}. Then,
rt = 2T lg)s 2% =21 (1 < n)3(i1 < n)1(j1 < n)2. Also let 2! = z!(l; < ;)4 and 2% = 22(l; <
I)a. Then, X™((1,iq)1; (1,74)2), X™((1,34)1; (1, 4q)2) € Pr(Q) since Zppnpn = 1, for all 2z € X™, X™, for
allm=1,...,4.

xl((la iq)1§ (lvjq)Q) - xz((la iq)l; (lajq)Q) yields

a1 + aijn1 + Gigint + i1 — (Gigjun1 + @i 111 + @15,11 + G11n1)

@i jonl, + Qi 111, + a1j,10, + @11nt, — (@igj,10, + Giginl, + a1jn, + a1111,) (4.8)
Adding & (1 ig)1: (1,4g)2) — #2((1,i)1; (1, jg)2) to (4.8) yields

2(a1111 + a1j,n1 + @igin1 + Gigj11 — (Qigjon1 + Gig111 + @15 11 + Q11p1))

= E {ai,j,nt + aijiu + avju + a1in — (@i, 5,10 + Gigint + a1j,n + a1111)} (4.9)
le{la,lq}

Let 2% = 22(1 < l)a(1l < I1)g, ' = 2(1 < ly)s. Again X™((1,ig)1;(1,74)2) € Pr(Q) since
Tpnnn = 1, for all @ € X™, for m = 3,4. 23((1,iq)1; (1,74)2) — 2*((1,44)1; (1, j4)2) leads the right-hand
side of (4.8) to zero, thus proving (4.7)[iq,jq,m, 1]. Observe that this result is valid independently of
whether [; = I3 or [; # l3 at point 2TPH2)  For each case we obtain different points for the collections
X1 X2 X3 X4 but the operations performed yield the same result. (4.7)[iq, 1,n,1,], (4.7)[1, g, n,1,]
follow by symmetry.

By virtue of (4.7)[iq, j4, 7, 1], the right-hand side of (4.8) is equal to zero. Thus, by substituting term
ai,j 1, from (4.7)[ig, jq,1,14], @i in, from (4.7)[ig,1,n,1y] and aij,n, from (4.7)[1,j4,n,1,], We obtain
(4.7)[ig, G, s lg).

Taking the conjugates of the above used points with respect to the interchange (K < L), we obtain
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(4N ]ig, Jgr kqoms ). (4.7)[ig, 0y kg, lg], (4.7)[n,, g, kg, 4] are obtained by considering the conjugate points
derived from the interchanges (J < K) and (I < K), respectively.

Case 4.4.3 Two of i, j, k,l are equal to n.

Observe that the remaining two indices cannot simultaneously take values from the tuple (i, jo, ko, lo),
because then the tuple under consideration would belong to Q). Hence, assume (3, j, k,1) = (n,n, kq, 1)
with k; # n,ly # lo, n.

Consider the point z illustrated in the Table 4, where k; € K \ {1,ko,n}. It is easy to establish

Table 4: Point 2 (Theorem 4.4, Case 4.4.3)

L o n
io (n,lo)
: 28D
n ) @)

existence of this point, for n > 4. Let & = &(I(1,n) # b?l(1,n) < lp)a(1l < n)2(1 < n)i1(n < lp)s.
Therefore, Tiynki, ayn = 1 If k(i1,n) # ko then we denote it k1 and obtain point z as illustrated in
Table 4. Otherwise, for n > 4 there exists k1 € K \ {1, ko, n} such that z = Z(k; < ko)s.

Let ' = 2™ @ 22 = 21(1 «» k,)3 where k, € K \ {1,k1,n}. Observe that 2™ € Pr(Q), because

Tpionn = xgznnlg =1, for m = 1,2. Expressing indices of the sets J, L in terms of indices of the sets I, K
in az! = ax? yields

Gnn11 + Z Gyj(i,1)11(3,1) T Zaij(i,kq)kql(i,kq)

ie\{n} iel
= Gpnk,1 + Z @ij(i,1)kgl(i,1) T Zaij(i,kq)ll(i,kq) (4.10)
iel\{n} iel

All terms in (4.10), except Gnnk,1, Gnni1, have at most one index equal to n. For these terms, (4.3) is
proven in one of the previous cases through (4.7). Therefore, solving (4.10) with respect to term a1,

substituting terms in the summands from (4.3), adding and subtracting As so that the summation index
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i runs for all values of the set I and cancelling out identical terms, (4.10) yields

Onnk,1 = Onnll
+ Z{)\iz(m) + )‘llcql(i,kq) - )‘Ilcql(i,l) - )‘%l(i,kq)}
icl
+ Z{)‘?(i,l)l XSGk ke = AJ(i kg — Nj(ikg)1 )}
icl
+/\11cqz(n,1) + )‘?(n,l)kq + /\fmq
7A%l(n,1) - /\?(n,m - A% (4.11)

It is easy to see that summands cancel out, i.e. ), ; /\}l(i,l) = el /\}l(ukq), Yier /\,ﬁql(i7kq) = el /\,ﬁql(i71),
Yicr )\?(i,l)l = D ier )\?(i,kq)l, Yicr )\?(i’l)kq = D el )\?(i’kq)kq. This is because the n-tuple (j(i,1);ecr)
((1(i,1)ier)) is an array containing the elements 1,...,n in some order. The same is true for (j(¢, kq)icr)
((1(@, kq)ier)). If we consider the n-tuples as unordered, we have | J;c;{7(i,1)} = U, {7(i,k¢)} = J and

Uie {1, 1)} = Use {16, kg) ) = L.
Also, observe that (4.7)[n,n,1,1] is valid because tuple (n,n,1,1) has two indices equal to one.

Substituting term an,11 from (4.7), (4.11) becomes

annkql = Ail + A?Ll + Afll + Afm, + )‘il + )\?ll
+)\Ilcql(n,1) + )‘?(n,l)kq + )\?mq

~Alin1) = An,1y1 — A
Since I(n,1) = 1,5(n,1) = n (Table 4), the above equation becomes
kg1 = Ayt + An1 + An1 + Ann + Ang, + An,

which is (4.7)[n, n, kq, 1].
Let 2% = 22(1 < 1,)4 where I, € L\ {1,lo,l1,n}. 2* € P;(Q). Expressing indices of the sets J, K in

respect to the indices of sets I, L, ax? = ax® yields

Onnkgl, + Z Qi (i, 1)k(i,1)l, T Zaij(i,kq)k(i,lq)l

iel\{n} il
= Gnnk,1 + Z Qij(i,1)k(5,1)1 T Zaij(i,kq)k(i,lq)lq (4.12)
ieI\{n} iel

Equation (4.12), dealt with in a manner analogous to that of (4.11), yields (4.7)[n, n, kq,l4]. By symmetry
we obtain the same equation but with k; # ko, n, l; # n.
Applying the same procedure to the points 2™ (J < K), 2™(I < K), a™(J < L), 2™(I < L),

15



for m = 1,2,3, yields (4.7)[n, jq, n, 4], (4.7)[ig,n,n,1], (4.7)[n, Jg, kg, ], (4.7)[iq, n, kg, n], respectively.
Finally, the same procedure applied to points 2™ (I < L)(J < K), for m = 1,2, 3, yields (4.7)[iq, jq, 2, 1]
Observe that all points used belong to Pr(Q).

The proof of (4.3) is complete.
To prove (4.3),, we define

Tijht = Qijin — (Mg + A7+ XY+ X+ A, + M%), V6,4, k1) € Q (4.13)

We must show that all m;;5; are equal. We do this in a series of steps.

Stepl: Consider the point x illustrated in Table 5. It is easy to establish existence for this point. At

Table 5: Point « (Theorem 4.4, Step 1)

|- o e e
10 (n,n)
n (. lo) (o) A

point & let iy € I\ {1,n} be such that k(i1,1) = ko, {(i1,1) = l;. Then, & = 2(l; < n)a(ly #
lo?ly < lp)a(l < n)a(n < ip)1. Observe that pair (n,n) € K x L does not lie at rows ip,4; and
column n. Thus, we can place it to row n and column jo by performing the necessary row and/or
column interchange, without affecting the positions of pairs (n,ly) (row ig, column n) and pairs
(ko,m) (row 41, column n). Thus, we derive point Z. We denote k(Z;n,n) as kq, [(T;n,n) as I,.
Then, x = Z(I < J). Observe that k(z;n,n) = kg, l(z;n,n) =1,.

1 _ . Tbl(5 2 _ 1 ; 1,2 1 - 1 —
Let 2! = 2™ and 2% = 2'(ji < jo)2. z',2? € Pr(Q) because z} ., = Tpjont, = 1 and
2 _ 2 _ 1 2 o
Tinnn = Tnjokon = 1- € = az” yields

Onjonly + E: Qijok(i,j0)l(4,j0) T Ongrkon T+ E @iy k(i,51)1(5,51)

iel\{n} iel\{n}
= Qngokon T Z Qijok(i,j1)l(i,51) T Anjinly T Z Qi1 k(i,50)1(4,50)
iel\{n} iel\{n}

If we substitute the first terms of both sides from (4.13), the rest of the terms from (4.7), and cancel

out identical terms, we obtain 7y xon = Tnjonty = -

Next we consider point 2% = x!(I « J) and let 2* = 23(i; < i0);. Then 23,2* € P;(Q) because

3 _ .3 _ 4 _ .4 _ 3_ .4 - _ _
Tyionn = Tionnly = 1 and Tpionn = Tignkon = 1. Then az® = ax* yields i nni, = Tignkon-
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Let 2° = z' (ko < kq)3 and 2% = 2°(l; < lp)s. Then z°,2% € P1(Q) because 7., = ), o =1
and x?o,mn = xfmkolo = 1. Then az® = ax® yields T joniy = Tnnkely- Let 7 = 23(ko < k,)3 and
2® = 27(l; < lo)s. Then 27,28 € Pr(Q) because z7; ., = x} ., =1land 28, - =ab =1
ax” = ax® yields Tignnly = Tnnkolo-

Hence,

ﬂ-io’ﬂkon = ﬂ-njok)()’n = ﬂ-io’nnlo = ﬂ-njonlo = 7T’n’r’Lk}olo =7

Step 2: Consider the point = illustrated in Table 6. It is easy to establish existence for this point. At

Table 6: Point « (Theorem 4.4, Step 2)
H Jo e e

10

n GRD GGRD) (. To)

point & let ¢; € I\ {1,n} be such that k(i1,1) = ko. We denote I(i1,1) as lo. Then & = z(ly #
lo?ly > lg)a(ip < n)1. Let iy € T\ {1,n} be such that k(i1,1) = k1. We denote I(#;i1,1) as l;. Let
Z = &(1 <> n)y. Then point z = z(I < J).

