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Abstract

We study the number F [n; k] of n-vertex graphs that can be written as the edge-
union of k-vertex cliques. We obtain reasonably tight estimates for F [n; k] in the cases
(i) k = n−o(n) and (ii) k = o(n) but k/ log n →∞. We also show that F [n; k] exhibits a
phase transition around k = log2 n. We leave open several potentially interesting cases,
and raise some other questions of a similar nature.

1 Introduction

An [n; k]-graph is a graph G = (V, E) with vertex set V = [n] = {1, 2, . . . , n} such that E is
the union of the edge-sets of copies of Kk, the complete graph on k vertices. Equivalently, an
[n; k]-graph is a graph on [n] such that every edge lies in some complete graph with at least
k vertices. Note that, in this latter formulation, we need not assume that k is an integer.
Clearly, a graph is an [n; k]-graph if it is an [n; dke]-graph. We are interested in the number
F [n; k] of [n; k]-graphs. Putting it another way, we wish to estimate the probability that a
random graph G = G(n, 1/2) is such that every edge is in a k-clique.
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F33615-01-C-1900

†email: g.r.brightwell@lse.ac.uk; some of this research was carried out while this author was visiting the
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The study of F [n; k] seems a natural problem in its own right. It is also motivated by the
work in [3] and [2], which deal with an analogous problem for the cube: how many subsets
of the n-cube are unions of k-cubes? (This question has another natural equivalent version:
how many Boolean functions on n variables can be expressed using a k-SAT formula?) The
topic also suggests many other problems of a similar nature; we discuss this at the end of
the paper.

The first observation we make is that there is some form of phase transition around k =
2 lg n, since below that level almost every graph is an [n; k]-graph, whereas above that level a
random graph almost surely has no k-cliques. (Here and throughout the paper, lg denotes the
binary logarithm.) To be more precise, given k = k(n), define Cn by k = 2 lg n−2 lg lg n+Cn.
If Cn ≥ C, for some constant C > 2 lg e − 1, then a.a.s. (asymptotically almost surely) G
contains no k-clique, while if Cn ≤ C ′, for some constant C ′ < 2 lg e − 1, then G a.a.s.
contains a k-clique. See Section 11.1 of [1] for more details. The threshold for every edge of
the random graph to be in a k-clique is effectively the same as that for a specified edge to
lie in a k-clique. This threshold is lower than the first threshold by exactly 2: if Cn ≥ C, for
some constant C > 2 lg e − 3, then a.a.s. a fixed edge xy will not lie in a k-clique, while if
Cn ≤ C ′, for some constant C ′ < 2 lg e− 3, then a.a.s. every edge is in a k-clique.

For us it is the last statement that gives us firm information, telling us that F [n; k] =

2(n
2)(1 − o(1)) whenever k ≤ 2 lg n − 2 lg lg n + 2 lg e − 3 − ε for any fixed ε > 0. One of

our main aims in this paper is to exhibit a phase transition for our property: we shall show
that, as soon as we have k ≥ 2 lg n − 2 lg lg n + 2 lg e − 1 + ε (ε > 0), i.e., as soon as k
increases beyond the threshold for the existence of a k-clique, F [n; k] is already less than

2(n
2)−24 lg2 n(1+o(1)). We do not know what happens for the (typically two) values of k between

the two thresholds. We discuss this range near the ‘threshold’ in Section 4.

If k is a little larger, so that k/ log n → ∞ while k = o(n), we are able to pin down the
behaviour of F [n; k] fairly precisely. Here we get a lower bound on F [n; k] by considering
graphs containing a fixed clique L on slightly more than 4k vertices; for most such graphs,
every pair of vertices has at least k − 2 common neighbours in L, and so the graph is an

[n; k]-graph. This shows that F [n; k] ≥ 2(n
2)−8k2+o(k2); we prove an upper bound of the same

form in Section 3.

At the other end of the spectrum, we have some tight bounds when k = n − r and
r = o(n); here we have F [n; n− r] ' nr2/4. To see a lower bound of this form, take a clique
T of size dr/2e, and join each element x of T to some set Sx of d(r + 1)/2e other vertices:
the complement of such a graph is an [n; n− r]-graph, as it is the union of the cliques with
vertex sets V (G) \ (Sx ∪ T \ {x}), for each x ∈ T . We prove a matching upper bound in
Section 5, along with some more precise results in the case where r is constant.

One range of interest we leave open is when k = cn, for some constant c ∈ (0, 1).
Our belief is that there are two regimes: for c below some threshold value, most [n; k]-graphs
resemble those constructed for k = o(n) (every edge is in some k-clique with all the remaining
vertices lying in one particular very large clique L), while above that threshold most [n; k]-
graphs resemble those constructed for k = n− o(n) (the vertex set can be partitioned into a
clique L and an independent set T , with every vertex of T having at least k − 1 neighbours
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in L). We discuss this in a little more detail in Section 6.

2 Very small k

For values of k below the threshold, it is still reasonable to ask about the probability that
a random graph Gn,1/2 is not an [n; k]-graph. For instance, it is straightforward to obtain
sharp estimates of this probability when k is constant, and we discuss this briefly in this
section, although this not a major concern for us.

For k = 1, 2, all graphs are [n; k]-graphs, so F [n; k] = 2(n
2). The first non-trivial case is

k = 3.

