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Abstract

Wheel structures of the Orthogonal Latin Squares (OLS) polytope (PI) are presented in [2].
The current work focuses on the families of valid inequalities arising from wheels and proves that
certain among them are facet-defining for PI . For two of these families we provide efficient separation
procedures. We also present results regarding odd-hole inequalities, which essentially form a larger
class encompassing that of wheel inequalities.

1 Introduction

The Orthogonal Latin Squares (OLS) problem is the second member of the family of planar assignment
problems, the first being the Latin Squares (LS) problem ([8]). As noted in [2], not many classes of facet-
defining inequalities are known for the polytopes of either problem. For the LS polytope two families of
odd-hole facets are described in [3] and [5], respectively. For the OLS polytope (PI) all clique facets are
presented in [1]. The current work adds to our knowledge of the facial structure of planar assignment
polytopes by identifying wheel facets for PI . It is easy to see that there are no wheel-induced inequalities
for the LS polytope. Thus, PI is the “simplest” among planar assignment polytopes having facet-defining
inequalities of this type.

The families of the inequalities presented here are induced by some of the wheel classes presented
in [2]. In fact, much of the ground work for the current paper has been laid out in [2]. Although we
give some definitions, for the self-sufficiency of the current work, we refer to that paper for a complete
presentation of concepts and conventions to be used throughout.

The OLS problem is defined in terms of four disjoint n−sets, namely I, J,K,L (see [1, 2] for a
formulation). Let GA(C, EC) denote the column intersection graph of the A matrix of the OLS problem.
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Because C = I × J ×K × L ([1]), s ∈ C, equivalently, denotes the tuple (is, js, ks, ls). For any s, t ∈ C

there exists the edge (s, t) ∈ EC if and only if nodes (s, t) have at least two indices in common. Hence,
if (s, t) ∈ EC the sets of the common indices form the ground set of the edge. If s, t have two (three)
indices in common (|s ∩ t| = 2(3)) then the ground set is called a double (triple) set. The ground set of
the edge (s, t) also denoted as g((s, t)), is defined in terms of the ⊗ operator. Thus, if is = it, js = jt,
ks 6= kt, ls 6= lt then g((s, t)) = I ⊗ J , where I ⊗ J = (I × J)∪ (J × I). If is = it, js = jt, ks = kt, ls 6= lt

then g((s, t)) = I ⊗ J ⊗K, where I ⊗ J ⊗K = (I ⊗ J) ∪ (J ⊗K) ∪ (I ⊗K).
Few additional definitions are introduced in Section 2 where properties of the odd-hole and wheel

inequalities are examined. Section 3 discusses the relation between the inequalities induced by cliques
([1]) and wheels. In Section 4 families of wheel-induced facets are presented. For two of these families
polynomial time separation algorithms are given in Section 5.

2 Odd-hole and wheel inequalities

Let H ⊂ C denote the node set of an induced odd hole (|H| = 2p + 1, p ≥ 2). Then, the odd-hole
inequality is ∑

{xq : q ∈ H} ≤ p (2.1)

A special case of odd-hole inequalities are the wheel inequalities. A wheel is an induced subgraph
consisting of an odd hole, called the rim, and a node connected to all nodes of the rim called the hub.
Let c ∈ C denote the hub of a wheel and H(c) the set of its rim nodes where |H(c)| = 2p + 1, p ≥ 2.
Then, the wheel inequality ([6]) is

pxc +
∑

(xq : q ∈ H(c)) ≤ p (2.2)

Maximally lifted odd-hole (and consequently wheel) inequalities are known to be facet-inducing for
the set packing relaxation of PI ([9, 10]), denoted as P̃I (see [2]). An important issue is that of calculating
the largest coefficient for the variables belonging to such an inequality. In other words, let xs be any
variable added to the left-hand side of (2.1) and let as denote its coefficient. We want to determine the
maximum value of as such that (2.1) is not violated. First we need to show the following auxiliary result:

Lemma 2.1 Let Hm ⊂ H such that |Hm| = m. Then,

⌈m

2

⌉
≤ max

∑
{xq : q ∈ Hm} ≤ m (2.3)

Proof. For the upper bound consider Hm to consist only of non-adjacent nodes of H. Then all
variables indexed by the elements of Hm can simultaneously take the value 1, yielding

∑{xq : q ∈
Hm} = m. One the other hand, if each node of Hm is adjacent to at most two other nodes of this set,
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and since the elements of Hm do not induce a cycle (Hm ⊂ H), we have max
∑{xq : q ∈ Hm} = m

2 , for
m even, and max

∑{xq : q ∈ Hm} =
⌈

m
2

⌉
, for m odd.

Proposition 2.2 No odd-hole inequality valid for OLS can have a left-hand side integer coefficient greater
than min{5, p}.

Proof. Consider that (2.1) is augmented (lifted) by introducing the variable xs with a coefficient as:

asxs +
∑

{xq : q ∈ H} ≤ p

Let Hs ⊂ H be such that Hs = {q ∈ H : |q ∩ s| ≥ 2}. Therefore, if variable xs is set to one the above
inequality becomes

as +
∑

{xq : q ∈ H \Hs} ≤ p (2.4)

We observe that as is maximized when max
∑{xq : q ∈ H \Hs} is minimized. To achieve this, |H \Hs|

must be as small as possible. Thus, |Hs| must be as large as possible. For each pair of indices of s there
can be at most two nodes of Hs having the same pair of index values. There are six distinct double sets,
therefore |Hs| ≤ min{12, 2p + 1}. If 2p + 1 > 12 then |H \Hs| ≥ 2p + 1 − 12 = 2(p − 6) + 1. So the
minimum number of variables participating in the summand is |H \Hs| = 2(p − 6) + 1. By inequality
(2.3)

p− 6 + 1 ≤ max
∑

{xq : q ∈ H \Hs}

Hence by (2.4), we have
p− 5 + a ≤ p

yielding as ≤ 5.
If 2p + 1 < 12 then there might be a node c ∈ C such that (c, q) ∈ EC ∀q ∈ H. In this case, node c is

the hub of a wheel while H is the set of nodes of the rim. The wheel inequality states as = p.
Specifically for the lifted inequalities generated by wheels, we have the following proposition.

Proposition 2.3
as = p, if s ≡ c,

as ≤ 2, if 3 ≥ |c ∩ s| ≥ 2

Proof. The maximum value for as is achieved only if s is connected to all nodes of the wheel. In this
case s ≡ c and as = p (Prop. 2.2).

Assume that c = (n, n, n, n). If s ∈ C \ (H(c) ∪ {c}) there are two cases.

Case 2.3.1 |c ∩ s| = 3.
Without loss of generality assume that s = (i0, n, n, n), i0 ∈ I \ {n}. First consider wheels with

double-set spokes only. Observe that there can be none, one, or two rim nodes having i0 as one of their
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Figure 1: A wheel having a triple-set spoke and six nodes connected to (i0, n, n, n)

indices. In all cases, node s is connected to all nodes of the rim whose spokes are based on one of the
double sets J ⊗K, J ⊗L, K ⊗L. There can be at most six such nodes, two for each double set ([2, prop.
3.2]). Setting xs = 1, implies that the variables indexed by the hub and these six nodes will be set to
0. This leaves the 2p + 1 − 6 = 2 · (p − 2) − 1 variables, indexed by the remaining rim nodes, free. At
least p − 2 of these variables can be set to one simultaneously. Hence, the lifted wheel inequality yields
as + p − 2 ≤ p or as ≤ 2. Observe that if among the six nodes there exist nodes having i0 among their
indices, then the edge connecting each such node to s is based on a triple set formed by set I and two of
J,K, L.

The situation is the same in the case of wheels having one triple-set spoke. In this case observe that
the maximum number of pairs of spokes, each spoke of the pair being based on the same double set, is
three ([2, Table 3]). This occurs for wheels belonging to classes nums. 27, 28 (column

∣∣W p
c (K1

3 )
∣∣). In

both classes the three pairs are consecutive (column seq(K1
3 )). However, there is no sequence of three

such spoke pairs with the property that the three double sets of the pairs are formed by three single sets
(column K1

3 −K1
3 −K1

3 , subcolumn 3). Therefore, one of the six spokes of the sequence must be based on
a triple set having as a component one of J ⊗K, J ⊗L, K⊗L. One such wheel is illustrated in Figure 1.
s is connected to at most six such nodes implying as ≤ 2.

Finally, if the wheel has two triple-set spokes we can only have p = 2 ([2, Table 3]), implying that
as ≤ 1.
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Case 2.3.2 |c ∩ s| = 2.
Without loss of generality assume s = (i0, j0, n, n), i0 ∈ I \ {n}, j0 ∈ J \ {n}. In the case of wheels

having only double-set spokes, node s can be connected to at most six nodes, i.e.

(a) two nodes incident to spokes based on K ⊗ L,

(b) two nodes having i0 and n for one of the indices of the sets K, L,

(c) two nodes having j0 and n for one of the indices of the sets K,L.

The nodes of (b), (c) will have one more index equal to n such that the double sets of their incident
spokes are different from K ⊗ L. One such collection of six nodes is:

{(·, ·, n, n), (·, ·, n, n), (i0, n, n, ·), (i0, n, n, ·), (n, j0, ·, n), (n, j0, ·, n)}

Observe that it is not necessary for the nodes of (b) to have the same pair of indices equal to n.The same
is true for the nodes of (c). In all cases, we cannot have another node connected to s because then we
would have a chord between this node and one of the six nodes of the collection. Hence as ≤ 2.

For wheels with a triple-set spoke, it is also easy to see that we cannot have more than six nodes
connected to s.

The wheel classes presented in ([2, Table 3]) give rise to families of valid inequalities for PI . Each
such inequality is produced by lifting an inequality of the type (2.2) obtained from a wheel belonging to
a particular class. The lifted inequality depends on the lifting sequence; it is easy to see that a wheel
class can give rise to more than one family of lifted inequalities. For example, the wheel illustrated in
Figure 2a, belonging to class num. 1, induces the inequalities

2xnnnn +
∑

i∈I\{n]

xinnn +
∑

j∈J\{n}
xnjnn +

∑

l∈L\{n}
xnnnl

+
∑

l∈L\{l0,n}
xnj0nl +

∑

j∈J\{j0,n}
xnjnl0

+
∑

l∈L\{l0,n}
xi0nnl +

∑

i∈I\{i0,n}
xinnl0

xi0nnl0 + xnj0nl0 + xi0j0nn ≤ 2 (2.5)
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Figure 2a: A wheel of class num. 1 Figure 2b: A wheel of class num. 22

2xnnnn +
∑

i∈I\{n]

xinnn +
∑

j∈J\{n}
xnjnn +

∑

l∈L\{n}
xnnnl

+
∑

l∈L\{l0,n}
xi0nnl +

∑

i∈I\{i0,n}
xinnl0

+
∑

l∈L\{l0,n}
xnj0nl +

∑

i∈I\{i0,n}
xij0nn

xi0nnl0 + xnj0nl0 + xi0j0nn + xnj1nl0 ≤ 2 (2.6)

On the other hand, the same family of lifted inequalities can be obtained from wheels belonging to two
distinct classes. For example, the above inequalities can also be obtained from the wheel illustrated in
Figure 2b which belongs to the wheel class num. 22.

Another important observation is that the number of triple-set rim edges of a wheel is related to the
induced lifted wheel inequality. The bigger this number is, the larger the set of the common indices of the
nodes of the wheel. This implies a larger set of variables to be considered for the lifted wheel inequality.
Therefore, for a given wheel class, the wheels having the maximum number of rim edges based on triple
sets are likely to produce more families of valid inequalities than wheels without this property. Results
regarding triple-set rim edges are presented in [2].

3 Wheel and clique inequalities

The definition of a wheel assumes p ≥ 2 If we extend it to include wheels having p = 1, we can derive all
classes of clique-induced inequalities ([1]) as wheel inequalities. This is illustrated in Figures 3a, 3b, 3c.
For each of these wheels, the resulting lifted inequality belongs to a distinct class of clique inequalities,
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Table 1: Clique inequalities induced by wheels
Figure Clique class Inequality

3a I
∑

k∈K

∑
l∈L

xnnkl ≤ 1

3b II xnnnn +
∑

i∈I\{n}
xinnn +

∑
j∈J\{n}

xnjnn +
∑

k∈K\{n}
xnnkn +

∑
l∈L\{n}

xnnnl ≤ 1

3c III xnnnn + xnnk0l0 + xnj0k0n + xnj0nl0 ≤ 1

as illustrated in Table 1.
Obviously, all the wheels of size three are in fact K4 graphs. However, considering the specific

structures illustrated in Figures 3a, 3b, 3c as wheels allows as to derive three additional wheel classes to
be added to the ones described in [2, Table 3]. For the wheel of Figure 3a, we have two spokes based on
triple sets (

∣∣H2(c)
∣∣ = 2). This is the second wheel class with this property. The wheel of Figure 3b has

the unique property that it has three spokes based on triple sets, i.e.
∣∣H2(c)

∣∣ = 3. This cannot happen
for p ≥ 2 ([2]). Finally, the wheel of Figure 3c does not include two spokes based on the same double set
although it consists exclusively of double-set spokes. Again this property is unique ([2]). Observe that
the inequality induced by the last class of wheels is facet-defining for PI as is (no lifting is required).

4 Wheel facets

The general form of the inequalities considered hereafter is

pxc +
∑

{xq : q ∈ Q} ≤ p (4.1)

where c ∈ C, Q ⊂ C such that there exists H(c) ⊂ Q with |c ∩ h| ≥ 2, for all h ∈ H(c) and |H(c)| = 2p+1.
Hence, (4.1) describes a different family of lifted wheel inequalities for each distinct set Q. Consequently,
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each family of inequalities of the type (4.1) is induced by a wheel class described in [2]. For each such
family presented in one of the following subsections, we show that the face PI(Q) = {x ∈ PI : pxc+

∑{xq :
q ∈ Q} = p} is a facet of PI . For every family examined, the associated set Q is defined with respect to
two elements of C, namely c, s, such that |c ∩ s| = 0. It follows easily that the cardinality of each family
is of O(n8), since for any given c there are exactly (n− 1)4 elements of C available for the the role of s.

The procedure for showing that PI(Q) is a facet of PI includes the following steps. We give specific
values to p, c, s and, if necessary, to other parameters, so as to define a particular inequality belonging to
the family examined. We show that this inequality is maximal with respect to set inclusion. This proves
that the inequality is facet-defining for P̃I , and because PI ⊂ P̃I , the inequality is valid for PI . Then we
show that PI(Q) 6= ∅ and PI(Q) 6= PI . Finally, let (4.1) be written as dx ≤ d0. We show that if any
other inequality ax ≤ a0 is satisfied as equality by all points of PI(Q), then there exist λ ∈ Rm and π > 0
such that a = λA + πd and a0 = λe + πd0 (see also [11]). For showing this last step we use exclusively
points of PI(Q). An observation used throughout the facet proofs is that for any two points x, y ∈ PI(Q)
the equation ax = ay is valid.

Another relation mostly exploited in the proofs is the 1−1 correspondence between Orthogonal Latin
squares and integer points of PI . This relation is more evident if we consider two of the sets I, J,K, L as
the row and column set of the OLS structure, and the remaining two sets as the sets of values included
in the cells of the first and the second Latin square,respectively. Conventionally, I is considered to be the
row set, J the column set and K (L) the set of elements of the first (second) Latin square. As in ([1]),
we denote k(i, j) (respectively l(i, j)) the value of the cell in row i, column j of the first (second) Latin
square. Thus, k(i, j) ∈ K and l(i, j) ∈ L. Occasionally, in order to emphasize the value of k(i, j) (l(i, j))
at a given point x of PI , we use the notation k(x; i, j) (l(x; i, j)). For the rest of the paper we illustrate a
pair of OLS as a Latin square containing in each cell a pair of indices, each belonging to a different set.
The above convention implies that this pair belongs to K × L. In the case that a different convention is
used with respect to the sets I, J,K, L and the rows, columns and elements of the cells of the two squares,
the above notation as well as the illustration of the OLS structure are adjusted accordingly.