Let 2! = 2% and 22 = 2! (jo < j1)2. Observe that 2!, 2% € P;(Q) because z; ., = &b, =1
and z2 = 2 = 1. Thus, ax' = az? implies

njinn nnkolo

Gnjonn + E : @ijok(i,jo)l(ijo) T Onjikyly + E : Qi k(4,51)1(4,51)

icI\{n} i€\ {n}
= Onjinn + Z @ijyk(ijo)l(ijo) T Anjokils H Z Aijok(i,51)1(4,51)
i€I\{n} ieI\{n}

If we substitute the first terms of both sides from (4.13), the rest of the terms from (4.7), and cancel

out identical terms, we obtain T, jonn = Tnjinn = T

Next consider the point 23 = 2z'(I < J) and let 2* = 23(ig < i1)1. 23,2% € Pr(Q) because

3 _ .3 —1 4 _ 4 _ 3 _ oA _ o _ 1
Tinnn = Topnkolo = L Tivnnn = Tnnkely — 1- Then ax® = ax” yields Tignnn = Tijnnn = 7.
Let 25 = 2'(j1 # jo?j1 < jo)2(lo < n)y and 2° = 25(k; < ko) where k; € K \ {ko,n}.
5 .6 o 7B _ .5 _ 6 _ .6 _ o5 6 il de
2°,2° € Pr(Q) because ;1 = )0, = 1, @0 = ap . = 1. Thus, az® = az® yields
3

Tnnkon = Tnnkin = T°.
In a similar manner, let 7 = 2'(j; # jo?51 < Jjo)2(ko < n)3 and 28 = 27(l; < ly), where
L€ L\ {lo,n}. a7,2% € Pr(Q) because x; , = 1. Thus,
ax” = ax® yields Trnnly = Tnnnly = 7.

— 7 —
- xnnnlg -
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Hence,

Tignnn =  Tiynnn = 7, Vi1 € I\ {ig,n},
Tjonn = Tnjinn =7, ¥j1 € J\ {jo, n},
Tonkon = Tnnkin =7,k € K\ {ko,n},
Tonnle = Tnnnly, = 75,V € L\ {lo,n}
Step 3: Let 2! = 2™ ) (j; < n)y and 2% = 2 (ip « n);. 2!, 2? € Pr(Q) because T ionte = Tomkon = 1
and x7; ., = x7 ... = 1. Thus, az’ = az® implies

Onnkon + Anjonly + E , Onjk(n,j)l(n,j) T igjinn + E Qigjk(io,5)1(i0,5)

j€J\{jo,n} JjeI\{}
= Anjinn + Qignkon + Z Anjk(io,i)(io.g) T Gigjonlo + Z Giojk(n,5)l(n,5)
jeI\{i} j€I\{jo,n}

Substituting the first two terms of both sides from (4.13) and the rest of the terms from (4.7), and

taking into account the results obtained in the previous two steps, we obtain mpnkgn = Tnjinn =

73 = r2.
3 _ . Thi(5) 4 _ .3 3 .4 3 _ .3 _ 4 _
Let 3 = 2™0) 24 = 23(n « ly)y. 23,2 € Pr(Q) because Tpionts = Tionnn = 1 and &5, =
4 _ 3 _ 4 . _ . .
Tpionnn = 1. az® = ax vields Tnjonty + Tignnn = Tignnly + Tnjonnn Which by Step 1 results in
_ 1_ .2
Tionnn — anonnn =T =7
: 5_ .35 6 _ .50 5 .6 o 5 5 _
Finally, let 2° = 2°(jo <> n)2 and 2° = 2°(j1 < n)2. 2°,2° € Pr(Q) because 7 ; .., = T)nr, = 1,
6 _ 6 _ 5 _ 06 i 3 _ .4
Tigionn = Tpnken = 1. ax” = ax® ylelds 7> = 7.
Hence,
ml=m?=nd=nt=x

Step 4: Consider the point z illustrated in Table 7. It is easy to see that this point exists. At an

Table 7: Point x (Theorem 4.4, Step 4)

|- o S o

io Toum)

i1 (n,n)
n o)
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arbitrary point « € Py pairs (n,ly), (n,n) cannot lie at the same row or column. Thus we can easily
derive a point & such that Z,j,n, = Tiynnn = 1. Also let Z; j kon = 1. Clearly j, # n,i, # i1, If
ip # n and j, # jo then @ = &(ip, # 1074y < i0)1(Jp # J17Jp < j1)2. Otherwise assume that i, = n.
Then there exist io € I\ {i1,n}, jo € J\ {Jjo,Jp,n}, k1 € K \ {ko,n} such that &;,;,x,» = 1. Then

x = &(ig # igTiz < i0)1(j2 # J1772 < j1)2(k1 < ko)s.

1 Tbl 2 1(; 1,2 o ol — 1 _
Let z' = 27 and 22 = 2'(j; < n)2. Note that 2!, 2% € P;(Q) because Tyionly = Tiynnn = 1
2 — .2 _ 1 2 i
and 7 0 = Tk, = 1. ax” = ax® yields

Giynnn + § Qink(i,n)l(in) T Figjykon T § : Qi k(i,51)1(4,51)

i€I\{i1} i€I\{io}
= Qignkon + Z G4y k(in)l(i,n) T Giyjinn + Z Qink(i,j1)l(i,51)
iel\{i1} i€\ {io}

Substituting the first terms of both sides from (4.13), the rest of the terms from (4.7), and cancelling

equivalent terms, we obtain 7, nnn = Tignkon =T =7 = K = T.

Step 5: Let 28 = ™) and 22 = 2’ (jo < n),. 22 € P(Q) because a2 ; ... =
yields i nnn +Tnjonle = Tigjonn +Tnnnl, Which due to the previous steps implies 7, jonn = Tnjont, =

7 resulting in k = 7.

The proof of (4.3), is complete.
To show (4.3)2,, we define

Tomnn = Gnnnn — (A + Xan + A + X+ X+ A00) (4.14)
It remains to show that T,nnn = 27. Consider the point z illustrated in Table 8. Let a! = 2 TPI(8)
Table 8: Point « (Theorem 4.4, (i, 75, k,1) = (n,n,n,n))
H S o e
10 (n,lo)
n (n,n)
z* = z'(jo < n)2. Note that z',2* € Pr(Q) because x),,,, = 1 and 23, ., = 27 ., = 1. Thus,

ar! = ax?, after substituting terms from (4.7), (4.13), (4.14) and taking into account the results of

steps 1-4, yields Tppnn = Trjonn + Tignnl, = 27.
Finally, we have established that P;(Q) # 0 if P; # ) which is true for n > 7 ([7, Thm. 2.9]).
Therefore, for every x € Pr(Q), the constraints defining the A matrix of the OLS problem are satisfied.
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Thus, by multiplying each row of A by the corresponding A and (4.2) by 7 and summing over all rows

we obtain

ar = Z Ab+ Z A+ Z )‘?l

keK,leL icl,leL jeJleL
4 5 6
+ g Aij + g Ak + E A + 27
iel,jed jeEJkEK i€l ,keK

which proves (4.6). m

In the proofs that follow, we present only the parts in which they differ from the proof of Thm. 4.4.
Specifically for the part of the proof regarding (4, j, k,1) € C'\ (QU{(n,n,n,n)}) when at least two of the
indices are equal to n, we establish the existence of two points, namely z,y € Pr(Q), such that (4.3) is
valid for all terms, but one, of the equation ax = ay. To show (4.3) for this term, we follow a procedure
similar to that of Case 4.4.3. Hereafter, we will briefly refer to this procedure as ‘ax = ay yields (4.3)’.
The same expression will be used when proving (4.3), implying a procedure analogous to that followed
in Steps 1-5. In this case, the terms of ax = ay indexed by tuples (4,7, k,l) € Q are substituted from
(4.13), whereas the rest from (4.3).

4.2 Wheel class num. 3

Let p =2 and t € C such that |cNt| =2, |sNt| = 2. We define Q = (C%(t) N C3(c)) U (C3(t) N C3(c)) U
(C2(e) N C3(t)) U (C?(c) N C?(s)). For ¢ = (n,n,n,n),s = (ig, jo, ko, lo),t = (i0, jo,n,n), (4.1) becomes

21’nnnn + § Tinnn + § Tnjnn + E Tijonn + E Ligjnn

i€I\{n} JE€IN\{n} i€I\{io,n} J€JI\{jo,n}
+xi0j0nn + Tignkon + Tnjokon + Tignnly + Tnjonly + Tnnkolo S 2 (415)

This inequality is induced by the wheel illustrated in Figure 5, which belongs to wheel class num. 3.

Observe that there are n* choices for ¢, (n — 1)* choices for s and (3) choices for ¢.
Lemma 4.5 (4.15) is maximal.

Proof. Suppose that there exists a variable x4 (¢ = (ig,jq, kq,lq) € C) which can be added to
the left-hand side of (4.15) without increasing its right-hand side. At least two indices of x4, must be
equal to n, since otherwise it can be set to one together with z,,n,. Then |¢N(n,n,n,n)| = 3 or
2. In the former case, ¢ # (iq,n,n,n),(n,js,n,n), for all i, € I,j, € J, because in these cases z,
is already included in (4.15). Assume that ¢ = (n,n,n,l;),l; € L. Then we can simultaneously have
Tnnnl, = Tnjokon = Tigjinn = 1. In the latter case, we consider two further subcases with respect to
the two indices not equal to n. Hence, values from the collection (ig, jo, ko,lo) are (a) forbidden, or (b)

allowed but the two indices cannot obtain values from the collection simultaneously. In particular,
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Figure 5: A wheel of class num. 3

(a) Assume q = (iq,jq,n,n) with i, € I'\ {ig,n} and j, € J\ {jo,n}, because otherwise z, is already

included in (4.15). Then z;_j,nn = Tignnly = Tnjokon = 1.

(b) Assume g = (iq,n,n,l;). Observe that i, € I\ {n}, l, € L\ {n}, (iq,l;) # (i0,lo), because otherwise
r4 is already included in (4.15). Then, if [, # lo consider = nni, = Tnjonn = Tnnkel, = 1. In this
case we can have i, = ig. If iy # ig consider x; nni, = Tnjonn = Tignkon = 1, in Which case we can

have I, = lg.

Theorem 4.6 Forn > 7, (4.15) defines a facet of Py.

Proof. For tuples (i,5,k,1) € C\ (QU{(n,n,n,n)}) there is an additional case to these examined in
the proof of Thm. 4.4, regarding the number of indices being equal to n. This case involves three indices
equal to n. (4.3) for the cases where none or one of i, j, k, [, is equal to n, is shown in exactly the same
way as in the cases 4.4.1, 4.4.2 of Thm. 4.4.

If two of the indices are equal to n, we consider three further cases, viz., |(4, 4, k,1) N (io, jo,n,n)| =0
or 1 or 2. For the first case, (4,7, k,1) = (n,n, kq, 1) and the proof of (4.3) is exactly the same as in case

4.4.3 of Thm. 4.4. The remaining two cases are considered analytically.