For a fixed pair {x, y} of vertices, the probability that xy is an edge of the random graph

G(n, 1
2
) not in a triangle is equal to 1

2

(
3
4

)n−2
. The probability that two disjoint pairs {x, y}

and {u, v} both form “bad” edges is at most
(

3
4

)2(n−4)
, and the probability that {x, y} and

{y, z} are both bad is at most
(

5
8

)n−3
. Thus the probability of at least two bad edges is

O(n3
(

5
8

)n
), which is much smaller than the probability that any particular edge is bad.

Therefore the probability that there is a bad edge is

1

2

(
n

2

)(
3

4

)n−2

+ O

(
n3

(
5

8

)n)
.

For k = 4, the probability that xy is not in a K4 is given by

1

2

n−2∑
j=0

(
n− 2

j

)(
1

4

)j (
3

4

)n−2−j

2−(j
2),

since the j-term in the sum is the probability that the set of common neighbours of x and
y is an independent set of size j. To a reasonable order of accuracy, the sum is equal to its
largest term, which is a term with |j − (lg n− lg lg n)| = O(1), and the sum is

(
3

4

)n

2
1
2

lg2 n−lg n lg lg n+O(log n).

As in the k = 3 case, the probability that there are two edges not lying in a K4 is very
roughly

(
5
8

)n
, so the last expression is also the form of the probability that some edge does

not lie in a K4.

This calculation is very reminiscent of one from [2], and in fact one can continue for larger
constant values of k in the same manner as in that paper, but shorn of the difficulties.

3 Quite Small k

Our results in this section cover the case when k = o(n), but k/ log n → ∞. Our aim is

to prove that, in this range, F [n; k] = 2(n
2)−8k2+o(k2), or in other words that the probability
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that a random graph on [n] is an [n; k]-graph is 2−8k2+o(k2). The proofs we give here are also
applicable for k = C lg n, C > 2, but it would take some extra work to extract the best
possible bounds and we choose not to go into any great detail for this range. In the next
section, we shall develop the techniques further to deal with the threshold range.

We start with the lower bound. For a subset L of [n], let G[L] be the set of all graphs
on vertex set [n] in which L is a clique, and make this into a probability space by making
all graphs in G[L] equally likely. A random graph in G[L] can be constructed by taking each
pair of vertices as an edge with probability 1/2, each choice made independently, except that
all pairs of vertices from L are automatically taken as edges.

For the deviation from the mean of a Binomial random variable, we shall make use of the
following estimates, which are often referred to as the Chernoff bounds. See, for instance, [1].

Theorem 3.1 Let X be a Binomial random variable with parameters (n, p), and set λ =
np = EX. Then,

P(X ≤ λ− t) ≤ exp(−t2/2λ) for any t;

P(X ≥ λ + t) ≤ exp(−t2/3λ) for t ≤ λ.

Lemma 3.2 Suppose k ≥ log n. Let ` =
⌈
4k + 36

√
k log n

⌉
, and set L = [`] = {1, 2, . . . , `}.

Asymptotically almost surely, every edge in a random graph G from G[L] is in a k-clique.

Proof. We claim that, asymptotically almost surely, every pair of vertices in [n] \ L has
at least `/4 − √2` log n common neighbours in L. Note that ` ≤ 40k, which implies that
9
√

k >
√

2`, and so

`

4
−

√
2` log n ≥ k + 9

√
k log n−

√
2` log n ≥ k.

Thus our claim implies that every pair of vertices in [n]\L has at least k common neighbours
in L, so every edge in the graph can be completed to a k-clique by adding vertices of L, as
required.

To prove the claim, take any pair {x, y} of vertices in [n] \ L; the number N(x, y) of
common neighbours of x and y in L is a Binomial random variable with parameters (`, 1/4).
The probability that N(x, y) is less than `/4 − √2` log n is at most n−4, by the Chernoff
bound, so the expected number of pairs with fewer than `/4−√2` log n common neighbours
is at most 1/n2 = o(1), as desired. ¤

Lemma 3.2 implies that, with ` =
⌈
4k + 36

√
k log n

⌉
,

F [n; k] ≥ (1 + o(1))2(n
2)−(`

2) = 2(n
2)−8k2+O(k3/2 log1/2 n),

which is a lower bound of the required form whenever k/ log n →∞.

For k = c log n, we get a lower bound of the form F [n; k] ≥ 2(n
2)−β(c) log2 n, where β(c) is

a function of c – as it stands, our proof gives the bound β(c) ≤ 8(c + 9
√

c)2, but this could
be improved by a more careful analysis. Of course this is only interesting when c > 2/ log 2.
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For the upper bound, we start with a lemma stating that certain events in the space of
(ordinary) random graphs occur with probability at most 2−8k2

– so we can restrict attention
to graphs where these events do not occur.

For the rest of this section and the next, we work in the probability space G(n, 1/2) of
random graphs G on [n] in which each graph is equally likely. We set

s =

⌈
k4/3

n1/3

⌉
and γ =

12k√
ns

≤ min

(
12

(
k

n

)1/3

,
12k√

n

)
.

Note that s = 1 whenever k ≤ n1/4, and that γ = o(1). Let N(x) denote the set of neighbours
of the vertex x in the random graph G.

Lemma 3.3 Suppose k ≥ log n and k = o(n). Let E1 be the event that there are sequences
c1, . . . , cs, d1, . . . , ds of distinct vertices such that, for each i = 1, . . . , s,

|N(ci) ∩N(di) \ {c1, . . . , ci−1, d1, . . . , di−1}| ≥ n

4
(1 + γ).