The inherent symmetry of the integer points of PI is exploited through the notion of interchange.
Given a pair of OLS and m1, m2 ∈ M where M is any of the disjoint sets I, J,K, L (inter)changing all m1

values m2 and all m2 values to m1 yields another pair of OLS ([1, rem. 13]). The two OLS structures are
called equivalent ([4, p. 168]) and the corresponding points of PI isotopic. The interchange operator (↔),
introduced in [1], is used to denote such an operation. Thus, setting x∗ = x(i1 ↔ i2)1 implies that at a
given integer point x, we set xi1jk(i1,j)l(i1,j) = xi2jk(i2,j)l(i2,j) = 0 and xi1jk(i2,j)l(i2,j) = xi2jk(i1,j)l(i1,j) = 1,
for all j ∈ J , obtaining point x∗. The expression is subscripted by a number denoting the set to which
the elements participating in the interchange belong (1 for the set I, 2 for J , 3 for K, 4 for L). The
conditional interchange is defined as the interchange to be executed only if a certain condition is met.
Thus, x∗ = x(i1 = n?n ↔ i2)1 implies that the interchange is carried out only if i1 = n. Otherwise
x∗ = x.
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Another type of interchange involves the permutation of the roles of the four sets. This form of
symmetry is known as conjugacy or parastrophy ([4, Section 2.1]). Hence, x∗ = x(I ↔ J) denotes the
swap of values of the indices i, j applied to point x resulting in point x∗(x∗ ∈ PI). The points x, x∗ are
called conjugates.

The following proposition, introduced in [1, prop. 16], establishes an equation involving elements of
the vector a defined previously.

Proposition 4.1 [1, Prop. 16]For n ≥ 3 and n 6= 6

ai1j1k(i1,j1)l(i1,j1) + ai1j2k(i1,j2)l(i1,j2) + ai2j1k(i2,j1)l(i2,j1) + ai2j2k(i2,j2)l(i2,j2)

+ai1j1k(i2,j2)l(i2,j2) + ai1j2k(i2,j1)l(i2,j1) + ai2j1k(i1,j2)l(i1,j2) + ai2j2k(i1,j1)l(i1,j1)

= ai1j1k(i2,j1)l(i2,j1) + ai1j2k(i2,j2)l(i2,j2) + ai2j1k(i1,j1)l(i1,j1) + ai2j2k(i1,j2)l(i1,j2)

+ai1j1k(i1,j2)l(i1,j2) + ai1j2k(i1,j1)l(i1,j1) + ai2j1k(i2,j2)l(i2,j2) + ai2j2k(i2,j1)l(i2,j1)

for i1, i2 ∈ I, i1 6= i2, j1, j2 ∈ J, j1 6= j2.

To derive this equation we use an integer point x ∈ PI and points x′, x̄, x̄′ derived from x as x′ =
x(i1 ↔ i2)1, x̄ = x(j1 ↔ j2)2, x̄′ = x̄(i1 ↔ i2)1. Subtracting ax̄ = ax̄′ from ax = ax′ and cancelling
out equivalent terms yields the equation. Hence, the point x and the two pairs of indices, each pair
belonging to one of the sets I, J,K, L, are enough for defining such an equation. Consequently, the
equation is referred to as x((i1, i2)1; (j1, j2)2) and the collection (x, x′, x̄, x̄′) as X((i1, i2)1; (j1, j2)2). As
usual, the set to which the indices of the pair belong is indicated by the subscript of the pair. Observe
that x((i1, i2)1; (j1, j2)2) can be used in the proofs that follow, only if x, x′, x̄, x̄′ ∈ PI(Q), in which case
we use the notation X ∈ PI(Q).

To facilitate our presentation, we introduce some additional definitions and conventions. Hence, for
c ∈ C, Qm(c) = {q ∈ C : |q ∩ c| = m}. We refer to a point x illustrated in Table numbered by (#) as
xTbl(#). As in [1], an equation which is numbered by (#) and whose terms are indexed by i, j, k, l, is
referred to as (#)[a, b, c, d] implying that the indices i, j, k, l, take the specific values a, b, c, d, respectively.

x̊ denotes a point of PI induced by the OLS structure which has the elements of the first columns
of the two squares in standard order as well as the first row of the first square. A pair of OLS of this
form is called standardised or reduced ([4, p. 159]) and can be derived, provided that PI 6= ∅. Thus,
x̊m1mm = 1, x̊1mk(1,m)l(1,m) = 1,∀m ∈ {1, . . . , n}. The following Lemma establishes another point to be
used in the proofs that follow.

Lemma 4.2 For n ≥ 7, iq, i1 ∈ I \{1, n}, jq, j1 ∈ J \{1, n}, k2, k3 ∈ K \{1, k0, n} where k0 ∈ K \{1, n},
l1 ∈ L \ {1, l0, n}, l2 ∈ L \ {1, l0}, l3 ∈ L \ {1} where l0 ∈ L \ {1, n}, there exists the point x illustrated in
Table 2
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Table 2: Point x (Lemma 4.2)
1 · · · jq · · · j1 · · · n

1 (1, 1) (k2, l2)
...
iq (n, l1) (k3, l3)
...
i1 (1, n)
...
n (n, n)

Proof. At point x̊, let i1 ∈ I \ {1, n}, j1 ∈ J \ {1} be such that k(i1, j1) = 1, l(i1, j1) = n. There
also exist i2, iq such that iq ∈ I \ {1, i1, n} with k(iq, 1) = k1 and i2 ∈ I \ {i1, n} with x̊i2j2k1n = 1,
where j2 ∈ I \ {j1, n}. For n ≥ 5, it is safe to assume that iq 6= i1 because if iq = i1 then there exist
k2 ∈ K \{1, k1, n} and (another) iq (this time different from i1) such that k(iq, 1) = k2. By denoting i3, j3

the row and column at which the pair (k2, n) appears (̊xi3j3k2n = 1, i3 ∈ I \ {i1, i2, n}, j3 ∈ I \ {j1, j2, n})
and by performing the interchanges (k2 ↔ k1)3(i3 ↔ i2)1(j3 ↔ j2)2, we derive point x̊ with iq 6= i1.

We denote l(iq, 1) as l1. Therefore, x̊iq1k1l1 = x̊i1j11n = x̊i2j2k1n1. Let x̃ = x̊(k1 ↔ n)3(i2 ↔ n)1(j2 ↔
n)2. As shown in Table 3, for n ≥ 7 there exists jq ∈ J \ {1, n} such that k(iq, jq), k(1, jq) ∈ K \ {1, n},
l(iq, jq), l(1, jq) ∈ L \ {1}. Observe that we can safely assume that k(iq, jq), k(1, jq) 6= k0. To show

Table 3: Point x̃ (Lemma 4.2 )
1 · · · jq · · · j1 · · · j3 · · · j4 · · · j5 · · · n

1 (1, 1) (k2, l2) (n, ·)
...
iq (n, l1) (k3, l3) (1, ·) (·, 1)
...
i1 (1, n)
...
n (n, n)

that this is so, consider k(iq, jq) = k0. Then there exists kt ∈ K \ {1, k0, n} such that the interchange
(kt ↔ k0)3 will set k(iq, jq) = kt 6= k0. By the same argument, l(iq, jq), l(1, jq), l1 6= l0. By denoting
k(1, jq) as k2, k(iq, jq) as k3, l(1, jq) as l2 and l(iq, jq) as l3, we obtain the point xTbl(2) of Table 2.

Each of the following subsections is entitled with respect to the wheel class from which the inequality
at hand is induced (see [2]).
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Figure 4: A wheel of class num. 29

4.1 Wheel class num. 29

Let p = 2 and Q = (Q2(c) ∩Q2(s)) ∪Q3(c). For c = (n, n, n, n) and s = (i0, j0, k0, l0), (4.1) becomes

2xnnnn +
∑

i∈I\{n}
xinnn +

∑

j∈J\{n}
xnjnn +

∑

k∈K\{n}
xnnkn +

∑

l∈L\{n}
xnnnl

+xi0j0nn + xi0nk0n + xnj0k0n + xi0nnl0 + xnj0nl0 + xnnk0l0 ≤ 2 (4.2)

This inequality is induced by the wheel illustrated in Figure 4, which belongs to wheel class num. 29.

Lemma 4.3 (4.2) is maximal.

Proof. Suppose that there exists a variable xq (q = (iq, jq, kq, lq) ∈ C) which can be added to the
left-hand side of (4.2) without increasing its right-hand side. Clearly xq must have either three or two
indices in common with (n, n, n, n), since otherwise it can be set to one together with xnnnn. In the
former case, xq is already included in (4.2), i.e. xq is one of xinnn, xnjnn, xnnkn, xnnnl, i ∈ I \ {n}, j ∈
J \ {n}, k ∈ K \ {n}, l ∈ L \ {n}. In the latter case, assume iq = n, jq = n. Then we can simultaneously
set xnnkqlq and xnj0nl0 , xi0nnn to one. Observe that this is valid even if kq = k0, lq 6= l0 or lq = l0,
kq 6= k0.

Theorem 4.4 For n ≥ 7, (4.2) defines a facet of PI .
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Proof. Let x = x̊(1 ↔ n)2. Then x ∈ PI(Q) since xnnnn = 1. Hence, PI(Q) 6= ∅.
At point x̊ either x̊nnk0l0 = 1 or x̊nnk0l0 6= 1. In the former case, there exists j1 ∈ J \ {1, n} such that

(k(i0, j1), l(i0, j1)) 6= (k0, n), (n, l0). We need n ≥ 5, because we might have x̊i0j2k0n = x̊i0j3nl0 = 1. Let
x = x̊(j1 ↔ n)2. Clearly x ∈ PI \ PI(Q). In the latter case, if x̊i0nk0n = 0 and x̊i0nnl0 = 0 we are done,
i.e. x̊ ∈ PI \ PI(Q). Otherwise, assume without loss of generality that x̊i0nk0n = 1. Then there exists
j1 ∈ J \{1, n} such that (k(i0, j1), l(i0, j1)) 6= (n, l0) and (k(n, j1), l(n, j1)) 6= (k0, l0). Let x = x̊(j1 ↔ n)2.
Clearly x ∈ PI \ PI(Q). Again we need n ≥ 5.

Suppose that there exist a ∈ Rn4
, a0 ∈ R such that ax = a0, for every x ∈ PI(Q). We will show that

(a, a0) is a linear combination of the rows of A and inequality (4.2). Equivalently, we will exhibit scalars
λ1

kl, λ2
il, λ3

jl, λ4
ij , λ5

jk, λ6
ik, π ∈ R, ∀i ∈ I, j ∈ J, k ∈ K, l ∈ L, satisfying

aijkl = λ1
kl + λ2

il + λ3
jl + λ4

ij + λ5
jk + λ6

ik, ∀(i, j, k, l) ∈ C \ (Q ∪ {(n, n, n, n)}), (4.3)

aijkl = λ1
kl + λ2

il + λ3
jl + λ4

ij + λ5
jk + λ6

ik + π, ∀(i, j, k, l) ∈ Q, (4.4)

aijkl = λ1
kl + λ2

il + λ3
jl + λ4

ij + λ5
jk + λ6

ik + 2π, (i, j, k, l) = (n, n, n, n) (4.5)

a0 =
∑

k∈K,l∈L

λ1
kl +

∑

i∈I,l∈L

λ2
il +

∑

j∈J,l∈L

λ3
jl

+
∑

i∈I,j∈J

λ4
ij +

∑

j∈J,k∈K

λ5
jk +

∑

i∈I,k∈K

λ6
ik + 2π (4.6)

We denote (4.4) and (4.5) as (4.3)π and (4.3)2π, respectively. We define:

λ1
kl = a11kl, ∀k ∈ K, l ∈ L, λ4

ij = aij11 − ai111 − a1j11 + a1111, ∀i ∈ I, j ∈ J,

λ2
il = ai11l − a111l, ∀i ∈ I, l ∈ L, λ5

jk = a1jk1 − a1j11 − a11k1 + a1111, ∀j ∈ J, k ∈ K,

λ3
jl = a1j1l − a111l, ∀j ∈ J, l ∈ L, λ6

ik = ai1k1 − ai111 − a11k1 + a1111, ∀i ∈ I, k ∈ K

If we substitute λs in (4.3), we obtain

aijkl = aij11 + ai1k1 + ai11l + a1jk1 + a1j1l + a11kl

−2ai111 − 2a1j11 − 2a11k1 − 2a111l + 3a1111 (4.7)

Observe that (4.7) is true for all cases where at least two of the indices are equal to one. All other cases
of (i, j, k, l) ∈ C \ (Q∪{(n, n, n, n)}) are grouped with respect to the number of indices equal to n. There
are three such groups defined when none, one, or two of the indices are equal to n, respectively. For the
first two we show (4.3) by proving (4.7), whereas for the third one (4.3) is proven directly.

Case 4.4.1 None of i, j, k, l is equal to n.
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Consider (i, j, k, l) = (iq, jq, kq, lq) where iq 6= n, jq 6= n, kq 6= n, lq 6= n. Let x1 = xTbl(2) and
x2 = x1(1 ↔ kq)3 where kq ∈ K \ {1, k2, k3, n}. Further, for n ≥ 6, there exists lq ∈ L \ {1, l1, l2, l3, n}
such that x3 = x2(1 ↔ lq)4, x4 = x1(1 ↔ lq)4. Then, Xm((1, iq)1; (1, jq)2) ∈ PI(Q) since xnnnn = 1, for
all x ∈ Xm, for all m = 1, . . . , 4. x1((1, iq)1; (1, jq)2) − x2((1, iq)1; (1, jq)2) yields (4.7)[iq, jq, kq, 1]. By
symmetry, we obtain (4.7)[iq, jq, 1, lq], (4.7)[iq, 1, kq, lq], (4.7)[1, jq, kq, lq].

x3((1, iq)1; (1, jq)2)− x4((1, iq)1; (1, jq)2) yields

aiqjqkqlq = (aiqjq1lq + aiq1kqlq + a1jqkqlq )− aiq11lq − a1jq1lq − a11kqlq + a111lq

Substituting terms in brackets from (4.7)[iq, jq, 1, lq], (4.7)[iq, 1, kq, lq], (4.7)[1, jq, kq, lq] and cancelling
out identical terms, we obtain (4.7)[iq, jq, kq, lq]

Case 4.4.2 One of i, j, k, l is equal to n.

Consider (i, j, k, l) = (iq, jq, n, lq) where iq 6= n, jq 6= n, lq 6= n. Let lq ∈ L \ {1, l1, l2, l3, n}. Then,
x1 = xTbl(2)(l1 ↔ lq)4 x2 = x1(1 ↔ n)3(i1 ↔ n)1(j1 ↔ n)2. Also let x̂1 = x1(l1 ↔ lq)4 and x̂2 = x2(l1 ↔
lq)4. Then, Xm((1, iq)1; (1, jq)2), X̂m((1, iq)1; (1, jq)2) ∈ PI(Q) since xnnnn = 1, for all x ∈ Xm, X̂m, for
all m = 1, . . . , 4.

x1((1, iq)1; (1, jq)2)− x2((1, iq)1; (1, jq)2) yields

a1111 + a1jqn1 + aiq1n1 + aiqjq11 − (aiqjqn1 + aiq111 + a1jq11 + a11n1)

= aiqjqnlq + aiq11lq + a1jq1lq + a11nlq − (aiqjq1lq + aiq1nlq + a1jqnlq + a111lq ) (4.8)

Adding x̂1((1, iq)1; (1, jq)2)− x̂2((1, iq)1; (1, jq)2) to (4.8) yields

2(a1111 + a1jqn1 + aiq1n1 + aiqjq11 − (aiqjqn1 + aiq111 + a1jq11 + a11n1))

=
∑

l∈{l1,lq}
{aiqjqnl + aiq11l + a1jq1l + a11nl − (aiqjq1l + aiq1nl + a1jqnl + a111l)} (4.9)

Let x3 = x2(1 ↔ lq)4(1 ↔ l1)4, x4 = x(1 ↔ lq)4. Again Xm((1, iq)1; (1, jq)2) ∈ PI(Q) since
xnnnn = 1, for all x ∈ Xm, for m = 3, 4. x3((1, iq)1; (1, jq)2) − x4((1, iq)1; (1, jq)2) leads the right-hand
side of (4.8) to zero, thus proving (4.7)[iq, jq, n, 1]. Observe that this result is valid independently of
whether l1 = l3 or l1 6= l3 at point xTbl(2). For each case we obtain different points for the collections
X1, X2, X3, X4, but the operations performed yield the same result. (4.7)[iq, 1, n, lq], (4.7)[1, jq, n, lq]
follow by symmetry.