Case 4.6.1 |(Zvj7k?l) n (io,jo,ﬂ,?’l” =1
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Table 9: Point = (Theorem 4.6, Case 4.6.1)

H e o n
1 (n,1)
%0 (k?o,’n)
n (1) 1)

Let & = 2™ (K « L) and 2 = &(1 > 41)1(1 < I1)4 (Table 9). Let #! = 2 and 2? = 2'(1 < 4,)1,
23 = 2%(1 < ly)4 where iy € I\ {1,ig,n},ly € L\ {1,l1,n}. 2™ € P;(Q) because 2™ = g™ =1

njonn ionkon ’
1

for m = 1,2, 3. Hence, ax! = ax? yields

A1pn1 + Z aljk(m)l(l,j)+Zaiqjk<iq,j>l(iq,j>

jeJ\{n} jeJ
Aignnl + Z az‘qjku,j)z(l,j)+Za1jk(iq,j>zuq,j>
j€I\{n} jer

All terms of the above equation, except a; nn1, @1nn1, have at most one index equal to n. For these terms,
(4.3) has been proven previously. (4.3) is also valid for a1,,1, because this term satisfies (4.7). Substituting
these terms from (4.3) and following the same procedure as in Case 4.4.3 of Thm. 4.4, we obtain

(4.3)[iq, n,n, 1]. Substituting in ax?

= az? all terms including a;,nn1 from (4.3) results (4.3)[iq, n,n, ly).
By symmetry, this equation is valid for i, € I'\ {n},l, € L\ {lp,n}.

By applying the interchange (K < L) to the points defined above and following the same procedure,
we obtain (4.3)[i4, n, kg, n|. In a similar manner, the interchange (I < J) yields (4.3)[n, jq,n, {4]. Finally,

the interchanges (I «» J)(K « L) yield (4.3)[n, jq, kq, .

Case 4.6.2 |(4, 4, k,1) N (i, jo,n,n)| = 2.

Consider the point x illustrated in Table 10 It is easy to establish existence of point x. At any
arbitrary integer point & € Py, (n,n) € K x L cannot lie in the same row or column with either of (n,ly),
(ko,n). Thus, we can place (n,n) in the first row and column without affecting the positions of these two
pairs. Let us denote this point as z. If the two pairs do not lie in the same row or column it is trivial
to obtain point z from #. Therefore, assume that the two pairs lie in the same column, denoted by j;.
Additionally, suppose that (n,ly) lies in row i5 and let jo be such that k(is, j2) = ka, I(i2,j2) = n. Then
for n > 5, there exists k1 € K \ {1, ko, ko,n}. Then, at point & = &(k1 < ko)s pairs (n,lp), (ko,n) lie in

different rows and columns.
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Table 10: Point « (Theorem 4.6, Case 4.6.2)

H 1 S o e
1| (n,n)
19 (’I’L,lo)
n oorm)

Let 2! = 2TP10) and let 22 = 2'(1 « i,)1, where i, € I\ {1,49,n}. 2™ € Pr(Q) because T kon =
1 2

m =1, for m = 1,2. Observe that all terms in equation az™ = az*, except a;,1nn, can be substituted

xio’ﬂnlo

from (4.3) yielding (4.3)[ig, 1,n,n]. The substitution is valid even if [(z';i4,n) = n. In this case, apart
from a;,1nn, @11nn, there are exactly two terms, each with two indices equal to n. For each of these terms
(4.3) is shown to be valid in one of the previous cases.

Let 2® = 22(1 < j,)awhere j, € J\ {1, jo,n}. 2* € Pr(Q). Then, az? = az® yields (4.3)[iq, jq, 1, 1.

The proof of (4.3) for the case where two of i, j, k, [ are equal to n is complete.

For the case where three of the indices equal n, consider x = x™®) (i) < n);(k, +> k1) (Table 11).

Table 11: Point 2 (Theorem 4.6, three indices equal to n)

|- o o m
io (n, 1)
i1 (n,n)

;q (2, 12)
i’ (kg 1)

Let k(x;iq,n) = ko and I(x;iq,n) = lo where iy € I\ {ip,i1,n}, ke € K\ {ky,n}, lo € L\ {l5,n}. Let

xt = 2™ and 22 = 2'(i, « n)1. 2™ € Pr(Q) because x}" 2

— m — _ 1 _
i1jonn — L =1,form=1,2 azr" =ax

ionnlo
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yields

Annkgn + Z Anjk(n,j)i(n,j) T Gignkals T Z Qigjk(iq.j)l(ig,i)

JjeJ\{n} JEJI\{n}
= Qnnkyl, T Z Onjk(iq,j)l(iq,j) T Qignken T Z @iy jk(n,5)l(n,j)
JjEJ\{n} JjeEJ\{n}

Observe that all terms, except annk,n, have at most two indices equal to n. Also observe that the tuples,
indexing terms of the above equation, with two indices equal to n, belong to C'\ (QU{(n,n,n,n)}). Thus,
substituting all terms, except annk,n, from (4.3), we obtain (4.3)[n,n, kg, n]. Let 2™ = 2™ (K « L), for
m=1,2. 2™ € Pr(Q) because &7 . =27, =1, form=1,2 ai' = ai? yields (4.3)[n,n,n,l,].

The proof of (4.3) is complete.

To prove (4.3)r, we consider (4.13) and must show that all 7;;z; are equal.
Step 1: Exactly as in the corresponding step of the proof of Thm. 4.4.

Step 2: Exactly as in the corresponding step of the proof of Thm. 4.4 but limited for the cases i pnn =
Tiinnn = 7T1,Vi1 el \ {2'07”} and Tnjonn = Tnjinn = 7727Vj1 S J\ {j07n}~

Step 3: Exactly as in the corresponding step of the proof of Thm. 4.4 but limited for the cases m;,pnn =

Tnjonn & T =72 = K.

Step 4: Exactly as in the corresponding step of the proof of Thm. 4.4.

Step 5: Let o' = 2™®)(j; < n)y where j; € J\ {jo,n} and 2% = 2'(ig <> n);. 2,22 € Pr(Q) because
’}Lj(lnlo = aa? yields Tnjinn = Tigjinns J1 € J\ {jo, n}-

By symmetry, T nnn = i jonns 41 € I\ {io,n}. Hence, T jinn = i jonn, Vi1 € I\ {io,n},j1 €

_ 1 _ 2 _ 2 —
x =T jinn = land T3, = Thin, = 1. az

J\ {jo,n}, since by step 3 we have T;, nnn = Tnj,nn-

Step 6: Let iy € I\ {ig,i1,n} be such that k(z™®):iy n) = ko. We denote I(ip,n) as lp. Let z* =
2(ly < lo)a(io < n)1(ia < n); and 2% = 21 (jo < j1)2, j1 € I\ {Jo,n}. a',2? € Pr(Q), because

1 1 _ 2 _ .2
Tonkolo = Ligjonn = 1 a0 T3 5 ny = Ty o

If we consider 22 = z!(ig <> i1)1, 1 € I\ {io,n}, we get Tigjonn = Tirjonn, i1 € I\ {io, n}.

=1. az! = ax? yields Tigjonn = Tigjinn, J1 € J\{jo,n}.

The proof of (4.3), is complete. The rest of the proof is exactly as in Thm. 4.4. =

4.3 Wheel class num. 1 (22)

Let p = 2 and consider t,, € C, such that [cNt,,| = [sNty| =2, for m =1,2,3, and t; Nta Ntg C c. We
define Q = UMZ2((C3(c) N C3(tm)) U (C3(c) N C%(t)) U (C3(tm) N C%(c)) U {tm}) Uts.
For ¢ = (n,n,n,n), s = (io,jo,ko,lo), t1 = (io,n,n,lo), to = (n,jo,n,lo), tg = (io,jo,n,n), (41)

becomes (2.5). Obviously, the roles of the tuples t1, t2, t3 are interchangeable. Hence, we can derive three
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inequalities for each such collection of three tuples. The inequality (2.5) is induced by either of the wheels
illustrated in Figures 2a and 2b. There are n* choices for ¢, (n — 1)* choices for s, and 4 different ways

for defining t¢1,t2,t3. Then every collection of t1,to, t3 yields three distinct inequalities.
Lemma 4.7 (2.5) is maximal.

Proof. Suppose that there exists a variable z4 (¢ = (iq,Jq,kq,lq) € C) which can be added to the
left-hand side of (2.5) without increasing its right-hand side. At least two indices of x4, must be equal to
n, since otherwise it can be set to one together with z,,nn. If [gN (n,n,n,n)| = 3 then for g ¢ Q, we
must have ¢ = (n,n, kg, n),k, € K\ {n} in which case, Tynk,n, Tionniys Tnjoni, can all be set to one for
l1 € L\ {lp,n}. If [gN (n,n,n,n)| = 2 then the two indices of ¢ having values different than n can either
(a) obtain all other values in their domains, or (b) obtain all other values in their domains but the values
10, jo, ko, lo, simultaneously, or (c) obtain all other values in their domains but the values ig, jo, ko, lo,

independently from each other.

(a) Let g = (n,n,kq,ly), kg € K\{n}, l; € L\{n}. Consider Znnr,i, = Tnjonl;, = Tiynnn = 1,11 € I\{n},
li € L\ {lg,n}.

(b) Let q = (iqajqana n)viq el \ {n}vjq eJ \ {n}7 (iqajq) 7é (i07j0)- If .jq 7é jO then xiqjqnn = Tiinnlg =
Tnjont, = 1,01 € I\ {ig,n}. If ig # ip then x;_j nn = Tignnty = Tnjiny, = 1,51 € J\ {jg,n}. In both
cases Iy € L\ {lp,n}.

(c) Let ¢ = (n,jq,n,1q,),3q € I\ {jo,n},lq € L\ {lo,n}. Consider Zpj,ni, = Ti;nnly = Tigjonn = 1,11 €

I \ {jO; TL}
]
Theorem 4.8 Forn > 7, (2.5) defines a facet of Pj.

Proof. Let &; j n, = 1. If j, € J\ {jo,n} then & € Pr\ Pr(Q). If j, = jo or j, = n then there exists
J1 € J\ {jo,n} such that x = £(j1 < n)2. Then = € Pr \ P;(Q) yielding Pr # Pr(Q).

For (i,5,k,1) € C\ (Q U {(n,n,n,n)}) such that |(i,7,k,1) N (n,n,n,n)| = 2, we consider cases
analogous to (a), (b), (¢) of Lem. 4.7.