Let E2 be the event that some set of
⌊

n
4
(1 + γ)

⌋
vertices spans more than n2

64
(1 + 4γ) edges,

and let E3 be the event that the total number of edges is less than n2

4
(1− 8k/n). Then each

of E1, E2, E3 has probability at most e−8k2
for sufficiently large n.

Proof. We begin with E1. Having chosen the sequences di and ci, the sets N(ci)∩N(di)\
{c1, . . . , ci−1, d1, . . . , di−1} are independent, and their sizes are each dominated by Binomial
random variables with parameters (n, 1/4), so the probability that there are sequences where
all are too big is at most

n2s
(
e−γ2n/12

)s

.

Now γ2ns/12 = 12k2, so we are done if n2s ≤ e4k2
, i.e., s log n ≤ 2k2, which is certainly true

for sufficiently large n.

For E2, there are at most 2n possible “bad” sets of vertices, and the number of edges
spanned by a given set of r = b(1 + γ)n/4c vertices is a Binomial random variable with
parameters

((
r
2

)
, 1/2

)
; the probability that this exceeds (1 + γ)r2/4 is at most e−γ2r2/12 ≤

e−γ2n2/192. For sufficiently large n,

(1 + γ)
r2

4
≤ (1 + γ)3n2

64
≤ (1 + 4γ)

n2

64
,

and so the probability of E2 is at most 2ne−γ2n2/192 = 2ne−3k2n/4s ≤ e−k2n/2s. This is at most
e−8k2

for sufficiently large n, since n/s →∞.

The fact that the probability of E3 is suitably small is an immediate consequence of the
Chernoff bounds. ¤
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Lemma 3.4 Let G be an [n; k]-graph such that none of the events E1, E2, E3 occurs. Let F
be a set of edges of G such that every k-clique in G has all but at most k3/2 of its edges in F .
Then, for sufficiently large n,

|F | ≥ 8k2

(
1− 3√

k
− 60

(
k

n

)1/3
)

.

Proof. We start by repeatedly extracting pairs (ci, di) of vertices of G whose neighbour-
hood intersection is larger than n

4
(1+γ). Since E1 does not occur, there is a set S of at most

2s−2 “bad” vertices such that, in G\S, every pair of vertices has common neighbourhood of
size at most n

4
(1+γ) – since E2 does not occur, this means that the common neighbourhood

of any pair of vertices in G \ S spans at most n2

64
(1 + 4γ) edges .

We count, in two ways, the number N of couplets ({a, b}, {c, d}) such that {a, b, c, d}
forms a clique in G that can be extended to a k-clique in G, and such that {c, d} is in F ,
but neither c nor d is in the set S of bad vertices.

Every edge {a, b} of G extends to a k-clique C: of the at least
(

k−2s
2

)
edges between

vertices of C \ (S ∪ {a, b}), at most k3/2 of them are not in F , so we have

N ≥ |E(G)|
((

k − 2s

2

)
− k3/2

)
≥ n2

4

(
1− 8k

n

)
k2

2

(
1− 4s + 1

k
− 2√

k

)
.

On the other hand, each edge of F not incident with a vertex in S only appears in at most
n2

64
(1 + 4γ) couplets, so

N ≤ |F |n
2

64
(1 + 4γ).

Combining these inequalities yields

|F | ≥ 64
n2 (1− 4γ)n2

4

(
1− 8k

n

)
k2

2

(
1− 4s+1

k
− 2√

k

)

≥ 8k2
(
1− 48

(
k
n

)1/3 − 8 k
n
− 4

(
k
n

)1/3 − 5
k
− 2√

k

)
,

from which the stated inequality follows for sufficiently large n. ¤

Theorem 3.5 If k = o(n) and k/ log n →∞, then

F [n; k] ≤ 2(n
2)−8k2+O(k log n)+O(k3/2)+O(k7/3n−1/3).

Proof. Let G be any [n; k]-graph, and suppose that events E1, E2 and E3 do not occur.
Consider the following process to construct a set F of edges of G. Start with F empty. If
there is a k-clique C with at least k3/2 edges not yet in F , put all the edges of C into F .
Stop as soon as |F | ≥ 8k2(1− δ), where δ = 3√

k
+60(k/n)1/3. By Lemma 3.4, there is always

some suitable clique C available until F reaches this size. When the process stops, certainly
|F | < 9k2.
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As at least k3/2 new edges are taken into F at each stage, the number of cliques taken
before the process stops is at most 8

√
k. Also, as each vertex incident with an edge of F is

incident with at least k − 1 edges in F , the total number of such vertices taken is at most
2|F |/(k − 1).

In summary, if G is a graph such that E1, E2 and E3 do not occur, then there is a set
F of edges of size between 8k2(1 − δ) and 9k2, with ends in a set of at most 2|F |/(k − 1)
vertices, which can be covered by at most 8

√
k cliques of order k.

The probability that a random graph G contains such a set F is at most

9k2∑

f=8k2(1−δ)

(
n

2f/(k − 1)

)
22f/(k−1)·8

√
k 2−f ,

where the middle term is an overestimate for the number of ways in which the cliques can
be arranged: this estimate allows us a free choice of whether each vertex belongs to each
clique. The f -term of this sum is at most

n2f/(k−1) 22f/(k−1)·8
√

k 2−f = 2f [2 lg n/(k−1)+16
√

k/(k−1)−1].

For k ≥ (2 + ε) lg n and sufficiently large n, the exponent is negative and the quan-
tity is decreasing in f , so the probability that G contains a suitable set F is at most
2k22−8k2(1−δ)+16k lg n+128k3/2

. (Note that (1− δ)/(k − 1) ≤ 1/k.)