By virtue of (4.7)[iq, jq, n, 1], the right-hand side of (4.8) is equal to zero. Thus, by substituting term
aiqjq1lq from (4.7)[iq, jq, 1, lq], aiq1nlq from (4.7)[iq, 1, n, lq] and a1jqnlq from (4.7)[1, jq, n, lq], we obtain
(4.7)[iq, jq, n, lq].

Taking the conjugates of the above used points with respect to the interchange (K ↔ L), we obtain
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(4.7)[iq, jq, kq, n, ]. (4.7)[iq, n, kq, lq], (4.7)[n, , jq, kq, lq] are obtained by considering the conjugate points
derived from the interchanges (J ↔ K) and (I ↔ K), respectively.

Case 4.4.3 Two of i, j, k, l are equal to n.
Observe that the remaining two indices cannot simultaneously take values from the tuple (i0, j0, k0, l0),

because then the tuple under consideration would belong to Q. Hence, assume (i, j, k, l) = (n, n, kq, lq)
with kq 6= n, lq 6= l0, n.

Consider the point x illustrated in the Table 4, where k1 ∈ K \ {1, k0, n}. It is easy to establish

Table 4: Point x (Theorem 4.4, Case 4.4.3)
· · · j0 · · · n

...
i0 (n, l0)
...
i1 (k1, n)
...
n (n, n) (1, 1)

existence of this point, for n ≥ 4. Let x̃ = x̊(l(1, n) 6= l0?l(1, n) ↔ l0)4(1 ↔ n)2(1 ↔ n)1(n ↔ l0)4.
Therefore, xi1nk(i1,n)n = 1. If k(i1, n) 6= k0 then we denote it k1 and obtain point x as illustrated in
Table 4. Otherwise, for n ≥ 4 there exists k1 ∈ K \ {1, k0, n} such that x = x̃(k1 ↔ k0)3.

Let x1 = xTbl(4), x2 = x1(1 ↔ kq)3 where kq ∈ K \ {1, k1, n}. Observe that xm ∈ PI(Q), because
xm

nj0nn = xm
i0nnl0

= 1, for m = 1, 2. Expressing indices of the sets J, L in terms of indices of the sets I, K

in ax1 = ax2 yields

ann11 +
∑

i∈I\{n}
aij(i,1)1l(i,1) +

∑

i∈I

aij(i,kq)kql(i,kq)

= annkq1 +
∑

i∈I\{n}
aij(i,1)kql(i,1) +

∑

i∈I

aij(i,kq)1l(i,kq) (4.10)

All terms in (4.10), except annkq1, ann11, have at most one index equal to n. For these terms, (4.3) is
proven in one of the previous cases through (4.7). Therefore, solving (4.10) with respect to term annkq1,
substituting terms in the summands from (4.3), adding and subtracting λs so that the summation index
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i runs for all values of the set I and cancelling out identical terms, (4.10) yields

annkq1 = ann11

+
∑

i∈I

{λ1
1l(i,1) + λ1

kql(i,kq) − λ1
kql(i,1) − λ1

1l(i,kq)}

+
∑

i∈I

{λ5
j(i,1)1 + λ5

j(i,kq)kq
− λ5

j(i,1)kq
− λ5

j(i,kq)1}

+λ1
kql(n,1) + λ5

j(n,1)kq
+ λ6

nkq

−λ1
1l(n,1) − λ5

j(n,1)1 − λ6
n1 (4.11)

It is easy to see that summands cancel out, i.e.
∑

i∈I λ1
1l(i,1) =

∑
i∈I λ1

1l(i,kq),
∑

i∈I λ1
kql(i,kq) =

∑
i∈I λ1

kql(i,1),∑
i∈I λ5

j(i,1)1 =
∑

i∈I λ5
j(i,kq)1,

∑
i∈I λ5

j(i,1)kq
=

∑
i∈I λ5

j(i,kq)kq
. This is because the n-tuple (j(i, 1)i∈I)

((l(i, 1)i∈I)) is an array containing the elements 1, . . . , n in some order. The same is true for (j(i, kq)i∈I)
((l(i, kq)i∈I)). If we consider the n-tuples as unordered, we have

⋃
i∈I{j(i, 1)} =

⋃
i∈I{j(i, kq)} ≡ J and⋃

i∈I{l(i, 1)} =
⋃

i∈I{l(i, kq)} ≡ L.
Also, observe that (4.7)[n, n, 1, 1] is valid because tuple (n, n, 1, 1) has two indices equal to one.

Substituting term ann11 from (4.7), (4.11) becomes

annkq1 = λ1
11 + λ2

n1 + λ3
n1 + λ4

nn + λ5
n1 + λ6

n1

+λ1
kql(n,1) + λ5

j(n,1)kq
+ λ6

nkq

−λ1
1l(n,1) − λ5

j(n,1)1 − λ6
n1

Since l(n, 1) = 1, j(n, 1) = n (Table 4), the above equation becomes

annkq1 = λ1
kq1 + λ2

n1 + λ3
n1 + λ4

nn + λ5
nkq

+ λ6
nkq

which is (4.7)[n, n, kq, 1].
Let x3 = x2(1 ↔ lq)4 where lq ∈ L \ {1, l0, l1, n}. x3 ∈ PI(Q). Expressing indices of the sets J,K in

respect to the indices of sets I, L, ax2 = ax3 yields

annkqlq +
∑

i∈I\{n}
aij(i,1)k(i,1)lq +

∑

i∈I

aij(i,kq)k(i,lq)1

= annkq1 +
∑

i∈I\{n}
aij(i,1)k(i,1)1 +

∑

i∈I

aij(i,kq)k(i,lq)lq (4.12)

Equation (4.12), dealt with in a manner analogous to that of (4.11), yields (4.7)[n, n, kq, lq]. By symmetry
we obtain the same equation but with kq 6= k0, n, lq 6= n.

Applying the same procedure to the points xm(J ↔ K), xm(I ↔ K), xm(J ↔ L), xm(I ↔ L),
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for m = 1, 2, 3, yields (4.7)[n, jq, n, lq], (4.7)[iq, n, n, lq], (4.7)[n, jq, kq, n], (4.7)[iq, n, kq, n], respectively.
Finally, the same procedure applied to points xm(I ↔ L)(J ↔ K), for m = 1, 2, 3, yields (4.7)[iq, jq, n, n].
Observe that all points used belong to PI(Q).

The proof of (4.3) is complete.
To prove (4.3)π, we define

πijkl = aijkl − (λ1
kl + λ2

il + λ3
jl + λ4

ij + λ5
jk + λ6

ik), ∀(i, j, k, l) ∈ Q (4.13)

We must show that all πijkl are equal. We do this in a series of steps.

Step1: Consider the point x illustrated in Table 5. It is easy to establish existence for this point. At

Table 5: Point x (Theorem 4.4, Step 1)
· · · j0 · · · j1 · · · n

...
i0 (n, n)
...
n (n, l0) (k0, n) (kq, lq)

point x̊ let i1 ∈ I \ {1, n} be such that k(i1, 1) = k0, l(i1, 1) = l1. Then, x̂ = x̊(l1 ↔ n)4(l1 6=
l0?l1 ↔ l0)4(1 ↔ n)2(n ↔ i0)1. Observe that pair (n, n) ∈ K × L does not lie at rows i0, i1 and
column n. Thus, we can place it to row n and column j0 by performing the necessary row and/or
column interchange, without affecting the positions of pairs (n, l0) (row i0, column n) and pairs
(k0, n) (row i1, column n). Thus, we derive point x̄. We denote k(x̄; n, n) as kq, l(x̄; n, n) as lq.
Then, x = x̄(I ↔ J). Observe that k(x;n, n) = kq, l(x; n, n) = lq.

Let x1 = xTbl(5) and x2 = x1(j1 ↔ j0)2. x1, x2 ∈ PI(Q) because x1
i0nnn = x1

nj0nl0
= 1 and

x2
i0nnn = x2

nj0k0n = 1. ax1 = ax2 yields

anj0nl0 +
∑

i∈I\{n}
aij0k(i,j0)l(i,j0) + anj1k0n +

∑

i∈I\{n}
aij1k(i,j1)l(i,j1)

= anj0k0n +
∑

i∈I\{n}
aij0k(i,j1)l(i,j1) + anj1nl0 +

∑

i∈I\{n}
aij1k(i,j0)l(i,j0)

If we substitute the first terms of both sides from (4.13), the rest of the terms from (4.7), and cancel
out identical terms, we obtain πnj0k0n = πnj0nl0 = π.

Next we consider point x3 = x1(I ↔ J) and let x4 = x3(i1 ↔ i0)1. Then x3, x4 ∈ PI(Q) because
x3

nj0nn = x3
i0nnl0

= 1 and x4
nj0nn = x4

i0nk0n = 1. Then ax3 = ax4 yields πi0nnl0 = πi0nk0n.
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Let x5 = x1(k0 ↔ kq)3 and x6 = x5(lq ↔ l0)4. Then x5, x6 ∈ PI(Q) because x5
i0nnn = x5

nj0nl0
= 1

and x6
i0nnn = x6

nnk0l0
= 1. Then ax5 = ax6 yields πnj0nl0 = πnnk0l0 . Let x7 = x3(k0 ↔ kq)3 and

x8 = x7(lq ↔ l0)4. Then x7, x8 ∈ PI(Q) because x7
nj0nn = x7

i0nnl0
= 1 and x8

nj0nn = x8
nnk0l0

= 1.
ax7 = ax8 yields πi0nnl0 = πnnk0l0 .

Hence,
πi0nk0n = πnj0k0n = πi0nnl0 = πnj0nl0 = πnnk0l0 = π

Step 2: Consider the point x illustrated in Table 6. It is easy to establish existence for this point. At

Table 6: Point x (Theorem 4.4, Step 2)
· · · j0 · · · j1 · · · n

...
i0
...
n (n, n) (k1, l1) (k0, l0)

point x̊ let i1 ∈ I \ {1, n} be such that k(i1, 1) = k0. We denote l(i1, 1) as l2. Then x̂ = x̊(l2 6=
l0?l2 ↔ l0)4(i0 ↔ n)1. Let i1 ∈ I \ {1, n} be such that k(i1, 1) = k1. We denote l(x̂; i1, 1) as l1. Let
x̄ = x̂(1 ↔ n)2. Then point x = x̄(I ↔ J).

Let x1 = xTbl(6) and x2 = x1(j0 ↔ j1)2. Observe that x1, x2 ∈ PI(Q) because x1
nj0nn = x1

nnk0l0
= 1

and x2
nj1nn = x2

nnk0l0
= 1. Thus, ax1 = ax2 implies

anj0nn +
∑

i∈I\{n}
aij0k(i,j0)l(i,j0) + anj1k1l1 +

∑

i∈I\{n}
aij1k(i,j1)l(i,j1)

= anj1nn +
∑

i∈I\{n}
aij1k(i,j0)l(i,j0) + anj0k1l1 +

∑

i∈I\{n}
aij0k(i,j1)l(i,j1)

If we substitute the first terms of both sides from (4.13), the rest of the terms from (4.7), and cancel
out identical terms, we obtain πnj0nn = πnj1nn = π2.

Next consider the point x3 = x1(I ↔ J) and let x4 = x3(i0 ↔ i1)1. x3, x4 ∈ PI(Q) because
x3

i0nnn = x3
nnk0l0

= 1, x4
i1nnn = x4

nnk0l0
= 1. Then ax3 = ax4 yields πi0nnn = πi1nnn = π1.

Let x5 = x1(j1 6= j0?j1 ↔ j0)2(l0 ↔ n)4 and x6 = x5(k1 ↔ k0)3 where k1 ∈ K \ {k0, n}.
x5, x6 ∈ PI(Q) because x5

nj0nl0
= x5

nnk0n = 1, x6
nj0nl0

= x6
nnk1n = 1. Thus, ax5 = ax6 yields

πnnk0n = πnnk1n = π3.

In a similar manner, let x7 = x1(j1 6= j0?j1 ↔ j0)2(k0 ↔ n)3 and x8 = x7(l1 ↔ l0)4 where
l1 ∈ L \ {l0, n}. x7, x8 ∈ PI(Q) because x7

nj0k0n = x7
nnnl0

= 1, x8
nj0k0n = x8

nnnl1
= 1. Thus,

ax7 = ax8 yields πnnnl0 = πnnnl1 = π4.
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Hence,

πi0nnn = πi1nnn = π1,∀i1 ∈ I \ {i0, n},
πnj0nn = πnj1nn = π2, ∀j1 ∈ J \ {j0, n},
πnnk0n = πnnk1n = π3, ∀k1 ∈ K \ {k0, n},
πnnnl0 = πnnnl1 = π4,∀l1 ∈ L \ {l0, n}

Step 3: Let x1 = xTbl(5)(j1 ↔ n)2 and x2 = x1(i0 ↔ n)1. x1, x2 ∈ PI(Q) because x1
nj0nl0

= x1
nnk0n = 1

and x2
nj1nn = x2

i0nk0n = 1. Thus, ax1 = ax2 implies

annk0n + anj0nl0 +
∑

j∈J\{j0,n}
anjk(n,j)l(n,j) + ai0j1nn +

∑

j∈J\{j1}
ai0jk(i0,j)l(i0,j)

= anj1nn + ai0nk0n +
∑

j∈J\{j1}
anjk(i0,j)l(i0,j) + ai0j0nl0 +

∑

j∈J\{j0,n}
ai0jk(n,j)l(n,j)

Substituting the first two terms of both sides from (4.13) and the rest of the terms from (4.7), and
taking into account the results obtained in the previous two steps, we obtain πnnk0n = πnj1nn ⇒
π3 = π2.

Let x3 = xTbl(5), x4 = x3(n ↔ l0)4. x3, x4 ∈ PI(Q) because x3
nj0nl0

= x3
i0nnn = 1 and x4

i0nnl0
=

x4
nj0nnn = 1. ax3 = ax4 yields πnj0nl0 + πi0nnn = πi0nnl0 + πnj0nnn which by Step 1 results in

πi0nnn = πnj0nnn ⇒ π1 = π2.

Finally, let x5 = x3(j0 ↔ n)2 and x6 = x5(j1 ↔ n)2. x5, x6 ∈ PI(Q) because x5
i0j0nn = x5

nnnl0
= 1,

x6
i0j0nn = x6

nnk0n = 1. ax5 = ax6 yields π3 = π4.

Hence,
π1 = π2 = π3 = π4 = κ

Step 4: Consider the point x illustrated in Table 7. It is easy to see that this point exists. At an

Table 7: Point x (Theorem 4.4, Step 4)
· · · j0 · · · j1 · · · n

...
i0 (k0, n)
...
i1 (n, n)
...
n (n, l0)
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arbitrary point x ∈ PI pairs (n, l0), (n, n) cannot lie at the same row or column. Thus we can easily
derive a point x̂ such that x̂nj0nl0 = x̂i1nnn = 1. Also let x̂ipjpk0n = 1. Clearly jp 6= n, ip 6= i1. If
ip 6= n and jp 6= j0 then x = x̂(ip 6= i0?ip ↔ i0)1(jp 6= j1?jp ↔ j1)2. Otherwise assume that ip = n.
Then there exist i2 ∈ I \ {i1, n}, j2 ∈ J \ {j0, jp, n}, k1 ∈ K \ {k0, n} such that x̂i2j2k1n = 1. Then
x = x̂(i2 6= i0?i2 ↔ i0)1(j2 6= j1?j2 ↔ j1)2(k1 ↔ k0)3.

Let x1 = xTbl(7) and x2 = x1(j1 ↔ n)2. Note that x1, x2 ∈ PI(Q) because x1
nj0nl0

= x1
i1nnn = 1

and x2
nj0nl0

= x2
i0nk0n = 1. ax1 = ax2 yields

ai1nnn +
∑

i∈I\{i1}
aink(i,n)l(i,n) + ai0j1k0n +

∑

i∈I\{i0}
aij1k(i,j1)l(i,j1)

= ai0nk0n +
∑

i∈I\{i1}
aij1k(i,n)l(i,n) + ai1j1nn +

∑

i∈I\{i0}
aink(i,j1)l(i,j1)

Substituting the first terms of both sides from (4.13), the rest of the terms from (4.7), and cancelling
equivalent terms, we obtain πi1nnn = πi0nk0n ⇒.π1 = π ⇒ κ = π.