Case 4.8.1 (Analogous to (a)).
For (i,7,k,1) = (n,n, kg, lg), kg € K\ {n},lg € L\ {n}, if kg # ko or l; # lp then the proof is exactly
the same as in the case 4.4.3 of Thm. 4.4. Observe that z!,2? € P;(Q).
In the case that (kg,l,) = (ko,lo) let 2® = ™ (1 1)4(1 < ko), 2* = 23(1 < lo)s. Then,
™ € Pr(Q), because z)% . = T oty

except Annkol, from (4.3) yields (4.3)[n,n, ko, lo]-

=1, for m = 3,4. Thus, az® = ax* after substituting all terms

By considering the conjugate points of ™ (m = 1,...,4) with respect to the interchanges (I « L)
and (J < L), we obtain (4.3)[iq, n, kg, n] and (4.3)[n, j4, kg, n], respectively.
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Case 4.8.2 (Analogous to (b)).
Consider the point z illustrated in Table 12. To establish existence of 2TP!(12) let iqg € I\ {ig,%1,n}

Table 12: Point 2 (Theorem 4.6, Case 4.8.2)

L o N o
i (n,11)
;'1 (k1,n)
iq (n,n)
;1 (n,1o) (- 12)

such that & = 2™ (i, < n);. Obviously there exists j; € J\ {jo,n} such that k(&;n,5,) = n. We
denote I(2;n, 1) as I and I(Z;n,n) as ly. Then 2TP112) = &(1; s Iy)4

Let 2! = 2™(2) and 22 = 2(l, < n)4 with I, € L\ {lo,l1,la,n}. 2™ € P1(Q), because 2™

nj, nlo =

:cgzmll =1, for m = 1,2. By construction there is no term with three indices equal to n in the equation
az' = az®. Thus, by substituting all terms, except a;,jonn, from (4.3) we obtain (4.3)[iq, jo,n,n]. Let

23 = 2'(j, < Jo)2, 2t = 2%(jy, < Jo)2 with j, € J\ {jo,n}. 2%,2% € P(Q). az® = ax? yields

(4.3)[iq, Jg.m, 0] for jq # jo,n. By symmetry, we obtain (4.3)[iq, jq,n, 7| for ig € I\ {n},j, € J\ {jo,n}.

Case 4.8.3 (Analogous to (c)).
Let o' = 2™ (i < ig)1 (i < lo)a(l = lg)a(jr < jg)2, where jg € J\ {jo,n}.ly € L\ {lo,n}. Also
let 2° = 2'(1 < n);. Then 2™ € Pr(Q), because j7; .. = Tt
1 2

ar’ = ax? contains only one term with two of the indices equal to n (term anj,ni,), Whereas the rest of

=1, for m = 1,2. By construction

the indices have at most one of the indices equal to n. Thus, by substituting all terms, except an;, ni,,
from (4.3) we obtain (4.3)[n, j4, 1, 1], jg € J \ {Jo.n}, 1l € L\ {lo, n}.
By considering the conjugates of z', 2%, with respect to the interchanges (I « J) and following the

same procedure, we obtain (4.3)[ig, n, n, ).

The proof of (4.3) for the case where |(3, j, k,1) N (n,n,n,n)| = 2 is complete.
For the case where |(4,4,k,1) N (n,n,n,n)| = 3, consider (4,4, k,1) = (n,n,ky,n), kg € K\ {n}.

Let 2! = 2™ ®(iy < n)1(i; < n)1(k < ky)s and z? = zl(iy < n);. Then 2™ € Pr(Q), because

toionn = Tiinni, = 1, for m =1,2. Substituting all terms in ax' = ax?, except Annk,n, from (4.3) yields
(4.3)[n, n, kg, n].

The proof of (4.3) is complete.

To prove (4.3)r, we consider (4.13) and must show that all 7;;z; are equal.
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Stepl: Let i; € I\ {n} be such that k(z™®):i; n) = n. We denote I(i1,n) as l;. Then, let z =
2P0 1y 5 14)4(i1 # i0%i1 < ig)1 (Table 13). Let #' = x, 22 = 2! (jo <> j,)2 where j, € J\{jo,n}.

Table 13: Point 2 (Theorem 4.8, Step 1)

H e jO e jl PEERY n
io (n,lo)
n (n,n) (k1,101)
1,2 1 _ 1 _ 2 _ .2 _ 1_ 2 T
zt, 2 € Pr(Q) because T, 1, = Ty, = Land zy; o, =27 0 = 1. ax' = az after substituting

terms from (4.3) and (4.13), we obtain pjonn = Tnj,nn = 72, Jq € J \ {jo, n}-
By imposing the interchange (I < J) to both 2!, 22, we obtain ;g nnn = Tiynnn = 7', 4q € I\{ig, n}.
In a analogous manner, let 23 = z'(J < L). Let 2* = 23(l; < lp)4 where I, € L\ {lo,n}.

23,2* € Pr(Q) because 3 = 2 =1 and z} =zt = 1. ax® = az* yields

i0Jonn nnnly i0Jjonn nnnlg
— _ -4
Tnnnly = Tnnnly = T ,lq €L \ {l(), n}

Hence,
Tionnn = 71-iqnnn = 7r17Viq S I\ {7;0,7’1},
Tnjonn =  Tnjynn = ﬂz,qu eJ \ {jOan}a
Tnannly = Wnnnlq - 7T47VZq el \ {107 n}

Step 2: Consider point z! of Step 1. Let 2% = z'(iy < i0)1,iq € I\ {io,n}. z? € Pr(Q) because

2 _ 2 _ . . . . 1 _ 2 . X _ .
T3 nnte = Tnjonn = 1. Performing the usual substitutions in az" = az*, we derive m; nni, = T gnnlo-

Then a(z'(I < L)) = a(z*(I < L)) yields Tignnt, = Tignni,, a(@*(I < J)) = a(z*(I < J)) yields
Tnjonly = Tnjenlo- 1N an analogous manner we obtain 7, ,ni, = Tnjoni,- Observe that all points
used belong to Pr(Q).

Hence,

Tionnly — 7Tiqnnlo = 7T-ionnlqvv'iq S I\ {iOa n}a lq el \ {l()a n}7

Tnjonly — anqnlo = anonlqvvjq eJ \ {jOa n}a lq €L \ {ZOa TL}

Step 3: Consider point ! of Step 1. Let 2% = z!(ip <> n); and 2* = 23(j, < n)2, where j, € J\ {Jjo,n}.

3 .4 3 _ .3 _ 4 _ _ 3 _ 4
Then 2°,2% € Pr(Q) because @; ; nn = Tppnyy = 1 and @ ;o = @5 1, = 1. Then az® = ax
yields Tpnniy = Tnj,nio- Then a(x®(J < L)) = a(z*(J < L)) yields Tpjonn = Tpjon,- Because

Tnjynle = Tnjonl, (Step 2), we get Tnnnty = Tnjonn Which by Step 1 yields w2 =7
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Consider the interchange (I < J) applied to all points of Step 3. Then applying the same procedure
to the corresponding points, we get Tnnni, = i nnly A0d Tignnn = Tignnl,- Lhese two equalities

1

result in 7! = 7. Hence, in this step we have shown

1 2 4
Tignnlyg = Tnjonlp =T =T =T =T

Step 4: Consider point z* of Step 1. Let 2% = z1(ig < n)1. 22 € Pr(Q) because z2 =1

njonn — xionnlo -
1

2 - . . _
Then az” = az® yields Ty jonn + Tnnnly = Tnjonn + Tignnil, IMPLYINE T jonn = .

The proof of (4.3), is complete. The rest of the proof is exactly as in Thm. 4.4. =

4.4  Wheel class num. 23

Let p =2 and t,r € C such that [cNt| =2, [sNt|=2and [cNr|=1,|]sNr| =3 and [tNr| =3. We
define Q(c,s,t) = {q € (C%(c)NC?(s)) : |¢gNt| > 1} and Q(c, s,t,7) = {g € (C*(c)NCL(s)) : qNt = gNr}.
Then, Q = (C3(c) N CL(r)) U (C3(c) NC3(r)) UQ(c, s,t) UQ(c,s,t,7) U {t}.

For ¢ = (n,n,n,n), s = (io, jo, ko, lo), t = (i0, Jo,n,n), = (0, Jo, M, o), (4.1) becomes

2xnnnn + Z Tinnn T Z Tnjnn + Z Tnnnl T Z Tignnl

ieI\{n} jeJI\{n} leL\{n} leL\{lo,n}
+ Z Tnjonl T Tigjonn T Tignkon T Tnjokon T Tignnly + Tnjonly < 2 (4'16)
leL\{lo,n}

The inequality 4.16 is induced by the wheel illustrated in Figure 6, which belongs to wheel class num.

23. There are n* choices for ¢, (n — 1)* choices for 6, 6 choices for ¢ and 2 for r.
Lemma 4.9 (4.16) is maximal.

Proof. Suppose that there exists a variable z, (¢ = (iq, g, kg, lq) € C) which can be added to the
left-hand side of (4.16) without increasing its right-hand side. At least two indices of x, must be equal
to n, since otherwise it can be set to one together with x,,,,,. If ¢ has three indices equal to n then the
proof is exactly the same as in the corresponding case of Lem. 4.7. If ¢ has two indices equal to n then
we consider cases analogous to (a), (b) of Lem. 4.7. Specifically for case (b), we consider two further
subcases, viz. ¢ ¢ Q(c, s,t,7) and q € Q(c, s, t, 7).

(a) Exactly as in the corresponding case of Lem. 4.7.

(b'l) Let q= (Z'Qa.jq’n7n)a7;q € I\{n}a-]q S J\{TL}, (iqajq) ?é (i07j0)' If]q 7£ jO then xiqjqnn = znjokon =
Tpnnly = 1, ll cL \ {’I’L} If iq 79 io then Tigjann = Tignkon = Tnnnl; = 1.
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Figure 6: A wheel of class num. 23

(b.2) Let ¢ = (ig,n,n,lg),iq € I\ {io,n}, lg € L\ {n}. Consider = nni, = Zignkon = Tnjonn = 1.

Observe that we can have [, = lo.
|
Theorem 4.10 For n > 7, (4.16) defines a facet of Py.

Proof. We denote I(x;1,n), k(2;n,n),l(z;n,n) as ls, k1,11, respectively. Let x = @(ky # ko?k <«
ko)s(ly # 1?11 < lp)sa. At point z among the variables participating in (4.16) only @1,y is set to one.
Therefore x € P \ P;(Q) implying Pr # Pr(Q).

For (i,7,k,1) € C\ (Q U {(n,n,n,n)}) such that |(i,7,k,1) N (n,n,n,n)| = 2, we consider cases
analogous to (a), (b.1), (b.2) of Lem. 4.9.

Case 4.10.1 (Analogous to (a)).
Consider (7,7, k,1) = (n,n, kq,lq), kg € K\ {n},l; € L\ {n}. The proof is exactly the same as in case
4.8.1.

Case 4.10.2 (Analogous to (b.1)).

Let 2 = 2™ 2)(k; « ko)s(iy < d0)1(i1 < n)1(1 < jo)a. Let j1 € J\ {jo,n} be such that
(&1, j2) = n. Let = &(k(@;n,j1) # 171 < k(Z;n,41))3 (Table 14). Let z' = 2P0 22 — (1
i, = (1 & jg)2,4q € J\ {n}. 2™ € Pr(Q) because z7 =1,m = 1,2,3. By

— m
ionkon 4

nnnly
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Table 14: Point = (Theorem 4.6, Case 4.10.2)

|1 e o
o)
ig || (n,n)

;z (1,n) (n, 1)

1

construction ax! = ax? has only two terms indexed by two indices each equal to n, i.e. ai1nn, Qi 1nn-

The rest of the indices have at most one index equal to n. Thus, we can substitute all terms in this
equation, except a;,1nn, from (4.3), yielding (4.3)[ig, 1,7, n]. Following the same procedure in ar' = az3,
we obtain (4.3)[iq, j4, 7, n]. Applying to all points defined above the interchange (I < J) yields the same
results for i, € I\ {n},j, € J\ {jo,n}.