Hence, for sufficiently large n, the probability that a random graph is an [n; k]-graph is
at most

Pr(E1 ∨ E2 ∨ E3) + 2−8k2(1−δ)+128k3/2+16k lg n ≤ 3e−8k2

+ 2−8k2(1−20/
√

k−40(k/n)1/3−2 lg n/k),

which is an upper bound of the required form. ¤

Combining the lower and upper bounds gives

F [n; k] = 2(n
2)−8k2+O(k3/2 log1/2 n)+O(k7/3n−1/3)

whenever k = o(n) and k/ log n →∞.

Now that we know this much about the structure of “most” [n; k]-graphs, we can go on
to deduce more, in particular we can show that the set F constructed in the previous proof
must be “close to” being the edge-set of a clique of size about 4k, as in the example showing
the lower bound.

For k = c lg n, c > 2, the probability of a single k-clique in the random graph is already
as small as 2−((c−2)/2c+o(1))k2

. The proof of Theorem 3.5 gives that the probability that every
edge is in a k-clique is at most 2−8k2((c−2)/c+o(1)). The methods of the next section give better
bounds for values of c just above 2.
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4 k just above the threshold

In this section, we are interested in values of k which are just above the threshold for a
random graph to contain a k-clique a.a.s. For most values of n, we shall show that, as
long as k is large enough to ensure that a random graph a.a.s. contains no k-cliques, the
probability that every edge is in a k-clique is already about as small as 2−6k2

.

We shall prove the following theorem.

Theorem 4.1 Suppose that k ≤ 10 lg n and

k − 1

2
≥ lg n− lg lg n + lg e− 1 + 10/ lg lg n.

Then F [n; k] ≤ 2(n
2)−6k2+o(k2).

The method used will be an extension of that from the previous section. Throughout
what follows, we set t = dlg3 ne and δ = 1/ lg lg n.

Consider the following process, which generates a set F of edges in our graph G that is
the union of edge-sets of k-cliques. We start with F empty. While there is a k-clique of G
with at least δk2 edges outside F , and we have so far taken fewer than t cliques, we put
the entire edge-set of the clique into F . We stop either because there is no suitable clique –
meaning that every k-clique in G has all but at most δk2 edges in F – or after taking exactly
t cliques.

Given any set F of edges of G, made up as the union of edge-sets of k-cliques, let
W = W (F ) be the set of endpoints of F . Set f = |F | and w = |W |. For x ∈ W , let NF (x)
denote the set of vertices joined to x by edges in F , and let dF (x) = |NF (x)| denote the
number of edges in F incident with x. Note that dF (x) ≥ k−1 for all x ∈ W . Let the excess
of F be exc(F ) =

∑
x∈W (dF (x)− (k − 1)).

The plan of the proof is as follows. We can bound from above the probability that G
contains a suitable set F by an expression of the form

(
n
w

)
N2−(k−1)w/2−exc(F )/2, where N

is the number of possibilities for arranging the cliques. The terms
(

n
w

)
and 2−(k−1)w/2 will

roughly cancel in the range of interest, so we need to show that either the excess is large,
and 2−exc(F )/2 drowns out N , or N is sufficiently small to be drowned out by the residual
term arising from

(
n
w

)
2−(k−1)w/2. Accordingly, we aim to prove lower bounds on the excess

in various circumstances.

First we need a simple technical lemma.

Lemma 4.2 Let E4 be the event that there are sets A and X, of sizes 4k − 4k
√

δ and n/k4

respectively, such that every element of X has at least 2k − k
√

δ neighbours in A.

Let E5 be the event that there are sets B and Y , of sizes 2k− k
√

δ and n/k4 respectively,
such that every element of Y has at least k − k

√
δ/4 neighbours in B.

Then, for n sufficiently large, E4 and E5 each have probability at most e−
√

n.
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Proof. We give the details for E4: the proof for E5 is obviously similar.

For a fixed set A of size 4k(1−
√

δ), and a fixed vertex x, the number of neighbours of x
in A is a Binomial random variable with parameters (4k(1−

√
δ), 1/2), so, by the Chernoff

bound,

Pr(|N(x) ∩ A| ≥ 2k − 2k
√

δ + k
√

δ) ≤ exp

(
− k2δ

3 · 2k
)

= e−kδ/6.

Now for a fixed A, the events Ex that |N(x) ∩ A| ≥ 2k − k
√

δ are independent, so the
probability that there is a set X of K = n/k4 such “bad” vertices x is at most

(
n

K

)(
e−kδ/6

)K ≤
(en

K
e−kδ/6

)K

=
(
ek4e−kδ/6

)n/k4

,

which is much smaller than e−2
√

n. As there are at most nk < e−
√

n choices for A, we are
done. ¤

Besides the events E4 and E5, we recall the events E1, E2, E3 of the previous section.
Note that s = 1 in this range, so that the non-occurrence of E1 means that there is no pair
of vertices in G with common neighbourhood of size at least (1 + γ)n/4.

Lemma 4.3 Suppose that G is a graph such that none of the properties E1, . . . , E5 occurs,
and that every edge of G is in a k-clique. Suppose also that the process described above
terminates before t cliques are taken, arriving at a set F of edges spanning a set W of w
vertices of G. Then w ≥ 4k − o(k) and exc(F ) ≥ 12k2 − o(k2).