Step 5: Let x1 = xTbl(5) and x2 = x1(j0 ↔ n)2. x2 ∈ PI(Q) because x2
i0j0nn = x2

nnnl0
= 1. ax1 = ax2

yields πi0nnn+πnj0nl0 = πi0j0nn+πnnnl0 which due to the previous steps implies πi0j0nn = πnj0nl0 =
π resulting in κ = π.

The proof of (4.3)π is complete.
To show (4.3)2π, we define

πnnnn = annnn − (λ1
nn + λ2

nn + λ3
nn + λ4

nn + λ5
nn + λ6

nn) (4.14)

It remains to show that πnnnn = 2π. Consider the point x illustrated in Table 8. Let x1 = xTbl(8)

Table 8: Point x (Theorem 4.4, (i, j, k, l) = (n, n, n, n))
· · · j0 · · · n

...
i0 (n, l0)
...
n (n, n)

x2 = x1(j0 ↔ n)2. Note that x1, x2 ∈ PI(Q) because x1
nnnn = 1 and x2

nj0nn = x2
i0nnl0

= 1. Thus,
ax1 = ax2, after substituting terms from (4.7), (4.13), (4.14) and taking into account the results of
steps 1-4, yields πnnnn = πnj0nn + πi0nnl0 = 2π.

Finally, we have established that PI(Q) 6= ∅ if PI 6= ∅ which is true for n ≥ 7 ([7, Thm. 2.9]).
Therefore, for every x ∈ PI(Q), the constraints defining the A matrix of the OLS problem are satisfied.
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Thus, by multiplying each row of A by the corresponding λ and (4.2) by π and summing over all rows
we obtain

ax =
∑

k∈K,l∈L

λ1
kl +

∑

i∈I,l∈L

λ2
il +

∑

j∈J,l∈L

λ3
jl

+
∑

i∈I,j∈J

λ4
ij +

∑

j∈J,k∈K

λ5
jk +

∑

i∈I,k∈K

λ6
ik + 2π

which proves (4.6).
In the proofs that follow, we present only the parts in which they differ from the proof of Thm. 4.4.

Specifically for the part of the proof regarding (i, j, k, l) ∈ C \ (Q∪{(n, n, n, n)}) when at least two of the
indices are equal to n, we establish the existence of two points, namely x, y ∈ PI(Q), such that (4.3) is
valid for all terms, but one, of the equation ax = ay. To show (4.3) for this term, we follow a procedure
similar to that of Case 4.4.3. Hereafter, we will briefly refer to this procedure as ‘ax = ay yields (4.3)’.
The same expression will be used when proving (4.3)π implying a procedure analogous to that followed
in Steps 1-5. In this case, the terms of ax = ay indexed by tuples (i, j, k, l) ∈ Q are substituted from
(4.13), whereas the rest from (4.3).

4.2 Wheel class num. 3

Let p = 2 and t ∈ C such that |c ∩ t| = 2, |s ∩ t| = 2. We define Q = (C2(t) ∩C3(c)) ∪ (C3(t) ∩C3(c)) ∪
(C2(c) ∩ C3(t)) ∪ (C2(c) ∩ C2(s)). For c = (n, n, n, n), s = (i0, j0, k0, l0), t = (i0, j0, n, n), (4.1) becomes

2xnnnn +
∑

i∈I\{n}
xinnn +

∑

j∈J\{n}
xnjnn +

∑

i∈I\{i0,n}
xij0nn +

∑

j∈J\{j0,n}
xi0jnn

+xi0j0nn + xi0nk0n + xnj0k0n + xi0nnl0 + xnj0nl0 + xnnk0l0 ≤ 2 (4.15)

This inequality is induced by the wheel illustrated in Figure 5, which belongs to wheel class num. 3.
Observe that there are n4 choices for c, (n− 1)4 choices for s and

(
4
2

)
choices for t.

Lemma 4.5 (4.15) is maximal.

Proof. Suppose that there exists a variable xq (q = (iq, jq, kq, lq) ∈ C) which can be added to
the left-hand side of (4.15) without increasing its right-hand side. At least two indices of xq must be
equal to n, since otherwise it can be set to one together with xnnnn. Then |q ∩ (n, n, n, n)| = 3 or
2. In the former case, q 6= (iq, n, n, n), (n, jq, n, n), for all iq ∈ I, jq ∈ J , because in these cases xq

is already included in (4.15). Assume that q = (n, n, n, lq), lq ∈ L. Then we can simultaneously have
xnnnlq = xnj0k0n = xi0j1nn = 1. In the latter case, we consider two further subcases with respect to
the two indices not equal to n. Hence, values from the collection (i0, j0, k0, l0) are (a) forbidden, or (b)
allowed but the two indices cannot obtain values from the collection simultaneously. In particular,
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Figure 5: A wheel of class num. 3

(a) Assume q = (iq, jq, n, n) with iq ∈ I \ {i0, n} and jq ∈ J \ {j0, n}, because otherwise xq is already
included in (4.15). Then xiqjqnn = xi0nnl0 = xnj0k0n = 1.

(b) Assume q = (iq, n, n, lq). Observe that iq ∈ I \ {n}, lq ∈ L \ {n}, (iq, lq) 6= (i0, l0), because otherwise
xq is already included in (4.15). Then, if lq 6= l0 consider xiqnnlq = xnj0nn = xnnk0l0 = 1. In this
case we can have iq = i0. If iq 6= i0 consider xiqnnlq = xnj0nn = xi0nk0n = 1, in which case we can
have lq = l0.

Theorem 4.6 For n ≥ 7, (4.15) defines a facet of PI .

Proof. For tuples (i, j, k, l) ∈ C \ (Q∪ {(n, n, n, n)}) there is an additional case to these examined in
the proof of Thm. 4.4, regarding the number of indices being equal to n. This case involves three indices
equal to n. (4.3) for the cases where none or one of i, j, k, l, is equal to n, is shown in exactly the same
way as in the cases 4.4.1, 4.4.2 of Thm. 4.4.

If two of the indices are equal to n, we consider three further cases, viz., |(i, j, k, l) ∩ (i0, j0, n, n)| = 0
or 1 or 2. For the first case, (i, j, k, l) = (n, n, kq, lq) and the proof of (4.3) is exactly the same as in case
4.4.3 of Thm. 4.4. The remaining two cases are considered analytically.

Case 4.6.1 |(i, j, k, l) ∩ (i0, j0, n, n)| = 1.
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Table 9: Point x (Theorem 4.6, Case 4.6.1)
· · · j0 · · · n

1 (n, 1)
...
i0 (k0, n)
...
iq
...
n (n, n) (1, l1)

Let x̂ = xTbl(4)(K ↔ L) and x = x̂(1 ↔ i1)1(1 ↔ l1)4 (Table 9). Let x1 = x and x2 = x1(1 ↔ iq)1,
x3 = x2(1 ↔ lq)4 where iq ∈ I \ {1, i0, n}, lq ∈ L \ {1, l1, n}. xm ∈ PI(Q) because xm

nj0nn = xm
i0nk0n = 1,

for m = 1, 2, 3. Hence, ax1 = ax2 yields

a1nn1 +
∑

j∈J\{n}
a1jk(1,j)l(1,j) +

∑

j∈J

aiqjk(iq,j)l(iq,j)

= aiqnn1 +
∑

j∈J\{n}
aiqjk(1,j)l(1,j) +

∑

j∈J

a1jk(iq,j)l(iq,j)

All terms of the above equation, except aiqnn1, a1nn1, have at most one index equal to n. For these terms,
(4.3) has been proven previously. (4.3) is also valid for a1nn1, because this term satisfies (4.7). Substituting
these terms from (4.3) and following the same procedure as in Case 4.4.3 of Thm. 4.4, we obtain
(4.3)[iq, n, n, 1]. Substituting in ax2 = ax3 all terms including aiqnn1 from (4.3) results (4.3)[iq, n, n, lq].
By symmetry, this equation is valid for iq ∈ I \ {n}, lq ∈ L \ {l0, n}.

By applying the interchange (K ↔ L) to the points defined above and following the same procedure,
we obtain (4.3)[iq, n, kq, n]. In a similar manner, the interchange (I ↔ J) yields (4.3)[n, jq, n, lq]. Finally,
the interchanges (I ↔ J)(K ↔ L) yield (4.3)[n, jq, kq, n].

Case 4.6.2 |(i, j, k, l) ∩ (i0, j0, n, n)| = 2.
Consider the point x illustrated in Table 10 It is easy to establish existence of point x. At any

arbitrary integer point x̂ ∈ PI , (n, n) ∈ K×L cannot lie in the same row or column with either of (n, l0),
(k0, n). Thus, we can place (n, n) in the first row and column without affecting the positions of these two
pairs. Let us denote this point as x̂. If the two pairs do not lie in the same row or column it is trivial
to obtain point x from x̂. Therefore, assume that the two pairs lie in the same column, denoted by j1.
Additionally, suppose that (n, l0) lies in row i2 and let j2 be such that k(i2, j2) = k2, l(i2, j2) = n. Then
for n ≥ 5, there exists k1 ∈ K \ {1, k0, k2, n}. Then, at point x̃ = x̂(k1 ↔ k0)3 pairs (n, l0), (k0, n) lie in
different rows and columns.
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Table 10: Point x (Theorem 4.6, Case 4.6.2)
1 · · · j0 · · · n

1 (n, n)
...
i0 (n, l0)
...
iq
...
n (k0, n)

Let x1 = xTbl(10) and let x2 = x1(1 ↔ iq)1, where iq ∈ I \ {1, i0, n}. xm ∈ PI(Q) because xm
nj0k0n =

xm
i0nnl0

= 1, for m = 1, 2. Observe that all terms in equation ax1 = ax2, except aiq1nn, can be substituted
from (4.3) yielding (4.3)[iq, 1, n, n]. The substitution is valid even if l(x1; iq, n) = n. In this case, apart
from aiq1nn, a11nn, there are exactly two terms, each with two indices equal to n. For each of these terms
(4.3) is shown to be valid in one of the previous cases.

Let x3 = x2(1 ↔ jq)2where jq ∈ J \ {1, j0, n}. x3 ∈ PI(Q). Then, ax2 = ax3 yields (4.3)[iq, jq, n, n].

The proof of (4.3) for the case where two of i, j, k, l are equal to n is complete.
For the case where three of the indices equal n, consider x = xTbl(4)(i1 ↔ n)1(kq ↔ k1)3 (Table 11).

Table 11: Point x (Theorem 4.6, three indices equal to n)
· · · j0 · · · n

...
i0 (n, l0)
...
i1 (n, n)
...
iq (k2, l2)
...
n (kq, n)

Let k(x; iq, n) = k2 and l(x; iq, n) = l2 where iq ∈ I \ {i0, i1, n}, k2 ∈ K \ {kq, n}, l2 ∈ L \ {lq, n}. Let
x1 = xTbl(11) and x2 = x1(iq ↔ n)1. xm ∈ PI(Q) because xm

i1j0nn = xm
i0nnl0

= 1, for m = 1, 2. ax1 = ax2
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yields

annkqn +
∑

j∈J\{n}
anjk(n,j)l(n,j) + aiqnk2l2 +

∑

j∈J\{n}
aiqjk(iq,j)l(iq,j)

= annk2l2 +
∑

j∈J\{n}
anjk(iq,j)l(iq,j) + aiqnkqn +

∑

j∈J\{n}
aiqjk(n,j)l(n,j)

Observe that all terms, except annkqn, have at most two indices equal to n. Also observe that the tuples,
indexing terms of the above equation, with two indices equal to n, belong to C \(Q∪{(n, n, n, n)}). Thus,
substituting all terms, except annkqn, from (4.3), we obtain (4.3)[n, n, kq, n]. Let x̂m = xm(K ↔ L), for
m = 1, 2. xm ∈ PI(Q) because x̂m

i1j0nn = x̂m
i0nk0n = 1, for m = 1, 2. ax̂1 = ax̂2 yields (4.3)[n, n, n, lq].

The proof of (4.3) is complete.
To prove (4.3)π, we consider (4.13) and must show that all πijkl are equal.

Step 1: Exactly as in the corresponding step of the proof of Thm. 4.4.

Step 2: Exactly as in the corresponding step of the proof of Thm. 4.4 but limited for the cases πi0nnn =
πi1nnn = π1, ∀i1 ∈ I \ {i0, n} and πnj0nn = πnj1nn = π2, ∀j1 ∈ J \ {j0, n}.

Step 3: Exactly as in the corresponding step of the proof of Thm. 4.4 but limited for the cases πi0nnn =
πnj0nn ⇔ π1 = π2 = κ.

Step 4: Exactly as in the corresponding step of the proof of Thm. 4.4.

Step 5: Let x1 = xTbl(5)(j1 ↔ n)2 where j1 ∈ J \ {j0, n} and x2 = x1(i0 ↔ n)1. x1, x2 ∈ PI(Q) because
x1

nj0nl0
= x1

i0j1nn = 1 and x2
i0nk0n = x2

nj1nn = 1. ax1 = ax2 yields πnj1nn = πi0j1nn, j1 ∈ J \{j0, n}.
By symmetry, πi1nnn = πi1j0nn, i1 ∈ I \ {i0, n}. Hence, πi0j1nn = πi1j0nn, ∀i1 ∈ I \ {i0, n}, j1 ∈
J \ {j0, n}, since by step 3 we have πi1nnn = πnj1nn.

Step 6: Let i2 ∈ I \ {i0, i1, n} be such that k(xTbl(4); i2, n) = k0. We denote l(i2, n) as l2. Let x1 =
x(l2 ↔ l0)4(i0 ↔ n)1(i2 ↔ n)1 and x2 = x1(j0 ↔ j1)2, j1 ∈ J \ {j0, n}. x1, x2 ∈ PI(Q), because
x1

nnk0l0
= x1

i0j0nn = 1 and x2
i0j1nn = x2

nnk0l0
= 1. ax1 = ax2 yields πi0j0nn = πi0j1nn, j1 ∈ J\{j0, n}.

If we consider x2 = x1(i0 ↔ i1)1, i1 ∈ I \ {i0, n}, we get πi0j0nn = πi1j0nn, i1 ∈ I \ {i0, n}.

The proof of (4.3)π is complete. The rest of the proof is exactly as in Thm. 4.4.

4.3 Wheel class num. 1 (22)

Let p = 2 and consider tm ∈ C, such that |c ∩ tm| = |s ∩ tm| = 2, for m = 1, 2, 3, and t1 ∩ t2 ∩ t3 ⊂ c. We
define Q = ∪m=2

m=1((C
3(c) ∩ C3(tm)) ∪ (C3(c) ∩ C2(tm)) ∪ (C3(tm) ∩ C2(c)) ∪ {tm}) ∪ t3.

For c = (n, n, n, n), s = (i0, j0, k0, l0), t1 = (i0, n, n, l0), t2 = (n, j0, n, l0), t3 = (i0, j0, n, n), (4.1)
becomes (2.5). Obviously, the roles of the tuples t1, t2, t3 are interchangeable. Hence, we can derive three
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inequalities for each such collection of three tuples. The inequality (2.5) is induced by either of the wheels
illustrated in Figures 2a and 2b. There are n4 choices for c, (n − 1)4 choices for s, and 4 different ways
for defining t1, t2, t3. Then every collection of t1, t2, t3 yields three distinct inequalities.

Lemma 4.7 (2.5) is maximal.

Proof. Suppose that there exists a variable xq (q = (iq, jq, kq, lq) ∈ C) which can be added to the
left-hand side of (2.5) without increasing its right-hand side. At least two indices of xq must be equal to
n, since otherwise it can be set to one together with xnnnn. If |q ∩ (n, n, n, n)| = 3 then for q /∈ Q, we
must have q = (n, n, kq, n), kq ∈ K \ {n} in which case, xnnkqn, xi0nnl1 , xnj0nl0 can all be set to one for
l1 ∈ L \ {l0, n}. If |q ∩ (n, n, n, n)| = 2 then the two indices of q having values different than n can either
(a) obtain all other values in their domains, or (b) obtain all other values in their domains but the values
i0, j0, k0, l0, simultaneously, or (c) obtain all other values in their domains but the values i0, j0, k0, l0,
independently from each other.

(a) Let q = (n, n, kq, lq), kq ∈ K \{n}, lq ∈ L\{n}. Consider xnnkqlq = xnj0nl1 = xi1nnn = 1, i1 ∈ I \{n},
l1 ∈ L \ {lq, n}.