In a similar manner, by considering the conjugate points of 2!, z2, 23, with respect to the interchanges
(J < K) and (I < K), we prove (4.3)[iq,n, kq,n], (4.3)[n, jq, kq, n], respectively. Observe that all points

used belong to Pr(Q).

Case 4.10.3 (Analogous to (b.2)).
Let z',22%, 2% be defined as above. Then a(z!(J < L)) = a(z*(J < L)) yields (4.3)[ig,n,n,1].
a(x!(J < L)) = a(z®(J < L)) yields (4.3)[ig, n,n,ly),iqg € I\ {io,n}, jq € J\ {n}.

Let 2 = ™) (jy < j,)2(j1 < jo)2, where j, € J\ {jo,n}. Let 2! = z(1 < lp)4 and 2% = (1 «
Jg)2- ®™ € Pr(Q) because 7\ = ai?,,, = 1. All terms of az' = az® have at most two indices equal

to n. As in the previous cases, substituting terms, except ay;,n1, from (4.3) and cancelling out identical
terms yields (4.3)[n,jq,n,1]. Let 3 = z!(1 < I,)4, where [, € L\ {n}. Observe that 2® € P(Q).
azt = ax® yields (4.3)[n, jg, n, 4]

The proof of (4.3) for the case where |(i, 7, k,1) N (n,n,n,n)| = 2 is complete.

For the case where three of the indices are equal to n, we can only have (3, j, k,1) = (n,n,kq,n), kq €
K\ {n}. Let 2! = 2™ 2) and 22 = 2'(j; < Jjo)2(lo « I1)4(la « n)s. We denote k(x?;n,n) as k,. Let
23 = 2%(n < ly)s. 2™ € Pr(Q) because Tohonly = Tivnnt, = 1,m = 2,3. Then all terms in az? = ax3
have at most two indices equal to n, except @nnk,n. Substituting all these terms from (4.3) we obtain
(4.3)[n, n, kg, n].

The proof of (4.3) is complete.

To prove (4.3)r, we consider (4.13) and must show that all m;;x; are equal. For all of the following
cases where the steps are similar to the corresponding proofs of previous theorems, the points used belong

to P[(Q)
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Step 1: Exactly as the corresponding step of the proof of Thm. 4.8 for (iq,n,n,n) and (n, j4, n,n) where
ig € I\ {n},j, € J\ {n}. Hence,

Tionnn = Wiqnnn = 71—1; VZq S 1 \ {iO, TL},

Tnjonn =  Tnjenn = 7-‘—Qavjq € J\ {jOvn}

Step 2: Exactly as the corresponding step of the proof of Thm. 4.8 for m;,nniy s Tignnt, and Trnjoniy, Trjont, -

Hence,

Tionnly = Wionnlqavlq el \ {l()v TL},

Tnjonly — anonlq7VZq el \ {107 n}
Step 3: We show that m' = 72, exactly as in the corresponding step of the proof of Thm. 4.4. Thus,
7"-iqnnn - anqnn = 7T,V’iq S I\ {n}?jq € J\ {n}

Step 4: We show that 7 jonn = Tnjoni,, €xactly as in Step 5 of the proof of Thm. 4.4. Applying
the interchange (I < J) to all points of this step and following the same procedure, we obtain
Tigjonn = Mignnly- Lhen we show that m,joniy = Tnjokon a0d Tignniy = Tignken, €Xactly as in Step 1
of the proof of Thm. 4.4. Hence,

Tionkon — Tnjokon — Tignnly = Tnjonly = Tigjonn

Step 5: Let 2! = 2™® and 2% = 2'(l; < n)s,l, € L\ {lo,n}. z',2%2 € P1(Q) because z.

njonn
1 2 1

ionnlo njonly = 1. Thus, after substituting in az

T =1,z = xfmmlo = ax? terms Gnjonn, Onjonl,
from (4.13) and the remaining terms from (4.3) and cancelling out identical terms, we obtain

Tnjonn = Tnjonly-

The proof of (4.3), is complete. The rest of the proof is exactly as in Thm. 4.4. m

4.5 Wheel class num. 5

Let p = 3 and #1,t2,t5 € C such that [cNt,| = 2,[sNty| = 2, for m = 1,...,3, and [ta Nty| =
2, [taNtz] = 2,[t1 Ntz] = 0. We define Q = C3(c) U (C%(c) N C?(s)) UT=3 (C%*(c) N C3(t,,)). For
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Figure 7: A wheel of class num. 5

C= (n7nan7n)a3 = (i05j07k0al0)7t1 = (i05n7nalo)7t2 = (iOan7k0an)7t3 = (na.]ba kOa”)? (41) becomes

i€\ {n} je\{n} keK\{n} leL\{n}

+ Z Tinnlg + Z Tignnl + Z Tinkon

i€I\{ig,n} leL\{lo,n} i€I\{ip,n}
+ Z xnjkon + Z xnjokn + Z Tignkn
J€JI\{jo,n} ke K\{ko,n} ke K\{ko,n}

+xi0j0nn + xionk}gn + xnjoko’ﬂ + xio’ﬂnlo + xnjonlo + xn’ﬂkolo

< 3 (4.17)

This inequality is induced by the wheel illustrated in Figure 7, which belongs to wheel class num. 5.

Lemma 4.11 (4.17) is mazimal.

Proof. Suppose that there exists a variable x4 (¢ = (iq,jq, kg, lq) € C) which can be added to the
left-hand side of (4.17) without increasing its right-hand side. Exactly two indices of z, must be equal

to n. We consider two cases for the indices not equal to n: (a) they can both obtain any value in their
domains, but if the value of one of the indices is taken from (g, jo, ko, lo), the other should obtain a value

not belonging to this tuple, or (b) same as (a) but all indices are restricted from taking the value from

(40, jo, ko, lo)-
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(@) ¢=(n,n,kq,lq), kg € K\ {n},ly € L\ {n}, (kg,lq) # (o, o).
Consider Tpnk,i, = Tnjokin = Tignkan = Tiynnl, = 1, where iy € I\ {ig,n}, ki, ky € K\ {ko,n}
with ki # ko, ly € L\ {lo,n}. Observe that k, can be equal to kp. In an analogous way, we can set

variables Tnnk,l,s Trjokins Tiinkon> Tignni, t0 one. In this case observe that I, can be equal to Iy but

kq # ko.
(b) g = (ig;n,m,ly),iq € I\ {io,n},ly € L\ {lp,n}.

Consider @i, nni, = Tnj kon = Tignkin = Tnjonl, = 1, where ji € J\ {jo,n}, k1 € K\ {ko,n}.
]

Theorem 4.12 Forn > 7, (4.17) defines a facet of P;.

Proof. Let z = 2™®) . Then z € P \ Pr(Q) because only two variables (Ziynniy; Tnjonn) appearing
in (4.17) are set to one, since T;nk,n is set to zero for every i € I, as a consequence of setting ;, nk,n t0O
one (k1 # ko).

Instead of (4.3)2,, we must prove (4.3)3r : Gunnn = Aby, + Aoy + A2, + X0+ A2+ A8+ 37, and
instead of (4.6), we must show

ag = Z Aot + Z A+ Z /\?l

keK,leL iel,leL jeJlel
2 4 2 5 § 6
i€l,jed jeJkeK icl ke K

Observe that (4.3) is valid for all cases where at least two of the indices are equal to one. For the
remaining (4, j, k,1) € C'\ (Q U {(n,n,n,n)}), we consider three cases, viz. none, one, two of the indices
are equal to n. The first two cases are shown in exactly the same way as in Thm. 4.4. Observe that
all points used belong to P;(Q). For the case where two of the indices are equal to n, we consider cases

analogous to these of Lem. 4.11.

Case 4.12.1 (Analogous to(a)).
Let x' = 2™ ® (i) < dp); and 22 = 2'(1 « ky)3,ky € K\ {1,k1,n}. Clearly 2™ € Pr(Q) since

Tpionn = Tinkan = Tiynn,, = 1, for m = 1,2, Hence, az! = az? is valid. Observe that all terms
of the equation az' = az? are indexed by tuples having at most one index equal to n, except @nnii

and @pnnk,1. Therefore, substituting all terms, except anng,1, from (4.3) we obtain (4.3)[n,n, kg, 1]. Let
23 =2%(1 < ly)a, Iy € L\ {1,lo,l1,n}. ax® = ax® yields (4.3)[n,n, ky, 1], kg € K \ {n},l, € L\ {lo,n}.
Applying the interchange (K < L) to z', 2%, 23 we obtain (4.3)[n, n, kg, ] for k, € K\{ko,n},l, € L\{n}.

Let z* = 2'(J < K)(j1 < jo)2, 2° = 2'(Jg = J1)2, Jg € J\ {1, do,n}, 2% = 2°(1 < 1)1y €
L\ {1,lp,n}. 2™ € P;(Q), since z" =z

m — m — — 4 _ 5
Tojonn mnkon = Tiinn, = 1, for m =4,5,6. Then, az® = az” yields

(4.3)[n, jg,n, 1] and ax® = az" yields (4.3)[n, jq, n,1,] where j, # jo,n, l; # lo, n.
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Let @ = ™02 (k) s ko)3(j1 < jg)2, where j, € J\ {jo,n}. Let jo € J\ {Jo,jq n} such that
[(Z;n,j2) = n, and denote k(Z;n, j2) as ko. Let 28 = £(jo < j2)2 and 27 = 25(1 < lp)4. 25,27 € Pr(Q)
because z}% =i =2k, = 1 az® = az" yields (4.3)[n, jz, n, lo).-where j, # jo.

Let & = @(ko <> m)3. It is valid to assume that k(&;n,n) # n, because if k(Z;n,n) = n then we
apply the interchange (k2 < n)s, ko € K \ {ko,n}. Hence, let ko denote k(&;n,n). Again it is safe
to assume that the pair (n,n) does not lie at the column n. If this is the case, apply the interchange
(k1 < n)s, k1 € K\ {ko, k2,n}. Hence, let ky denote k(Z;n,n). Let i1,i2 € I\ {n}, i1 # iz, be such that
k(Z;i1,n) =n and I(&;i2,n) = n. Let x = £(I(Z;41,n) # lo?l(Z;41,n) < lo)a(ia # i07i2 <« i0)1(1 < j1)a,
g1 € J\ {1,jo,n} (Table 15). Let j, € J\ {1,41,n} be such that k(z™'(®);n j,) = n. The assumption

Table 15: Point « (Theorem 4.12, Case 4.12.1)

|- d, N e m
i (TR0
i (n,lo)
i’ ) Teorr0) (2 )

that j, # 1 is valid because if E(zTP%):n, 1) = n, for n > 4, there exists a Jqg € J\ {1, 51,n} such that
we can apply the interchange (1 < j,)2. We denote I(zTP(1%);n_j,) as I,. Observe that I, € L\ {lo,n}.
Let 2% = 2(ly # 171 < lg)s, 27 = 2%(1 & jg)o and 20 = 2%(1 < ly)s. 2™ € P1(Q) because x} . . =
TP ken = Tivpn, = 1, for m = 8,9,10. Thus, az® = ax? yields (4.3)[n, jq,n,1] and az® = az'® yields
(4'3)[najqan7 1]3 jq €J \ {n}alq €L \ {107n}'

Let = be1(15)(i0 — ’ig)l(ko ad k‘1)3(j1 — jo)g, where ig S I\ {io,il,n}. Then jjigjg,nn = 1, for
iz € I\ {i1,i2,n},j3 € J\ {jo,n}. Let x'? =3 (i35 # 1?71 < i3)1(js # 171 < j3)a. Then 213, = 1. Also,
let 213 = 212(1 < iy); and 2! = 213(1 & j,)a, with i, € I\ {i1,42,n}, jq € J\ {jo,n}. 2™ € Pr(Q)
because 7% 1. = T =1, for m = 12,13,14. Thus, az'? = az'? yields (4.3)[iy, 1,n,n]

and az'® = az'* (4.3)[ig, jq,n, ] where i, € I\ {n},j, € J\ {jo,n}.