Proof. Let us first see what we can deduce from the fact that E4 and E5 do not occur.
Fix a set A of 4k(1 −

√
δ) vertices of G, and let J(A) be the set of pairs (u, v) of vertices

such that |N(u)∩N(v)∩A| ≥ k− k
√

δ/4. As E4 does not occur, there are at most (n/k4)n
pairs (u, v) in J(A) with |N(u) ∩A| ≥ 2k − k

√
δ. Also, as E5 does not occur, each vertex u

with |N(u) ∩ A| < 2k − k
√

δ gives rise to at most n/k4 pairs (u, v) ∈ J(A). Therefore, for
any A, |J(A)| ≤ 2n2/k4.

As the process terminates before t cliques are taken, each k-clique of G has at most δk2

edges outside F . Also, the total number of vertices in W is at most tk.

For a vertex x of a k-clique K, we say that x is central to K if xz ∈ F for all but at most√
δk/4 vertices z of K. Note that, as there are at most δk2 edges of K that are not in F ,

the k-clique K has at most 4
√

δk non-central vertices.

We develop the method of proof introduced in Lemma 3.4. We call a pair ({x, y}, {u, v})
a central couplet if:

• uv ∈ E(G),

• xy ∈ F ,

• there is a k-clique K containing u and v such that x and y are central to K.
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For each edge uv of E(G), there is a k-clique K containing u and v, and at most δk2 +
4
√

δk2 of the edges xy of K fails one of the conditions above. Thus {u, v} appears in at least
k2/2 − 6

√
δk2 central couplets. As E3 does not occur, the total number of central couplets

is at least
n2

4

k2

2
(1− o(1)) =

n2k2

8
(1− o(1)).

Let WH denote the set of vertices x of W with dF (x) ≥ 4k(1−
√

δ), and set WL = W \WH .

Our plan is to show that the vertices of WL appear in few central couplets. Indeed,
if ({x, y}, {u, v}) is a central couplet, witnessed by the k-clique K, then y ∈ NF (x), and
N(u) ∩ N(v) ∩ NF (x) ⊃ K ∩ NF (x), which has size at least k −

√
δk/4, as x is central to

K. So (u, v) ∈ J(NF (x)). If x ∈ WL, then |NF (x)| ≤ 4k(1−
√

δ), and |J(NF (x))| ≤ 2n2/k4.
Therefore each x ∈ WL appears in at most |NF (x)| · |J(NF (x))| ≤ 8n2/k3 central couplets.

Hence the total number of central couplets ({x, y}, {u, v}) in which either x or y is in
WL is at most |W |8n2/k3 ≤ 8tn2/k2 ≤ 8n2k, which is much less than the total number of
central couplets.

Now let FH denote the set of edges of F between two vertices of WH . As in the proof of
Lemma 3.4, we see that every edge {x, y} of F appears in at most n2/64(1 − o(1)) central
couplets. Therefore we must have

|FH |n
2

64
(1− o(1)) ≥ n2k2

8
(1− o(1)),

implying |FH | ≥ 8k2(1−o(1)). To span this many edges, we must have |WH | ≥ 4k(1−o(1)).
Hence certainly w ≥ 4k(1−o(1)), and also each vertex in WH contributes at least 3k(1−o(1))
to exc(F ), so exc(F ) ≥ 12k2(1− o(1)), as claimed. ¤

Given sets W of vertices and F of edges generated by running the process as described
above, let B denote the set of vertices of W that are in more than one of the cliques produced
during the process, and set b = |B|. Also, let q denote the number of times during the process
that a vertex already in W is chosen for a clique to be placed into F ; note that q ≥ b.

Lemma 4.4 The excess exc(F ) of F is at least qδk/2.

Proof. We consider how q and exc(F ) are increased on taking each new clique K into
F . There are two cases.

If K contains at least δk/2 “new” vertices (not already in W ), then each “old” vertex in
W has its excess raised by at least δk/2.

On the other hand, if K contains fewer than δk/2 new vertices, then it contains fewer
than δk2/2 edges incident with new vertices. By the definition of the process, K contains
at least δk2 edges not currently in F , and each of these edges incident with two old vertices
increases the total excess by 2. Thus the total excess increases by at least δk2 on the inclusion
of K, while q increases by at most k.

10



In either case, if q increases by r on the addition of K, exc(F ) increases by at least rδk/2.
This implies the result. ¤

Clearly there is something to spare in the argument above, but this result suffices.

In the case when we terminate the process before taking t cliques, we now have two lower
bounds on exc(F ). Taking a convex combination, we have that

exc(F ) ≥ 4δ
qδk

2
+ (1− 4δ)(12k2 − o(k2)) = 2qδ2k + 12k2 − o(k2).

Thus we have that, at the end of our process, either |F | ≥ (k − 1)w/2 + qδ2k + 6k2 − o(k2),
or both |F | ≥ (k − 1)w/2 + qδk/4 and s = t.

We are now ready to prove Theorem 4.1.

Proof. Recall that

k − 1

2
≥ lg n− lg lg n + lg e− 1 + 10δ,

so that n2−(k−1)/2 ≤ lg n(2/e)(1− 5δ). We need to show that the probability that a random
graph is an [n; k]-graph is at most 2−6k2+o(k2). In proving this, we may suppose that none of
the events E1, . . . , E5 occurs, as their probabilities are suitably small.

We consider running our process, terminating after taking s cliques, and distinguish two
cases for the value of q at termination.

(a) Suppose q ≥ δks. Then, for some value of s at most t, our graph G contains
a set W of w ≤ ks vertices, spanning s k-cliques with an edge-union F of size at least
(k − 1)w/2 + δ3k2s + 6k2 − o(k2) if s < t, and at least (k − 1)w/2 + δ2k2t/4 if s = t.