(b) Let q = (iq, jq, n, n), iq ∈ I \ {n}, jq ∈ J \ {n}, (iq, jq) 6= (i0, j0). If jq 6= j0 then xiqjqnn = xi1nnl0 =
xnj0nl1 = 1, i1 ∈ I \ {iq, n}. If iq 6= i0 then xiqjqnn = xi0nnl0 = xnj1nl1 = 1, j1 ∈ J \ {jq, n}. In both
cases l1 ∈ L \ {l0, n}.

(c) Let q = (n, jq, n, lq, ), jq ∈ J \ {j0, n}, lq ∈ L \ {l0, n}. Consider xnjqnlq = xi1nnl0 = xi0j0nn = 1, i1 ∈
I \ {j0, n}.

Theorem 4.8 For n ≥ 7, (2.5) defines a facet of PI .

Proof. Let x̊iqjqnl0 = 1. If jq ∈ J \ {j0, n} then x̊ ∈ PI \PI(Q). If jq = j0 or jq = n then there exists
j1 ∈ J \ {j0, n} such that x = x̊(j1 ↔ n)2. Then x ∈ PI \ PI(Q) yielding PI 6= PI(Q).

For (i, j, k, l) ∈ C \ (Q ∪ {(n, n, n, n)}) such that |(i, j, k, l) ∩ (n, n, n, n)| = 2, we consider cases
analogous to (a), (b), (c) of Lem. 4.7.

Case 4.8.1 (Analogous to (a)).
For (i, j, k, l) = (n, n, kq, lq), kq ∈ K \ {n}, lq ∈ L \ {n}, if kq 6= k0 or lq 6= l0 then the proof is exactly

the same as in the case 4.4.3 of Thm. 4.4. Observe that x1, x2 ∈ PI(Q).
In the case that (kq, lq) = (k0, l0) let x3 = xTbl(4)(l1 ↔ l0)4(1 ↔ k0)3, x4 = x3(1 ↔ l0)4. Then,

xm ∈ PI(Q), because xm
nj0nn = xm

i0nnl1
= 1, for m = 3, 4. Thus, ax3 = ax4 after substituting all terms

except annk0l0 from (4.3) yields (4.3)[n, n, k0, l0].
By considering the conjugate points of xm (m = 1, . . . , 4) with respect to the interchanges (I ↔ L)

and (J ↔ L), we obtain (4.3)[iq, n, kq, n] and (4.3)[n, jq, kq, n], respectively.
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Case 4.8.2 (Analogous to (b)).
Consider the point x illustrated in Table 12. To establish existence of xTbl(12), let iq ∈ I \ {i0, i1, n}

Table 12: Point x (Theorem 4.6, Case 4.8.2)
· · · j0 · · · j1 · · · n

...
i0 (n, l1)
...
i1 (k1, n)
...
iq (n, n)
...
n (n, l0) (·, l2)

such that x̂ = xTbl(4)(iq ↔ n)1. Obviously there exists j1 ∈ J \ {j0, n} such that k(x̂;n, j1) = n. We
denote l(x̂;n, j1) as l1 and l(x̂; n, n) as l2. Then xTbl(12) = x̂(l1 ↔ l0)4

Let x1 = xTbl(12) and x2 = x1(lq ↔ n)4 with lq ∈ L \ {l0, l1, l2, n}. xm ∈ PI(Q), because xm
nj1nl0

=
xm

i0nnl1
= 1, for m = 1, 2. By construction there is no term with three indices equal to n in the equation

ax1 = ax2. Thus, by substituting all terms, except aiqj0nn, from (4.3) we obtain (4.3)[iq, j0, n, n]. Let
x3 = x1(jq ↔ j0)2, x4 = x2(jq ↔ j0)2 with jq ∈ J \ {j0, n}. x3, x4 ∈ PI(Q). ax3 = ax4 yields
(4.3)[iq, jq, n, n] for jq 6= j0, n. By symmetry, we obtain (4.3)[iq, jq, n, n] for iq ∈ I \ {n}, jq ∈ J \ {j0, n}.

Case 4.8.3 (Analogous to (c)).
Let x1 = xTbl(12)(i0 ↔ iq)1(l1 ↔ l0)4(l1 ↔ lq)4(j1 ↔ jq)2, where jq ∈ J \ {j0, n}, lq ∈ L \ {l0, n}. Also

let x2 = x1(1 ↔ n)1. Then xm ∈ PI(Q), because xm
i0j0nn = xm

iqnnl0
= 1, for m = 1, 2. By construction

ax1 = ax2 contains only one term with two of the indices equal to n (term anjqnlq ), whereas the rest of
the indices have at most one of the indices equal to n. Thus, by substituting all terms, except anjqnlq ,
from (4.3) we obtain (4.3)[n, jq, n, lq], jq ∈ J \ {j0, n}, lq ∈ L \ {l0, n}.

By considering the conjugates of x1, x2, with respect to the interchanges (I ↔ J) and following the
same procedure, we obtain (4.3)[iq, n, n, lq].

The proof of (4.3) for the case where |(i, j, k, l) ∩ (n, n, n, n)| = 2 is complete.
For the case where |(i, j, k, l) ∩ (n, n, n, n)| = 3, consider (i, j, k, l) = (n, n, kq, n), kq ∈ K \ {n}.

Let x1 = xTbl(4)(i0 ↔ n)1(i1 ↔ n)1(k1 ↔ kq)3 and x2 = x1(i2 ↔ n)1. Then xm ∈ PI(Q), because
xm

i0j0nn = xm
i1nnl0

= 1, for m = 1, 2. Substituting all terms in ax1 = ax2, except annkqn, from (4.3) yields
(4.3)[n, n, kq, n].

The proof of (4.3) is complete.
To prove (4.3)π, we consider (4.13) and must show that all πijkl are equal.
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Step1: Let i1 ∈ I \ {n} be such that k(xTbl(6); i1, n) = n. We denote l(i1, n) as l1. Then, let x =
xTbl(6)(l0 ↔ l1)4(i1 6= i0?i1 ↔ i0)1 (Table 13). Let x1 = x, x2 = x1(j0 ↔ jq)2 where jq ∈ J \{j0, n}.

Table 13: Point x (Theorem 4.8, Step 1)
· · · j0 · · · j1 · · · n

...
i0 (n, l0)
...
n (n, n) (k1, l1)

x1, x2 ∈ PI(Q) because x1
nj0nn = x1

i0nnl0
= 1 and x2

njqnn = x2
i0nnl0

= 1. ax1 = ax2 after substituting
terms from (4.3) and (4.13), we obtain πnj0nn = πnjqnn = π2, jq ∈ J \ {j0, n}.
By imposing the interchange (I ↔ J) to both x1, x2, we obtain πi0nnn = πiqnnn = π1, iq ∈ I\{i0, n}.
In a analogous manner, let x3 = x1(J ↔ L). Let x4 = x3(lq ↔ l0)4 where lq ∈ L \ {l0, n}.
x3, x4 ∈ PI(Q) because x3

i0j0nn = x3
nnnl0

= 1 and x4
i0j0nn = x4

nnnlq
= 1. ax3 = ax4 yields

πnnnl0 = πnnnlq = π4, lq ∈ L \ {l0, n}.
Hence,

πi0nnn = πiqnnn = π1,∀iq ∈ I \ {i0, n},
πnj0nn = πnjqnn = π2, ∀jq ∈ J \ {j0, n},
πnnnl0 = πnnnlq = π4,∀lq ∈ L \ {l0, n}

Step 2: Consider point x1 of Step 1. Let x2 = x1(iq ↔ i0)1, iq ∈ I \ {i0, n}. x2 ∈ PI(Q) because
x2

iqnnl0
= x2

nj0nn = 1. Performing the usual substitutions in ax1 = ax2, we derive πi0nnl0 = πiqnnl0 .
Then a(x1(I ↔ L)) = a(x2(I ↔ L)) yields πi0nnl0 = πi0nnlq , a(x1(I ↔ J)) = a(x2(I ↔ J)) yields
πnj0nl0 = πnjqnl0 . In an analogous manner we obtain πnj0nl0 = πnj0nlq . Observe that all points
used belong to PI(Q).

Hence,

πi0nnl0 = πiqnnl0 = πi0nnlq ,∀iq ∈ I \ {i0, n}, lq ∈ L \ {l0, n},
πnj0nl0 = πnjqnl0 = πnj0nlq , ∀jq ∈ J \ {j0, n}, lq ∈ L \ {l0, n}

Step 3: Consider point x1 of Step 1. Let x3 = x1(i0 ↔ n)1 and x4 = x3(jq ↔ n)2, where jq ∈ J \{j0, n}.
Then x3, x4 ∈ PI(Q) because x3

i0j0nn = x3
nnnl0

= 1 and x4
i0j0nn = x4

njqnl0
= 1. Then ax3 = ax4

yields πnnnl0 = πnjqnl0 . Then a(x3(J ↔ L)) = a(x4(J ↔ L)) yields πnj0nn = πnj0nlq . Because
πnjqnl0 = πnj0nlq (Step 2), we get πnnnl0 = πnj0nn which by Step 1 yields π2 = π4.
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Consider the interchange (I ↔ J) applied to all points of Step 3. Then applying the same procedure
to the corresponding points, we get πnnnl0 = πiqnnl0 and πi0nnn = πi0nnlq . These two equalities
result in π1 = π4. Hence, in this step we have shown

πi0nnl0 = πnj0nl0 = π1 = π2 = π4 = π

Step 4: Consider point x1 of Step 1. Let x2 = x1(i0 ↔ n)1. x2 ∈ PI(Q) because x2
nj0nn = x2

i0nnl0
= 1.

Then ax1 = ax2 yields πi0j0nn + πnnnl0 = πnj0nn + πi0nnl0 implying πi0j0nn = π.

The proof of (4.3)π is complete. The rest of the proof is exactly as in Thm. 4.4.

4.4 Wheel class num. 23

Let p = 2 and t, r ∈ C such that |c ∩ t| = 2, |s ∩ t| = 2 and |c ∩ r| = 1, |s ∩ r| = 3 and |t ∩ r| = 3. We
define Q(c, s, t) = {q ∈ (C2(c)∩C2(s)) : |q ∩ t| ≥ 1} and Q(c, s, t, r) = {q ∈ (C2(c)∩C1(s)) : q∩t = q∩r}.
Then, Q = (C3(c) ∩ C1(r)) ∪ (C3(c) ∩ C2(r)) ∪Q(c, s, t) ∪Q(c, s, t, r) ∪ {t}.

For c = (n, n, n, n), s = (i0, j0, k0, l0), t = (i0, j0, n, n), r = (i0, j0, n, l0), (4.1) becomes

2xnnnn +
∑

i∈I\{n}
xinnn +

∑

j∈J\{n}
xnjnn +

∑

l∈L\{n}
xnnnl +

∑

l∈L\{l0,n}
xi0nnl

+
∑

l∈L\{l0,n}
xnj0nl + xi0j0nn + xi0nk0n + xnj0k0n + xi0nnl0 + xnj0nl0 ≤ 2 (4.16)

The inequality 4.16 is induced by the wheel illustrated in Figure 6, which belongs to wheel class num.
23. There are n4 choices for c, (n− 1)4 choices for 6, 6 choices for t and 2 for r.

Lemma 4.9 (4.16) is maximal.

Proof. Suppose that there exists a variable xq (q = (iq, jq, kq, lq) ∈ C) which can be added to the
left-hand side of (4.16) without increasing its right-hand side. At least two indices of xq must be equal
to n, since otherwise it can be set to one together with xnnnn. If q has three indices equal to n then the
proof is exactly the same as in the corresponding case of Lem. 4.7. If q has two indices equal to n then
we consider cases analogous to (a), (b) of Lem. 4.7. Specifically for case (b), we consider two further
subcases, viz. q /∈ Q(c, s, t, r) and q ∈ Q(c, s, t, r).

(a) Exactly as in the corresponding case of Lem. 4.7.

(b.1) Let q = (iq, jq, n, n), iq ∈ I \{n}, jq ∈ J \{n}, (iq, jq) 6= (i0, j0). If jq 6= j0 then xiqjqnn = xnj0k0n =
xnnnl1 = 1, l1 ∈ L \ {n}. If iq 6= i0 then xiqjqnn = xi0nk0n = xnnnl1 = 1.
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Figure 6: A wheel of class num. 23

(b.2) Let q = (iq, n, n, lq), iq ∈ I \ {i0, n}, lq ∈ L \ {n}. Consider xiqnnlq = xi0nk0n = xnj0nn = 1.
Observe that we can have lq = l0.

Theorem 4.10 For n ≥ 7, (4.16) defines a facet of PI .

Proof. We denote l(̊x; 1, n), k(̊x;n, n), l(̊x;n, n) as l2, k1, l1, respectively. Let x = x̊(k1 6= k0?k1 ↔
k0)3(l1 6= l0?l1 ↔ l0)4. At point x among the variables participating in (4.16) only x̊n1nn is set to one.
Therefore x ∈ PI \ PI(Q) implying PI 6= PI(Q).

For (i, j, k, l) ∈ C \ (Q ∪ {(n, n, n, n)}) such that |(i, j, k, l) ∩ (n, n, n, n)| = 2, we consider cases
analogous to (a), (b.1), (b.2) of Lem. 4.9.

Case 4.10.1 (Analogous to (a)).
Consider (i, j, k, l) = (n, n, kq, lq), kq ∈ K \ {n}, lq ∈ L \ {n}. The proof is exactly the same as in case

4.8.1.

Case 4.10.2 (Analogous to (b.1)).
Let x̂ = xTbl(12)(k1 ↔ k0)3(i1 ↔ i0)1(i1 ↔ n)1(1 ↔ j0)2. Let j1 ∈ J \ {j0, n} be such that

l(x̂; n, j2) = n. Let x = x̂(k(x̂;n, j1) 6= 1?1 ↔ k(x̂;n, j1))3 (Table 14). Let x1 = xTbl(14), x2 = x(1 ↔
iq)1, x3 = x(1 ↔ jq)2, jq ∈ J \ {n}. xm ∈ PI(Q) because xm

i0nk0n = xm
nnnl1

= 1,m = 1, 2, 3. By
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Table 14: Point x (Theorem 4.6, Case 4.10.2)
1 · · · j1 · · · n

...
i0 (k0, n)
...
iq (n, n)
...
n (1, n) (n, l1)

construction ax1 = ax2 has only two terms indexed by two indices each equal to n, i.e. a11nn, aiq1nn.
The rest of the indices have at most one index equal to n. Thus, we can substitute all terms in this
equation, except aiq1nn, from (4.3), yielding (4.3)[iq, 1, n, n]. Following the same procedure in ax1 = ax3,
we obtain (4.3)[iq, jq, n, n]. Applying to all points defined above the interchange (I ↔ J) yields the same
results for iq ∈ I \ {n}, jq ∈ J \ {j0, n}.

In a similar manner, by considering the conjugate points of x1, x2, x3, with respect to the interchanges
(J ↔ K) and (I ↔ K), we prove (4.3)[iq, n, kq, n], (4.3)[n, jq, kq, n], respectively. Observe that all points
used belong to PI(Q).

Case 4.10.3 (Analogous to (b.2)).
Let x1, x2, x3 be defined as above. Then a(x1(J ↔ L)) = a(x2(J ↔ L)) yields (4.3)[iq, n, n, 1].

a(x1(J ↔ L)) = a(x3(J ↔ L)) yields (4.3)[iq, n, n, lq], iq ∈ I \ {i0, n}, jq ∈ J \ {n}.
Let x = xTbl(5)(j0 ↔ jq)2(j1 ↔ j0)2, where jq ∈ J \ {j0, n}. Let x1 = x(1 ↔ l0)4 and x2 = x1(1 ↔

jq)2. xm ∈ PI(Q) because xm
nj0k0n = xm

i0nnn = 1. All terms of ax1 = ax2 have at most two indices equal
to n. As in the previous cases, substituting terms, except anjqn1, from (4.3) and cancelling out identical
terms yields (4.3)[n, jq, n, 1]. Let x3 = x1(1 ↔ lq)4, where lq ∈ L \ {n}. Observe that x3 ∈ PI(Q).
ax1 = ax3 yields (4.3)[n, jq, n, lq].