— m
- xig ’I’Lk}on

Finally, x;r;;i(i;? = 1 for i3 € I\ {io,i1,n},755 € J\ {j1,n}. As in the previous case, let !5 =
P8 (G5 £ 171 e di3)1(js # 171 « j3)o. Then 2}, = 1. Also, let 2!6 = 21°(1 < j,)2 and

217 = 2%(1 < iy)1, with i, € I\ {io,i1,n}, jg € J\ {j1,n}. 2™ € Pr(Q), because Tt kon = Tionkin =
Tty = 1, for m =15,16,17 Thus, az'® = az'® yields (4.3)[1, j4,n,n] and az'® = az'" (4.3)[ig, jq, n, 7]

where iq € I'\ {ig,n},jq € J \ {n}.

Case 4.12.2 (Analogous to (b)).
Let 2 = 2T (1  4g); (ig < i1)1(1 < lp)a(1 < ko)3 (Table 16). Let 2! = 2 and 22 = (1 < 4,)1,
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Table 16: Point « (Theorem 4.12, Case 4.12.2)

H DR jo ... n
1 (n,1)
io (k’l, n)
n (n,n) (ko, lo)
iq € I\{1,i0,i1,n}. ™ € P1(Q) because x5 ... =« . . =xm =1, form = 1,2. Hence, az' = az®
is valid. Observe that all terms of the equation ax! = ax? are indexed by tuples having at most one

index equal to n except @i1p,1 and a; nn1. Therefore, substituting all terms but a; nn1 from (4.3) and
cancelling out identical terms, we obtain (4.3)[is,n,n,1]. Let 2® = 2%(1 < l,)4, Iy € L\ {1,10,11,n}.
az? = ax? yields (4.3)[ig, n,n, 1], where i, # ig,l, # lo.

Considering the conjugates of the above points with respect to the interchange (K « L), we obtain
(4.3)[ig,n, kg,n]. Similarly the conjugates with respect to the interchanges (J < L)(I < K) yield
(4.3)[n, Jg» kgs 1]

The proof of (4.3) is complete.
To prove (4.3)r, we consider (4.13) and must show that all 7;;x; are equal.

Step 1: Let 2! = 2™ (16 and 22 = 2'(jo < j,)2 where j, € J\ {jo,n}. 2? € Pr(Q) since xijq,m =
T2 kin = Tonkol, = 1. Hence, az' = ax? is valid. Substituting @, jonn, Gnj,nn from (4.13) and the

remaining terms from (4.3), and cancelling out identical terms, we obtain Tnjonn = Tnjenn- 1D an

analogous way, aZ'

= az?, where 2™ = 2™(J < L), for m = 1,2, yields munni, = Tnnnlyslg €
L\ {n}. Similarly, az' = a@?, where ™ = 2™ (I < J), for m = 1,2, yields Ti;nnn = Ti,nnn, iq €
Let 2 = 2'(lp < n)a(k1 < n)s(io < i1)1, where i3 € I\ {ip,n}. Then, let Zj,jonn = 1,iz €
I\ {io,n},j2 € J\ {jo,n}. Let 2% = Z(ig < i2)1(jo < jo2)2 and z* = 23(kg < ky)3,kq € K \ {n}.

™ € Pr(Q) since x =" =1, for m = 3,4 and xfmkon = 1,xfmkqn. Hence, az® = az? is
valid, yielding Tnnkon = Tnnkgns kq €K \ {n}
Therefore,

Tignnn =  Tionnn = ﬂl,Viq el \ {’I’L},

Tnjonn = Tnjonn = WQ,qu e J\ {n},

Tankon = Tnnkgn = 7, Vk, € K\ {n},

Tannly = Tnnnly, = 71'4,qu e L\ {n}
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Step 2: Let z = Z‘Tbl(lﬁ)(l s 10)4(/{,'0 — k’l)g(io — il)l(l — iO)l (Table 17) Let 1‘1 = ZIZTMU?),

Table 17: Point « (Theorem 4.12, Step 2)

L o o
io (n,lo)
’il (k‘o,n)
n (n,n)
22 = 2'(ip < ig)1, where iy € I\ {ig,i1,n}, and 23 = z'(ly < l,)4, where I, € L\ {lo,n}.
™ € Pr(Q) since ., = @ =1, for m = 1,2,3 and xj ., = l,z?qnnlo = l,x?omlq = 1.
Hence, az' = az? (az! = ax?) is valid, yielding 7 nni, = Tignnly (Tignnle = Tignni,)- The

interchange (K « L) applied to a!, 22,23 yields points belonging to P;(Q). The corresponding

equations lead to Tiynkgn = i nken aNd Tignkon = Tignkyn-

At point z!, there exist is € I\ {ig,i1,n},72 € J\ {jo,n}, kq € K \ {ko,n} such that lezjgkqn =1
Let 25 = (i < i1)1(i2 <> n)1(ja < jo)2 and 2® = 25(ko < ky)3. The point 2° is illustrated in

5 .6 : 5 _ .5 _ .5 _ 6 _ .6 _
Table 18. Let . Then, z°,2° € Pr(Q) since 3 ;... = &7, 1, = Ty iokan = 1 and T nkgn = Tivnnly =

Table 18: Point 2% (Theorem 4.12, Step 2)

H . Jo e n
;0 (k‘q, n)
11 (nv lO)
’:IL (ko, n)
xfmkon = 1. Thus, az® = az® is valid, yielding Ti,nkon + Trjok,n = Tignken + Tnjokon = Tnjokgn =

Tnjokon- Let 27 = 25(j, < jo)2, jg € J \ {Jo,n}. Observe that 7 € P(Q). Hence, az” = azf is

valid yielding mpnjokon = Tnj,kon-

At this step, we have shown that for every iy € I\ {n},j, € J\{n}, ks € K\ {n},l; € L\ {n}
Tignnlo = Tignnlo = TMignnlys Tionkon = Tignkon = Mignkgens Tnjokon = Tnjoken = Tnjgkon
Step 3: Let & = 2™ (16 (jy s 4,)1 (i < n)1 and x = 2(iy < n)1,4, € I\ {i0,%1,n} (Table 19). Let 2 =
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Table 19: Point « (Theorem 4.12, Step 3)

|- do o
n (n,n)
;1 (ko,n)
n (n,lo)
#, 22 = x. 2!, 2% € Pr(Q) since T ionn = Tiinken = L, for m = 1,2, and x%qnnlo = 1,:E3”mlo =1.

1 .2 - _
az” = az® yields 7 nniy = Tnnnlo-

2

Applying the interchange (K « L) to z', 2%, we obtain points belonging to P;(Q). The corre-

sponding equation yields 7; nkgn = Tankon

At point 28, illustrated in Table 18, let (n,n) € K x L lie in cell (ig,j,). Obviously i, € I\
{io,i1,n},4q € J\ {Jo,n}. Let 27 = 25(iy < n)1. 27 € P;(Q) since x] =a! =z =

ionkgn i1nnlo njqnn
7

1 Therefore, az” = ax® yields Tnjokon = Tnjynn-

Up to this point, we have shown

7T4 - Wnnnlq = Tnnnly = 7riqnnlo = Tignnly = Wionnlqvv'éq el \ {n}a lq el \ {TL}7
71-3 - 7'rnnkqn = Tnnkon = ﬂ-ianon = Tionkon — ﬂionkqnaViq S I\ {n}a kq S K\ {n}7
™ = Tnjgnn = Tnjonn = Tnjkon = Tnjokon — angkqnavjq € J\ {n}, kq EK \ {n}

Step 4: We denote k(z™ (70 n), (I(z™07:n n)) as ky, (1,). Let = 2™ (kg « k,)3(ly <

lg)a(io < i1)1 (Table 20), Let 2t = ™0 and 22 = z'(ip < i1)1. =™ € P;(Q) since @77 ., =

Table 20: Point = (Theorem 4.12, Step 4)

|- do em
;0 (kg,m)
i1 (n,lq)
n (n,n) (Ko, lo)
Tkol, = 1, form = 1,2, and x%onkqn =1, x?onnlq =1. az' = ax? yields Tignnl, = Tignken, iIMplying
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7T3 =7T4.

3 4

Let 2% = ™19 and 2* = 23(I « J). 2* € P(Q) since =} 1. az® = azx

i0jonn = xnjlkon = Innnlo =
ields 7; = Ty implying 73 = 72
y i1nkon njikons plymg .
Let 2° = 2'(I < J). 2° € P;(Q) since x?

— — .5 — 1 _ 5 3
ionnn zn’ﬂkolo - xnjgkqn =1 ar = az ylelds

— s : 1 _ .2
Tnjonn + Tnnkolo + Trionkqn = Tionnn + Tnnkolo + angk:qn; lmplylng T =TT
Hence,

7T1:7T2:7T3:7T4:7T

Step 5: Let 2! = 219 and 22 = 2l(ip < n)1. ax! = ax? yields Tijonn + Tnnnly = Tnjonn + Tignnlo

implying Ty jonn = 7. Let 2® = 207 and 2* = 23(1 — J). 25 € P;(Q) since a7 .., = T kon =
xijonlo = 1. az® = az? yields Tnjonly = T-
The proof of (4.3) is complete. To show (4.3)3,, we define
Tnnnn = Gnnnn — ()‘}m + )‘in + )‘in + )‘in + )‘Zn + )‘?m) (4.19)

We will show that m,,n, = 37.

Let o' = 2™ and 2 = 2'(jo < n)e. 2 € P1(Q) since 27,

= 1. Thus, az! = az? yields the
desired result.