Consider first the case s = t. The probability that G contains such a set W in this case
is at most ∑

w

(
n

w

)(
w

k

)t

2−(k−1)w/2−δ2k2t/4.

Here
(

w
k

)t
is a crude bound on the number of ways of choosing the t k-cliques with vertices

in W . Again crudely, this probability is at most

∑
w

(
n2−(k−1)/2

)w
(
wk2−δ2k2/4

)t

.

Now we use that w ≤ kt, kt ≤ lg4 n, and n2−(k−1)/2 ≤ lg n to bound this above by

∑
w

(
lg n lg4 n2−δ2k/4

)kt

.

The term in parentheses is at most 1/2 for sufficiently large n (recall that δ = 1/ lg lg n),
and the number of choices for w is at most lg4 n, which is negligible, so the probability that

11



G contains a subgraph (W,F ) of this form is at most 2−kt = 2−O(lg4 n), which is even smaller
than we require.

In the case where s < t, the calculation is effectively the same with the alternative
estimate for |F | being used, and we see that the probability that G contains a subgraph
(W,F ) of the required form is at most

∑
s

(
lg5 n2−δ3k

)ks

2−6k2+o(k2) ≤ 2−6k2+o(k2).

as required.

(b) Suppose q ≤ δks.

Let A = W \ B be the set of vertices of W that are in exactly one of the cliques taken
during the process. Set a = |A|, and observe that a = ks− b− q ≥ (1− 2δ)ks.

Given sets A and B of appropriate sizes, we need an upper bound on the number of
ways to arrange them into s k-sets S1, . . . , Ss so that every element of A occurs exactly once,
and the total number of occurrences of elements of B is q + b. There are just

(
bs

q+b

)
ways of

choosing the b+ q instances of occurrences of elements of B in a set Si. Having chosen these
instances, we have to top each set Si up by some known number ai, (i = 1, . . . , s), where the
ai sum to a. The number of ways to do this is just the number of ways to partition A into
sets of sizes a1, . . . , as, which is a!/(a1! · · · as!); this is greatest when all the ai are as nearly
equal as possible, and is at most a!/((1 − δ)a/se)(a/s)s ≤ a!/((1 − 3δ)k/e)a: here we used a
crude version of Stirling’s formula and the bound a ≥ (1− 2δ)ks.

Again let us start with the case where we terminate with s = t, so that our upper bound
on |F | is simply (k − 1)(a + b)/2 + qδk/4. In this case, the probability that G contains sets
A and B spanning cliques as necessary is at most

∑

a,b,q

(
n

a

)(
n

b

)(
bt

q + b

)
a!

((1− 3δ)k/e)a
2−a(k−1)/2−b(k−1)/2−qδk/4.

Collecting terms with powers a, b and q, and using standard estimates, shows that this sum
is at most ∑

a,b,q

(
n2−(k−1)/2

(1− 3δ)k/e

)a (
nbt2−(k−1)/2

)b (
bt2−δk/4

)q
.

Note that k ≥ 2 lg n(1 − δ), that b ≤ q, and that bt ≤ δkt2 ≤ lg7 n, so the probability is at
most ∑

a,b,q

(
lg n(2/e)(1− 5δ)

(1− 4δ)2 lg n/e

)a (
lg15 n2−δk/4

)q
.

The second term here is at most 1, and the number of terms in the sum is at most lg12 n,
which is not significant. Hence the probability is at most

lg12 n(1− δ)(1−2δ)kt ≤ 2−δkt/2,
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which is suitably small.

Finally we have to repeat the last calculation in the case where we terminate before
taking t cliques, in which case we have a stronger lower bound on |F |. We obtain, much as
above, the following upper bound on the probability of a subgraph (W,F ) of the necessary
form: ∑

a,b,q,s

(1− δ)(1−2δ)ks
(
lg15 n2−δ2k

)q

2−6k2+o(k2) ≤ 2−6k2+o(k2),

as required. ¤

5 Large k

We now work from the opposite end of the spectrum, working down from the largest values
of k.

Clearly F [n; n] = 2 and F [n; n− 1] =
(

n
2

)
+ n + 2, since a union of (n− 1)-cliques either

misses exactly one edge (union of two cliques), or is a single clique plus an isolated vertex,
or is empty or complete. We can similarly calculate F [n; n− 2] exactly.

Based on the examples above, it looks as though, for r fixed, there are only finitely many
isomorphism classes of [n; n− r]-graphs, and F [n; n− r] is a polynomial in n whose degree
increases with r. We show that this is true, and find exactly the coefficient of the leading
term of F [n; n− r].

Lemma 5.1 Suppose G is an [m; m− r]-graph, having no vertex of degree 0 or m−1. Then
m ≤ b(r + 2)2/4c.

Furthermore, if equality holds and r ≥ 4, then the complement Gc of G consists of a
clique T of size t, and a copy of K1,s rooted at each vertex of T , where: t = s + 1 = r+2

2
if r

is even and {t, s + 1} = { r+1
2

, r+3
2
} if r is odd.

Proof. Since Gc has no isolated vertex, we can take a spanning subgraph H of Gc

consisting of stars (i.e., copies of some K1,s with s ≥ 1). Let x1, . . . , xt be the roots of these
stars, and let si be the number of leaves adjacent to xi in H. Without loss of generality
s1 = s is the largest of the si, so m ≤ t(s + 1). Now consider an (m − r)-clique C in G
containing x1: this does not contain any of the s adjacent leaves, and also, for each j 6= 1,
misses either xj or all of its associated leaves. So C misses at least s + t − 1 vertices, and
therefore s + t− 1 ≤ r, or t + (s + 1) ≤ r + 2. From this and m ≤ t(s + 1), we conclude that
m ≤ b(r + 2)2/4c.