The proof of (4.3) for the case where |(i, j, k, l) ∩ (n, n, n, n)| = 2 is complete.
For the case where three of the indices are equal to n, we can only have (i, j, k, l) = (n, n, kq, n), kq ∈

K \ {n}. Let x1 = xTbl(12) and x2 = x1(j1 ↔ j0)2(l0 ↔ l1)4(l2 ↔ n)4. We denote k(x2; n, n) as kq. Let
x3 = x2(n ↔ lq)4. xm ∈ PI(Q) because xm

nj0nl1
= xm

i0nnl0
= 1,m = 2, 3. Then all terms in ax2 = ax3

have at most two indices equal to n, except annkqn. Substituting all these terms from (4.3) we obtain
(4.3)[n, n, kq, n].

The proof of (4.3) is complete.
To prove (4.3)π, we consider (4.13) and must show that all πijkl are equal. For all of the following

cases where the steps are similar to the corresponding proofs of previous theorems, the points used belong
to PI(Q).
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Step 1: Exactly as the corresponding step of the proof of Thm. 4.8 for (iq, n, n, n) and (n, jq, n, n) where
iq ∈ I \ {n}, jq ∈ J \ {n}. Hence,

πi0nnn = πiqnnn = π1,∀iq ∈ I \ {i0, n},
πnj0nn = πnjqnn = π2, ∀jq ∈ J \ {j0, n}

Step 2: Exactly as the corresponding step of the proof of Thm. 4.8 for πi0nnl0 , πi0nnlq and πnj0nl0 , πnj0nlq .
Hence,

πi0nnl0 = πi0nnlq ,∀lq ∈ L \ {l0, n},
πnj0nl0 = πnj0nlq , ∀lq ∈ L \ {l0, n}

Step 3: We show that π1 = π2, exactly as in the corresponding step of the proof of Thm. 4.4. Thus,

πiqnnn = πnjqnn = π,∀iq ∈ I \ {n}, jq ∈ J \ {n}

Step 4: We show that πi0j0nn = πnj0nl0 , exactly as in Step 5 of the proof of Thm. 4.4. Applying
the interchange (I ↔ J) to all points of this step and following the same procedure, we obtain
πi0j0nn = πi0nnl0 . Then we show that πnj0nl0 = πnj0k0n and πi0nnl0 = πi0nk0n, exactly as in Step 1
of the proof of Thm. 4.4. Hence,

πi0nk0n = πnj0k0n = πi0nnl0 = πnj0nl0 = πi0j0nn

Step 5: Let x1 = xTbl(4) and x2 = x1(lq ↔ n)4, lq ∈ L \ {l0, n}. x1, x2 ∈ PI(Q) because x1
nj0nn =

x1
i0nnl0

= 1, x2
nj0nlq

= x2
i0nnl0

= 1. Thus, after substituting in ax1 = ax2 terms anj0nn, anj0nlq

from (4.13) and the remaining terms from (4.3) and cancelling out identical terms, we obtain
.πnj0nn = πnj0nlq .

The proof of (4.3)π is complete. The rest of the proof is exactly as in Thm. 4.4.

4.5 Wheel class num. 5

Let p = 3 and t1, t2, t3 ∈ C such that |c ∩ tm| = 2, |s ∩ tm| = 2, for m = 1, . . . , 3, and |t2 ∩ t1| =
2, |t2 ∩ t3| = 2, |t1 ∩ t3| = 0. We define Q = C3(c) ∪ (C2(c) ∩ C2(s)) ∪m=3

m=1 (C2(c) ∩ C3(tm)). For
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Figure 7: A wheel of class num. 5

c = (n, n, n, n), s = (i0, j0, k0, l0), t1 = (i0, n, n, l0), t2 = (i0, n, k0, n), t3 = (n, j0, k0, n), (4.1) becomes

3xnnnn +
∑

i∈I\{n}
xinnn +

∑

j∈J\{n}
xnjnn +

∑

k∈K\{n}
xnnkn +

∑

l∈L\{n}
xnnnl

+
∑

i∈I\{i0,n}
xinnl0 +

∑

l∈L\{l0,n}
xi0nnl +

∑

i∈I\{i0,n}
xink0n

+
∑

j∈J\{j0,n}
xnjk0n +

∑

k∈K\{k0,n}
xnj0kn +

∑

k∈K\{k0,n}
xi0nkn

+xi0j0nn + xi0nk0n + xnj0k0n + xi0nnl0 + xnj0nl0 + xnnk0l0 ≤ 3 (4.17)

This inequality is induced by the wheel illustrated in Figure 7, which belongs to wheel class num. 5.

Lemma 4.11 (4.17) is maximal.

Proof. Suppose that there exists a variable xq (q = (iq, jq, kq, lq) ∈ C) which can be added to the
left-hand side of (4.17) without increasing its right-hand side. Exactly two indices of xq must be equal
to n. We consider two cases for the indices not equal to n: (a) they can both obtain any value in their
domains, but if the value of one of the indices is taken from (i0, j0, k0, l0), the other should obtain a value
not belonging to this tuple, or (b) same as (a) but all indices are restricted from taking the value from
(i0, j0, k0, l0).
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(a) q = (n, n, kq, lq), kq ∈ K \ {n}, lq ∈ L \ {n}, (kq, lq) 6= (k0, l0).

Consider xnnkqlq = xnj0k1n = xi0nk2n = xi1nnl0 = 1, where i1 ∈ I \ {i0, n}, k1, k2 ∈ K \ {k0, n}
with k1 6= k2, lq ∈ L \ {l0, n}. Observe that kq can be equal to k0. In an analogous way, we can set
variables xnnkqlq , xnj0k1n, xi1nk0n, xi0nnl1 to one. In this case observe that lq can be equal to l0 but
kq 6= k0.

(b) q = (iq, n, n, lq), iq ∈ I \ {i0, n}, lq ∈ L \ {l0, n}.
Consider xiqnnlq = xnj1k0n = xi0nk1n = xnj0nl0 = 1, where j1 ∈ J \ {j0, n}, k1 ∈ K \ {k0, n}.

Theorem 4.12 For n ≥ 7, (4.17) defines a facet of PI .

Proof. Let x = xTbl(4). Then x ∈ PI \ PI(Q) because only two variables (xi0nnl0 , xnj0nn) appearing
in (4.17) are set to one, since xink0n is set to zero for every i ∈ I, as a consequence of setting xi1nk1n to
one (k1 6= k0).

Instead of (4.3)2π, we must prove (4.3)3π : annnn = λ1
nn + λ2

nn + λ3
nn + λ4

nn + λ5
nn + λ6

nn + 3π, and
instead of (4.6), we must show

a0 =
∑

k∈K,l∈L

λ1
kl +

∑

i∈I,l∈L

λ2
il +

∑

j∈J,l∈L

λ3
jl

+
∑

i∈I,j∈J

λ4
ij +

∑

j∈J,k∈K

λ5
jk +

∑

i∈I,k∈K

λ6
ik + 3π (4.18)

Observe that (4.3) is valid for all cases where at least two of the indices are equal to one. For the
remaining (i, j, k, l) ∈ C \ (Q ∪ {(n, n, n, n)}), we consider three cases, viz. none, one, two of the indices
are equal to n. The first two cases are shown in exactly the same way as in Thm. 4.4. Observe that
all points used belong to PI(Q). For the case where two of the indices are equal to n, we consider cases
analogous to these of Lem. 4.11.

Case 4.12.1 (Analogous to(a)).
Let x1 = xTbl(4)(i1 ↔ i0)1 and x2 = x1(1 ↔ kq)3, kq ∈ K \ {1, k1, n}. Clearly xm ∈ PI(Q) since

xm
nj0nn = xm

i0nk1n = xm
i1nnl0

= 1, for m = 1, 2. Hence, ax1 = ax2 is valid. Observe that all terms
of the equation ax1 = ax2 are indexed by tuples having at most one index equal to n, except ann11

and annkq1. Therefore, substituting all terms, except annkq1, from (4.3) we obtain (4.3)[n, n, kq, 1]. Let
x3 = x2(1 ↔ lq)4, lq ∈ L \ {1, l0, l1, n}. ax2 = ax3 yields (4.3)[n, n, kq, lq], kq ∈ K \ {n}, lq ∈ L \ {l0, n}.
Applying the interchange (K ↔ L) to x1, x2, x3 we obtain (4.3)[n, n, kq, lq] for kq ∈ K\{k0, n}, lq ∈ L\{n}.

Let x4 = x1(J ↔ K)(j1 ↔ j0)2, x5 = x4(jq ↔ j1)2, jq ∈ J \ {1, j0, n}, x6 = x5(1 ↔ lq)4, lq ∈
L \ {1, l0, n}. xm ∈ PI(Q), since xm

i0j0nn = xm
nnk0n = xm

i1nnl0
= 1, for m = 4, 5, 6. Then, ax4 = ax5 yields

(4.3)[n, jq, n, 1] and ax5 = ax6 yields (4.3)[n, jq, n, lq] where jq 6= j0, n, lq 6= l0, n.
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Let x̂ = xTbl(12)(k1 ↔ k0)3(j1 ↔ jq)2, where jq ∈ J \ {j0, n}. Let j2 ∈ J \ {j0, jq, n} such that
l(x̂; n, j2) = n, and denote k(x̂; n, j2) as k2. Let x6 = x̂(j0 ↔ j2)2 and x7 = x6(1 ↔ l0)4. x6, x7 ∈ PI(Q)
because xm

nj0k2n = xm
i0nnl1

= xm
i1nk0n = 1. ax6 = ax7 yields (4.3)[n, jq, n, l0].where jq 6= j0.

Let x̂ = x̊(k0 ↔ n)3. It is valid to assume that k(x̂;n, n) 6= n, because if k(x̂; n, n) = n then we
apply the interchange (k2 ↔ n)3, k2 ∈ K \ {k0, n}. Hence, let k2 denote k(x̂; n, n). Again it is safe
to assume that the pair (n, n) does not lie at the column n. If this is the case, apply the interchange
(k1 ↔ n)3, k1 ∈ K \ {k0, k2, n}. Hence, let k1 denote k(x̂;n, n). Let i1, i2 ∈ I \ {n}, i1 6= i2, be such that
k(x̂; i1, n) = n and l(x̂; i2, n) = n. Let x = x̂(l(x̂; i1, n) 6= l0?l(x̂; i1, n) ↔ l0)4(i2 6= i0?i2 ↔ i0)1(1 ↔ j1)2,
j1 ∈ J \ {1, j0, n} (Table 15). Let jq ∈ J \ {1, j1, n} be such that k(xTbl(15);n, jq) = n. The assumption

Table 15: Point x (Theorem 4.12, Case 4.12.1)
· · · jq · · · j1 · · · n

...
i0 (k1, n)
...
i1 (n, l0)
...
n (n, lq) (k0, n) (k2, ·)

that jq 6= 1 is valid because if k(xTbl(15);n, 1) = n, for n ≥ 4, there exists a jq ∈ J \ {1, j1, n} such that
we can apply the interchange (1 ↔ jq)2. We denote l(xTbl(15); n, jq) as lq. Observe that lq ∈ L \ {l0, n}.
Let x8 = x(lq 6= 1?1 ↔ lq)4, x9 = x8(1 ↔ jq)2 and x10 = x9(1 ↔ lq)4. xm ∈ PI(Q) because xm

nj1k0n =
xm

i0nk1n = xm
i1nnl0

= 1, for m = 8, 9, 10. Thus, ax8 = ax9 yields (4.3)[n, jq, n, 1] and ax9 = ax10 yields
(4.3)[n, jq, n, 1], jq ∈ J \ {n}, lq ∈ L \ {l0, n}.

Let x̂ = xTbl(15)(i0 ↔ i2)1(k0 ↔ k1)3(j1 ↔ j0)2, where i2 ∈ I \ {i0, i1, n}. Then x̂i3j3nn = 1, for
i3 ∈ I \ {i1, i2, n}, j3 ∈ J \ {j0, n}. Let x12 = x̂(i3 6= 1?1 ↔ i3)1(j3 6= 1?1 ↔ j3)2. Then x12

11nn = 1. Also,
let x13 = x12(1 ↔ iq)1 and x14 = x13(1 ↔ jq)2, with iq ∈ I \ {i1, i2, n}, jq ∈ J \ {j0, n}. xm ∈ PI(Q)
because xm

nj0k1n = xm
i1nnl0

= xm
i2nk0n = 1, for m = 12, 13, 14. Thus, ax12 = ax13 yields (4.3)[iq, 1, n, n]

and ax13 = ax14 (4.3)[iq, jq, n, n] where iq ∈ I \ {n}, jq ∈ J \ {j0, n}.
Finally, x

Tbl(15)
i3j3nn = 1 for i3 ∈ I \ {i0, i1, n}, j3 ∈ J \ {j1, n}. As in the previous case, let x15 =

xTbl(15)(i3 6= 1?1 ↔ i3)1(j3 6= 1?1 ↔ j3)2. Then x15
11nn = 1. Also, let x16 = x15(1 ↔ jq)2 and

x17 = x16(1 ↔ iq)1, with iq ∈ I \ {i0, i1, n}, jq ∈ J \ {j1, n}. xm ∈ PI(Q), because xm
nj1k0n = xm

i0nk1n =
xm

i1nnl0
= 1, for m = 15, 16, 17 Thus, ax15 = ax16 yields (4.3)[1, jq, n, n] and ax16 = ax17 (4.3)[iq, jq, n, n]

where iq ∈ I \ {i0, n}, jq ∈ J \ {n}.

Case 4.12.2 (Analogous to (b)).
Let x = xTbl(4)(1 ↔ i0)1(i0 ↔ i1)1(1 ↔ l0)4(1 ↔ k0)3 (Table 16). Let x1 = x and x2 = x1(1 ↔ iq)1,
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Table 16: Point x (Theorem 4.12, Case 4.12.2)
· · · j0 · · · n

1 (n, 1)
...
i0 (k1, n)
...
n (n, n) (k0, l0)

iq ∈ I \{1, i0, i1, n}. xm ∈ PI(Q) because xm
nj0nn = xm

i0nk1n = xm
nnk0l0

= 1, for m = 1, 2. Hence, ax1 = ax2

is valid. Observe that all terms of the equation ax1 = ax2 are indexed by tuples having at most one
index equal to n except a1nn1 and aiqnn1. Therefore, substituting all terms but aiqnn1 from (4.3) and
cancelling out identical terms, we obtain (4.3)[iq, n, n, 1]. Let x3 = x2(1 ↔ lq)4, lq ∈ L \ {1, l0, l1, n}.
ax2 = ax3 yields (4.3)[iq, n, n, lq], where iq 6= i0, lq 6= l0.

Considering the conjugates of the above points with respect to the interchange (K ↔ L), we obtain
(4.3)[iq, n, kq, n]. Similarly the conjugates with respect to the interchanges (J ↔ L)(I ↔ K) yield
(4.3)[n, jq, kq, n].

The proof of (4.3) is complete.
To prove (4.3)π, we consider (4.13) and must show that all πijkl are equal.

Step 1: Let x1 = xTbl(16) and x2 = x1(j0 ↔ jq)2 where jq ∈ J \ {j0, n}. x2 ∈ PI(Q) since x2
njqnn =

x2
i0nk1n = x2

nnk0l0
= 1. Hence, ax1 = ax2 is valid. Substituting anj0nn, anjqnn from (4.13) and the

remaining terms from (4.3), and cancelling out identical terms, we obtain πnj0nn = πnjqnn. In an
analogous way, ax̄1 = ax̄2, where x̄m = xm(J ↔ L), for m = 1, 2, yields πnnnl0 = πnnnlq , lq ∈
L \ {n}. Similarly, ax̂1 = ax̂2, where x̂m = xm(I ↔ J), for m = 1, 2, yields πi0nnn = πiqnnn, iq ∈
I \ {n}.
Let x̃ = x1(l0 ↔ n)4(k1 ↔ n)3(i0 ↔ i1)1, where i1 ∈ I \ {i0, n}. Then, let x̃i2j2nn = 1, i2 ∈
I \ {i0, n}, j2 ∈ J \ {j0, n}. Let x3 = x̃(i0 ↔ i2)1(j0 ↔ j2)2 and x4 = x3(k0 ↔ kq)3, kq ∈ K \ {n}.
xm ∈ PI(Q) since xm

i0j0nn = xm
i1nnl0

= 1, for m = 3, 4 and x3
nnk0n = 1, x4

nnkqn. Hence, ax3 = ax4 is
valid, yielding πnnk0n = πnnkqn, kq ∈ K \ {n}.
Therefore,

πi0nnn = πiqnnn = π1,∀iq ∈ I \ {n},
πnj0nn = πnjqnn = π2, ∀jq ∈ J \ {n},
πnnk0n = πnnkqn = π3, ∀kq ∈ K \ {n},
πnnnl0 = πnnnlq = π4,∀lq ∈ L \ {n}
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Step 2: Let x = xTbl(16)(1 ↔ l0)4(k0 ↔ k1)3(i0 ↔ i1)1(1 ↔ i0)1 (Table 17). Let x1 = xTbl(17),

Table 17: Point x (Theorem 4.12, Step 2)
· · · j0 · · · n

...
i0 (n, l0)
...
i1 (k0, n)
...
n (n, n)

x2 = x1(i0 ↔ iq)1, where iq ∈ I \ {i0, i1, n}, and x3 = x1(l0 ↔ lq)4, where lq ∈ L \ {l0, n}.
xm ∈ PI(Q) since xm

nj0nn = xm
i1nk0n = 1, for m = 1, 2, 3 and x1

i0nnl0
= 1, x2

iqnnl0
= 1, x3

i0nnlq
= 1.