Finally, because Pr(Q) # ), for n > 7, there exists at least one solution to the system defined by the
constraints of the problem. Hence, multiplying each row of A with the corresponding A and (4.17) with

7w and summing over all rows we obtain

ar = Z Ao + Z A%+ Z ’\?z

keK,leL iel,lel jeJ,leL
§ 4 § 5 2 6
i€l,jed jeJkeK icl ke K

which proves (4.18). =

4.6 Wheel class num. 24

Let p = 3 and v,u € C such that [vNu| =0,jvNel =1,jvNs| =3,|luns| =1,Junc| = 3. We define
Q = C3(c) U (C%(c) N C?%(s)) U (C?*(v) N C?(c)) U (CY(v) N C?(c) N C%(u)). For ¢ = (n,n,n,n),s =
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Figure 8: A wheel of class num. 24

(i07j07k07l0)7v = (io,jo,k‘o,ﬂ),@t = (nan7na lO)7 (41) becomes

i€I\{n} jeJ\{n} ke K\{n} leL\{n}
+ Z Tinkon + Z Tignkn
i€\ {io,n} ke K\{ko,n}
+ Z Tnjkon + Z Tnjokn
J€IN\{jo,n} ke K\{ko,n}
+ Z Lignnl + Z Tnjonl + Z Tnnkol
leL\{lo,n} leL\{lo,n} leL\{lo,n}

+$i0j0nn + xio’ﬂkon + m7lj0ko’r’7, + xionnlo + ‘/I’.njonlo + mn’nkolo

< 3 (4.20)

This inequality is induced by the wheel illustrated in Figure 8, which belongs to wheel class num. 24.

Lemma 4.13 (4.20) is mazimal.

Proof. Suppose that there exists a variable x4 (¢ = (iq,7Jq,kq,lq) € C) which can be added to the

left-hand side of (4.20) without increasing its right-hand side. Exactly two indices of z, must be equal

to n. We consider two cases for the indices not equal to n: (a) they can both obtain any value in their

domains but if the value of one of the indices is taken from (g, jo, ko, lo), the other should obtain a value
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not belonging to this tuple, or (b) same as (a) but all indices are restricted from taking any value from
(i0, jo, ko, lo). Then for case (a), we consider two further subcases, viz. ¢ € C'(v) N C?(c) N C?(u) (case
a.1) and ¢ ¢ C1(v) N C2%(c) N C?(u) (case a.2).

(a.1) g= (ig;n,n,lq),iq € I\ {io,n},lg € L\ {n}.

Consider T, nnl, = Tnjonly, = Tnjikon = Tignk;n = 1. Observe that since I3 # lp, we can have

Iy = lo.

(a.2) q = (ig,jg,ms 1), iq € I\ {n},jq € J\ {n}, (ig,Jq) # (i0,jo). If ig # do then consider x;_ j, nn =
Tignkin = Tnjikon = Tnnnl, = 1. Observe that we can have j, = jo. If j, # jo then consider

Tiy janin = Tnjokin = Tiynkon = Tnnnl, = 1. In this case we can have iy, = ig.

(b) q= (iq7n= kmn)ﬂiq el \ {7;07”}71911 €k \ {kOﬂ”L}'

Consider xianqn = Tignnlyg = Tnjonly = Tnnkely = 1.
|
Theorem 4.14 Forn > 7, (4.20) defines a facet of Py.

Proof. P;(Q) # 0 and P;(Q) # P are both shown in exactly the same way as in the proof of Thm.
4.12.

(4.3) is valid for all cases where at least two of the indices are equal to one. (4.3) for all cases where
|(i,4,k,1) N (n,n,n,n)| = 0 or 1 is shown in exactly the same way as in Thm. 4.4. Observe that all points
used belong to P;(Q). For the case where two of the indices are equal to n, we consider cases analogous
to these of Lem. 4.13.

Case 4.14.1 (Analogous to case a.1) (i, j, k,1) € C1(v) N C?(c) N C%(u).

Let o' = 2T (kg «» k1)3(lo < 11)a, where Iy € L\ {1,lp,n}. Also, let 22 = (1 < ky)3,2° =
2*(1 < lg)s, where kg € K\ {ko,n},l; € L\ {1,l1,n}. 2™ € Pr(Q) since x5 .. =, =], =1,
for m = 1,2,3. Thus, az! = az? yields (4.3)[n,n,k,, 1] and az? = az® yields (4.3)[n,n, kq,1,] where
kg # ko,m, lg #n.

Let 2™ = 2™ (I « K). 2™ € Pi(Q) since 77 ., = T30 = &0, = 1, for m = 1,2,3. Thus,
azt = az? yields (4.3)[ig,n,n,1] and az? = az® (4.3)[ig, n,n,1y), iq # i0,n, Iy # .

Let 1 = 2(1 < jo)2(ko < k1)3(1 < n)s(lo < l1)a, where [y € L\ {1,lp,n}. Also, let 2% = 21(1 <
Jq)3, 3% = 2*(1 & lg)a, where jg € J\ {jo,n},lq € L\ {1,01,n}. 2™ € P1(Q) since &" , = 2", | =
&m 1, =1, for m =1,2,3. Thus, ai' = az? yields (4.3)[n, j;,n, 1] and az? = az? yields (4.3)[n, jg, 1,14,

jq #j()ana lq # n.

40



Case 4.14.2 (Analogous to case a.2)

Consider points z™ as defined in the previous case and let ™ = z™(J < L). 2™ € Pr(Q) since

o _ _ _ . . 1 _ 2 . . .
Tynlo = Tniikon = Tiankin = 1, form =1,2,3. Asin the previous cases, az” = az” yields (4.3)[iq, 4g. 1, ]

and az? = ax? yields (4.3)[iq, jq, 7, n]. The same result is obtained for i, € I'\ {n},j, € J\ {jo,n} if we

use the points resulting from the interchange (I < J) to 2™, for m = 1,2, 3.

Case 4.14.3 (Analogous to case b).
Let 2! = 2T M (1 — i1)1(1 < ky)3(ko < k1)3(1 < lo)s. Also, let 22 = 2'(1 « ig), 23 = 2%(1 <
kq)s, where ig € I\ {ig,n}, kg € K\ {ko,n}. 2™ € Pr(Q) because z]"

njonn ionnl nnkolg ’
for m = 1,2,3. As in the previous cases, ar' = az? yields (4.3)[ig,n,1,n] and az® = ax® yields
(4.3)[ig,n, kq,n]. In exactly the same way, we obtain (4.3)[n, jg, k¢, 1], 4q € J \ {jo,n}, kg € K\ {ko,n},

if we use points £ = 2™ (I < J). Observe that z™ € Pr(Q).

The proof of (4.3) is complete.

To prove (4.3)r, we consider (4.13) and must show that all 7;;z; are equal.

Stepl: Consider the points x3, 2% of step 2 of Thm. 4.12. Let #™ = 2™(I < L), for m = 3,4.
™ € Pr(Q), since 7% = ap =1, for m = 3,4, and :%;o’mkon = 1,:%fmkqn = 1. ai® = ad? is

valid, yielding Tpnkon = Tnnk,n- The proof for tuples (i,n,n,n), (n,j,n,n), (n,n,n,1),4,5,1 #n, is

exactly the same as in Step 1 of Thm. 4.12. Hence,

Tionnn = Tignnn = 7, Vig € I\ {ig,n},
Tojonn = Tnjonn = T2,V € J\ {jo,n},
Tonkon = Tnnkgn =7, Vkq € K\ {ko, n},
Trnnle = Tnnnt, =T Vlg € L\ {lo,n}

Step 2: Consider points x', 23 of step 2 of Thm. 4.12. ax! = az? yields 7 nni, = Tionnl,- Let T =

m ~m m J— S am 3 ko8 112 — A4m J—
2 (I J), 2™ =2 (I < K), for m = 1,3. Then 2™,2™ € Pr(Q) since 47, = &% 1, =
=M _ mm — — ~1 — 43 — 71 — 73 —
Laysonn = Tiinken = 1 for m = 1,3, and Trjonte = Tnjonl, = L ko, = Tnkol, = 1. Thus,

az' = a@® yields mpjoniy = Tnjont, and aZ' = az® yields Tnukoly = Trnkol, -
Let 2/ = z'(ip < n)1(ip < i1)1. At 2/, let j1 € J\ {jo,n} be such that I(n,j;) = n. We

denote k(n,j1) as k1. Let @' = 2/(j1 < jo)2. Also, let 7% = Zl(ig < ig)1, 3> = &' (ko < ky)s,

; y ~ TN 3 AT — M — J—

iq € I\ {io,n}, kg € K\ {ko,n}. ™ € Pr(Q) since 7% , . = @, =1, for m = 1,2,3, and
~1 _ ~2 _ ~3 _ ~1 _ ~2 ~2 _ NS . . _ . _ X

T nkon = 1, T pkgn = 1, T35 rkgn = 1. az” = az” and az® = az” yield Tipnkon = Tignkon = Tignkyn-

Following exactly the same procedure for points ™ = ™ (I < J) we obtain Ty okgn = Tnj,kon =

Trnjokqn-
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Hence, for iq € I\ {ig,n},jq € J\ {Jo,n}, kg € K\ {ko,n},l; € L\ {lp,n}, we have shown that

Tignnly = Tignnlgs
Tnnkoly = 7Tnnkolqa
Tnjonlo =  Tnjonlys
Tignkon = Tignkgn = Tignkon,
Tnjokon = anokqn = anqkon

Step 3: Consider points z!, 2% of step 3 of Thm. 4.12. Let 2™ = 2™ (I + L), for m = 1,2. 2™ € P;(Q)

since &p% 0 = Tpie = 1, for m = 1,2, and ;%}Onnlq 1, fcfwnn = 1. Thus, ai! = at?
yields Tignni, = Tignnn- Let 2™ = 2™ (K < L)(I < L), for m = 1,2. 2™ € P(Q) since
Tty = Titan, = 1, for m = 1,2, and f}mkalq =1, 22, = 1. Thus, az' = az® yields
Tnnkoly = Tnnken- Let ™ =z (I « L), for m = 1,2. 3™ € P;(Q) since 7, , =z, ., =1, for
m=1,2, and ‘i"}Ljonlq =1, i%jmm = 1. Thus, aZ' = a&? is valid, yielding Tnjonly = Tnjonn-

Hence,

_ -1 _ 2 _ .3
Tionnlyg = T s Tnjonlg — T s Tnnkglg — T

Step 4: Consider points ', 22, 23, 2%, 2° established at step 4 of Thm. 4.12. Observe that z!, 22, 2%, 2% €
Pr(Q). az' = ax? yields Tionnl, = Tignkgns ar® = az* yields T nkon = Tnjikon- Lhese two

equations imply

1
T = Tignnly — 7Tionnlq = 7Tionk:qn = Tignkon — 7"-ianon = ﬂ-njanon = 7Tnjolcqn = Tnjokon
1 _ 5 . _ .

az® = ax® yields Tpjonn + Tnnkely T Tignken = Tignnn T Tankoly + Tnjok,n, Which by the above
equation becomes Ty inn = Tignnn, resulting in 7wl =72,

6 _ .. Tbl(16) 7 _ .6 6 T : 6 _ .6 _ .6 _
Let z° =z . Let 2" = 2%(ko < n)s. 2°,2" € Pr(Q) since Ty jonn = Tomkole = Tionkin = Ls

7 7 7 _ 6 _ 7 o _ : : 3_ .4

Tpiokon = Lnnnlo = Tignkin = 1. Hence, az® = az’ yields Tunkol, = Tnnnl,, iMmplying 7 = 7=,

8 _ .3 8 ; 8 _ .8 _ .8 _ 3 _ .8 :
Let 2° = 2°(I < L). 2° € P1(Q) since y, 1 = Ty oy = Tppge, = 1. Hence, az® = az® yields

_ : : _ 2
Tigjonn + Tnnnly T Tiinkon = Tnjonlo T Tionnn T Tnnkoly 1mply1ng Ligjonn — T~ -

9 _ .9 _ .9 _
njonn = Tionnly = Liynkon = 1. Hence, ax

. 3 _ . 3 _ 1 . 1 _ _4
yields iy jonn + Tnnnly = Tnjonn + Tignnly, Which leads to mppni, = 7, implying 7' = 7*.