Furthermore, if we have equality, then t and s + 1 must both be as close as possible to
(r + 2)/2. Also, all the si must be equal to s. Moreover, provided s ≥ 2, the only (m− r)-
clique in G containing xi misses exactly its associated leaves and the other xj: therefore the
xi form a clique in Gc. Provided t ≥ 3, the union of the t cliques containing the xi contains
all edges between leaves, and so is the graph stated.
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Finally we observe that the graphs described in the theorem are [m; m− r]-graphs. ¤

Theorem 5.2 For fixed r ≥ 1, F [n; n− r] is a polynomial of degree b(r + 2)2/4c in n. The
leading coefficient L(r) is 1/2 for r = 1, 3/4 for r = 2 and 17/9 for r = 3. Furthermore,
for r ≥ 4,

L(r) =

{ (
(r/2)!r/2+1(r/2 + 1)!

)−1
if r is even,(

r+1
2

)
!−(r+3)/2 +

((
r−1
2

)
!(r+3)/2

(
r+3
2

)
!
)−1

if r is odd.

Proof. Set m0(r) = b(r + 2)2/4c. Observe that, for r ≥ 1, m0(r + 1) > m0(r) + 1.

Let F ′[n; n − r] denote the number of [n; n − r]-graphs with no isolated vertices. We
shall prove that F ′[n; n− r] is a polynomial of degree m0(r), with leading coefficient L(r) as
stated in the theorem. The result will then follow, since

F [n; n− r] = 1 +

(
n

r

)
+

r−1∑
q=0

(
n

q

)
F ′[n− q; n− r].

Here, the initial 1 accounts for the empty graph, and the next term counts the single (n−r)-
cliques; the q-term in the sum counts the [n; n − r]-graphs with exactly q isolated vertices.
The q-term in the sum is a polynomial of degree q + m0(r − q), and the unique largest of
these is when q = 0.

By Lemma 5.1, for any [n; n − r]-graph G with no isolated vertices, all but at most
m0 = m0(r) of the vertices of G have degree n− 1. For m ≤ m0, let C(m, r) be the number
of [m; m− r]-graphs with no vertex of degree 0 or m− 1; then

F ′[n; n− r] =

m0∑
m=0

(
n

m

)
C(m, r),

so F ′[n; n − r] is indeed a polynomial of degree m0(r) in n, and its leading coefficient L(r)
is C(m0, r)/m0!.

Also by Lemma 5.1, if r ≥ 4 is even then C(m0, r) is the number of ways of partitioning
m0 labelled vertices into r/2 + 1 stars K1,r/2, which is m0!/

(
(r/2)!r/2+1(r/2 + 1)!

)
. If r ≥ 5

is odd, then similarly

C(m0, r) = m0!

(
r + 1

2

)
!−(r+3)/2 + m0!

(
r − 1

2

)
!−(r+3)/2

(
r + 3

2

)
!−1,

as claimed.

The cases r = 2 and r = 3 need to be handled separately. Investigation of the various
possibilities shows that C(4, 2) = 18 and C(6, 3) = 1360. ¤

Another way of looking at what we have proved is that, for fixed r and n sufficiently
large (at least m0(r)), the number of isomorphism classes of [n; n− r]-graphs is fixed.
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Note that, for r fixed, the leading term of the polynomial F [n; n−r] dominates as n →∞,
so we have

F [n; n− r] = L(r)nb(r+2)2/4c(1 + o(1)).

The basic behaviour F [n; n−r] ' nr2/4 is actually valid whenever r = o(n), as we now show.

Theorem 5.3 For r = o(n),

F [n; n− r] = exp

(
r2

4
log(n/r) + O(r log n) + O(r2)

)
= exp

(
r2

4
log n(1 + o(1))

)
.

Proof. For the lower bound, consider the family of all graphs with vertex set V = [n] of
the following form: there is a designated set T of t = dr/2e vertices – T forms a clique, and
each vertex x of T is also adjacent to a set S(x) of r− t+1 = d(r+1)/2e vertices from V \T .
For any such graph H, the complement G is an [n; n− r]-graph: for each vertex x ∈ T , take
a clique on V \ (S(x) ∪ T \ {x}), and take also any other cliques inside V \ T required so
that V \ T is a clique in G.

The number of graphs H constructed as above is
(

n
t

)(
n−t

r−t+1

)t
, which is of the form stated

in the theorem: note that, given H, we can always recover T as all other vertices have lower
degree.

We now turn to the upper bound. Suppose that G is a non-empty [n; n− r]-graph, and
let H be the complement Gc. Note that H has no matching of size greater than r (otherwise
there is no (n − r)-clique in G). Thus by the defect form of Tutte’s 1-factor Theorem [5],
there is a set T of t ≤ r vertices such that H \T has at least n−2r+t odd-order components;
furthermore, taking T minimal with this property ensures that there is a matching M of t
edges in H, each containing exactly one vertex of T : say V (M) = T ∪ T ′.

Suppose that n − t − u of the odd-order components of H \ T are single vertices, so
there are exactly u vertices in non-trivial components of H \ T . However, there are at least
u + 2t − 2r non-trivial odd-order components, so at least 3(u + 2t − 2r) vertices in these
components. It follows that u ≥ 3(u + 2t− 2r), so that u ≤ 3(r − t).