Hence, ax1 = ax2 (ax1 = ax3) is valid, yielding πi0nnl0 = πiqnnl0 (πi0nnl0 = πi0nnlq ). The
interchange (K ↔ L) applied to x1, x2, x3 yields points belonging to PI(Q). The corresponding
equations lead to πi0nk0n = πiqnk0n and πi0nk0n = πi0nkqn.

At point x1, there exist i2 ∈ I \ {i0, i1, n}, j2 ∈ J \ {j0, n}, kq ∈ K \ {k0, n} such that x1
i2j2kqn = 1.

Let x5 = x1(i0 ↔ i1)1(i2 ↔ n)1(j2 ↔ j0)2 and x6 = x5(k0 ↔ kq)3. The point x6 is illustrated in
Table 18. Let . Then, x5, x6 ∈ PI(Q) since x5

i0nk0n = x5
i1nnl0

= x5
nj0kqn = 1 and x6

i0nkqn = x6
i1nnl0

=

Table 18: Point x6 (Theorem 4.12, Step 2)
· · · j0 · · · n

...
i0 (kq, n)
...
i1 (n, l0)
...
n (k0, n)

x6
nj0k0n = 1. Thus, ax5 = ax6 is valid, yielding πi0nk0n + πnj0kqn = πi0nkqn + πnj0k0n ⇒ πnj0kqn =

πnj0k0n. Let x7 = x6(jq ↔ j0)2, jq ∈ J \ {j0, n}. Observe that x7 ∈ PI(Q). Hence, ax7 = ax6 is
valid yielding πnj0k0n = πnjqk0n.

At this step, we have shown that for every iq ∈ I \ {n}, jq ∈ J \ {n}, kq ∈ K \ {n}, lq ∈ L \ {n}

πi0nnl0 = πiqnnl0 = πi0nnlq , πi0nk0n = πiqnk0n = πi0nkqn, πnj0k0n = πnj0kqn = πnjqk0n

Step 3: Let x̂ = xTbl(16)(i0 ↔ iq)1(i0 ↔ n)1 and x = x̂(iq ↔ n)1, iq ∈ I \{i0, i1, n} (Table 19). Let x1 =
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Table 19: Point x (Theorem 4.12, Step 3)
· · · j0 · · · n

...
i0 (n, n)
...
i1 (k0, n)
...
n (n, l0)

x̂, x2 = x. x1, x2 ∈ PI(Q) since xm
i0j0nn = xm

i1nk0n = 1, for m = 1, 2, and x1
iqnnl0

= 1, x2
nnnl0

= 1.
ax1 = ax2 yields πiqnnl0 = πnnnl0 .

Applying the interchange (K ↔ L) to x1, x2, we obtain points belonging to PI(Q). The corre-
sponding equation yields πiqnk0n = πnnk0n

At point x6, illustrated in Table 18, let (n, n) ∈ K × L lie in cell (iq, jq). Obviously iq ∈ I \
{i0, i1, n}, jq ∈ J \ {j0, n}. Let x7 = x6(iq ↔ n)1. x7 ∈ PI(Q) since x7

i0nkqn = x7
i1nnl0

= x7
njqnn =

1 Therefore, ax7 = ax6 yields πnj0k0n = πnjqnn.

Up to this point, we have shown

π4 = πnnnlq = πnnnl0 = πiqnnl0 = πi0nnl0 = πi0nnlq , ∀iq ∈ I \ {n}, lq ∈ L \ {n},
π3 = πnnkqn = πnnk0n = πiqnk0n = πi0nk0n = πi0nkqn,∀iq ∈ I \ {n}, kq ∈ K \ {n},
π2 = πnjqnn = πnj0nn = πnjqk0n = πnj0k0n = πnj0kqn, ∀jq ∈ J \ {n}, kq ∈ K \ {n}

Step 4: We denote k(xTbl(17);n, n), (l(xTbl(17);n, n)) as kq, (lq). Let x = xTbl(17)(k0 ↔ kq)3(l0 ↔
lq)4(i0 ↔ i1)1 (Table 20), Let x1 = xTbl(20 and x2 = x1(i0 ↔ i1)1. xm ∈ PI(Q) since xm

nj0nn =

Table 20: Point x (Theorem 4.12, Step 4)
· · · j0 · · · n

...
i0 (kq, n)
...
i1 (n, lq)
...
n (n, n) (k0, l0)

xm
nnk0l0

= 1, for m = 1, 2, and x1
i0nkqn = 1, x2

i0nnlq
= 1. ax1 = ax2 yields πi0nnlq = πi0nkqn, implying
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π3 = π4.

Let x3 = xTbl(19) and x4 = x3(I ↔ J). x4 ∈ PI(Q) since x4
i0j0nn = x4

nj1k0n = x4
nnnl0

= 1. ax3 = ax4

yields πi1nk0n = πnj1k0n, implying π3 = π2.

Let x5 = x1(I ↔ J). x5 ∈ PI(Q) since x5
i0nnn = x5

nnk0l0
= x5

nj0kqn = 1. ax1 = ax5 yields
πnj0nn + πnnk0l0 + πi0nkqn = πi0nnn + πnnk0l0 + πnj0kqn, implying π1 = π2.

Hence,
π1 = π2 = π3 = π4 = π

Step 5: Let x1 = xTbl(19) and x2 = x1(i0 ↔ n)1. ax1 = ax2 yields πi0j0nn + πnnnl0 = πnj0nn + πi0nnl0

implying πi0j0nn = π. Let x3 = xTbl(17) and x4 = x3(I ↔ J). x6 ∈ PI(Q) since x4
i0nnn = x4

nj1k0n =
x4

nj0nl0
= 1. ax3 = ax4 yields πnj0nl0 = π.

The proof of (4.3)π is complete. To show (4.3)3π, we define

πnnnn = annnn − (λ1
nn + λ2

nn + λ3
nn + λ4

nn + λ5
nn + λ6

nn) (4.19)

We will show that πnnnn = 3π.
Let x1 = xTbl(17) and x2 = x1(j0 ↔ n)2. x2 ∈ PI(Q) since x2

nnnn = 1. Thus, ax1 = ax2 yields the
desired result.

Finally, because PI(Q) 6= ∅, for n ≥ 7, there exists at least one solution to the system defined by the
constraints of the problem. Hence, multiplying each row of A with the corresponding λ and (4.17) with
π and summing over all rows we obtain

ax =
∑

k∈K,l∈L

λ1
kl +

∑

i∈I,l∈L

λ2
il +

∑

j∈J,l∈L

λ3
jl

+
∑

i∈I,j∈J

λ4
ij +

∑

j∈J,k∈K

λ5
jk +

∑

i∈I,k∈K

λ6
ik + 3π

which proves (4.18).

4.6 Wheel class num. 24

Let p = 3 and v, u ∈ C such that |v ∩ u| = 0, |v ∩ c| = 1, |v ∩ s| = 3, |u ∩ s| = 1, |u ∩ c| = 3. We define
Q = C3(c) ∪ (C2(c) ∩ C2(s)) ∪ (C2(v) ∩ C2(c)) ∪ (C1(v) ∩ C2(c) ∩ C2(u)). For c = (n, n, n, n), s =

38



nnnn

00nlnj

0nnnl

nnki 01

nnki 10

00nnli

LJ
�

KI �

LI �

nknj 20
nknj 01

KJI ��
KJ �

LJ
�

LI �

Figure 8: A wheel of class num. 24

(i0, j0, k0, l0), v = (i0, j0, k0, n), u = (n, n, n, l0), (4.1) becomes

3xnnnn +
∑

i∈I\{n}
xinnn +

∑

j∈J\{n}
xnjnn +

∑

k∈K\{n}
xnnkn +

∑

l∈L\{n}
xnnnl

+
∑

i∈I\{i0,n}
xink0n +

∑

k∈K\{k0,n}
xi0nkn

+
∑

j∈J\{j0,n}
xnjk0n +

∑

k∈K\{k0,n}
xnj0kn

+
∑

l∈L\{l0,n}
xi0nnl +

∑

l∈L\{l0,n}
xnj0nl +

∑

l∈L\{l0,n}
xnnk0l

+xi0j0nn + xi0nk0n + xnj0k0n + xi0nnl0 + xnj0nl0 + xnnk0l0 ≤ 3 (4.20)

This inequality is induced by the wheel illustrated in Figure 8, which belongs to wheel class num. 24.

Lemma 4.13 (4.20) is maximal.

Proof. Suppose that there exists a variable xq (q = (iq, jq, kq, lq) ∈ C) which can be added to the
left-hand side of (4.20) without increasing its right-hand side. Exactly two indices of xq must be equal
to n. We consider two cases for the indices not equal to n: (a) they can both obtain any value in their
domains but if the value of one of the indices is taken from (i0, j0, k0, l0), the other should obtain a value
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not belonging to this tuple, or (b) same as (a) but all indices are restricted from taking any value from
(i0, j0, k0, l0). Then for case (a), we consider two further subcases, viz. q ∈ C1(v) ∩ C2(c) ∩ C2(u) (case
a.1) and q /∈ C1(v) ∩ C2(c) ∩ C2(u) (case a.2).

(a.1) q = (iq, n, n, lq), iq ∈ I \ {i0, n}, lq ∈ L \ {n}.

Consider xiqnnlq = xnj0nl1 = xnj1k0n = xi0nk1n = 1. Observe that since l1 6= l0, we can have
lq = l0.

(a.2) q = (iq, jq, n, n), iq ∈ I \ {n}, jq ∈ J \ {n}, (iq, jq) 6= (i0, j0). If iq 6= i0 then consider xiq,jq,n,n =
xi0nk1n = xnj1k0n = xnnnl0 = 1. Observe that we can have jq = j0. If jq 6= j0 then consider
xiq,jq,n,n = xnj0k1n = xi1nk0n = xnnnl0 = 1. In this case we can have iq = i0.

(b) q = (iq, n, kq, n), iq ∈ I \ {i0, n}, kq ∈ k \ {k0, n}.
Consider xiqnkqn = xi0nnl0 = xnj0nl1 = xnnk0l2 = 1.

Theorem 4.14 For n ≥ 7, (4.20) defines a facet of PI .

Proof. PI(Q) 6= ∅ and PI(Q) 6= PI are both shown in exactly the same way as in the proof of Thm.
4.12.

(4.3) is valid for all cases where at least two of the indices are equal to one. (4.3) for all cases where
|(i, j, k, l) ∩ (n, n, n, n)| = 0 or 1 is shown in exactly the same way as in Thm. 4.4. Observe that all points
used belong to PI(Q). For the case where two of the indices are equal to n, we consider cases analogous
to these of Lem. 4.13.

Case 4.14.1 (Analogous to case a.1) (i, j, k, l) ∈ C1(v) ∩ C2(c) ∩ C2(u).
Let x1 = xTbl(4)(k0 ↔ k1)3(l0 ↔ l1)4, where l1 ∈ L \ {1, l0, n}. Also, let x2 = x1(1 ↔ kq)3, x3 =

x2(1 ↔ lq)4, where kq ∈ K \ {k0, n}, lq ∈ L \ {1, l1, n}. xm ∈ PI(Q) since xm
nj0nn = xm

i0nnl1
= xm

i1nk0n = 1,
for m = 1, 2, 3. Thus, ax1 = ax2 yields (4.3)[n, n, kq, 1] and ax2 = ax3 yields (4.3)[n, n, kq, lq] where
.kq 6= k0, n, lq 6= n.

Let x̄m = xm(I ↔ K). x̄m ∈ PI(Q) since x̄m
nj0nn = x̄m

nnk0l1
= x̄m

i0nk1n = 1, for m = 1, 2, 3. Thus,
ax̄1 = ax̄2 yields (4.3)[iq, n, n, 1] and ax̄2 = ax̄3 (4.3)[iq, n, n, lq], iq 6= i0, n, lq 6= n.

Let x̂1 = x(1 ↔ j0)2(k0 ↔ k1)3(1 ↔ n)4(l0 ↔ l1)4, where l1 ∈ L \ {1, l0, n}. Also, let x̂2 = x̂1(1 ↔
jq)3, x̂3 = x̂2(1 ↔ lq)4, where jq ∈ J \ {j0, n}, lq ∈ L \ {1, l1, n}. x̂m ∈ PI(Q) since x̂m

i0nnl1
= x̂m

i1nk01
=

x̂m
nn1n = 1, for m = 1, 2, 3. Thus, ax̂1 = ax̂2 yields (4.3)[n, jq, n, 1] and ax̂2 = ax̂3 yields (4.3)[n, jq, n, lq],

jq 6= j0, n, lq 6= n.
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Case 4.14.2 (Analogous to case a.2)
Consider points x̄m as defined in the previous case and let xm = x̄m(J ↔ L). xm ∈ PI(Q) since

xm
nnnl0

= xm
nj1k0n = xm

i0nk1n = 1, for m = 1, 2, 3. As in the previous cases, ax1 = ax2 yields (4.3)[iq, jq, n, n]
and ax2 = ax3 yields (4.3)[iq, jq, n, n]. The same result is obtained for iq ∈ I \ {n}, jq ∈ J \ {j0, n} if we
use the points resulting from the interchange (I ↔ J) to xm, for m = 1, 2, 3.

Case 4.14.3 (Analogous to case b).
Let x1 = xTbl(4)(1 ↔ i1)1(1 ↔ k1)3(k0 ↔ k1)3(1 ↔ l0)4. Also, let x2 = x1(1 ↔ iq)1, x3 = x2(1 ↔

kq)3, where iq ∈ I \ {i0, n}, kq ∈ K \ {k0, n}. xm ∈ PI(Q) because xm
nj0nn = xm

i0nn1 = xm
nnk0l0

= 1,
for m = 1, 2, 3. As in the previous cases, ax1 = ax2 yields (4.3)[iq, n, 1, n] and ax2 = ax3 yields
(4.3)[iq, n, kq, n]. In exactly the same way, we obtain (4.3)[n, jq, kq, n], jq ∈ J \ {j0, n}, kq ∈ K \ {k0, n},
if we use points x̄m = xm(I ↔ J). Observe that x̄m ∈ PI(Q).

The proof of (4.3) is complete.
To prove (4.3)π, we consider (4.13) and must show that all πijkl are equal.

Step1: Consider the points x3, x4 of step 2 of Thm. 4.12. Let x̂m = xm(I ↔ L), for m = 3, 4.
x̂m ∈ PI(Q), since x̂m

nj0nl0
= x̂m

i0nnl1
= 1, for m = 3, 4, and x̂3

nnk0n = 1, x̂4
nnkqn = 1. ax̂3 = ax̂4 is

valid, yielding πnnk0n = πnnkqn. The proof for tuples (i, n, n, n), (n, j, n, n), (n, n, n, l),.i, j, l 6= n, is
exactly the same as in Step 1 of Thm. 4.12. Hence,

πi0nnn = πiqnnn = π1,∀iq ∈ I \ {i0, n},
πnj0nn = πnjqnn = π2, ∀jq ∈ J \ {j0, n},
πnnk0n = πnnkqn = π3, ∀kq ∈ K \ {k0, n},
πnnnl0 = πnnnlq = π4,∀lq ∈ L \ {l0, n}

Step 2: Consider points x1, x3 of step 2 of Thm. 4.12. ax1 = ax3 yields πi0nnl0 = πi0nnlq . Let x̂m =
, xm(I ↔ J), x̄m =, xm(I ↔ K), for m = 1, 3. Then x̂m, x̄m ∈ PI(Q) since x̂m

i0nnn = x̂m
nj1k0n =

1, x̄m
nj0nn = x̄m

i1nk0n = 1, for m = 1, 3, and x̂1
nj0nl0

= x̂3
nj0nlq

= 1, x̄1
nnk0l0

= x̄3
nnk0lq

= 1. Thus,
ax̂1 = ax̂3 yields πnj0nl0 = πnj0nlq and ax̄1 = ax̄3 yields πnnk0l0 = πnnk0lq .