Finally, let 2° = 23(ip < n);. 27 € P7(Q) since z 3 — qz9

The proof of (4.3), is complete. The rest of the proof is exactly as in Thm. 4.12. =
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5 Separation

Facet-defining inequalities are of great importance since they describe the convex hull of integer solutions
for a problem. Therefore, if we knew all facets of an integer polytope, we would be able to solve the integer
problem by incorporating them into the constraint matrix and then solving the linear programming (LP)
relaxation. In practice, however, this is not easy, since for most problems a) not all the facets of the
underlying convex hull of integer points are known, and b) the number of facets is not polynomially
bounded on the size of the problem, therefore resulting in a constraint matrix of exponential size. For
these reasons, most algorithms consider the known facet defining inequalities only when they are violated
by the solution of the LP-relaxation. To identify the facets violated by such a solution constitutes the
separation problem. In general, this problem is AP-hard. However, for some families of facet-defining
inequalities this problem can be solved in polynomial time.

For the OLS problem, a polynomial time separation algorithm for each of the two classes of clique
facets is described in [1]. Motivated by that work, we present two polynomial separation algorithms for
wheel facets; one for inequalities induced by the wheel class 29 and the other for inequalities induced by
the wheel class 3.

The following conventions are used. Pp denotes the linear relaxation of P;. For u € U (U C C) we
denote 4 any element of U such that |[u N 4| = 0. In the algorithms that follow, U is defined in such a
way that for every u € U there exists exactly one & € U. For U C C,z(U) = > {x, : u € U}.

5.1 The inequalities of wheel class 29

Observe that (4.1), for p = 2, Q = (Q?%(c) N Q?(s)) UQ>(c), can be written as
d(c)+d(c,s) <2 (5.1)

where d(c) = zs+2(Q>(c)),d(c, 5) = z.+2(Q*(c)NQ?(s)). Observe that if no clique of type II is violated
then d(c) < 1,Vc € C. For specific values of ¢ and s the inequality (5.1) is denoted as (5.1)][c, .
To establish the complexity of the algorithm 5.1, we make use of the following lemma.

Lemma 5.1 ([1]) For a point x € Py, and z > 0, the number of components of x with value > z is < ”72

Proposition 5.2 Algorithm 5.1 determines in O(n%) steps whether a given x € Py, \ Pr which does not
violate a clique facet of type II violates a wheel inequality (5.1).

Proof. (Correctness) Suppose that no clique inequality of type II is violated. Then, (5.1) is violated
only if

Tigjekele T Tigjeksls T Tigjokels T Tigjekels T Tigjekale T Ticjekale T Tigjokel, > 1 (5.2)
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Algorithm 5.1. Separation of inequalities induced by wheel class 29.
Let « € Pr, \ Pr be such that no clique inequality of type II is violated.
STEP 1 FOR ALL c € C let d(c) = z.+ Y {z,: g € Q3(c)} ;
STEP2  FORALLce CIF 1>z, >+ THEN

STEP 3 FOR ALL t € C such that |cNt| =2 IF z, > = THEN

STEP 4 FOR ALL s € C such that [cNs| =0,|sNt| =2,

STEP 5 {
U =(Q%(c) N Q*(s)) U{ck\ {t};
FOR ALL w € U IF d(u) + (U) — x5 > 2 THEN (5.1)[u, @] is violated;
STEP 6 FOI}{ ALL s € C such that [cNs| =0, IF z, > 122 THEN
STEP7 |
U= (Q*c)NQ*s))
FOR ALL v € U IF d(u) + z(U) — g > 2 THEN (5.1)[u, @] is violated;
b
b

This implies that at least one of the variables of (5.2) has a value greater than % Let this variable be
denoted as z.(c € C). Among the remaining variables of (5.2) at least one must be greater than 1‘%.
Let this variable be denoted as x,(v € C'). There are two cases; either |cNv| =2 or |[cNv| = 0. In both
cases we calculate the left-hand side for every inequality (5.1) containing both z. z,.

(Complexity) In Step 1 for every ¢ € C, we perform 4(n — 1) additions. Hence, in total, we perform
4n*(n—1) additions and n* assignments. In Step 2, the block of code containing all other steps is executed

at most 7n? times (Lem. 5.1). For each ¢ of Step 3 we scan 6 rows of the A matrix. For each row we

1—xg
6

consider (n — 1)? elements to play the role of t. Hence, Step 3 (i.e. the comparison ) is executed at

most 42n?(n — 1)2. Observe that at each row we can have at most 6 variables with value > 1%, Thus
Step 4 is executed at most 36 - 7n? times. At each such iteration (n — 1)? elements are considered for the
role of s. Hence, Step 5 is executed at most 36 - 7n? - (n — 1)? times.

For each of the ¢ € C, such that 1 > x, > %, Step 6 is executed (n—1)* times. In total, the comparison

Ts > 1_6% of Step 6 is executed at most 7n?(n — 1)* times. Observe that the number of operations of
steps 5 and 7 is constant. This is because |U| = 6. Hence, the overall complexity of the algorithm is
O(n%). m

5.2 The inequalities of wheel class 3

The set @ is defined with respect to ¢,s,t € C (|cNs| = 0,|cNt| = 2 = |sNt]). Observe that @ =
Q(e,t) U (Q3(c) NQ3(5)), where Q(c,t) = (Q*(t) N Q%(c)) U (Q°(t) N Q%(c)) U (Q*(c) N Q°(t)). Then, the

inequalities of this class can be written as
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e+ ae+2(Q(e,1) +ae + 2((Q%(c) N Q%(s)) \ {t}) < 2 (5-3)

Observe that for any « € Pp\ Py, .+ +2(Q(c, t)) < 1, because all these terms appear in the same row
of the A matrix. Hence, a necessary condition for (5.3) to be violated is x5 + z((Q%(c) N Q%(s)) \ {t}) > 1
(by definition t € Q*(c) N Q?(s)). This observation is used by the following algorithm. Again (5.3)[c, s, ]

denotes (5.3) for specific values of ¢, s, t.

Proposition 5.3 Algorithm 5.2 determines in O(n®) steps whether a given x € Pr, \ Py violates a wheel
inequality (5.3).

Proof. (Correctness) As stated previously, (5.3) is violated only if

ze+2((Q*(c) NQ*(s)) \ {t}) > 1 (5-4)

There are six variables in (5.4), therefore at least one of them must be greater than %. Let this variable
be denoted as z.(c € C). Among the remaining variables of (5.2) at least one must be greater than %<,
Let this variable be denoted as z,(v € C'). There are two cases; either [cNv| =2 or [cNwv| = 0. In both
cases we calculate the left hand side for every inequality (5.3) containing both z. z,.

(Complexity) In Step 1 for every ¢ € C, we perform 6 - 2(n — 1) additions. In total, 12 - n*(n — 1)
additions and n* assignments are executed. The boolean expression in Step 2 evaluates true at most 6n?

times (Lem. 5.1). For each c of Step 3 we scan 6 rows of the A matrix. For each row we consider (n — 1)?

elements to play the role of . Hence Step 3 (i.e. the comparison 1=%¢) is executed at most 42n%(n — 1)2.
Observe that at each row we can have at most 5 variables with value > ka Thus, Step 4 is executed

at most 30 - 6n? times. At each such iteration (n — 1)? elements are considered for the role of s. Hence,
Step 5 is executed at most 30 - 6n? - (n — 1) times. For each of the ¢ € C,1 > z, > % Step 6 is executed

1—x,
5

The number of additions performed in Steps 5 and 7 is constant. First observe that for given uy,us € C'
such that |u; Nug| = 2, [Q3(u1) N Q3(u2)| = 2. For Step 5, if u; = cor uy =t then |U \ {uy,41,¢,t} =5
else if uy; # ¢,t then |U\ {u1,@1,c,t}| = 4. Hence, 26 comparisons will be performed in Step 6, each

(n —1)* times. In total, the comparison xs > of Step 6 is executed at most 6n%(n — 1)* times.

of which requires a constant number of additions. Due to the same reasoning 6 - 4 comparisons will be
executed in Step 7.

Hence, the overall complexity of the algorithm is O(n®). =
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Algorithm 5.2. Separation of inequalities induced by wheel class 3.
Let z € Pp, \ Pr.
STEP 1 FOR ALL ce C

AP (e) = Tet Yisi, Tigekale Djpg, Ticihele 3
d7EH () = e+ Disi. Tijekole T Dok, Ticjehle s
A" (c) = zc + Zj;éjc Tijkele T Zkﬂc Tipjekle
d7R(e) = e+ 204 ikt Do, Ticjeked ;
d"OR(c) = e + 20545, Ticgholet Doipr, Ticjekel
A" (c) = Te 4 Y, TicjokleT Dz, Ticjekel 3

I
STEP 2  FOR ALL ce C IF 1>z, > ¢ THEN

{
STEP 3  FOR ALL t € C such that |cNt| =2 if ; > 1=% THEN
STEP 4 FOR ALL s € C such that |sNc| =0, |t Ns| =2,
STEP 5 {

U =(Q%(c) NQ*(s)) U{c, s}k
FOR ALL w; € U \ {s,%}
FOR ALL us, € U \ {ul,ﬂl,c,t}
{
Let M, M’ (M # M') be any of I, J, K, L such that (u; Nuz) € M @ M’;
IF dMOM (uy) + dMOM (uy) + 2(U) — 2a, — uy + 2(Q(u1) N Q3(uz)) > 2 THEN
(5.3)[u1, @1, ug] is violated;

}.

STEP 6  FOR ALL s € C such that |cNs| = 0, IF z, > 15 THEN
STEP 7 {

U = (@) N Q*(s)) U {e, )

FOR ALL u; € U\ {¢, s}

FOR ALL up € U\ {uy, @1,¢, s}

{

Let M, M’ (M # M’) be any of I, J, K, L such that (u1 Nuz) € M @ M’;

IF  dMEM (4)) + dMEM (uy) + 2(U) — 24, — Tuy + 2(Q3(u1) N Q3(ug)) > 2 THEN
(5.3)[u1, @1, ug] is violated;

}

}

I
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