Now observe that each vertex x of T either has degree n − 1 in H, or is adjacent to at
most r− t vertices outside T ∪T ′ in H; otherwise there is no clique in G containing x of size
n − r, as any such clique must miss one vertex on each edge in M , as well as all the other
neighbours of x in H.

To recap, there is a set T of t ≤ r vertices in H, and a set W (the set of vertices in
non-trivial components of H \ T , together with T ′) of order at most 3r − 2t, such that all
neighbours of vertices in Z = V (H) \ (T ∪ W ) are in T , and each vertex of T either has
degree n − 1 or has at most r − t neighbours in Z. (We can say more, but this is all we
need.)

The number of graphs H with this structure, for given t, is at most
(

n

t

)(
n− t

3r − 2t

)
2(3r−t

2 )
[(

n− 3r + t

≤ r − t

)
+ 1

]t

= exp
(
t(r − t) log(n/r) + O(r log n) + O(r2)

)
.

This is maximized when t = r/2, and the result follows. ¤
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6 Middling k

We have found reasonably good estimates for F [n; k] if k = o(n) and also if n − k = o(n);
it is natural to ask what happens if k = cn, for some fixed c with 0 < c < 1. In this case
the probability that a random graph contains a single k-clique is 2−c2n2/2+O(n), and we shall
present lower bounds of the same form, thus showing that

2α(c)n2 ≤ F [n; cn] ≤ 2β(c)n2

,

for some α(c), β(c) with 0 < α < β < 1/2. In fact, we conjecture that the lower bounds
implicit from the examples we present below give the correct answer.

Our examples will be variants of the families we know to be “optimal” at either end of
the range.

For c small, consider graphs G of the following type. The vertex set is split into a clique
A of size an, and an arbitrary graph on the set B containing the remaining (1−a)n vertices.
Between A and B is a graph with edge-density q = (1+ ε)

√
c/a (ε can be taken to be n−1/4,

for instance). Such a graph a.a.s. has the property that every two vertices of B have at least
q2an(1− ε) > cn common neighbours in A, and therefore is an [n; cn]-graph. Therefore

F [n; cn] ≥ 2(1−a)2n2/2

(
g

qg

)
; g = a(1− a)n2,

so
lg F [n; cn]

n2
≥ (1− a)2

2
+ a(1− a)H(q)(1− o(1)),

where H(x) = −x lg x− (1−x) lg(1−x) is the entropy function. Given c, one can maximize
this expression over a (setting ε = 0 for the purposes of the calculation, so q =

√
c/a).

However, there seems to be no particularly pleasant way of expressing the outcome of this
calculation.

For c large, consider graphs G of the following type. The vertex set is split into a clique
A of size an, and an independent set B of size (1− a)n. Between A and B is a graph with
edge-density q = (1 + ε)c/a. This time all we need is that each single vertex of B has at
least cn neighbours in A, and this is indeed the case a.a.s. So

F [n; cn] ≥
(

g

qg

)
; g = a(1− a)n2,

and therefore
lg F [n; cn]

n2
≥ a(1− a)H(c/a)(1− o(1)).

Again, one can maximize this over a, and again there seems to be no straightforward way
to express the result.

Our calculations suggest that the first family is larger for c ≤ 0.51, and the second is
larger for c ≥ 0.52.
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7 Related questions

As we mentioned at the beginning of the paper, our interest in this problem originated from
the study of a closely related problem: how many subsets of the n-dimensional cube can be
written as unions of k-dimensional subcubes? Indeed, our problem is a natural translation
of this from the cube to the complete graph, with an equally natural choice of specified
substructure: clique rather than subcube.

There are some other combinatorial structures where similar questions might be of some
interest. For example, the same framework can be translated to the setting of hypergraphs,
of bipartite graphs, or of grids. To be precise, here are a number of questions, or rather
families of questions.

(1) How many r-uniform hypergraphs on n vertices can be written as the union of complete
r-uniform hypergraphs on k vertices?

(2) How many bipartite graphs with specified vertex classes A and B of size n can be written
as the edge-union of complete bipartite graphs Km,m? Or Ks,t? This can also be interpreted
geometrically: for an n× n piece X of the rectangular grid, how many subsets of X can be
written as the union of m×m subgrids? Here a subgrid is defined by any choice of m vertical
co-ordinates and m horizontal co-ordinates, not necessarily consecutive. The question can
also be asked in higher dimensions.

(3) A similar question in a slightly different setting has recently been asked by Verstraëte
and studied by Green and Ruzsa [4]: how many subsets of {1, . . . , n} can be written as
A + A = {a + b : a, b ∈ A} for some A? Here too one could investigate extensions: what
about A + A + A, for instance?

(4) Returning to our setting of cliques in graphs, it is not hard to think up variations on
our problem. For instance, one could ask the same question in the space G(n, p) of random
graphs for non-constant p = p(n). (Presumably there are no surprises for other constant
values of p.)

(5) Or one could ask for the number of graphs with vertex set [n] that are the edge-union
of disjoint k-cliques. Even the case k = 3 is not trivial. Or one could restrict the number of
cliques, or ask about the number of unlabelled graphs.

Returning finally to our threshold result, Theorem 4.1, it would be of great interest

to discover exactly how F [n; k]/2(n
2) behaves very near the threshold. Our belief is that

the proper way to view this is to treat k as the independent parameter, and look at how

F [n; k]/2(n
2) varies with n = n(k).
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