Let x′ = x1(i0 ↔ n)1(i0 ↔ i1)1. At x′, let j1 ∈ J \ {j0, n} be such that l(n, j1) = n. We
denote k(n, j1) as k1. Let x̃1 = x′(j1 ↔ j0)2. Also, let x̃2 = x̃1(i0 ↔ iq)1, x̃3 = x̃1(k0 ↔ kq)3,
iq ∈ I \ {i0, n}, kq ∈ K \ {k0, n}. x̃m ∈ PI(Q) since x̃m

nj0k1n = x̃m
nnnl0

= 1, for m = 1, 2, 3, and
x̃1

i0nk0n = 1, x̃2
iqnk0n = 1, x̃3

i0nkqn = 1. ax̃1 = ax̃2 and ax̃2 = ax̃3 yield πi0nk0n = πiqnk0n = πi0nkqn.
Following exactly the same procedure for points x̌m = x̃m(I ↔ J) we obtain πnj0k0n = πnjqk0n =
πnj0kqn.

41



Hence, for iq ∈ I \ {i0, n}, jq ∈ J \ {j0, n}, kq ∈ K \ {k0, n}, lq ∈ L \ {l0, n}, we have shown that

πi0nnl0 = πi0nnlq ,

πnnk0l0 = πnnk0lq ,

πnj0nl0 = πnj0nlq ,

πi0nk0n = πi0nkqn = πiqnk0n,

πnj0k0n = πnj0kqn = πnjqk0n

Step 3: Consider points x1, x2 of step 3 of Thm. 4.12. Let x̂m = xm(I ↔ L), for m = 1, 2. x̂m ∈ PI(Q)
since x̂m

nj0nl0
= x̂m

nnk0l1
= 1, for m = 1, 2, and x̂1

i0nnlq
= 1, x̂2

i0nnn = 1. Thus, ax̂1 = ax̂2

yields πi0nnlq = πi0nnn. Let x̄m = xm(K ↔ L)(I ↔ L), for m = 1, 2. x̄m ∈ PI(Q) since
x̄m

nj0nl0
= x̄m

i0nnl1
= 1, for m = 1, 2, and x̄1

nnk0lq
= 1, x̄2

nnk0n = 1. Thus, ax̄1 = ax̄2 yields
πnnk0lq = πnnk0n. Let x̃m = xm(I ↔ L), for m = 1, 2. x̃m ∈ PI(Q) since x̃m

nnk0l0
= x̃m

i0nnl1
= 1, for

m = 1, 2, and x̃1
nj0nlq

= 1, x̃2
nj0nn = 1. Thus, ax̃1 = ax̃2 is valid, yielding πnj0nlq = πnj0nn.

Hence,
πi0nnl0 = π1, πnj0nl0 = π2, πnnk0l0 = π3

Step 4: Consider points x1, x2, x3, x4, x5 established at step 4 of Thm. 4.12. Observe that x1, x2, x4, x5 ∈
PI(Q). ax1 = ax2 yields πi0nnlq = πi0nkqn, ax3 = ax4 yields πi1nk0n = πnj1k0n. These two
equations imply

π1 = πi0nnl0 = πi0nnlq = πi0nkqn = πi0nk0n = πiqnk0n = πnjqnk0n = πnj0kqn = πnj0k0n

ax1 = ax5 yields πnj0nn + πnnk0l0 + πi0nkqn = πi0nnn + πnnk0l0 + πnj0kqn, which by the above
equation becomes πnj0nn = πi0nnn, resulting in π1 = π2.

Let x6 = xTbl(16). Let x7 = x6(k0 ↔ n)3. x6, x7 ∈ PI(Q) since x6
i0j0nn = x6

nnk0l0
= x6

i0nk1n = 1,
x7

nj0k0n = x7
nnnl0

= x7
i0nk1n = 1. Hence, ax6 = ax7 yields πnnk0l0 = πnnnl0 , implying π3 = π4.

Let x8 = x3(I ↔ L). x8 ∈ PI(Q) since x8
nj0nl0

= x8
i0nnn = x8

nnk0l1
= 1. Hence, ax3 = ax8 yields

πi0j0nn + πnnnl0 + πi1nk0n = πnj0nl0 + πi0nnn + πnnk0l1 , implying xi0j0nn = π2.

Finally, let x9 = x3(i0 ↔ n)1. x9 ∈ PI(Q) since x9
nj0nn = x9

i0nnl0
= x9

i1nk0n = 1. Hence, ax3 = ax9

yields πi0j0nn + πnnnl0 = πnj0nn + πi0nnl0 , which leads to πnnnl0 = π1, implying π1 = π4.

The proof of (4.3)π is complete. The rest of the proof is exactly as in Thm. 4.12.
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5 Separation

Facet-defining inequalities are of great importance since they describe the convex hull of integer solutions
for a problem. Therefore, if we knew all facets of an integer polytope, we would be able to solve the integer
problem by incorporating them into the constraint matrix and then solving the linear programming (LP)
relaxation. In practice, however, this is not easy, since for most problems a) not all the facets of the
underlying convex hull of integer points are known, and b) the number of facets is not polynomially
bounded on the size of the problem, therefore resulting in a constraint matrix of exponential size. For
these reasons, most algorithms consider the known facet defining inequalities only when they are violated
by the solution of the LP-relaxation. To identify the facets violated by such a solution constitutes the
separation problem. In general, this problem is NP-hard. However, for some families of facet-defining
inequalities this problem can be solved in polynomial time.

For the OLS problem, a polynomial time separation algorithm for each of the two classes of clique
facets is described in [1]. Motivated by that work, we present two polynomial separation algorithms for
wheel facets; one for inequalities induced by the wheel class 29 and the other for inequalities induced by
the wheel class 3.

The following conventions are used. PL denotes the linear relaxation of PI . For u ∈ U (U ⊆ C) we
denote ū any element of U such that |u ∩ ū| = 0. In the algorithms that follow, U is defined in such a
way that for every u ∈ U there exists exactly one ū ∈ U . For U ⊆ C, x(U) =

∑{xu : u ∈ U}.

5.1 The inequalities of wheel class 29

Observe that (4.1), for p = 2, Q = (Q2(c) ∩Q2(s)) ∪Q3(c), can be written as

d(c) + d(c, s) ≤ 2 (5.1)

where d(c) = xs +x(Q3(c)), d(c, s) = xc +x(Q2(c)∩Q2(s)). Observe that if no clique of type II is violated
then d(c) ≤ 1,∀c ∈ C. For specific values of c and s the inequality (5.1) is denoted as (5.1)[c, s].

To establish the complexity of the algorithm 5.1, we make use of the following lemma.

Lemma 5.1 ([1]) For a point x ∈ PL and z > 0, the number of components of x with value ≥ z is ≤ n2

z .

Proposition 5.2 Algorithm 5.1 determines in O(n6) steps whether a given x ∈ PL \ PI which does not
violate a clique facet of type II violates a wheel inequality (5.1).

Proof. (Correctness) Suppose that no clique inequality of type II is violated. Then, (5.1) is violated
only if

xicjckclc + xicjcksls + xicjskcls + xisjckcls + xisjckslc + xicjskslc + xisjskclc > 1 (5.2)
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Algorithm 5.1. Separation of inequalities induced by wheel class 29.
Let x ∈ PL \ PI be such that no clique inequality of type II is violated.
STEP 1 FOR ALL c ∈ C let d(c) = xc+

∑{xq : q ∈ Q3(c)} ;
STEP 2 FOR ALL c ∈ C IF 1 > xc > 1

7 THEN
{

STEP 3 FOR ALL t ∈ C such that |c ∩ t| = 2 IF xt > 1−xc

6 THEN
STEP 4 FOR ALL s ∈ C such that |c ∩ s| = 0, |s ∩ t| = 2,
STEP 5 {

U = (Q2(c) ∩Q2(s)) ∪ {c} \ {t̄};
FOR ALL u ∈ U IF d(u) + x(U)− xū > 2 THEN (5.1)[u, ū] is violated;
};

STEP 6 FOR ALL s ∈ C such that |c ∩ s| = 0, IF xs > 1−xc

6 THEN
STEP 7 {

U = (Q2(c) ∩Q2(s))
FOR ALL u ∈ U IF d(u) + x(U)− xū > 2 THEN (5.1)[u, ū] is violated;
};
};

This implies that at least one of the variables of (5.2) has a value greater than 1
7 . Let this variable be

denoted as xc(c ∈ C). Among the remaining variables of (5.2) at least one must be greater than 1−xc

6 .
Let this variable be denoted as xv(v ∈ C). There are two cases; either |c ∩ v| = 2 or |c ∩ v| = 0. In both
cases we calculate the left-hand side for every inequality (5.1) containing both xc,xv.

(Complexity) In Step 1 for every c ∈ C, we perform 4(n − 1) additions. Hence, in total, we perform
4n4(n−1) additions and n4 assignments. In Step 2, the block of code containing all other steps is executed
at most 7n2 times (Lem. 5.1). For each c of Step 3 we scan 6 rows of the A matrix. For each row we
consider (n− 1)2 elements to play the role of t. Hence, Step 3 (i.e. the comparison 1−xs

6 ) is executed at
most 42n2(n− 1)2. Observe that at each row we can have at most 6 variables with value > 1−xc

6 . Thus
Step 4 is executed at most 36 · 7n2 times. At each such iteration (n− 1)2 elements are considered for the
role of s. Hence, Step 5 is executed at most 36 · 7n2 · (n− 1)2 times.

For each of the c ∈ C, such that 1 > xc > 1
7 , Step 6 is executed (n−1)4 times. In total, the comparison

xs > 1−xc

6 of Step 6 is executed at most 7n2(n − 1)4 times. Observe that the number of operations of
steps 5 and 7 is constant. This is because |U | = 6. Hence, the overall complexity of the algorithm is
O(n6).

5.2 The inequalities of wheel class 3

The set Q is defined with respect to c, s, t ∈ C (|c ∩ s| = 0, |c ∩ t| = 2 = |s ∩ t|). Observe that Q =
Q(c, t) ∪ (Q2(c) ∩Q2(s)), where Q(c, t) = (Q2(t) ∩Q3(c)) ∪ (Q3(t) ∩Q3(c)) ∪ (Q2(c) ∩Q3(t)). Then, the
inequalities of this class can be written as
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xc + xt + x(Q(c, t)) + xc + x((Q2(c) ∩Q2(s)) \ {t}) ≤ 2 (5.3)

Observe that for any x ∈ PL \PI , xc +xt +x(Q(c, t)) ≤ 1, because all these terms appear in the same row
of the A matrix. Hence, a necessary condition for (5.3) to be violated is xs +x((Q2(c)∩Q2(s)) \ {t}) > 1
(by definition t ∈ Q2(c)∩Q2(s)). This observation is used by the following algorithm. Again (5.3)[c, s, t]
denotes (5.3) for specific values of c, s, t.

Proposition 5.3 Algorithm 5.2 determines in O(n6) steps whether a given x ∈ PL \ PI violates a wheel
inequality (5.3).

Proof. (Correctness) As stated previously, (5.3) is violated only if

xc + x((Q2(c) ∩Q2(s)) \ {t}) > 1 (5.4)

There are six variables in (5.4), therefore at least one of them must be greater than 1
6 . Let this variable

be denoted as xc(c ∈ C). Among the remaining variables of (5.2) at least one must be greater than 1−xc

5 .
Let this variable be denoted as xv(v ∈ C). There are two cases; either |c ∩ v| = 2 or |c ∩ v| = 0. In both
cases we calculate the left hand side for every inequality (5.3) containing both xc,xv.

(Complexity) In Step 1 for every c ∈ C, we perform 6 · 2(n − 1) additions. In total, 12 · n4(n − 1)
additions and n4 assignments are executed. The boolean expression in Step 2 evaluates true at most 6n2

times (Lem. 5.1). For each c of Step 3 we scan 6 rows of the A matrix. For each row we consider (n−1)2

elements to play the role of t. Hence Step 3 (i.e. the comparison 1−xc

5 ) is executed at most 42n2(n− 1)2.
Observe that at each row we can have at most 5 variables with value > 1−xc

5 . Thus, Step 4 is executed
at most 30 · 6n2 times. At each such iteration (n− 1)2 elements are considered for the role of s. Hence,
Step 5 is executed at most 30 · 6n2 · (n− 1)2 times. For each of the c ∈ C, 1 > xc > 1

6 Step 6 is executed
(n− 1)4 times. In total, the comparison xs > 1−xc

5 of Step 6 is executed at most 6n2(n− 1)4 times.
The number of additions performed in Steps 5 and 7 is constant. First observe that for given u1, u2 ∈ C

such that |u1 ∩ u2| = 2,
∣∣Q3(u1) ∩Q3(u2)

∣∣ = 2. For Step 5, if u1 = c or u1 = t then |U \ {u1, ū1, c, t}| = 5
else if u1 6= c, t then |U \ {u1, ū1, c, t}| = 4. Hence, 26 comparisons will be performed in Step 6, each
of which requires a constant number of additions. Due to the same reasoning 6 · 4 comparisons will be
executed in Step 7.

Hence, the overall complexity of the algorithm is O(n6).
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Algorithm 5.2. Separation of inequalities induced by wheel class 3.
Let x ∈ PL \ PI .
STEP 1 FOR ALL c ∈ C

{
dK⊗L(c) = xc+

∑
i6=ic

xijckclc+
∑

j 6=jc
xicjkclc ;

dJ⊗L(c) = xc +
∑

i6=ic
xijckclc +

∑
k 6=kc

xicjcklc ;
dI⊗L(c) = xc +

∑
j 6=jc

xicjkclc +
∑

k 6=kc
xicjcklc ;

dJ⊗K(c) = xc +
∑

i 6=ic
xijckclc+

∑
l 6=lc

xicjckcl ;
dI⊗K(c) = xc +

∑
j 6=jc

xicjkclc+
∑

l 6=lc
xicjckcl ;

dI⊗J(c) = xc +
∑

k 6=kc
xicjcklc+

∑
l 6=lc

xicjckcl ;
};

STEP 2 FOR ALL c ∈ C IF 1 > xc > 1
6 THEN

{
STEP 3 FOR ALL t ∈ C such that |c ∩ t| = 2 if xt > 1−xc

5 THEN
STEP 4 FOR ALL s ∈ C such that |s ∩ c| = 0, |t ∩ s| = 2,
STEP 5 {

U = (Q2(c) ∩Q2(s)) ∪ {c, s};
FOR ALL u1 ∈ U \ {s, t̄}
FOR ALL u2 ∈ U \ {u1, ū1, c, t}
{
Let M,M ′ (M 6= M ′) be any of I, J,K, L such that (u1 ∩ u2) ∈ M ⊗M ′;
IF dM⊗M ′

(u1) + dM⊗M ′
(u2) + x(U) − xū1 − xu2 + x(Q3(u1) ∩ Q3(u2)) > 2 THEN

(5.3)[u1, ū1, u2] is violated;
}
};

STEP 6 FOR ALL s ∈ C such that |c ∩ s| = 0, IF xs > 1−xc

5 THEN
STEP 7 {

U = (Q2(c) ∩Q2(s)) ∪ {c, s};
FOR ALL u1 ∈ U \ {c, s}
FOR ALL u2 ∈ U \ {u1, ū1, c, s}
{
Let M,M ′ (M 6= M ′) be any of I, J,K, L such that (u1 ∩ u2) ∈ M ⊗M ′;
IF dM⊗M ′

(u1) + dM⊗M ′
(u2) + x(U) − xū1 − xu2 + x(Q3(u1) ∩ Q3(u2)) > 2 THEN

(5.3)[u1, ū1, u2] is violated;
}
}
};
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